Algebra qualifying exam
September 6, 2011

There are eight problems. All problems have equal weight. Show all of your work.

1. For which primes \(p \) does there exist a nonabelian group of order \(4p \)? For each such prime give an example of such a group.

2. Let \(G = \text{GL}_2(\mathbb{F}_{11}) \) be the group of \(2 \times 2 \) invertible matrices over the field of 11 elements.
 a) Show that the elements of order three in \(G \) form a single conjugacy class in \(G \).
 b) Find the number of Sylow 3-subgroups of \(G \).

3. Let \(G \) be a cyclic group of order \(m \) and let \(p \) be a prime not dividing \(m \).
 1. Construct all of the simple modules over the group ring \(\mathbb{F}_p[G] \).
 2. Give the number of simple \(\mathbb{F}_p[G] \)-modules and their dimensions as \(\mathbb{F}_p \)-vector spaces, in terms of \(p \) and \(m \).

4. Suppose \(R \) is a commutative ring, and that

\[
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
\]

is an exact sequence of \(R \)-modules. Prove that \(B \) is Noetherian if and only if both \(A \) and \(C \) are Noetherian.
5. Let $K \subset \mathbb{C}$ be the splitting field over \mathbb{Q} of the cyclotomic polynomial

$$f(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 \in \mathbb{Z}[x].$$

Find the lattice of subfields of K and for each subfield $F \subset K$ find polynomial $g(x) \in \mathbb{Z}[x]$ such that F is the splitting field of $g(x)$ over \mathbb{Q}.

6. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree five with exactly three real roots, and let K be the splitting field of f. Prove that $\text{Gal}(K/\mathbb{Q}) \simeq S_5$.

7. Let k be a field, and let $R = k[x,y]/(y^2 - x^3 - x^2)$.

 a) Prove that R is an integral domain.

 b) Compute the integral closure of R in its quotient field.

 [Hint: Let $t = \overline{y}/\overline{x}$, where \overline{x} and \overline{y} are the images of x and y in R.]

8. Let p be a prime and let G be the group of upper triangular matrices over the field \mathbb{F}_p of p elements:

$$G = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} : x, y, z \in \mathbb{F}_p \right\}.$$

Let Z be the center of G and let $\rho : G \to \text{GL}(V)$ be an irreducible complex representation of G. Prove the following.

 a) If ρ is trivial on Z then $\dim V = 1$.

 b) If ρ is nontrivial on Z then $\dim V = p$.

 [Hint: Consider the subgroup of matrices in G having $y = 0$.]