HEAVY DOPING AND BAND ENGINEERING BY POTASSIUM TO IMPROVE THE THERMOELECTRIC FIGURE OF MERIT IN P-TYPE PbTe, PbSe, AND PbTe_{1−y}Se_y

Qian Zhang,† Feng Cao,† WeiShu Liu,† Kevin Lukas,† Bo Yu,† Shuo Chen,‡ Cyril Opeil,† David Broido,† Gang Chen,‡§ and Zhifeng Ren∗†

†Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
‡Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
§Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
∗Departments of Mechanical Engineering and Materials Science, Northwestern University, Evanston, Illinois 60208, United States

ABSTRACT: We present detailed studies of potassium doping in PbTe_{1−y}Se_y (y = 0, 0.15, 0.25, 0.75, 0.85, 0.95, and 1). It was found that Se increases the doping concentration of K in PbTe as a result of the balance of electronegativity and also lowers the lattice thermal conductivity because of the increased number of point defects. Tuning the composition and carrier concentration to increase the density of states around the Fermi level results in higher Seebeck coefficients for the two valence bands of PbTe_{1−y}Se_y. Peak thermoelectric figure of merit (ZT) values of ∼1.6 and ∼1.7 were obtained for Te-rich K_{0.02}Pb_{0.98}Te_{0.75}Se_{0.25} at 773 K and Se-rich K_{0.02}Pb_{0.98}Te_{0.15}Se_{0.85} at 873 K, respectively. However, the average ZT was higher in Te-rich compositions than in Se-rich compositions, with the best found in K_{0.02}Pb_{0.98}Te_{0.75}Se_{0.25}. Such a result is due to the improved electron transport afforded by heavy K doping with the assistance of Se.

INTRODUCTION

Intensive attention has recently been paid to energy conversion using thermoelectric principles, which can directly convert both waste heat and solar energy into electricity.1−3 Large-scale applications call for thermoelectric materials with high values of the dimensionless figure of merit ZT = [S²ε/(κ+κ_L)]^{1/2}, where S is the Seebeck coefficient, ε is the electrical conductivity, κ is the lattice thermal conductivity, κ_L is the charge-carrier thermal conductivity, and T is the absolute temperature.4−7 According to the combination of a high Seebeck coefficient with high electrical conductivity and low thermal conductivity is desired and has been pursued. However, it is difficult to optimize one parameter without deteriorating the others. Complex crystals are normally considered to have the advantage of decoupling the three interrelated quantities with the concept of “electron−crystal phonon−glass”.8−10 Nanostructuring is the major approach for ZT enhancement, since it allows independent tuning of all of the parameters.11−17

Lead telluride (PbTe) with the simple face-centered-cubic (fcc) rock salt structure is one of the most studied thermoelectric materials suitable for the intermediate temperature range (600−800 K).18−21 Its cheaper sister compound lead selenide (PbSe) also has a decent value of ZT.22−24 Excellent progress has recently been made through band engineering, such as resonant states18,19,23 and band convergence,20,22,23,26 leading to improvements in both the electrical conductivity and Seebeck coefficient simultaneously while affecting the thermal conductivity too much.27 Good results were reported for Ti-doped PbTe, which pushed the ZT value to ∼1.5 at 773 K by creating resonant states near the Fermi energy.18 Recently, Al doping was reported to result in n-type resonant doping in PbSe with a peak ZT value of ∼1.3.23 A great deal of theoretical work has been performed to find possible new resonant dopants in PbTe and PbSe.28−30 It was predicted that the alkali metals K, Rb, and Cs can create resonant density of states (DOSs) distortion in PbTe, whereas Na cannot because it does not change the DOS near the top of the valence band.28 However, PbTe doped heavily with Na still exhibits high ZT values, which are believed to be the result of the coexistence of light-hole (L) and heavy-hole (Σ) valence bands in PbTe.31 Effective doping of Na moves the Fermi level close to the Σ band, which has a much larger DOS, helping increase the Seebeck coefficient.20,32−34 A ZT value of ∼1.4 at 750 K in Na-doped PbTe with a Hall carrier concentration (p_H) greater than ∼7.5 × 10¹⁹ cm^{−3} has been obtained.20 A similar effect has been shown theoretically and experimentally in PbSe, which has a flat, high-mass, high-DOS band 0.35−0.4 eV below the valence-band maximum.35 ZT values reaching 1.2−1.3 at 850 K have been reported for Na-doped PbSe with a Hall carrier concentration of (9−15) × 10¹⁹ cm^{−3}22 Furthermore, a ZT value of ∼1.8 at ∼850 K was reported for Na_{0.02}Pb_{0.98}Te_{0.85}Se_{0.15} as a result of alloying with Se.25 Regardless of whether the increase in the electronic power factor (εS²) is due to resonant levels or the Σ band, it is obvious that band engineering can enhance the carrier (electron/hole) transport. Indeed, both resonant states and band convergence contribute to the high ZT value in Ti-doped PbTe.
PbTe. However, it is desired to avoid Tl for practical applications because of its toxicity. Motivated by recent calculations, we chose to study K doping to make K$_{0.02}$Pb$_{0.98}$Te$_{1−y}$Se$_{y}$, because of the smaller ionic radius of K$^+$ compared with Rb$^+$ and Cs$^+$. Normally, it is believed that K has a limited solubility in PbTe, which limits the Hall carrier concentration to less than 6×1019 cm$^{-3}$. Thus, reports on K doping in PbTe have been very limited, in contrast to Na doping in PbTe, which can produce much higher carrier concentrations. In this work, we were able to increase the Hall carrier concentration to (8−15)×1019 cm$^{-3}$ in PbTe by K doping with the help of Se through the balance of electronegativity. It is shown that band engineering works better in K$_{0.02}$Pb$_{0.98}$Te$_{1−y}$Se$_{y}$, giving a higher Seebeck coefficient. Peak ZT values of ∼1.6 and ∼1.7 were obtained in Te-rich K$_{0.02}$Pb$_{0.98}$Te$_{0.75}$Se$_{0.25}$ and Se-rich K$_{0.02}$Pb$_{0.98}$Te$_{0.15}$Se$_{0.85}$, respectively. However, the average ZT of the Te-rich compositions was higher, making this material more favorable for practical applications.

EXPERIMENTAL SECTION

Synthesis. Ingot with nominal compositions K$_{0.02}$Pb$_{0.98}$Te$_{1−y}$Se$_{y}$ (x = 0.01, 0.0125, 0.015, and 0.02), K$_{0.02}$Pb$_{0.98}$Te$_{0.95}$Se$_{0.05}$, and K$_{0.02}$Pb$_{0.98}$Te$_{1−y}$Se$_{y}$ (y = 0.15, 0.25, 0.75, 0.85, and 0.95); other compositions such as K$_{0.01}$Pb$_{0.99}$Te$_{1−y}$Se$_{y}$ and K$_{0.02}$Pb$_{0.98}$Te$_{0.11}$Se$_{0.89}$ respectively. In this work, we employed a similar model here. Error bars of 10% for the power factor and 11% for ZT. For better readability of the figures, we have deliberately plotted the curves without the error bars.

RESULTS AND DISCUSSION

On the basis of the ion radius of Pb, Na, and K (Table 2), K$^+$ is closer to Pb$^{2+}$ but a little bigger. For samples K$_{0.02}$Pb$_{0.98}$Te$_{1−y}$Se$_{y}$ (x = 0.01, 0.0125, 0.015, and 0.02), the electrical conductivity, Seebeck coefficient, power factor, thermal diffusivity, specific heat, lattice thermal conductivity, and total thermal conductivity were measured, and the results are presented in Figure 1a–f, respectively. The electrical conductivity at room temperature increased a little bit with increasing K concentration, but no change was seen at high temperature, where all of the samples showed a decrease with temperature (Figure 1a). The Seebeck coefficients of all of the samples (Figure 1b) changed only slightly, likely as a result of contributions from both the light and heavy holes with the high carrier concentration. The power factor increased with increasing K concentration and peaked at ∼500 K (Figure 1c). The thermal diffusivity was basically the same for all of the samples (Figure 1d), consistent with the microstructures (see the Supporting Information). The specific heats of the samples were similar (Figure 1e), indicating good reproducibility of the measurements. Combining the thermal diffusivities, specific heats, and volumetric densities gave the thermal conductivities (Figure 1f), which were very close to each other.

To provide a better understanding of the band structure of K$_{0.02}$Pb$_{0.98}$Te$_{1−y}$Se$_{y}$, a Pisarenko plot (Seebeck coefficient vs Hall carrier concentration) at room temperature was made (Figure 2, solid circles) and compared with reported results for Na-doped PbTe (open and half-open circles). The Hall carrier concentration of our K-doped PbTe samples (∼0.3×1019 cm$^{-3}$) was lower than that in Na-doped PbTe, which could be as high as 14×1019 cm$^{-3}$. The flattening of the Seebeck coefficient with increasing carrier concentration indicates a contribution from the second valence band. This behavior has been explained previously using a multiband model with a nonparabolic L band described by a Kane model and a parabolic Σ band, and we employed a similar model here.

<table>
<thead>
<tr>
<th>μ (Å2V$^{-1}$s$^{-1}$)</th>
<th>τ (ps)</th>
<th>ρ (Ωcm)</th>
<th>S_c (mK$^{-1}$)</th>
<th>D (cm2 s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10032</td>
<td>0.0139</td>
<td>2.15</td>
<td>11500</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 1. Theoretical Densities (D_t), Measured Volumetric Densities (D_m), Relative Densities (D_r), and Electrical Conductivity Power Law Exponents (δ) for K$_{0.02}$Pb$_{0.98}$Te$_{1−y}$Se$_{y}$

Table 2. Ionic Radii (r) and Pauling Electronegativities (PE) of K, Na, Pb, Te, and Se

<table>
<thead>
<tr>
<th>K</th>
<th>Na</th>
<th>Pb</th>
<th>Te</th>
<th>Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>r (Å)</td>
<td>1.33</td>
<td>0.97</td>
<td>1.20</td>
<td>2.11</td>
</tr>
<tr>
<td>PE</td>
<td>0.82</td>
<td>0.93</td>
<td>2.33</td>
<td>2.10</td>
</tr>
</tbody>
</table>
\[p_L = \frac{1}{3\pi^2} \left(\frac{2m^*_Lk_BT}{h^2} \right)^{3/2} \langle P^m_0 \rangle^{3/2} F_0^{3/2} (\eta, \beta) \]

where \(k_B \) is Boltzmann's constant, \(e \) is the electron charge, \(^*P^m_0 \) is the generalized Fermi function, \(\eta \) is the reduced Fermi level, \(h \) is Planck's constant, and \(m^*_L \) is the light-hole DOS effective mass, taken as \(m^*_L/m_e = 0.28 \) \((2) \). The solid black curve is based on a model employing a single nonparabolic band with a PbSe light-hole effective mass of \(m^*_L/m_e = 0.28 \). The solid black curve is based on a two-band model (nonparabolic L band and parabolic \(\Sigma \) band) with a PbSe heavy-hole effective mass of \(m^*/m_e = 2.5 \). The dashed red curve is based on a two-band model (nonparabolic L band and parabolic \(\Sigma \) band) with a PbTe light-hole effective mass of \(m^*/m_e = 0.36 \). The solid red curve is based on a two-band model (nonparabolic L band and parabolic \(\Sigma \) band) with a PbTe heavy-hole effective mass of \(m^*/m_e = 2 \).
where \(m^* \) is the heavy-hole DOS effective mass, taken as \(m^*/m_e = 2 \), and \(\eta = \eta - \Delta E/k_BT \), where \(\Delta E \) is the energy difference between the light-hole and heavy-hole band maxima, whose value is discussed below. It should be noted that for this parabolic band, \(\beta = 0 \). The total Seebeck coefficient from both hole bands, \(S_{\text{total}} \), is taken to be:

\[
S_{\text{total}} = \frac{\sigma_L S_L + \sigma_\Sigma S_\Sigma}{\sigma_L + \sigma_\Sigma}
\]

(5)

where \(\sigma_L \) and \(\sigma_\Sigma \) are the electrical conductivities of the L and \(\Sigma \) bands, respectively.

The total Hall carrier concentration for a two-band system, \(p_{\text{tot}} \), is related to the carrier concentrations in the two bands, \(p_L \) and \(p_\Sigma \), as described previously in refs 25 and 37 (this expression is provided in the Supporting Information and in refs 25 and 37). In Figure 2, the solid red line shows the calculated \(S_{\text{total}} \) as a function of \(p_{\text{tot}} \) for PbTe. It can be seen that the data (solid circles) falls nicely on the flat part of the solid red line at \(S \approx 75 \mu V K^{-1} \), indicating a clear contribution from two bands as a result of K doping. Alternatively, Kanatzidis et al.28 obtained a plateau at \(S \approx 56 \mu V K^{-1} \) using a light-hole effective mass of \(\sim 0.2m_e \), which can explain Na-doped PbTe pretty well. The magnitude of the heavy-hole contribution was highlighted by examining a one-band light-hole model obtained by removing the contribution from the \(\Sigma \) band. This case gave the dashed red line shown in Figure 2, which falls well below the measured data at high carrier concentrations.

As the temperature increased, the Seebeck coefficient increased dramatically to \(\sim 320 \mu V K^{-1} \) at 775 K, a value much higher even than that for Na-doped PbTe \((\sim 260 \mu V K^{-1} \) at 775 K), which is believed to be due to the two-band contribution.20 In view of the fact that first-principles calculations predicted possible resonant states introduced by K doping,28 it is likely that resonant doping may also play a minor role here in addition to the two-band contribution. However, we do not have enough evidence to support this because the Seebeck coefficient is not high enough. The limited carrier concentration of \(<6 \times 10^{19} \) cm\(^{-3} \) results from K doping restraints the increase in the electrical conductivity (shown in Figure 1a), which is the determining factor when the \(S \) flattens. Furthermore, the decrease in electrical conductivity with temperature is faster in K-doped samples, as exhibited by the values of \(\delta \), the exponents in the power law for the electrical conductivity \((\sigma \approx T^{\delta}) \), presented in Table 1.

Generally speaking, the total thermal conductivity \(\kappa \) is the sum of the charge-carrier thermal conductivity \(\kappa_e \) and the lattice thermal conductivity \(\kappa_L \). The value of \(\kappa_e \) can be calculated via the Wiedemann–Franz relation, \(\kappa_e = L_e T \), in which the Lorenz number \(L \) is the same for the electrons and holes; \(\kappa_L \) is then derived by subtracting \(\kappa_e \) from \(\kappa \). Values of \(\kappa_e \) and \(\kappa_L \) are presented in Figure 1f. Again, a multiband model was employed for the accurate estimation of \(L \). This model gives the following expressions:35,37

\[
L_L = \left(\frac{k_B}{e} \right)^2 \left\{ \frac{1}{0} \frac{F_{1,2}(\eta, \beta)}{F_{-1,2}(\eta, \beta)} - \frac{1}{0} \frac{F_{-1,2}(\eta, \beta)}{F_{1,2}(\eta, \beta)} \right\}^{1/2}
\]

(6)

\[
L_\Sigma = \left(\frac{k_B}{e} \right)^2 \left\{ \frac{1}{0} \frac{F_{1,2}(\eta_\Sigma, 0)}{F_{-1,2}(\eta_\Sigma, 0)} - \frac{1}{0} \frac{F_{-1,2}(\eta_\Sigma, 0)}{F_{1,2}(\eta_\Sigma, 0)} \right\}
\]

(7)

where \(L_L \) and \(L_\Sigma \) are the Lorenz numbers for the L band, and \(\Sigma \) band, and both bands, respectively. Because of the low electrical conductivity, the carrier thermal conductivity is also low. With almost the same lattice thermal conductivity (the same lattice scattering), we achieved a total thermal conductivity lower than that of Na-doped PbTe.20 The highest \(ZT \) value was \(\sim 1.3 \) at \(\sim 673 K \) for \(K_{0.015}Pb_{0.985}Te \) (Figure 3), which is comparable with that of Na-doped PbTe at the same temperature.25

Figure 3. Temperature dependence of \(ZT \) for \(K_{x=0.01}Pb_{1-x}Te \) \((x = 0.01, 0.0125, 0.015, \text{and} 0.02) \).

In both the PbTe and PbSe systems, K\(^+ \) and Na\(^+ \) dopants substitute for Pb\(^{2+} \), and both K and Na have lower Pauling electronegativities (PE) than Pb (Table 2). In spite of their comparable ionic radii, the solubilities of K and Na are determined by the difference in the electronegativities of the average anion \((Te^{2-} \text{or} Se^{2-}) \) and cation (Pb\(^{2+} \) together with K\(^+ \) or Na\(^+ \)) after doping. Typically, a larger difference results in higher solubility. Since K has a lower electronegativity than Na, the average cation electronegativity after doping is lower in the case of K substitution. For PbTe, a lower average cation electronegativity reduces the electronegativity difference relative to the difference for Te\(^{2-} \) and Pb\(^{2+} \) without doping, so K has less solubility than Na in PbTe. For PbSe, the situation is opposite (a lower average cation electronegativity enlarges the electronegativity difference relative to Se\(^{2-} \) and Pb\(^{2+} \) without doping), so K has a higher solubility than Na in PbSe.

Samples of \(K_{x}Pb_{1-x}Se \) with different K concentrations \((x = 0, 0.005, 0.010, 0.0125, \text{and} 0.015) \) were prepared and measured. The electrical conductivity, Seebeck coefficient, power factor, thermal diffusivity, specific heat, and thermal conductivity are shown in Figure 4a–f, respectively. It is clear that for \(x \geq 0.01 \), the electrical conductivity increased dramatically. The room-temperature Hall carrier concentration increased to \(\sim 1.6 \times 10^{20} \) cm\(^{-3} \) (Figure 2, solid squares). Again we constructed the room-temperature Pisarenko plots for the single nonparabolic band model (dashed black line) and the two-band model (solid black line). For PbSe, we used \(m^*/m_e = 0.28 \) for the light-hole effective mass38 and \(m^*/m_e = 2.5 \) for the heavy-hole effective mass, which was obtained from a first-principles calculation.39 There was not much difference between the two models, suggesting that most of the contribution comes from the L band at room temperature, which agrees well with the previous...
The pinning of the Fermi level by the heavy band happens only at high temperatures when the offset value of the two bands is small enough. A high Seebeck coefficient of $\sim 210 \mu V K^{-1}$ at 875 K was obtained with the contribution from both bands. Since the band gap of PbSe increases with temperature (~ 0.43 eV at 850 K vs ~ 0.28 eV at 300 K), the Seebeck coefficient goes up all the way with increasing temperature without any sign of the bipolar effect. Low lattice thermal conductivities of $\sim 1.7 W m^{-1} K^{-1}$ at 300 K and $\sim 0.6 W m^{-1} K^{-1}$ at high temperature, similar to the previously reported values, were calculated here for K-doped PbSe using L obtained from eqs 6–8. We noticed that the electrical conductivity decreased rapidly with increasing temperature, as indicated by the δ values shown in Table 1. However, with the high starting point of the electrical conductivity and the high Seebeck coefficient, the maximum ZT value reached was ~ 1.2 at 873 K (Figure 5), although the average ZT was clearly lower than that for K-doped K$_x$Pb$_{1-x}$Te. Both the maximum ZT and the average ZT were comparable to those for Na-doped PbSe.

After studying K doping in PbTe and PbSe independently, we turned our attention to studying K doping in PbTe$_{1-y}$Se$_y$ with the aim of simultaneously increasing the power factor and further reducing the thermal conductivity to achieve higher ZT values. We fixed the K concentration in the Pb sites at 2% on the basis of the results for K in PbTe and PbSe, and we examined different Se concentrations in K$_{0.02}$Pb$_{0.98}$Te$_{1-y}$Se$_y$: $y = 0.15, 0.25, 0.75, 0.85$, and 0.95. All of the the XRD patterns (Figure 6) showed a single phase with the fcc rock salt structure. The peaks shifted to higher 2θ with increasing Se concentration because of the smaller lattice parameters. The good solid solution formation was confirmed by the good fit to Vegard’s law (Figure 6 inset).

Figure 7 shows the room-temperature Hall carrier concentration as a function of (a) K and (b) Se concentration. With the help of Se, the Hall carrier concentration was effectively increased from $<6 \times 10^{19}$ cm$^{-3}$ in PbTe to the optimized concentration of $(8-15) \times 10^{19}$ cm$^{-3}$ for PbTe$_{1-y}$Se$_y$, consistent with the values observed in the previous reports. The room-temperature Pisarenko plot for the
K\textsubscript{0.02}Pb\textsubscript{0.98}Te\textsubscript{1−y}Se\textsubscript{y} solid solution samples is shown in Figure 2 (solid triangles). The noticeable deviation of the Seebeck coefficient from the single-band model (dashed red line) for K\textsubscript{0.02}Pb\textsubscript{0.98}Te\textsubscript{1−y}Se\textsubscript{y} (y = 0.15 and 0.25) supports the effects of heavy-hole bands. Because of the relatively low effective mass and larger energy difference between heavy-hole and light-hole band edges, Δ\textsubscript{E\textsubscript{C−L}} in PbSe, the Seebeck coefficients are lower than those of K-doped PbTe (solid circles). For K\textsubscript{0.02}Pb\textsubscript{0.98}Te\textsubscript{1−y}Se\textsubscript{y} (y = 0.75, 0.85, and 0.95), more features come from K-doped PbSe. As the temperature increases, the two bands start to converge. We obtained good fits to the data using the energy differences between the conduction (C) band edge and the L and Σ band edges:

\[
\begin{align*}
\Delta E_{C-L} &= 0.18 + (4T/10000) - 0.04y \\
\Delta E_{C-\Sigma} &= 0.42 + 0.10y
\end{align*}
\]

where y is the concentration of Se.37,40 It has been concluded that the convergence of the electronic bands can provide more benefit for the enhancement of the Seebeck coefficient by multiple bands.25 However, when y = 0 (PbTe), the L band will gradually move below the Σ band at a certain temperature and depart from the convergence. Thus, using Se to increase the convergence temperature (T\textsubscript{cvg}) gives the most optimized Seebeck coefficient at high temperature (Figure 8 b). With increasing Se concentration, the temperature for the highest Seebeck coefficient increased. The highest Seebeck coefficient was ≈320 μV K−1 at 775 K, which is much higher than the value of ≈220 μV K−1 for Na-doped PbTe\textsubscript{1−y}Se\textsubscript{y} at 775 K. The figure shows the lattice parameter relation with increasing Se concentration in K\textsubscript{0.02}Pb\textsubscript{0.98}Te\textsubscript{1−y}Se\textsubscript{y}.

Figure 6. XRD patterns for K\textsubscript{0.02}Pb\textsubscript{0.98}Te\textsubscript{1−y}Se\textsubscript{y} (y = 0.15, 0.25, 0.75, 0.85, and 0.95). The inset shows the lattice parameter relation with increasing Se concentration in K\textsubscript{0.02}Pb\textsubscript{0.98}Te\textsubscript{1−y}Se\textsubscript{y}.

Figure 7. Hall carrier concentration at room temperature as a function of (a) K and (b) Se concentration.

Figure 8. Temperature dependences of (a) electrical conductivity, (b) Seebeck coefficient, and (c) power factor for K\textsubscript{0.02}Pb\textsubscript{0.98}Te\textsubscript{1−y}Se\textsubscript{y} (y = 0.15, 0.25, 0.75, 0.85, and 0.95).
successfully improved carrier concentration compensates for the loss in the carrier mobility resulting from the increased scattering of the electrons, which keeps the electrical conductivity the same at low temperature (Figure 8a). Fortunately, the decrease in the electrical conductivity is slowed with temperature, giving a smaller δ (Table 1). As a result, the power factor is enhanced at high temperature (Figure 8c).

The other obvious but very important role that Se plays is to decrease the lattice thermal conductivity by alloying scattering when it is used together with Te. The thermal diffusivity, specific heat, and total and lattice thermal conductivities for $K_{0.02}Pb_{0.98}Te_{1-y}Se_y$ ($y = 0.15, 0.25, 0.75, 0.85,$ and 0.95) are shown in Figure 9a–c, respectively. The increased lattice thermal conductivities at 800 K (Figure 9c) may come from the error in the calculated values of L without considering the contribution from conduction band. It seems that increasing the Se concentration ($K_{0.02}Pb_{0.98}Te_{0.15}Se_{0.85}$) can increase the peak ZT to ~ 1.7 at ~ 873 K in comparison with the value of ~ 1.6 in $K_{0.02}Pb_{0.98}Te_{0.75}Se_{0.25}$ at ~773 K (Figure 10), but the Te-rich composition is clearly more promising for any applications below 873 K since the average ZT values are much higher.

Up to now, only Tl has been shown to induce resonant states in p-type PbTe, resulting in an extraordinary increase in the Seebeck coefficient. However, with the help of a second valence band in PbTe, high ZT values can also be obtained by heavy doping with Na, K, and Mg, especially when combined with the alloy scattering introduced by PbSe or PbS. Additionally, typical nanostructures have been created in the PbTe matrix to lower the lattice thermal conductivity by addition of a second phase and ball milling. Other group IIIA elements (Al, Ga, and In) and group VIIA elements, and some rare-earth elements have proved to be good n-type dopants. A ZT value of >1.5 at 775 K was reached in La-doped PbTe with Ag$_2$Te nanoscale precipitates. With decent ZTs in both p-type and n-type doping, PbTe is a promising candidate for thermoelectric applications in the near future.

CONCLUDING REMARKS

Potassium, an acceptor dopant in $K_{x}Pb_{1-x}Te_{1-y}Se_y$, can strongly enhance the Seebeck coefficient by activating the heavy-hole band via heavy doping, which increases the DOS near the Fermi level. Combined with a lower lattice thermal conductivity due to increased point defects and the increased electrical conductivity at high temperature, higher peak ZT values of ~ 1.6 and ~ 1.7 were obtained in Te-rich samples $K_{0.02}Pb_{0.98}Te_{0.75}Se_{0.25}$ at 773 K and Se-rich samples $K_{0.02}Pb_{0.98}Te_{0.15}Se_{0.85}$ at 873 K, respectively, but the average ZT of the Te-rich samples was much higher than those of the Se-rich samples. Since Te is more expensive than Se, however, a trade-off between cost and performance needs to be considered for practical applications.

ASSOCIATED CONTENT

Microstructures and chemical compositions for some samples; room-temperature Pisarenko plots for $K_{x}Pb_{1-x}Te$ ($x = 0.01, 0.0125, 0.015,$ and 0.02), $K_{x}Pb_{1-x}Se$ ($x = 0, 0.005, 0.010,$ and 0.015), and $K_{x}Pb_{0.98}Te_{1-y}Se_y$ ($y = 0.15, 0.25, 0.75, 0.85,$ and 0.95) with the fitting line based on $\Delta E_{C-X} = 0.36$ eV (see ref 40); and the relationship between carrier concentration and Hall carrier concentration for PbTe and PbSe. This material is available free of charge via the Internet at http://pubs.acs.org.
This work was supported by “Solid State Solar-Thermal Energy Conversion Center (S³TEC),” an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0001299 (G.C. and Z.R.), and National Science Foundation under grant No. 1066634 (D.B.).

ACKNOWLEDGMENTS

This work was supported by "Solid State Solar-Thermal Energy Conversion Center (S³TEC)", an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0001299 (G.C. and Z.R.), and National Science Foundation under grant No. 1066634 (D.B.).

REFERENCES