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Abstract

This paper proposes a model of two-party representative democracy on a single-

dimensional political space, in which voters choose their parties in order to influence

the parties’ choices of representative. After two candidates are selected as the me-

dian of each party’s support group, Nature determines the candidates’ relative lika-

bility (valence). Based on the candidates’ political positions and relative likability,

voters vote for the preferable candidate without being tied to their party’s choice.

We show that (1) there exists a nontrivial equilibrium under natural conditions,
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and (2) the equilibrium party border and the ex ante probabilities of the two-party

candidates winning are sensitive to the distribution of voters. In particular, we show

that if a party has a more concentrated subgroup, then the party tends to alienate

its centrally located voters, and the party’s probability of winning the final election

is reduced. Even if voter distribution is symmetric, an extremist party (from either

side) can emerge as voters become more politically divided.

JEL Classification Numbers: D72, P16
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1 Introduction

In a two-party electoral system, office-motivated parties set their policy platforms to

attract the majority of voters in order to get elected. Downs (1957) and Black (1958)

have shown that if the policy space is one-dimensional then both parties choose the

median voter’s “bliss point” as their party platform. Although this theoretical result is a

nice justification for a two-party system, we do not observe this outcome in US politics.

In the real world, we observe that candidates whose positions are quite far from the

median voter’s are quite often elected in party primaries, especially in parties with a

strong subgroup with extreme positions. In 2004, moderate Republican senator Arlen

Specter faced a tough challenge from the Right in the Republican primary election; but

once Specter defeated the challenge by a narrow margin, he was comfortably reelected

in the general election with great support from moderate central voters. During his

reelection bid in 2006, moderate Democratic senator Joe Lieberman lost the Democratic

Party primary election but won the general election as a third-party candidate.

These examples show that party primary elections by party members play an impor-

tant role in determining party candidates. Wittman (1983), Calvert (1985), and Roemer

(2001) show that policy divergence can occur if party members are policy motivated and

voting outcomes are uncertain (valence models). Although the result that parties’ levels

of policy orientation explain the level of equilibrium policy divergence is quite reasonable,

one problem still remains. How did each party’s policy orientation evolve? A party’s pol-

icy orientation should be determined by its constituents, but who the party’s constituents

are is also affected by the two parties’ policy orientation.1

1A recent experience in California describes the importance of a party’s policy orientation in deter-
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In this paper, we formulate a two-party model in which the party-separating thresh-

old political positions and parties’ policy orientation (party candidates or policies) are

endogenously determined. We assume that voters are strategic in choosing their par-

ties, foreseeing their influence on the choice of candidates (party constituency affects the

party’s policy orientation). Then, we introduce uncertainty in voting outcomes following

Wittman (1983). Specifically, we assume that each candidate has some chance of winning,

owing to the uncertainty of the election. As is often seen in the real world, the candi-

dates’ campaign and debate performances can change the voting outcome.2 Some voters

may prefer the candidate from the opposite party even if their political position is very

far from the candidate’s position.3 With such uncertainty in the voting outcome, even if

an extreme candidate runs as the party candidate, she may win the final election if she

mining the party threshold (Fiorina, Abraham, and Pope 2011, pp. 210-211). In the 1994 election, the

California Republican Party won its governorship in a landslide and won four of the six other statewide

races for state office, and Republicans defeated four Democratic House incumbents. However, thereafter,

the California Republican Party was taken over by its extreme social conservative elements, nominating

hard-core conservatives with limited appeal to the moderates in primary elections; and in 2002 Democrats

won all the statewide races for the first time in California history. In less than a decade, California changed

its hue from dark red to dark blue.
2For example, recall the loss of incumbent George Allen, a Republican, in the 2006 Virginia Senate

race, and the victory by Scott Brown, a Republican, in the 2010 Massachusetts Senate race to replace

late Edward M. “Ted” Kennedy, a Democrat who had been senator for more than forty years. These

shocks were clearly not idiosyncratic: the shocks can be quite dramatic and devastating.
3Such uncertainty in voting outcomes can be generated by having common shocks to voters’ utilities

(nonidiosyncratic shocks). This line of modeling is called the “valence” model of politics (see Schofield

2004, Bernhardt, Krasa, and Polborn 2008). Persson and Tabelini (2000) and Roemer (2001) also discuss

voting models with common shocks on voters’ utilities.
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happens to be judged much more likable than the moderate candidate, although such an

event would occur only with very low probability. Suppose that an extreme candidate

is chosen by a party through the influence of a strong, extreme subgroup in that party.

Then, the moderate potential supporters of the party are alienated, as the party does not

reflect their voice in choosing the party candidate. If they participate in the other party,

which has more diverse support groups, they may be able to play a more significant role in

choosing that party’s candidate. As a result, the party threshold shifts accordingly, and

the more diverse party selects a more moderate candidate, while the party supported by

an extreme group selects a more extreme candidate. This is a self-sustaining outcome—an

equilibrium. Obviously, the diverse party’s candidate’s political position is closer to the

median voter’s position, and she has a higher probability of getting elected.

In the above story, one important missing element is how a candidate is elected in

a party primary. The mechanism of choosing a primary winner is very important to a

complete description of a two-party system with primary elections. We will adopt a bold

simplification of how party primaries work in order to concentrate on the voters’ party

choice problem: we assume that each party chooses a median-positioned candidate of the

party’s constituents. This simplifying assumption, used by Besley and Coate (2003), is

useful in illustrating how party orientation (here policy) and party constituents interact.4

We also discuss the relaxation of this assumption in the conclusion.

Our game goes as follows. In stage 1, voters choose their parties by calculating their

4In their recent paper, Krasa and Polborn (2015) present an interesting multidistrict model with a

single-dimensional policy space, in which the candidate’s position is determined in a party primary in

each district. In a special case, their model can justify our party-median candidate assumption.
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expected utility from the final election from joining each party (with small groups of other

voters). By the voters’ party choice, the two party candidates are assumed to be selected

as the median voter of each party. In stage 2, Nature plays, and the two candidates’

relative likability (valence) is determined randomly. In stage 3, voters cast their ballots

for the preferable candidate given the two candidates’ positions and likability. A voter’s

party affiliation does not bind her voting behavior, and she votes sincerely. The final

voting outcome is the equilibrium outcome of this voting game. Our solution concept,

political equilibrium, is a subgame perfect equilibrium, except that we allow for small

coalitional deviations instead of each voter’s unilateral deviation in the party-choice stage

(stage 1). We will not simply adopt Nash behavior, since we assume that each voter is

negligible. In this framework, unilateral deviations cannot affect the parties’ candidate-

selection processes, so any partition of voters can be a Nash equilibrium. To avoid this

difficulty, we consider small coalitional deviations and define a “political equilibrium” as a

partition of voters from which any arbitrarily small coalitional deviations are unprofitable.

We will first characterize our political equilibrium, and find that our equilibrium is

consistent with voters’ party sorting. Using this property, we provide sufficient conditions

for the existence of a political equilibrium (Theorem 1). Then, we move on to investigate

how the party threshold is affected by the distribution of voters over policy space. If a

party’s support group is concentrated on the extreme side while the other party’s support

group is more spread out, then the party tends to lose the moderates’ support, since

moderates tend to choose the more diverse party that makes it easier for voters to have a

voice. This effect is illustrated in Example 1 with an asymmetric voter distribution. In an

example with a tri-peaked symmetric voter distribution (Example 2: a step function with
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peaks at the left extreme, the center, and the right extreme), we conduct a comparative

static exercise to analyze what happens when voters are more politically divided. When

the voter distribution is uniform, there is a unique symmetric equilibrium. However, as

the population of the moderate left and right decreases gradually, two other asymmetric

equilibria suddenly appear. Such asymmetric equilibria have the feature of having one

party composed mostly of extreme voters and the other party composed of the rest of the

voters, including the centrist group: the former party chooses an extreme candidate with

a low probability of winning (but still a chance of winning if common shock is strongly in

his favor), while the latter chooses a moderately oppositely biased candidate with a high

chance of winning. Voters who are happy with the extreme candidate despite her low

chance of winning continue to support the extremist party. However, another oppositely

biased equilibrium is also self-sustainable. Thus, if voters are deeply divided politically,

there will be multiple quite asymmetric equilibria.5

Three articles are most closely related to our paper. Feddersen (1992) constructs a

model in which voters choose political positions and calls a group of voters who choose the

same political position a party. In the sense that voters choose their party strategically,

our model is closest to Feddersen (1992), since voters are assumed to be strategic players

in his model as well as ours. However, there are also a number of differences between

the two approaches. Feddersen’s model is deterministic, allows an arbitrary number of

parties, and allows a multidimensional policy space. In contrast, uncertainty plays an

5Although we cannot explain why the party line shifted dramatically in California, we can say that

both dark red and dark blue are consistent with voters’ party choice behavior as long as voters are

politically divided.
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essential role in our model, and we restrict our attention to the two-party case on a

single-issue space. In our model, a party’s political position (the candidate’s position)

is determined by aggregating the party supporters’ political positions (via the party’s

median voter’s policy). Extending the Wittman (1983) model, Roemer (2001, Chapter 5)

endogenizes the party threshold by assuming that voters sort into parties by comparing

their (deterministic) utility levels from two candidates’ policies, which are determined

by strategic interactions by the two party-median voters. In our model, voters compare

the expected utility levels of joining each party. In this sense, voters in our model are

more farsighted and strategic in their party choice, although primary elections are greatly

simplified in our model. Our Example 2 will bring out the difference between these

two approaches. Gomberg, Marhuenda, and Ortuño-Ort́ın (2004) also consider a two-

party model, which endogenizes voters’ party affiliation that determines each party’s

candidate’s position. They prove the existence of a strong Nash equilibrium allowing

for multidimensional policy space, while assuming that the policy outcome is determined

by the two parties’ policy positions weighted by the size of each party’s support group,

following the spirit of Alesina and Rosenthal (2000).

Our model is a static model, and we do not discuss the causality of events. Fiorina,

Abraham, and Pope (2011) argue that each party’s elite activists tend to have rather

extreme views, and they influence primary election outcomes, resulting in greater polar-

ization of policy. Levendusky (2009) stresses the role that party elites play in sorting

voters into the two parties by clarifying each party’s political positions.6 Sorting of voters

6In the 1960s, voters were not sorted to Democrats and Republicans by their political positions

(Southern states were the stronghold of conservative democrats), but by the 1980s the conservatives
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can aggravate the polarization of the party candidates even further. Levendusky (2009)

provides empirical evidence that supports his hypothesis. However, it would be very diffi-

cult to construct a formal game-theoretical model with many players (party elites, voters,

party candidates, etc.) that describes the dynamic evolution of party policies and voter

sorting, since we need to specify our model precisely through specific assumptions on how

rational party elites and voters are and what information they possess when they choose

their actions. The results and predictions will be very sensitive to specific setups and

assumptions.

In section 2, we present our model. In section 3, we define political equilibrium and

investigate its properties. Using these properties, we provide some insights into how the

party threshold is affected by the distribution of voters over their political positions. In

section 4, we show by two examples when the equilibrium is biased and when there are

multiple equilibria. The main observations from the examples are: if one party has a

stronger extreme subgroup, then that party loses some of its centrist supporters; and if

the voters are more polarized, then there tend to be asymmetric equilibria in which one

party consists of mostly extremists while the other party has both centrists and extremists

as its supporters. In section 5, we conclude with a brief discussion of how relaxing our

assumptions affects our results.

sorted to the Republicans while the liberals sorted into the Democrats. Levendusky (2009) asserts that

party elites clarified party/ideology mapping, resulting in voter sorting.
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2 The Model

2.1 Policy Space and Voters

There is a one-dimensional policy space, and a continuum of citizens, namely voters, is

distributed over the interval [0, 1]. There are two parties, and all voters belong to one

of them. The party names themselves do not matter, but for convenience, we let the

party whose supporters’ median political position (party median) is smaller (larger) than

the other party’s party median be party L (party R). Each party selects a candidate

who represents the party, and each voter casts a vote for his or her favorite candidate.

Following the citizen-candidate models by Osborne and Slivinski (1996) and Besley and

Coate (1997), we assume that the winner becomes the policy maker who implements her

own preferred policy.

Each voter cares about the policy chosen by the elected representative and cares about

the representative’s likability. We assume that the candidates’ likability is a random

variable that is initially unknown to the voters but is revealed after the candidate starts

the campaign (before voting). Note that this random shock is not an idiosyncratic shock

across voters but is common to all voters, and thus affects the voting outcome.7 At the

actual voting stage, some voters might prefer the candidate of the opposite party. Voters

are distributed continuously on [0, 1] with density function g(θ) with g(θ) ≥ g for all voter

7It is well known that each candidate takes the median voter’s position if there is no uncertainty,

following the median voter theorem. We generate uncertainty in voting by using a valence model, which

suits our purposes. Krasa and Polborn (2014) have an interesting simple model to introduce uncertainty

in voting.
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types θ ∈ [0, 1] for some g > 0. Type θ voters are expected-utility maximizers with the

following von Neumann-Morgenstern utility function is

u(x; θ, ϵ) = −|x− θ|+ ϵ

when party L’s candidate with policy position x ∈ [0, 1] wins, and

u(y; θ) = − |y − θ| ,

when party R’s candidate with policy position y ∈ [0, 1] wins, where ϵ ∈ R denote a

realization of a random variable that describes party L’s candidate’s relative likability

advantage over party R’s candidate. We will assume that random variable ϵ is uniformly

distributed with density function

f(ϵ) =


1
2a

if ϵ ∈ [−a, a]

0 otherwise

We assume a ≥ 1 to assure that any candidates have positive winning probabilities even

in an extreme voter distribution. Clearly, the expected value of ϵ is zero, and a positive

realization ϵ means that party L’s candidate is more likable, while a negative realization

means that she is less likable.

2.2 Allocations, Party Candidates, and Coalitional Deviations

Voters choose their party affiliations, and as a result, voters’ party membership distri-

butions are determined. An allocation is a list G = (gL, gR), where gL : [0, 1] → R+

and gR : [0, 1] → R+ are marginal membership distributions of party L and party R,

respectively, such that gL(θ) + gR(θ) = g(θ) holds for all θ ∈ [0, 1].
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With the two parties’ membership distributions, each party’s candidate is determined.

We assume that each party candidate is the median voter of party members elected,

following Besley and Coate (2003).8 Let x(G) be implicitly defined by

∫ x(G)

0

gL(θ)dθ =

∫ 1

x(G)

gL(θ)dθ (1)

and y(G) is defined in the same way.

Since we are interested in how moderate voters’ party choice is affected by the presence

of a strong subgroup with extreme positions, we will focus on centrally located voters

who contemplate which party to belong to. We will simply assume that any voter whose

political position is more extreme than the median of a party would join the party. An

allocation G = (gL, gR) is an admissible allocation if and only if (i) gL(θ) = g(θ) for

all θ ∈ [0, x(G)], and (ii) gR(θ) = g(θ) for all θ ∈ [y(G), 1]. We will focus on admissible

allocations exclusively throughout the paper.9

Consider admissible allocations G = (gL, gR) and G′ = (g′L, g
′
R). A coalitional de-

viation from G to G′ is a mapping γ′ : [0, 1] → R such that (i) γ′(θ) = g′L(θ) − gL(θ)

for all θ ∈ [0, 1], and (ii) γ′(θ) = 0 for all θ /∈ (x(G), y(G)). That is, γ′ describes the

net movements from party L to party R, and coalitional deviation is allowed only from

interval (x(G), y(G)). We interpret
∫ 1

0
|γ′(θ)| dθ as the size of coalitional deviation

γ′ naturally. Coalitional deviation γ′ is considered as the one from party R (L) to party

L (R) if and only if
∫ 1

0
γ′(θ)dθ > 0(< 0). We say that coalitional deviation γ′ from G

8More generally, we can introduce a (membership-based) party’s policy choice function following

Gomberg et al. (2004). We chose our assumption to make the analysis more concrete.
9We can drop this restriction by introducing arbitrarily small psychological cost for voters in [0, x]

and [y, 1] to belong to less politically aligned parties. Appendix D details this.
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to G′ is profitable if and only if Eu(x(G′), y(G′), θ) > Eu(x(G), y(G), θ) for all θ with

|γ′(θ)| > 0, where Eu(x, y, θ) is type θ voter’s expected utility when x and y are the

candidates of parties L and R, respectively.

2.3 Timing of Events and Equilibrium Concept

The voting game goes as follows:

1. Voters choose their party affiliations (each voter must choose one of the two parties).

2. Nature plays to determine x’s likability ϵ (valence).

3. Observing ϵ, voters vote for x or y sincerely based on their preference only (not

constrained by their party affiliations).

We define our equilibrium by applying backward-induction logic. In stage 1, voters

choose their party affiliation by foreseeing x(G) and y(G), and the resulting probabilities

of winning of these candidates are determined by the median voter’s preference only (by

taking sincere voting in stage 3).

Definition 1 An admissible allocation G is a political equilibrium if and only if (i)

voters play weakly dominant strategies (sincere voting) in stage 3, (ii) voters are backward-

induction-rational expected utility maximizers, and (iii) there is a coalition size limit ∆̄ >

0 such that there are no profitable coalitional deviations of which coalition size is less than

∆̄ in stage 1.

Regarding small deviations, Osborne and Tourky (2008) also use a similar deviation

named “ϵ-club” and define the “small club Nash equilibrium.” However, note that Os-
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borne and Tourky (2008) use the ϵ-clubs deviations at the voting stage just to let voters

vote sincerely (with unilateral deviations, voters are indifferent between candidates). In

contrast, we assume that voters form small coalitions to influence the party candidates’

positions. Thus, their equilibrium concept is very different from ours.

3 The Main Analysis

In this section, we will first analyze stages 3 and 2, and the expected utility of each voter

in stage 1. We will show that every political equilibrium is a sorting allocation, and

proceed to prove the existence of political equilibrium. We also analyze its properties.

3.1 Stages 3 and 2

First, note that voters’ behavior is not determined by the party they belong to. There

is absolutely no commitment: voters consider only the candidates’ political positions and

their likability when deciding whom to vote for. We assume that all voters vote sincerely

(weakly dominant strategies). Let us focus on the median voter θmed defined implicitly by∫ θmed

0
g(θ)dθ =

∫ 1

θmed
g(θ)dθ. Then the level of likability (valence) ϵ(x, y), which makes the

median voters θmed indifferent between both candidates (−|y−θmed| = |x−θmed|+ϵ(x, y)),

is written as follows:

ϵ(x, y) ≡ −|y − θmed|+ |x− θmed| = 2θmed − x− y, (2)

since x ≤ θmed ≤ y by definition.

Assuming the simple majority voting at the voting stage, we have the following lemma

(for the proof, see Appendix A):
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Lemma 1 If ϵ > ϵ(x, y), then x is the winner. If ϵ < ϵ(x, y), then y is the winner.

Since ϵ is a random variable drawn from a probability distribution with density func-

tion f , once x and y are determined, 1−F (ϵ(x, y)) = 1
2
− ϵ(x,y)

2a
and F (ϵ(x, y)) = 1

2
+ ϵ(x,y)

2a

are the winning probabilities of candidates x and y, respectively, from this lemma. Tak-

ing these probabilities and the political positions of both candidates into account, voters

choose their parties. Since ϵ(x, y) = 2θmed−x−y, a direct implication of the above lemma

is that x has a higher (lower) chance of winning if θmed < (>)x+y
2

(see Figure 1).

3.2 Expected Utility by Voters in Stage 1

At stage 1, all voters choose either the party L or the party R. Note that since every

voter is negligible, each voter’s party choice has absolutely no impact on the party’s

representative selection. The expected utility of a voter of type θ when two candidates

are x and y is

Eu(x, y; θ) =

∫ ϵ(x,y)

−∞
f(ϵ)(−|y − θ|)dϵ+

∫ +∞

ϵ(x,y)

f(ϵ)(−|x− θ|+ ϵ)dϵ

= F (ϵ(x, y))︸ ︷︷ ︸
prob. y winning

× (−|y − θ|)︸ ︷︷ ︸
utility from y winning

+ (1− F (ϵ(x, y)))︸ ︷︷ ︸
prob. x winning

× (−|x− θ|)︸ ︷︷ ︸
utility from xwinning

+

∫ +∞

ϵ(x,y)

ϵf(ϵ)dϵ︸ ︷︷ ︸
ave. of ϵ when x wins

(3)

=

(
1

2
+

ϵ(x, y)

2a

)
(−|y − θ|) +

(
1

2
− ϵ(x, y)

2a

)
(−|x− θ|) + a

4
− ϵ(x, y)2

4a
,

where ϵ(x, y) = 2θmed−x−y, since θmed ∈ (x, y) always holds.10 Note that if we replace x

and y by x(G) and y(G), respectively, then this expected utility formula Eu(x(G), y(G); θ)
10Suppose that θmed ≤ x < y. Then, since x and y are the medians of parties L and R, we reach a

contradiction. The case where x < y ≤ θmed follows the same logic. Thus, θmed ∈ (x, y) must hold.
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describes voter θ’s expected payoff under allocation G, rationally expecting what happens

in stages 2 and 3 given sincere voting (weakly dominant strategy) in stage 3.

3.3 Deviation Incentives for Small Coalitions from the Moder-

ate Group

Here, we analyze deviation incentives for small coalitions from an allocation G = (gL, gR).

We will concentrate on coalitional deviations from the central interval (x(G), y(G)). The

following lemma states that the identities of voters who switch their parties in interval

(x(G), y(G)) are irrelevant for each voter’s expected utility as long as the size of the

coalition is small and the coalition is from the interval (x(G), y(G)): what matters is the

total mass of voters who switch their parties.

Lemma 2 Suppose that coalitional deviations γ′ and γ′′ bringing admissible allocations

G′ and G′′ from an admissible allocation G = (gL, gR), respectively, satisfy
∫ 1

0
γ′(θ)dθ =∫ 1

0
γ′′(θ)dθ. Then, (x(G′), y(G′)) = (x(G′′), y(G′′)) holds.

This lemma allows us to focus on the mass of the net movements of voters. Let ∆ be

the size of the net movements of the voters who move from party R to party L among

the moderate voter group in (x(G), y(G)), and let G+∆ be the allocation generated from

any coalitional deviation γ′ satisfying
∫ y(G)

x(G)
γ′(θ)dθ = ∆ > 0: i.e., the net movements of

voters are from party R to party L. If the net movements of voters are from party L

to party R, we denote the new allocation by G−∆. In the following, we first focus on

G+∆. We consider a small-sized coalitional deviation ∆ ≤ ∆̄. In this case, the coalitional

deviation reduces the population of party R and increases that of party L by ∆. That
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is, starting from allocation G = (gL, gR), if a mass ∆ of party R members located to the

right of median x(G) joins party L, the new median voter type x′(G+∆) of party L and

y′(G+∆) of party R are determined by the following equations:∫ x′(G+∆)

0

gL(θ)dθ =

∫ 1

x′(G+∆)

gL(θ)dθ +∆

∫ y′(G+∆)

0

gR(θ)dθ −∆ =

∫ 1

y′(G+∆)

gR(θ)dθ,

respectively, using the definitions of the party medians (1). We are considering a small

coalitional deviation ∆ ≤ ∆̄, so we will take ∆ → 0. By totally differentiating them, we

have

dx′

d∆
= lim

∆→0

x(G+∆)− x(G)

∆
=

1

2gL(x)
, (4)

and similarly, we have

dy′

d∆
=

1

2gR(y)
.

These derivatives represent that, by a small coalitional deviation, both x(G) and y(G)

move to the right. Thus, type θ’s expected payoff is affected by such a deviation through

changes in x and y. Using (3), we can write the impact of a small coalitional deviation

with size ∆ from the interval (x(G), y(G)) as

lim
∆→0

1

∆
[Eu(x(G+∆), y(G+∆); θ)− Eu(x(G), y(G); θ)]

=
dEu(x(G), y(G); θ)

d∆

=
1

2

[
− 1

gR(y(G))

(
1

2
− x(G) + y(G)

2a

)
+

1

gL(x(G))

(
1

2
+

x(G) + y(G)

2a

)
−θ

a

(
1

gL(x(G))
+

1

gR(y(G))

)]
. (5)

The first two terms in the brackets of (5) are changes in the expected utility that both

candidates bring by moving to the right. Since every voter has a linear utility, these

17



changes are common among all voters. In other words, they do not depend on voters’

types. The last term in the bracket is a change in the expected utility that is brought

about by the changes in the winning probability of y and in the average likability of

candidate x.

Note that θ shows up only in the last term in the brackets of (5), and dEu(x(G),y(G);θ)
d∆

is

strictly decreasing in θ ∈ (x, y). This implies that for all θ, dEu(x(G),y(G);θ)
d∆

≥ 0 if and only if

dEu(x(G),y(G);θ′)
d∆

> 0 for all θ′ ∈ (x(G), θ). Similarly, for all θ, dEu(x(G),y(G);θ)
d∆

≤ 0 if and only

if dEu(x(G),y(G);θ′)
d∆

< 0 for all θ′ ∈ (θ, y(G)). Thus, a small coalition will have an incentive

to deviate from an admissible allocation G, unless it is a sorting allocation, which is

an allocation Gθ̃ = (gθ̃L, g
θ̃
R) with a party threshold θ̃ ∈ [0, 1] such that (i) gθ̃L(θ) = g(θ)

and gθ̃R(θ) = 0 for all θ ∈ [0, θ̃), and (ii) gθ̃L(θ) = 0 and gθ̃R(θ) = g(θ) for all θ ∈ (θ̃, 1].

Moreover, to be a political equilibrium, it is necessary to have dEu(x(G),y(G);θ̃)
d∆

= 0.

Proposition 1 Every political equilibrium is a sorting allocation. A sorting allocation

Gθ̃ is a political equilibrium only if dEu(x(Gθ̃),y(Gθ̃);θ̃)
d∆

= 0.

Note that the above condition is just a necessary condition, since we have considered

only special type of coalitional deviations. Now, we will characterize political equilibrium

by considering all possible deviations. Starting from a sorting allocation Gθ̃ satisfying

dEu(x(Gθ̃),y(Gθ̃);θ̃)
d∆

= 0, we will check whether or not Gθ̃ is immune to any coalitional devia-

tions with size ∆. Again, since dEu(x(G),y(G);θ)
d∆

is strictly decreasing in θ ∈ (x, y), we need

to focus only on the following two coalitional deviations by Lemma 2. Let γ θ̃
+∆ : [0, 1] → R

be such that γ θ̃
+∆(θ) = g(θ) for all θ ∈ (θ̃, θ̃ + δθ̃+∆], and γ θ̃

+∆(θ) = 0, otherwise, where∫ θ̃+δθ̃+∆

θ̃
g(θ)dθ = ∆. Similarly, let γ θ̃

−∆ : [0, 1] → R be such that γ θ̃
−∆(θ) = −g(θ) for
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all θ ∈ (θ̃ − δθ̃−∆, θ̃], and γ θ̃
−∆(θ) = 0, otherwise, where

∫ θ̃

θ̃−δθ̃−∆
g(θ)dθ = ∆. Any other

coalitional deviation with size ∆ must have larger support than γ θ̃
+∆ or γ θ̃

−∆. We have a

simple characterization of political equilibrium.

Proposition 2 A sorting allocation Gθ̃ is a political equilibrium if and only if (i) dEu(x(θ̃),y(θ̃);θ̃)
d∆

=

0, and (ii) for all ∆ ≤ ∆̄ small enough, (a) Eu(x(Gθ̃), y(Gθ̃); θ) ≥ Eu(x(Gθ̃
+∆), y(G

θ̃
+∆); θ)

for all θ ∈ (θ̃, θ̃ + δθ̃+∆), and (b) Eu(x(Gθ̃), y(Gθ̃); θ) ≥ Eu(x(Gθ̃
−∆), y(G

θ̃
−∆); θ) for all

θ ∈ (θ̃ − δθ̃−∆, θ̃).

Condition (ii) says that Gθ̃ is immune to size ∆ coalitional deviations from interval

(θ̃, y(Gθ̃)) if and only if voter θ̃ + δθ̃+∆ has no incentive to join size ∆ coalitions (recall

Lemma 2). Symmetrically, condition (ii) says that Gθ̃ is immune to size ∆ coalitional

deviations from interval (x(Gθ̃), θ̃) if and only if voter θ̃ − δθ̃−∆ has no incentive to join

size ∆ coalitions. In the next section, we rewrite conditions (i) and (ii) to obtain a more

tractable characterization of political equilibrium to obtain an existence theorem.

3.4 Existence of Political Equilibrium

Here, we will provide sufficient conditions for the existence of a political equilibrium. To

do so, we need to characterize political equilibria in a tractable form. A sorting allocation

is described completely by its threshold θ̃, and each candidate’s position also determined

by θ̃. With an abuse of notation, we will also denote each candidate as a function of

θ̃: i.e. x = x(θ̃) and y = y(θ̃) in the following sections when we focus on a change in

the threshold θ̃. Given this sorting allocation, x and y can be written as x = x(θ̃) and
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y = y(θ̃), and the condition (5) becomes

dEu(x(θ̃), y(θ̃); θ)

d∆
(6)

=
1

2

[
− 1

g(y(θ̃))

(
1

2
− x(θ̃) + y(θ̃)

2a

)
+

1

g(x(θ̃))

(
1

2
+

x(θ̃) + y(θ̃)

2a

)
− θ

a

(
1

g(x(θ̃))
+

1

g(y(θ̃))

)]
.

Setting θ = θ̃ in (6), we can define function φ : [0, 1] → R such that

φ(θ̃) = 2× dEu(x(θ̃), y(θ̃); θ̃)

d∆

= − 1

g(y(θ̃))

(
1

2
− x(θ̃) + y(θ̃)

2a

)
+

1

g(x(θ̃))

(
1

2
+

x(θ̃) + y(θ̃)

2a

)
− θ̃

a

(
1

g(x(θ̃))
+

1

g(y(θ̃))

)
(7)

=
1

2a

(
x(θ̃) + y(θ̃)− 2θ̃

)( 1

g(y(θ̃))
+

1

g(x(θ̃))

)
+

1

2

(
1

g(x(θ̃))
− 1

g(y(θ̃))

)
This function will prove to be useful in subsequent analysis. An immediate consequence

of introducing φ(θ̃) is that condition (i) of Proposition 2 is equivalent to φ(θ̃) = 0. Thus,

to characterize political equilibrium by using φ, we need to connect condition (ii) of

Proposition 2 with φ.

Note that φ(θ̃) denotes the change of the border type θ̃’s expected utility when the

party threshold θ̃ moves, but it is not the change of the expected utility of any particular

type of voters. This is because the evaluating type θ̃ itself is also changing as the party

threshold θ̃ changes. To evaluate the expected utility change of some type θ, we need to

adjust the formula to use the φ function to evaluate the expected utility change of each

player when the party threshold θ̃ changes. With cumbersome calculations, we obtain the

following characterization of political equilibrium.

Proposition 3 Suppose that g is continuous. Suppose that (1) voters in intervals [0, x]

and [y, 1] belong to parties L and R, respectively, and (2) coalitional deviations are from
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interval (x(G), y(G)). Then, a sorting allocation with threshold θ̃ is a political equilibrium

if (i) φ(θ̃) = 0 and (ii) φ′(θ̃) − 1
a

(
1

g(x(θ̃))
+ 1

g(y(θ̃))

)
< 0. On the other hand, a sorting

allocation with threshold θ̃ is a political equilibrium only if (i) φ(θ̃) = 0 and (ii’) φ′(θ̃)−

1
a

(
1

g(x(θ̃))
+ 1

g(y(θ̃))

)
≤ 0.

Proposition 3 says that φ(θ̃) = 0 is necessary, but we need an additional condition (ii)

(this corresponds to condition (ii) in Proposition 2). Now, we can find a simple sufficient

condition for a sorting allocation to be a political equilibrium.

Corollary 1 Suppose that g is continuous. A sorting allocation with threshold θ̃ is a

political equilibrium if (i) φ(θ̃) = 0 and (ii) φ′(θ̃) ≤ 0.

With this corollary, it is easy to see that there exists a political equilibrium if φ(0) > 0

and φ(1) < 0, which are assured under the following mild conditions.11

Theorem 1 If g is continuous with g(θ) > 0 for all θ ∈ [0, 1], then g(0) ≤ g(θmed) and

g(1) ≤ g(θmed) are sufficient for the existence of political equilibrium with interior θ̃∗.

3.5 Party Threshold and the Median Position

In this subsection, we investigate how the distribution of voter types is important to deter-

mining the equilibrium party structure by using our characterization of a sorting political

equilibrium, which includes Proposition 3 or Corollary 1. We start by comparing the

11Note that we are assuming that there are always two parties even in the case of θ̃ = 0 or 1. Here,

we are considering the case where the minority party is extremely small (θ̃ = ϵ or θ̃ = 1 − ϵ for ϵ very

small). Taking the limit, we have limϵ→0 φ(ϵ) = φ(0) and limϵ→0 φ(1− ϵ) = φ(1).
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equilibrium party threshold θ̃ with the traditional “median voter” θmed. We will consider

the condition where the median type becomes the threshold of a two-party structure.

It is still hard to tell in general how the sign of φ(θ̃) changes as θ̃ goes up, but we can

decompose the effects. Rewriting φ(θ̃), we have

2ag(x(θ̃))g(y(θ̃))

g(x(θ̃)) + g(y(θ̃))
× φ(θ̃) =

(
x(θ̃) + y(θ̃)− 2θ̃

)
+ a×

(
g(y(θ̃))− g(x(θ̃))

g(x(θ̃)) + g(y(θ̃))

)
R 0. (8)

We will focus on the sign of φ(θmed): As long as φ(0) > 0 and φ(1) < 0, there is a sorting

political equilibrium with θ̃∗ R θmed, if φ(θmed) R 0 holds, or equivalently,

(x(θmed) + y(θmed)− 2θmed)︸ ︷︷ ︸
A

+ a×
(
g(y(θmed))− g(x(θmed))

g(x(θmed)) + g(y(θmed))

)
︸ ︷︷ ︸

B

R 0. (9)

Since x(θmed) + y(θmed) − 2θmed = (y(θmed)− θmed)) − (θmed − x(θmed)), term A being

positive means that party L’s candidate is closer to the median voter than party R’s

candidate, and thus party L has a higher probability of winning. Term B being positive

means (more or less) that party R’s candidate’s political position is harder to move than

party L’s candidate’s position: thus, party L is more responsive to voters’ party choice

(a smaller g(x(θmed)) means a greater responsiveness of x(θmed) for the same mass of

voters joining party L). Note that as a, the uncertainty in likability level, becomes larger

(smaller), term B (A) becomes the dominant force in determination of the sign of φ(θmed).

Now, we will determine whether symmetric voters’ distribution assures the existence

of equilibrium with θ̃∗ = θmed. At a glance, if g(θ) is symmetric, both terms A and

B become zero at θmed and the party threshold at the median θmed would be a sorting

equilibrium. However, it turns out that it is not sufficient to have symmetric g, though

the additional required condition is often satisfied.
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Proposition 4 Suppose that the conditions in Theorem 1 are met, and that g is continu-

ously differentiable and symmetric. Then, there is a political equilibrium with θ̃∗ = θmed =

1
2
if and only if

g(θmed)

2g(x(θmed))2

(
2

a
− g′(x(θmed))

g(x(θmed))

)
− 4

g(x(θmed))a
≤ 0.

The above proposition tells us that even if g is symmetric, there may not be a political

equilibrium with θ̃∗ = θmed = 1
2
. If the necessary and sufficient conditions are violated,

then condition (ii) of Proposition 3 is violated although condition (i) of it is satisfied

at θ̃∗ = θmed = 1
2
. In such a situation, there are only asymmetric equilibria.12 More

generally, if g is not symmetric, then θ̃ and θmed need not coincide with each other. They

can coincide, but only in very special situations.

3.6 Uniqueness of Political Equilibrium

Now, let us consider the issue of uniqueness of political equilibrium. In the previous

subsection, we compared the party threshold of an equilibrium with the median voter’s

position. However, there may be another equilibrium that has different characteristics. To

ensure uniqueness, we need to know the global shape of φ function. A sufficient condition

for uniqueness is that φ(θ̃) is monotonically decreasing, which is assured when both of

the two terms in (8) are decreasing in θ̃. In the following simple case, we can assure that.

If the density g is concave, it is single peaked at some θp ∈ [0, 1]. With a concave

and rather flat density function g, we can guarantee uniqueness of equilibrium.

12See the second to last case (Figure 6) in Example 2 (see Appendix B). The symmetric allocation is

unstable and is not a political equilibrium.
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Proposition 5 Suppose that the conditions of Theorem 1 are met and that g is continu-

ously differentiable. Then, there is a unique equilibrium if (i) g is concave with a peak at

θp, and (ii) g(θp) ≤ 2g(θ) for all θ ∈ [0, 1].

With uniqueness of equilibrium, we can use inequality (9) to see how the equilibrium

party threshold θ̃∗ differs from θmed. Now, suppose that θp < θmed, which implies that

party L has a more extreme group (see Figure 2). In this case, the winning probabil-

ity effect (term A) tends to be positive (θmed − x(θmed) < y(θmed) − θmed: candidate

x has better chance to win) while the policy responsiveness effect (term B) is negative

(g(x(θmed)) < g(y(θmed): candidate y’s position is more responsive). Here, the value of a

matters in determining the party threshold θ̃∗. Party L expands (θmed < θ̃∗) if uncertainty

in likability is low (a is small), while it shrinks (θ̃∗ < θmed) if uncertainty is high (a is

large). When uncertainty is high, far right candidate y has a good chance to win, and the

centrally located voters try to bring y closer to them by participating party R.

4 The Party Structure in a Political Equilibrium

In this section, we analyze two parametric examples to illustrate how the party structure

is determined by the distribution of voters. For simplicity, we will allow discontinuity of g

and analyze a minimally asymmetric or nonuniform voter distributions: density functions

g will be step functions. Given the discontinuity of the g function, the φ function has kinks

or discontinuities, but we can easily approximate it by a continuous function using the

standard procedure. The conditions of Theorem 1 are all satisfied after an approximation

of g in the following examples.
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In the first example, we consider the case where the voters’ distribution in the left area

is denser than the right area and the median is on the left side, and discontinuity occurs

only at the median. We show that party L has a denser voter distribution and a shorter

tail, and that there is a unique equilibrium in which party L loses some of its moderate

supporters.

Example 1. Consider the case where g(θ) is a step function:

g(θ) =


1

2θmed
if θ ≤ θmed

1
2(1−θmed)

if θ > θmed

Without loss of generality, we assume θmed ≤ 1
2
so that 1

2θmed
≥ 1

2(1−θmed)
. In this case, we

have a unique political equilibrium with

θ̃∗ =
2θmed((2a+ 1)θmed − a)

4θmed − 1
< θmed.

Thus, the party threshold is unambiguously biased: although the winning probability

effect favors party L (θmed − x(θmed) is smaller than y(θmed)), the policy responsive effect

also favors party L (g(x(θmed)) > g(y(θmed))). In this case, the latter effect dominates the

former, and party L loses its moderate support group. The details of the figure and the

calculations of g(θ) and φ(θ̃) are given in Appendix B and Figure 3.13 �

Example 1 also shows that as long as g is relatively flat, the equilibrium is unique even

if the voter distribution is asymmetric although the party threshold is biased.

In the following example with symmetric voter distribution, we show that there can be

multiple equilibria. In the following, we consider a symmetric voter distribution g to show

13Although g is discontinuous at θmed, φ(θ̃) is not discontinuous but only kinks at θmed because

x ≤ θmed ≤ y always hold and x nor y strides over a step at θmed.
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that there can be multiple equilibria if g is not single peaked. There are three core groups:

Extreme Left (EL), Center (C), and Extreme Right (ER). We assume that Moderate

Left (ML) and Moderate Right (MR) are distributed along a wider political range and are

less concentrated than EL, C, and ER. This distribution describes a political situation

of three political groups with distinct political positions. If these groups become stronger,

multiple equilibria easily emerge even if voter distribution is symmetric. There can be a

pair of equilibria that are symmetric to each other: one in which party L is composed

mostly of group EL with an extreme policy while party R has groups C and ER with

a rather moderately Right policy, and the other in which party R is composed mostly

of group ER with an extreme policy while party L has groups C and EL with a rather

moderately Left policy.

Example 2. Let us consider the following symmetric voter distribution described by a

step function (0 < b ≤ 1).

g(θ) =



3− 2b for all θ ∈ [0,
1

9
]︸ ︷︷ ︸

EL

∪ [
4

9
,
5

9
]︸ ︷︷ ︸

C

∪ [
8

9
, 1]︸ ︷︷ ︸

ER

b for all θ ∈ (
1

9
,
4

9
)︸ ︷︷ ︸

ML

∪ (
5

9
,
8

9
)︸ ︷︷ ︸

MR

When b = 1, this example degenerates to uniformly distributed g. As b decreases from

unity, the voters’ distribution becomes more and more politically divided, although we

assume that there are still plenty of members in the centrist group. If b is still large,

the equilibrium is still unique (see Figure 4), while two asymmetric equilibria show up if

b goes down sufficiently (see Figure 5). We provide the full analysis of this example in

Appendix B. �
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This example shows that if there are core extreme groups (if voters are divided polit-

ically), political equilibria can be significantly biased and a political party may represent

an extreme core group by alienating the center-ground voters even if the voters’ distri-

bution is symmetric.14 The existence of multiple equilibria means that even if a political

environment g(θ) does not change, the political outcome can be different. That is, when

voters are politically divided, if some large enough exogenous shock occurs, then the party

supporters’ allocation can jump from one political equilibrium to another.

5 Conclusion

In this paper, we considered a two-party representative democracy and investigated how

the distribution of voters’ policy positions on a one-dimensional policy issue space affects

the party threshold and the probability of each party’s winning. We introduced a common

shock that affects each voter’s utility, in contrast with the standard idiosyncratic shocks in

the probabilistic voting model. Focusing on centrally located voters’ party choice, we also

introduced a new equilibrium concept of political equilibrium, which is immune to any

small coalitional deviations near the party threshold, in contrast with Nash equilibrium

and strong equilibrium. We showed that voters’ distribution intrinsically affects the party

14This example starkly contrasts our political equilibrium notion with Roemer’s equilibrium notion

of an endogenous party structure (Roemer 2001, Chapter 5). In our model, the voters’ party choice is

determined by a comparison of expected utilities from joining the L and R parties, but Roemer assumes

that θ̃ is determined by a comparison of two parties’ policies. For example, if x = 1
18 and y = 5

9 , the party

threshold is the middle point of the two: θ̃ = 11
36 . Thus, our biased equilibrium cannot be supported as

an equilibrium. In fact, in this example, the Roemer equilibrium must be symmetric θ̃ = 1
2 .
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threshold in the political equilibrium. In addition, we showed that when voters are divided

into three political positions, multiple equilibria appear as the divisions grow deeper.

Especially if voters are deeply divided, symmetric equilibrium disappears even though

the distribution is symmetric. In each asymmetric equilibrium, the minority candidate

becomes more extreme, and the other becomes more moderate. These multiple equilibria

emerging from deeply divided voters can be interpreted as the political instability we see

when elections swing extremely between Left and Right.

In future research, we may consider the following two extensions. First, it would be

interesting to think about how to make each party’s supporters select their candidate

strategically in the original Besley-Coate model (Besley and Coate 1997). One way is to

assume that given the party threshold, each voter tries to find her ideal candidate for

the party (depending on her policy position and her candidate’s chances of winning). It

may be possible for us to drop our simple median voter assumption in order to show the

existence of equilibrium. We can consider the following game. In primary elections, each

voter announces her ideal policy position (taking winning probabilities and her true bliss

point) given the other party’s candidate position, and the median of announced positions

becomes the party’s candidate position. With this party decision rule, the candidates’

position profile is determined as a Nash equilibrium. In this game, we can show that

the best response curve of each party is more moderate than the party median (bounded

above by the party’s true median position), and the equilibrium outcome is weakly more

moderate than the naive primary elections we considered in this paper. However, the

characterization of equilibrium under general assumptions can be very difficult.

Second, we used a static model in this paper. Although a static approach has advan-
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tages, it also has drawbacks — we need to treat both candidates symmetrically, and we

cannot introduce incumbents and challengers into the model. Bernhardt et al. (2011) con-

sider a two-party repeated election model with single-dimensional policy space, in which

candidates are distinguished by their ideology and valence (likability).15 Voters decide

who to vote for, observing the incumbent’s valence and policy (but not her ideology)

while knowing only the challenger’s party (whose position is drawn randomly from the

party’s support). Analyzing the unique symmetric stationary equilibrium when voters

are distributed symmetrically, they show that a high-valence incumbent chooses a more

moderate policy while a low-valence incumbent chooses a more extreme policy. Their

results are very interesting, and the underlying model is similar; thus it might seem nat-

ural to extend their model by endogenizing party structure. However, their analysis is

quite sophisticated, and introducing asymmetric voter distribution is already a very hard

problem. To overcome the difficulty, we may simply assume static expectation dynamics

(Kramer 1977; Ferejohn, Fiorina, and Packel 1980; Ferejohn, McKelvey, and Packel 1984;

Kollman, Miller, and Page 1992; and, in particular, Bender, Diermeier, Siegel, and Ting

2011). Voters know the incumbent’s likability (valence) but do not know how likable a

challenger is going to be compared with whoever wins in the other party’s primary elec-

tion. The incumbent’s policy and valence level are intact, and the party threshold can

be determined by the previous election. Suppose that a party occupies the office and

there is an incumbent candidate. The challenging party chooses its candidate as noted in

the previous paragraph. It may be interesting to see how the challenging party reacts to

15Duggan (2000) is the first to analyze the now standard repeated election model, but without valence.

He proves the existence and uniqueness of a stationary equilibrium for symmetrically distributed voters.
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likable and unlikable incumbents, and how the dynamics of candidate profiles emerge.

Appendix A: Proofs

Proof of Lemma 1 Each candidate is a median type of each party, x ≤ θmed ≤ y.

Assume that ϵ makes type θ̂ ∈ [x, y] indifferent between x and y. Then, for all θ ∈ [x, y)

such that θ < θ̂, and for all θ̄ ∈ [0, x),

0 = −|y − θ̂|+ |θ̂ − x| − ϵ = −(y − θ̂) + (θ̂ − x)− ϵ = 2θ̂ − x− y − ϵ

> 2θ − x− y − ϵ = h(x, y; θ)− ϵ

≥ 2x− x− y − ϵ

= x− y − ϵ = −(y − θ̄) + (x− θ̄)− ϵ = −|y − θ̄|+ |θ̄ − x| − ϵ.

Thus, all voters of θ ∈ [0, θ̂) prefer x to y, since h(x, y; θ), which is the relative evaluation

of y to x is negative; that is, all voters of θ < θ̂ type vote for x when ϵ. Here, if ϵ > ϵ(x, y),

then, from

0 = −|y − θ̂|+ |θ̂ − x| − ϵ = 2θ̂ − x− y − ϵ

< 2θ̂ − x− y − ϵ(x, y)

= 2θ̂ − x− y − (−|y − θmed|+ |θmed − x| − ϵ) = 2(θ̂ − θmed),

we have θ̂ > θmed. Hence, x gets a majority and wins when ϵ > ϵ(x, y).

Similarly, if ϵ < ϵ(x, y), θ̂ < θmed and every type θ > θ̂ vote for y, and y wins. �

Proof of Lemma 2 Since deviations γ′ and γ′′ are from the interval (x(G), y(G)), we have

γ′(θ) = γ′′(θ) = 0 for all θ ∈ [0, x(G)] ∪ [y(G), 1]. First assume
∫ 1

0
γ′(θ)dθ =

∫ 1

0
γ′′(θ)dθ =
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∆ > 0: i.e., the net voter movements are from party R to party L. Since G′ and G′′ are

also admissible, by the definitions of x(G′) and y(G′), we have

∫ y(G′)

0

(gR(θ)− γ′(θ)) dθ =

∫ y(G′)

0

gR(θ)dθ −∆ =

∫ 1

y(G′)

g(θ)dθ.

and ∫ y(G′′)

0

(gR(θ)− γ′(θ)) dθ =

∫ y(G′′)

0

gR(θ)dθ −∆ =

∫ 1

y(G′′)

g(θ)dθ.

Thus, y(G′) = y(G′′) must follow. Given this, we have

∫ y(G′)

0

(gL(θ) + γ′(θ)) dθ =

∫ y(G′′)

0

(gL(θ) + γ′′(θ)) dθ =

∫ y(G)

0

gL(θ)dθ +∆

holds, since y(G′) = y(G′′) > y(G) and G is admissible. Since G′ and G′′ are admissible,

for G′′, we have ∫ x(G′)

0

g(θ)dθ =
1

2

[∫ y(G)

0

gL(θ)dθ +∆

]

and ∫ x(G′′)

0

g(θ)dθ =
1

2

[∫ y(G)

0

gL(θ)dθ +∆

]
.

Thus, we have x(G′) = x(G′′) as well. We can treat the case of
∫ 1

0
γ′(θ)dθ =

∫ 1

0
γ′′(θ)dθ =

−∆ < 0 symmetrically. We have completed the proof. �

Proof of Proposition 3 Proof of Proposition 3 is provided by using the following lem-

mas. First, we obtain the formula of expected utility change when party threshold θ̃ shifts

to θ̃ + δ. Those deviations can be expressed by shifting the party threshold θ̃ by δ. In

the following lemma, we provide the difference in the expected utility of type θ when the

threshold changes from θ̃ to θ̃ + δ or to θ̃ − δ.
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Lemma 3 Consider sorting allocations described by θ̃ and θ̃+ δ such that δ > 0 and that

δ is sufficiently small. Then, we have

Eu(x(θ̃ + δ), y(θ̃ + δ); θ)− Eu(x(θ̃), y(θ̃); θ)

=

∫ θ̃+δ

θ̃

g(θ′)

2

[
φ(θ′)− θ − θ′

a

(
1

g(x(θ′))
+

1

g(y(θ′))

)]
dθ′.

As a consequence, Eu(x(θ̃ + δ), y(θ̃ + δ); θ) − Eu(x(θ̃), y(θ̃); θ) is decreasing in θ for all

θ ∈ (θ̃, y(θ̃)). Similarly, consider sorting allocations described by θ̃ and θ̃ − δ. Then, we

have

Eu(x(θ̃ − δ), y(θ̃ − δ); θ)− Eu(x(θ̃), y(θ̃); θ)

= −
∫ θ̃

θ̃−δ

g(θ′)

2

[
φ(θ′)− θ − θ′

a

(
1

g(x(θ′))
+

1

g(y(θ′))

)]
dθ′.

As a consequence, Eu(x(θ̃ − δ), y(θ̃ − δ); θ) − Eu(x(θ̃), y(θ̃); θ) is increasing in θ for all

θ ∈ (x(θ̃), θ̃).

Proof of Lemma 3 Differentiating Eu(x(θ̃), y(θ̃); θ) with respect to θ̃, we obtain:

dEu(x(θ̃), y(θ̃); θ)

dθ̃

=
g(θ̃)

2

[
− 1

g(y)

(
1

2
− x+ y

2a

)
+

1

g(x)

(
1

2
+

x+ y

2a

)
− θ

a

(
1

g(x)
+

1

g(y)

)]
=

g(θ̃)

2

[
− 1

g(y)

(
1

2
− x+ y

2a

)
+

1

g(x)

(
1

2
+

x+ y

2a

)
− θ̃

a

(
1

g(x)
+

1

g(y)

)

−θ − θ̃

a

(
1

g(x)
+

1

g(y)

)]

=
g(θ̃)

2

[
φ(θ̃)− θ − θ̃

a

(
1

g(x)
+

1

g(y)

)]
.
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This implies that for small δ > 0, we have

Eu(x(θ̃ + δ), y(θ̃ + δ); θ)

= Eu(x(θ̃), y(θ̃); θ) +

∫ θ̃+δ

θ̃

dEu(x(θ′), y(θ′); θ)

dθ′
dθ′

= Eu(x(θ̃), y(θ̃); θ) +

∫ θ̃+δ

θ̃

g(θ′)

2

[
φ(θ′)− θ − θ̃

a

(
1

g(x)
+

1

g(y)

)]
dθ′.

θ appears only in the brackets as θ − θ′, so that the second term in this expression is

decreasing in θ. Hence, Eu(x(θ̃+δ), y(θ̃+δ); θ)−Eu(x(θ̃), y(θ̃); θ) is decreasing in θ. The

latter half of the statement in lemma 3 can be shown by a symmetric argument. �

By applying the first-order Taylor expansion, we can approximate the utility change

of the critical coalition member’s utility in the below lemma when a coalition γδ
R deviates.

Lemma 4 Suppose that φ(θ̃) = 0 and that f and g are differentiable functions. Then, for

sufficiently small δ > 0, Eu(x(θ̃+δ), y(θ̃+δ); θ̃+δ)−Eu(x(θ̃), y(θ̃); θ̃+δ) is approximated

as

Eu(x(θ̃ + δ), y(θ̃ + δ); θ̃ + δ)− Eu(x(θ̃), y(θ̃); θ̃ + δ)

=

∫ θ̃+δ

θ̃

g(θ′)

2

[
φ(θ′)− θ̃ + δ − θ′

a

(
1

g(x(θ′))
+

1

g(y(θ′))

)]
dθ′

≃ δ2g(θ̃)

4

[
φ′(θ̃)− 1

a

(
1

g(x(θ̃))
+

1

g(y(θ̃))

)]
.

Proof of Lemma 4 First, we will approximateEu(x(θ̃+δ), y(θ̃+δ); θ̃+δ)−Eu(x(θ̃), y(θ̃); θ̃+
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δ) by using the first-order Taylor expansion.

Eu(x(θ̃ + δ), y(θ̃ + δ); θ̃ + δ)− Eu(x(θ̃), y(θ̃); θ̃ + δ)

=

∫ θ̃+δ

θ̃

g(θ′)

2

[
φ(θ′)− θ̃ + δ − θ′

a

(
1

g(x(θ′))
+

1

g(y(θ′))

)]
dθ′

=
1

2

∫ θ̃+δ

θ̃

g(θ′)φ(θ′)dθ′

+

∫ θ̃+δ

θ̃

θ̃ + δ − θ′

a

(
−g(θ′)

2

)(
1

g(x(θ′))
+

1

g(y(θ′))

)
dθ′.

Noting φ(θ̃) = 0, the first term is approximated as

1

2

∫ θ̃+δ

θ̃

φ(θ′)g(θ′)dθ′ ≃ 1

2

∫ θ̃+δ

θ̃

(φ(θ̃)g(θ̃) + (φ′(θ̃)g(θ̃) + φ(θ̃)g′(θ̃))(θ′ − θ̃))dθ′

=
1

2

∫ θ̃+δ

θ̃

φ′(θ̃)g(θ̃)(θ′ − θ̃)dθ′

=
1

2
φ′(θ̃)g(θ̃)

[
(θ′ − θ̃)2

2

]θ̃+δ

θ̃

=
δ2

4
φ′(θ̃)g(θ̃).

To calculate the second term, first note that

d

dθ′
ϵ(x(θ′), y(θ′))) = −g(θ′)

2

(
1

g(x(θ′))
+

1

g(y(θ′))

)
.

Thus, partially integrating the second term, we obtain

∫ θ̃+δ

θ̃

θ̃ + δ − θ′

a

(
−g(θ′)

2

)(
1

g(x(θ′))
+

1

g(y(θ′))

)
dθ′

=

∫ θ̃+δ

θ̃

θ̃ + δ − θ′

a

d

dθ′
ϵ(x(θ′), y(θ′))dθ′

=

[
θ̃ + δ − θ′

a
ϵ(x(θ′), y(θ′))

]θ̃+δ

θ̃︸ ︷︷ ︸
A

+

∫ θ̃+δ

θ̃

ϵ(x(θ′), y(θ′)))

a
dθ′︸ ︷︷ ︸

B

.
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Now, term A is rewritten as

1

a

[(
θ̃ + δ − θ′

)
δ(x(θ′), y(θ′))

]θ̃+δ

θ̃

=
1

a

[(
θ̃ + δ −

(
θ̃ + δ

))
ϵ(x(θ̃ + δ), y(θ̃ + δ))−

(
θ̃ + δ − θ̃

)
ϵ(x(θ̃), y(θ̃))

]
= −ϵ(x(θ̃), y(θ̃))

a
δ.

Since ϵ(x(θ′), y(θ′)) ≃ ϵ(x(θ̃), y(θ̃)) + dϵ(x(θ̃),y(θ̃))
dθ′

(
θ′ − θ̃

)
, by substituting dϵ(x(θ̃),y(θ̃))

dθ̃
=

−g(θ̃)
2

(
1

g(x(θ̃))
+ 1

g(y(θ̃))

)
into this approximation, term B can be approximated as

∫ θ̃+δ

θ̃

ϵ(x(θ′), y(θ′))

a
dθ′

≃ ϵ(x(θ̃), y(θ̃))

a

∫ θ̃+δ

θ̃

dθ′ +
1

a

dϵ(x(θ̃), y(θ̃))

dθ′

∫ θ̃+δ

θ̃

(θ′ − θ̃)dθ′

=
ϵ(x(θ̃), y(θ̃))

a
δ +

1

a

(
−g(θ̃)

2

)(
1

g(x(θ̃))
+

1

g(y(θ̃))

)
δ2

2
.

Thus, the second term is A+B = −g(θ̃)
2a

(
1

g(x(θ̃))
+ 1

g(y(θ̃))

)
δ2

2
. Hence, we have the approx-

imation formula:

Eu(x(θ′), y(θ′); θ̃ + δ)− Eu(x(θ̃), y(θ̃); θ̃ + δ)

≃ δ2

4
φ′(θ̃)g(θ̃)− g(θ̃)

2a

(
1

g(x(θ̃))
+

1

g(y(θ̃))

)
δ2

2

=
δ2g(θ̃)

4

[
φ′(θ̃)− 1

a

(
1

g(x(θ̃))
+

1

g(y(θ̃))

)]
.

We have completed the proof. �

Proposition 3 Conditions (ii) and (iii) in Proposition 3 directly follow from Lemma 4.

�
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Proof of Corollary 1 Since g is a density function, their values are nonnegative. Thus,

from Lemma 4, we get the conclusion directly. �

Proof of Theorem 1 Noting that x(0) = 0, y(0) = θmed, x(1) = θmed, and y(1) = 1, we

obtain

φ(0) =
1

2a

[
1

g(θmed)
× (−a+ θmed) +

1

g(0)
× (a+ θmed)

]
,

φ(1) =
1

2a

[
1

g(1)
× (−a− (1− θmed)) +

1

g(θmed)
× (a− (1− θmed))

]
.

Thus, g(θmed) ≥ g(0) and g(θmed) ≥ g(1) are sufficient for φ(0) > 0 and φ(1) < 0,

respectively. This implies that we can assure the existence of political equilibrium under

these conditions. �

Proof of Proposition 4 Let θ̃ = θmed = 1
2
. Then, by symmetry of g, we have θmed −

x(θmed) = y(θmed) − θmed, g(x(θmed)) = g(y(θmed)) and g′(x) = −g′(y). Thus, x(θmed) +

y(θmed) = 1 is obtained. Since f is symmetric, 1− F (0) = F (0) = 1
2
. Then,

φ

(
1

2

)
= − 1

g(y)

(
1

2
− x+ y

2a

)
+

1

g(x)

(
1

2
+

x+ y

2a

)
−

1
2

a

(
1

g(x)
+

1

g(y)

)
.

=
1

g(x)

(
−1

2
+

1

2a
+

1

2
+

1

2a

)
− 1

a

1

g(x)

= 0

Thus, when θ̃ = θmed, φ(θmed) = 0. In addition, by using the above facts, we have

φ′(θ̃) =
g(θmed)

2g(x)2

[
2

a
− g′(x)

g(x)

]
− 2

g(x)a
.

Moreover, the necessary condition in Proposition 3,

φ′(θ̃)− 1

a

(
1

g(x(θ̃))
+

1

g(y(θ̃))

)
≤ 0
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is equivalent to

g(θmed)

2g(x)2

(
2

a
− g′(x)

g(x)

)
− 4

g(x)a
≤ 0.

Hence, if this condition is satisfied, there is a political equilibrium with θ̃ = θmed. �

Proof of Proposition 5. We first prove the following lemma.

Lemma 5 Suppose that the conditions of Theorem 1 are met and that g is continuously

differentiable. Then, there is a unique equilibrium if we have

1.
g(θ̃)

g(x(θ̃))
+

g(θ̃)

g(y(θ̃))
≤ 4, and

2. g′(y(θ̃))
g(x(θ̃))

g(y(θ̃))
≤ g′(x(θ̃))

g(y(θ̃))

g(x(θ̃))
for all θ̃ ∈ [0, 1].

Proof of Lemma 5. If both the first and second terms (A and B, respectively) in (8) are

non-increasing in θ̃, then we have φ′(θ̃) ≤ 0 for all θ̃. First we analyze the first term A.

Since x(θ̃) and y(θ̃) are the solutions of 2G(x(θ̃)) = G(θ̃), and 1− 2G(y(θ̃)) = 1−G(θ̃),

respectively, we obtain

dA

dθ̃
=

g(θ̃)

2g(x(θ̃))
+

g(θ̃)

2g(y(θ̃))
− 2 =

1

2

[
g(θ̃)

g(x(θ̃))
+

g(θ̃)

g(y(θ̃))
− 4

]
.

Second, let’s analyze the behavior of the second term B. Differentiating B with respect

to θ̃ we obtain

dB

dθ̃
=

(
g′(y)dy

dθ̃
− g′(x)dx

dθ̃

)
(g(x) + g(y))− (g(y)− g(x))

(
g′(x)dx

dθ̃
+ g′(y)dy

dθ̃

)
(g(x) + g(y))2

=

(
g′(y) g(θ̃)

g(y)
− g′(x) g(θ̃)

g(x)

)
(g(x) + g(y))− (g(y)− g(x))

(
g′(x) g(θ̃)

g(x)
+ g′(y) g(θ̃)

g(y)

)
(g(x) + g(y))2

=
2g′(y) g(θ̃)

g(y)
g(x)− 2g′(x) g(θ̃)

g(x)
g(y)

(g(x) + g(y))2
=

2g(θ̃)

(g(x) + g(y))2

[
g′(y)

g(x)

g(y)
− g′(x)

g(y)

g(x)

]
.
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�

Condition 1 of Lemma 5 corresponds to dA/dθ̃ ≤ 0, and condition 2 corresponds to

dB/dθ̃ ≤ 0. It is easy to see that the conditions are satisfied as long as g does not

fluctuate much (a flat density: for example, if maxθ g(θ) ≤ 2×minθ g(θ), then condition 1

is surely satisfied). This condition on g′(x) and g′(y) is satisfied if (a) g is concave or (b)

g′(θ) does not change much within interval [0, θp) and interval (θp, 1]. Since (a) implies

single-peakedness and maxθ g(θ) = g(θp), we have completed the proof.�

Appendix B: Examples 1 and 2

Example 1

We can explicitly calculate the φ function. Since φ is a step function and is discontinuous

at θmed, we have two cases to calculate: (I) the case of θ̃ ≤ θmed and (II) the case of

θ̃ > θmed. Noting that each candidate satisfies x ≤ θmed ≤ y under any sorting political

equilibria, the two cases are given below.

(I) The case of θ̃ ≤ θmed. Two candidates are

x(θ̃) =
θ̃

2
and y(θ̃) = θmed +

1− θmed

2θmed

θ̃.

In this case, calculating φ(θ̃), φ R 0 holds if and only if

2a · φ(θ̃) = 2

(
θmed +

1− 4θmed

2θmed

θ̃

)
+ 2a (2θmed − 1) T 0.

38



For φ(θ̃∗) = 0 to hold, we have

θ̃∗ =
2θmed((2a+ 1)θmed − a)

4θmed − 1
.

To satisfy θ̃∗ ≤ θmed, we must have θmed >
1
4
since

θmed − θ̃∗ =
(2a− 1)(1− 2θmed)θmed

4θmed − 1

and θmed ≤ 1
2
and a > 1

2
. Indeed, if θmed > 1

4
then the sufficient condition of the sorting

political equilibrium at θ̃∗ is satisfied (Corollary 1), since we have 2a ·φ′(θ̃) = 1−4θmed

θmed
< 0.

We also need a ≤ θmed

1−2θmed
, since φ(0) > 0 must hold in order to have φ(θ̃∗) = 0.

(II) The case of θ̃ > θmed. As well as (I), two candidates are

x(θ̃) =
θmed(1− 2θmed)

2(1− θmed)
+

θmed

2(1− θmed)
θ̃ and y(θ̃) =

1 + θ̃

2
.

In this case, calculating φ(θ̃), φ(θ̃) R 0 holds if and only if

2a · φ(θ̃) = 2

(
1

2
+

θmed(1− 2θmed)

2(1− θmed)
+

4θmed − 3

2(1− θmed)
θ̃

)
+ 2a(2θmed − 1) T 0.

Noting that φ(θ̃) function is not discontinuous at θmed but just kinks because of x ≤

θmed ≤ y.16 See Figure 3.

For φ(θ̃∗∗) = 0 as well as the case (I), we have

θ̃∗∗ =
−(2 + 4a)θ2med + 6aθmed − 2a+ 1

3− 4θmed

.

Since

θ̃∗∗ − θmed =
(2a− 1) [−(1− θmed)

2 − θmed]

3− 4θmed

< 0,

16On the other hand, on the function g(θ) in Example 2, x and y stride over some steps. Thus φ(θ̃) is

discontinuous at several points.
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there is no party threshold θ̃∗∗ satisfying φ′(θ̃∗∗) = 0 in this range, which implies that

there is no political equilibrium in this range.

In conclusion, there is a unique equilibrium, and the equilibrium party threshold sat-

isfies θ̃∗ < θmed. This implies that the party with the shorter tail (or higher density: here

party L) loses some of its moderate supporters in any political equilibrium. �

Example 2

Since everything is symmetric, we can focus on the cases of θ̃ ∈ [0, 1
2
]. We will investigate

what will happen on x(θ̃) and y(θ̃) (thus including φ(θ̃)), as θ̃ increases from 0 to 1
2
. The

following tables summarize the relevant information. We have three cases:
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As mentioned above, when b = 1, g(θ) is a uniform distribution. Then the equilibrium

is unique and symmetric, θ̃ = 1
2
. Even if b becomes only a little smaller than 1, φ(θ̃)

becomes discontinuous at θ̃ = 1
9
in Case 1 of Table 1 and at 8

9
from the symmetry, and

shifts below because of the discontinuity of g(θ) at 1
9
and 8

9
; see Figure 4. As b gets

smaller, this shift gets larger; then two asymmetric equilibria appear in (1
9
, 4
9
) and (5

9
, 8
9
)

in addition to the symmetric equilibrium; see Figure 4. As b gets increasingly smaller,

these asymmetric equilibria approach 1
9
and 8

9
, respectively, and finally stick to them.17

With the case of deeply divided voters, in each asymmetric equilibrium, one party will be

formed by all extremists ({EL} and {ER}, respectively) and few moderates, while the

other party will be formed by the rest ({L,C,R,ER} and {EL,L,C,R}, respectively),

and their candidates are extremist and moderately biased centrist. As a result, in one

equilibrium x(θ̃) and y(θ̃) are around 1
18

and 5
9
, and in the other they are around 4

9
and

17
18
), respectively.18

Appendix C: Necessity for “Admissible” Allocations

In the main text, we confined our attention to admissible allocations in order to focus on

centrally located voters’ party choice. This restriction excludes the possibility of extreme

17In b < 1
2 where b is in Case 2, the symmetric equilibrium disappears although φ( 12 ) = 0 since

the condition of Proposition 3 cannot be met (in this example, the condition in Proposition 3 becomes

g(θmed) ≤ 4g(x(θmed)) for any a), so that there are only two asymmetric equilibria; see Figure 5.

18When b gets even smaller and approaches Case 1, x( 12 ) is in (0, 1
9 ) at θ̃ = 1

2 . Then, although b < 1
2 ,

the condition of Proposition 3 is met again because of g(x(θmed)) = g(θmed), so that the symmetric

equilibrium appears again. Since the asymmetric equilibria still exist, there are again three equilibria;

see Figure 5.
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voters’ switching their parties. In this appendix, we show that unless we can exclude

voters at intervals [0, x) and (y, 1] from joining coalitional deviations, there may not be

a political equilibrium. We provide a simple example to illustrate this point. As we

have seen, coalitional deviations from intervals [0, x) and (y, 1] are sufficient to upset the

immunity to the coalitions; by combining voters in (x, y) and (y, 1], we can create an even

simpler and robust example.

Example 3. Assume that g is uniform g(θ) = 1 for all θ ∈ [0, 1], and that f is very

widely spread (for example, f(ϵ) = 1
2a

for all ϵ ∈ [−a, a] with a large number a. In this

case, whoever the two candidates x and y are, their chances of winning are always almost

1
2
and 1

2
, respectively. Now, since everything is symmetric, a natural candidate for an

equilibrium is a symmetric allocation gL(θ) = g(θ) for all θ < 1
2
and gR(θ) = g(θ) for all

θ > 1
2
. In this case, x = 1

4
and y = 3

4
. Can this be immune to a coalitional deviation far

from the party threshold? We denote a coalitional deviation as γ. Consider a deviation

from party R to L: γ(θ) = g(θ) for all θ ∈ (3
4
− δ, 3

4
− 1

2
δ) ∪ (3

4
+ 1

2
δ, 3

4
+ δ] where δ > 0

is a small positive number. That is, after the deviation, there is no impact on party R’s

candidate: y′ = 3
4
. However, clearly x′ is closer to θmed after the deviation. Given a

widespread f , the chances of x′ and y′ to win are still almost 1
2
and 1

2
. Then, deviators in

γ have a closer candidate from L who wins with probability 1
2
, so they are all better off.

�

Although this example may appear extreme, the force of the coalitions is robust in our

model. However, in fact, voters with an extreme political position tend to have a strong,

sometimes even fanatical, belief in their position. It seems unnatural for voters who are

43



even farther right than the median of party R to move to party L, while moderate voters

around the party threshold do not move.

Note that this difficulty is not due to our linear demand assumption. Consider a

strictly convex utility (Osborne 1995) case: u(pk; θ, ϵ) = −v(|pk − θ|) + ϵ, where v′(·) < 0

and v′′(·) > 0 and k ∈ C is a winner. The convex utility function means that voters

who are farther away from candidates do not take much interest in them. With such a

utility function, one may think that extreme left or right voters — voters far to the left

(right) of the median of party L (R) — have no incentive to switch parties, and we may

be able to drop the assumption of an admissible allocation. It is perhaps true that such

a convex cost function reduces the incentive to switch parties, but it would not totally

resolve the problem, since a voter with an extreme position may be made better off by her

party’s candidate becoming more moderate and gaining a higher chance of winning even

if the voter does not care about the other party’s candidate’s position. It all depends on

the relative magnitudes of two effects: dissatisfaction with her party’s candidate’s posi-

tion becoming more moderate and satisfaction with the candidate’s increase in winning

probability.

Appendix D: Psychological Costs for Voters in [0, x)

and (y, 1]

Here, by introducing arbitrarily small psychological costs to extreme voters, we can show

that every political equilibrium is an admissible allocation. As formally explained in

Appendix C (Example 3), if we allow voters from intervals [0, x(gL)) and (y(gR), 1] to join
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coalitional deviations, we will face a nonexistence problem of political equilibrium. The

logic of the example is roughly as follows: Imagine that, among party R supporters, a

small group of supporters to the right of y together with a group to the left of y with

the same measure switch their party to L. Then, the party median of party R is kept at

y, while x moves right. If there is a large amount of uncertainty in the election result (ϵ

has a high variance), then party R supporters may appreciate having closer party L as

candidate.19 This is unfortunate, but if we introduce an arbitrarily small psychological

cost of joining the party whose position is not aligned with the voters with relatively

extreme positions, then we can rule out the possibilities of these voters joining more

distanced parties.

Definition 2 Let δ > 0 be a small number. The psychological cost of joining party i,

Φ(θ, i; x, y), is a function in θ, x, and y defined as follows: Φ(θ, i; x, y) = Φ > 0 if i = R

and θ ≤ x(G) + δ, or i = L and y(G)− δ ≤ θ, and Φ(θ, i;x, y) = 0, otherwise.

This assumption says that if a voter’s political position is more extreme than the

median of a party that is closer to her position, then it is psychologically costly for her to

join the other party: she feels some stress as if she is sinning against her convictions. Note

that Φ can be set arbitrarily small. As long as Φ > 0, a voter in interval [0, x(G)] would

not belong to party R: if she moves back to party R alone then she can save psychological

cost Φ without affecting the candidates’ positions. Thus, in every political equilibrium,

voters at intervals [0, x(G) + δ] and [y(G)− δ, 1] belong to parties L and R, respectively.

19If the variance of ϵ is small, party R supporters do not necessarily appreciate closer x since this

implies that candidate y has a lower chance of winning the election.
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Noticing that a coalition size is bounded above and the changes in candidates’ positions

are bounded above, we can see that the coalition members’ utility gains by switching

party are also bounded above. This implies that in the presence of psychological costs,

voters in these intervals would never deviate. These results are summarized as follows.

Proposition 6 In the presence of psychological costs, (i) in any political equilibrium,

voters in interval [0, x(G)] always belong to party L, while voters in interval [y(G), 1]

always belong to party R for any value of Φ > 0. Moreover, (ii) for any value of Φ > 0,

there is a coalition size limit ∆̄(Φ) > 0 such that there is no profitable coalitional deviation

formed by voters in intervals [0, x(G)] and [y(G), 1], of which size is less than ∆̄(Φ).

Here, we provide the proof for Proposition 6. The statement in the first half is provided

in the main text, so we concentrate on the second half. First notice that the sorting result

(Proposition 1) can be stated as follows: every political equilibrium must be a sorting

allocation at interval (x(G), y(G)) in order to be immune to coalitional deviations formed

by voters at interval (x(G), y(G)). The first half of Proposition 1 says that if there is a

psychological cost Φ > 0 then, in every political equilibrium, voters at intervals [0, x(G)+δ]

and [y(G) − δ, 1] belong to parties L and R, respectively. Thus, the sorting allocation

is the only candidate for political equilibria in the presence of psychological cost Φ > 0.

This implies that there is a party threshold θ̃∗ such that x(G)+δ ≤ θ̃∗ ≤ y(G)−δ, since δ

is arbitrarily small. By this result, we can ensure that if a small enough coalition deviates

from interval [0, x(G)], then the new median x(G∆) still satisfies x(G) < x(G∆) < x(G)+δ.

Thus, we can approximate each coalition’s deviation incentive.
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Let us start with a coalitional deviation γ′ with a (small) size ∆ > 0 that belongs to

the interval [0, x(G)], moving from party L to party R. Using the definitions of the party

medians (1), the new median voter type x′(G∆) of party L is determined by

∫ x′(G∆)

0

g(θ)dθ −∆ =

∫ 1

x′(G∆)

g(θ)dθ

and y′(G∆) of party R is by

∫ y′(G∆)

0

g(θ)dθ +∆ =

∫ 1

y′(G∆)

g(θ)dθ

Here, we used the fact that the original allocation is a sorting allocation. Since we are

considering a small coalitional deviation, we will take ∆ → 0. By totally differentiating

them, we have g(x′)dx′ − d∆ = −g(x′)dx′, or

dx′

d∆
=

1

2g(x)
, (10)

and similarly, we have

dy′

d∆
= − 1

2g(y)
.

These derivatives represent that, by the small coalitional deviation γ′, x moves to the right

while y moves to the left. Thus, type θ’s expected payoff is affected by such a deviation

through changes in x and y. Using (3), we can write the impact of the coalitional deviation

γ′ from the interval [0, x(G)] on voters θ ∈ [0, x(G)] as

dEu(x(G), y(G); θ)

d∆
=

1

4a

[
− 1

g(y)
(y − x− a) +

1

g(x)
(4θmed − 3x− y − a)

]
=

1

4a

(
1

g(x)
− 1

g(y)

)
(y − x− a) +

1

2ag(x)
(2θmed − x− y)

<
1

4ag
(y − x− a) +

1

2ag
(2θmed − x− y) <

3− a

4ag
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That is, ∆Eu(x(G), y(G); θ) < 3−a
4ag

∆ ≤ 3−a
4ag

∆̄ holds. If Φ > 3−a
4ag

∆̄ holds, then there is no

incentive for such a coalition to deviate. Let

∆̄(Φ) =
3− a

4ag
Φ > 0

By setting this to be the coalition size limit, we can ensure that there is no coalition of

size smaller than ∆̄(Φ) that can deviate from interval [0, x(G)]. In exactly the same way,

we can show that there is no coalition of size smaller than ∆̄(Φ) that can deviate from

interval [y(G), 1].�
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Figure 1: Voting at ǫ = ǫ(x, y)
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L R

θ̃ θmed
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g(θ)
g(0)

g(1)

x(θmed) y(θmed)θp

g(x(θmed))

g(y(θmed))

x is closer to θmed than y.

Figure 2: Single-peaked voter distribution with a biased peak to the left.

Voters in the shaded area participate in party R when uncertainty in likability is high.
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ϕ(θ̃)
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Figure 3: Example 1
The left voters are distributed more densely in a narrow interval than the right.

In this case, there is a unique equilibrium at a point where ϕ(θ) is kinked.
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