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This online appendix provides proofs for Theorem 2.4, 2.6, 2.8 and associated lemmas, which

are asymptotics for the following estimators in the paper,
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Lemma 4.1 Suppose random variables s; , x; are i.i.d. acrossi=1,2,...,n, and s; is bounded.

I1x1 kx1

r(x;) is a bounded real function of x;. The following Lipschitz conditions hold:

|E(si|wi + ex) — E(si|z;)| < My |lex]|,

7(25 + ez) — 7(w5)| < Mz |les]|,

| fo(mi + ) — fa(zi)| < Ms |lex||

for some positive number My, Mo, and Ms. r; (x;), E(si|z;), fz(x;) are p-th order differentiable

and the p-th order derivatives are bounded.
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where K (.) is the kernel function defined in Assumption 4.3. n — 00, and nh*? — 0, as

n — 0o, for a very small € > 0. Define term

On = = S~ Alr(we)si + (o) Blsilea)] fo(o) — 2B[r (o) Blsila) fo(w)]}
i=1

then /n(Up—U,) = op(1). Furthermore, since K (Ij Zmz> is a p-th order kernel, and by assumption
that nh?’ — 0, E[ (xi)s; th <$j_wl)} in U, could be replaced by E[r(x;)E(s;|z;) fz(x;)] and the

conclusion still holds.

The Lemma is just a modification of Lemma 3.2 in Powell et al. (1988). It is pretty straightfor-
ward, given the property of U-statistics and uniformly convergence property of the nonparametric
regression. The Lipschitz condition is imposed to control the residual term; the existence and
boundedness conditions are imposed to control the biased term. Estimator (1) is consist of several
terms like U,, and a residual term of the order o, (ﬁ) .

Proof of Lemma 4.1. Rewrite the first term in U,,, indexed by Uy, as

1 i " 1 Ti— X;
Ui, = 75 g rxl-s'K<j z) 4
n(n —1) = (w:) T hk h )
n—1 n
2 1 1 Ti— X;
= — = i)S;j )si) K |~ -
n(n —1) ;jg;l g e )iy < h )

Index z; = (s;,7;), and define p(zi, ;) = 3 [r(zi)s; + r(z))si] 7p K (xJ;%) Since the kernel
function we adopt is symmetric, p(z;, ;) = p(2j, z). It is easy to see that E(||p(zi, 2;)||*) = o(n).

According to Lemma 3.2 in Powell et al. (1989),

Us — Thn = 0 (%) , (5)



where
n

Oin = Blp(zj, )] + = 3 [B(p(z5, 2)|20) — B (plz, )] (6)

=1

Ep(2j, 2i)|z] 1s

$]'—CCZ'

s]|x])+7‘(a:])sl]hle< . >fx(zcj)dxj

Blp(.20i) = [ 5F

_/Rk

[r(@i)E(si|zs) + 7(2i)si] fo(xi) + R,

l\)\»—t [\DM—\

E(si|xi + hu) 4+ r(z; + hu)s;] K (u) fo(z; + hu)du

1
2

where second equality is obtained via variable transformation v = xﬂ;x", and R; is the residual

term, which could be decomposed into two components Ry; and Ro;,

Ri = Ru— Ry

= /]R’“ % [r(zi)E(si|x; + hu) + r(x; + hu)s; — r(zi)E(si|x;) — r(x;)si] K (u) fz(x;)du

- /Rk % [r(zi)E(silz:) + r(zi)si] K (u) [fo(wi + hu) = fo(zi)] du

Elp(2j, zi)|zi] —E[p(zj, z;)] in Equation (6) thus could be written as

1

Elp(zj, zi)|zi] = Elp(z), 2i)] (7)
( 1

= 5 [r(@)E(silas) +r(wi)si] falzs) = B | 5 [r(2i)E(silei) + r(zi)si] fo(e:)
+R1; — E(R1;) — [Rai — E(R;)]
= % [r(xi)E(silzi) + 7(2i)si] fu(@i) — Er(@)E(si|zi) fo(2:)] + R — E(R1i) — [Rai — E(Ra;)] -

Then under Lipschitz conditions and bound conditions given in the Lemma,

E (Rgz) = O(hQ)-



Thus by Lindberg Levy CLT

f Z Rlz — Rlz f Z R22 RQz)] . (8)

Equation (5), (6), (7), and (8) imply that Ui, —E[p(zj,2;)] is equal to
1
f§j{ reB (s + r(as)sfa(an) — 26 (@Bl o el + 0, (= )

which is the first conclusion of the Lemma.

Second conclusion follows by the assumption that nh? — 0 and those bound conditions and

by the fact that

:L'j—:L’Z'

E[m)sj;kx( - )]—E[r(m)E(simi)fx(xi)]:op<hp>,

the equality holds by the assumption that kernel function is of order p. m
Proof of Theorem 2.4. The last conclusion of this theorem follows immediately after the first

conclusion via Lindeberg central limit theorem. For the first conclusion, it is enough to show that

%Zn: [;/)1(901') — E(Yl)} is equal to
i=1

n

1 o hii  E(hilzi)gn o (L
> [‘”1( ) Bloulz)  Bloulz)P E(Y”] * <\/ﬁ> ®)

Note that
1 [ Blhailwi) — B(haili)
iz [wl xz wl sz)} = — _ . 5 ik
n = | E(guilwi) (g1ilxs)
_ 1 n _E(ﬁum) E(hy|z;) N E(hy|z;) - B ()
i LBEGulz)  E(gulz)  E(gula) E(g1i|zs)

1 & [ Bl — Bz EGules) [B@ule) - B@Gule:)]

= - - +R'm

n< E(g1il1) [B(Guil)]’
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(hiilz)) E(hiilz) _ E(hula) and

E(hyilzi) _ E(
(Guilz:)” Elguiles) ™ E(gulzs)”

E(g1ilzs)

where the second equality follows by the fact that = %

o [E(Tlli|$i) — B(huilz:) } [ (91i|zs) — E@u\wi)] - E(hy;|z;) [E(§1i|$i) — E(gu|a) i
e E(Gulz:) E(Gual:) [E(g1i]2:)]” E(guil:)

Under Assumption 4.2, n'=*h?**2 — o0 and from Li and Racine (2007) Chapter 2.3

sup ’E(fflhml) — E(%h’l’z) =

sup ‘E(§1i|xi) — E(g1]zi)| =

l1—e h2k+2 = o0
M

n
. 1 1 1 -
for any arbitrary small ¢ > 0. So 7 E sup |Rp;| is Op(n%*hk)‘ Since n

Z | Rni| is 0p(1). Thus, Z [ffﬁl(xz) - 7?1(%‘)} is equal to

=1

1 - E(%lz|$l) — E(E1@|$1) E(%lz’%) {E(ﬁu\mz) - E(ﬁlzhﬁ)} , 1
ng E(gui|zs) [E (g2 o (ﬁ) (10)

Note that

Z hy K (a:] zz)

1iﬁ(7l1z‘$z) _ l - J=1,37i
n = E(guilz:) n E(g1i|w:)
1 " 1 " ZL’j—LBi
= e | X e ()
i=1 J=15#1

Under Assumption 4.4, applying Lemma 4.1 by letting r(z;) = r1(z;), s; = s1;, one can get

1 Z E(huiz:) — E(hy|z;) _ izn: [E(gh;’m _ E(Yl)} + 0, <\/15> . (11)

glz|$z) i1

Similarly, we can prove that

1 i E(hy;|a;) [E@lilxi) — E(gui|zi) } lei [ (hilwi)gi E(Yl)] + 0, <\/17€) . (12)

~ 2
n i=1 [E(glilxl)] i=1 glz‘mz ]



Combining Equation (10) (11) (12) gives that

J R N 1< hii E(hui|z:)g1s 1
n ZZ; [7/)1(-%') - 1/11(951-)} = n ZZ} [E(g;!xl) E (;M’%)’T ] +o <f>

n

n

Adding both sides of the above equation with % Z (41 (z;) — E(Y1)] gives that Z [wl x;) 1)]
i=1 i=1

is equal to Equation (9). The first conclusion is proved. m

Lemma 4.2 Assume we observe W; =(X; V;), si, Z; =( W; s;), which are i.i.d.
(k+1)x1 Ex1 1x1  1x1 (k+2)x1 (k+1)x1 1x1

across i. v(x;) is a real function of z;. s;, r(x;) and density function f., fu, are bounded. E(s;|w;),
r(x;), fo and fy, are p-th order differentiable, and p-th order derivatives are bounded. E(s;|w;),

r(xi), fu, fw satisfy the Lipschitz condition
|E(silwi + ew) — E(silws)| < My [lew]

r(zi + ex) —r(wi)| < Ma|lea|
’fz(mz + ex) - fx(xz)| < Mjs Heft” >
|fw(wi + ew) - fw(wz)| < M, ||ew||

for some positive M1, Ms, Ms, My. Under above assumptions, the following term

zi) fulw) (13)

s equal to

- D Ar(@i)sifu(wi) fol@s) +7(i) fo (@) B[ 53 fu(wi)] 4]

=1

+r(2i) E(silwi) fuw(w;) fo(wi) — 2E[r(2i)si fuw(wi) fo(w:)]} + 0p (\/15> :



After decomposing Estimator (2), the influence function of our estimator is consist of several
terms like Equation (13). The proof of this lemma looks tedious but it only repeatedly uses the U-
statistics results from Powell et al. (1988) and uniformly convergence property of nonparametric
estimates.

Proof of Lemma 4.2. Rewrite Equation (13),

S (@) (sifutwn)]|@:) ()
=1
- n(n_ll)hk n Z sl (27

- e ) 25 s (V) (M).

J=Llg#il=1,l#]

Drop one term in the last summation to make it look more like a U-statistics,

*Z r@) n—2h2k+1 Z Z st < m)K<wll_zw]) (14)

i=1 j=1,j#1l=1,l#1i,5

Since all terms inside summation are bounded, one term dropped is of the order OP(W), which
is of course op( f) by assumption nh?*+1 — oo.
The structure of proof is as follows.

First we will show that

(n—l)(n—2h2k+1 Z Z i < xi>K<wl;wj> (15)

j=1,j#il=1,l#i,5

is equal to

s T — T w; — w;
E[hK< ) K -
T; 1 Ti—x
+ E(sjlwj) K( 7 )fw (wj;) — E[hkst< ]h )fw wj) xz}

)K

4ﬂ (sl ( %) )| ] + By~ BBl b+, ().

where R,;; is some residual term that will be defined later.

Joits 5l (252 e 00

Then substitute Equation (16) into Equation (14), the new expression becomes a standard



U-statistics. We then could show the new expression is equal to

n

E[r(@i)si fuw(wi) fo(2:)] + % D [r(@i)si fuo(wi) fol@:) + (@) (silw) fu(ws) o)

=1

—2E [r(@:)sifw(wi) fo(@:)]] + op <\}ﬁ) ’

by which the conclusion of the lemma follows immediately.

Step 1: As discussed, we consider first the following term,

m—nm—2mﬂl§: §:5J< i>K<W;%> 17)

j=1,j#il=1,l#i,5

- m_1— Z Z [ <;m>+le<xl;x)] hQiHK(wl;ij).

j=1,j#il=541, l;ﬁz

Let

1 Ti— X; T — 1 w; — Wi
Pl(Zj,Zl;$i):2|:SjK< jh >+81K< lh )} h2k+1K( lh j>7

then Equation (17) becomes

m Z Z Pi(zj, z1525), (18)

j=1,5#il=j+1,l#i

following Powell et al. (1989), we first verify E[Pi(z;, 215 2;)?|zi] = op(n).

Pl Z]7 215 xz) |$z]

= S ol () o () s (252

Jw(w;) fu (wy)dw;jdw;.

2
- [/ mml{[kmwm+waw+MMKwﬂ
U/ U/l
Jw(@i + huj,vj) fu (xi + huj + huy, v; + hyy) dujdvjdy

1
Op <h2k+1> = OP(TL),
| —W; Tj—T;

where the second equality holds by variable changes u; = < s uj = —5—, the third equality

2
wy, Wy

(xi + huj,vj), (x5 + huy + hug, vy + hul)}

holds because of those bound conditions, and the last equality holds by assumption that nh?**1 —



00. According to Lemma 3.2 in Powell et al. (1989), Equation (18) is equal to?

1
B (Py(zy. )] + Z{E P z523) |2 = B PGy ialad) o, (=) (19
Term inside the summation in Equation (19) could be analyzed as follows,

E[Pi(zj, 215 %) 25, @] — E[Pi(zj, 21523 |2i]
1 Sj Tj — T4 w; — wy 1 Ty — Xy w; — wy
= QE[h2k+lK< A >K< 5 ) zj,cci]—i— —E h%_HK 5 K A
1 5j Tj— T wj — wy 1 S T — X wj — wy
1 [h2k+1K < . ) K (h ) 4 P =AY

25, (E’L:|

Since

Sj :L'j—CCZ' wj—wl
et (257 K (25 [
Sj .xj—ZL‘i wj—wl
= K K w(wr)d

o, e (2 o (5 et

_ %K (% ; x) Fulw;) + Z?CK< ;x) . K (w) [fuw(w; + hw) — fu(w;)] du,

and similarly

Ty — wj; — Wy
e ()« (457) o

silw; T 1 T; + hu; — z;
J| J K< J h ) J)+hk/Q |:E [S]’|’U)j+hUl]K <]h> fw(wj+hul)

l

Bl K (252 fulw)]| K @) au

the following holds

E [Py (2, z15%)| 2, wi] — E[P1(25, 215 74) | 4]
- 1 ( = > Fulw) + 5 ['S]ilw]]K <°””J —° ) fulw;) = 5B [ZéK< _— ) fulw))|
—§E [E [S}lej]K <$j ; xl) Jw(wy) %} + Rpij — E (Rpijl|s) , (20)

*The argument in Powell et al. (1989) is without conditional expectation.
everything follows very similarly to the case without conditional expectation.

With conditional expectation,



where

Ruig = 2 (P2 ) [ () oy + ) ) @1
+% 0. [E[Sj|wj+hW]K<W> fuw(wj + huy)
—E[sj|w;] K (xﬂ‘ - “’”) fw(wj)K(ul)dul} . (22)

Equation (20) is the same as the term inside the summation of Equation (16), together with the

‘T’L:| )

Equation (19) is equal to (16). By the assumption that r(x;) is bounded, the Op(ﬁ) term is still

fact that p(zj, z;; ;) are symmetric for z;, z; conditional on z; and thus

op(%) after summing over 7.
To accomplish the second part of proof, we will first discuss the residual term of the order
OP(%) and then the influence term.

Step 2 (residual term): Here we claim that

1 L 1
wn D ;j};ﬂ [r (;) Ruij — 7 () E (Ruij|z:)] = op(ﬁ). (23)

Let an‘] — Rlnlj + R2’I’L’L]7 Whel"e

Runiy = pr K [ K () s + ) = fo(y)) du,
Rgm'j = h:,lk/Q |:E [sj]wj + hul] K(W)fw(w] + hul)
B gl K ) )| K (1)

So the object of this small session is

n n

1 : Z | Z ' [7’ (xz) le‘j - ($Z) E (lejlwz) +r (xz) Rgm-j —r ($z> E (Ran]’$z)] .

10



For Z Z (x5 lej, it is a standard U-statistics after being written as
i=1 j=1,j#i

1 Z Z r (5233 55 K(Svj ; ﬂﬁz) K () [fuw(wj + hwy) — fu(w;)] dy (24)

i=1 j—l,j;ﬁi Qo
= — E E [Pa1(2i, 25) + Pa2(2i, 25)] E E P (2, zj),
i=1 j=i+1 =1 j=i+1

where

Po(zi,2j) = v (@y)si | K () oo+ ) — fuwi)] du s K (xf“””>,

Pos(2i,2j) = 7 (2:) Sj/g K (w) [fw(w; + huy) — fuw(w;)] dul%K (xj ;%) .

1
> [Pa1(zi, 25) + Paa(zi, 25)] -

P2(2i7Zj> - 2 [

For the similar reason as in Step 1, easy to show that E[Pg(zi, zj)2] = op(n). Then we could apply
Lemma 3.2 in Powell et al. (1989) again to get that

1)2 > 7 (@) Runiy = E[Poz )1+ Z [Pa(2i, 2j)|2i] — E[Pa(zi, 7)1 40y <\}ﬁ>

n(n —1 i=1 j=1,j7i i=1
(25)
So
% > Y [r (@) Rungg — 7 () B (Ringjz)] (26)
n(n—1) i=1 j=1,j£i
= % ; 2E [P2(2i, 2j)|zi] — 7 (i) E (Ranijlzi) — E[Pa(zi, 25)]] + op (\/1;) ;
LS B IP (or 25)120 + B [Paa( )20 — 7 (20) B (Buniglos) — B [Pa(z, )] 4+ 0 ()
- ni:l 21\ %1y %5 )| <0 22\ %1y %5 ) 7 1nij |4 2\ %0y %5 'p \/’H .
Since z; and z; are identically distributed,
E [Po(zi, zj)] = E [Poa(2i, 2j)] = E[Pa(2i, 2j)] - (27)

11



By changing variables u; = “;** in the integral,

BlPn(slal = 5 [ K @) oot ) = fotwdldn [ S (2550 o,

Qg
J

= s A K (w) [fuw(w; + huy) — fu(w;)] dul/ r(x; + huj) K (uj) fo(z; + huj)du;

L has been cancelled out above, then by the assumptions that the first derivative of f,, and

each term above are bounded, we know that

E [E [Pgl(zi,zjﬂzﬂ = O(h?). (28)
Note that
7 (i) E (Ripijl@i) =7 (2:) E ZQK( ) [fw(ws + hw) — fu(w;)] duy wz]

which is exactly E[P2(z;, 2;)|2i] . Therefore, Equation (26) is equal to the following

72 [Po1(2i, 2j)|zi] — E[Pa(zi, 2))]] + 0p (\};l)’

= = Z [P21(zi, 2j)|zi] — E[Po1(2i,25)]] + op <\}ﬁ> ) (29)

where the last equality follows by Equation (27). By Equation (28) and Lindeberg—Levy central

limit theorem,

jﬁ S B [Por(6, ) 2] — B [P (21, 23)]) 0,
=1

which implies that Equation (26) is Op(ﬁ)‘

Similarly
LS Y ) Ray — 7 0 B (Rang )] = 0y(—=)
n(n—l) = A ) 2nij A 2nig | L1 1 \/ﬁ .

Then Equation (23) is proved.

Step 3 (influence term): Taking results from Step 1 and 2, we know that the influence

12



term for Equation (13) is

1 n S Ti— T; w; — Wy
n;r(xl)E [thJJrlK( J - )K( l h 1)
i=1 j=1,j#i

- g (34572 e

Let

o 1 n n i i sl Tj— Ty w:
TR PP D gt () oo

Easy the see that the influence term is Ay + As + As, we will discuss the property of them one
by one.

For Aq, the proof is very similar to the proof of the second conclusion in Lemma 4.1. Note

that
M-E(An) = M- |l () k() (30)
- 2 Zl (i) £ [ u3) 3] — B i) o(o:) ()] + o — B(Ru)
where

r(z;)s; T — T w; — W
Rni_E[hzkﬂK( h >K( h )

] B [r(es)sifo@:) fulws)] 2]

13



Easy to see that E(|Rni|?) = O(h?), since w; is i.i.d. across i,

\/>Z m_ nz &0

So the influence term for Aq is

r(x;)s; —x; w; — W, 1 <
B |tk (S KU+ > e el o) ] ~ Bl ool
(31)
Since the kernel function used here is of order p, and by assumption that f,,,E(s;|x;) are p-th

order differentiable and p-th derivatives are bounded, we know that

B et K () KO = Blrsifa(en fulw] + O),

Therefore, by assumption n2h? — 0, Equation (31) is equal to

B (1) o (1) ()] Z{r (@ ol )] ] = Blr(as)sefo(o) ]} + 0p (- )

n

! 1

Sum up the results for A; so far, Aq is equal to

{j B Lot fuluwl ] + 0y (=) (3

Be = b3 rted { e (25 ) — Bt ()

i=1 j=1,j#i
9 n—1 n 1 n 1 z; o
_ T ;j;l Ps(zi, zj) — o 2 r(z;)E [hks]K ( " > Jw (wj) xl] , (33)
where
P 1 K Ly i
1ot 5) = g (o8 )+ s fulw)] K (22

14



Let

P31 (2, 25) = %T(%)Si“fW(wi)K <$j hxi> ’

1 T;— T
Pulii, ) = gerla)sfulus) K (52 )
then

1
Pg(zi, Zj) = 5 [Pgl(zi, Zj) + P32(ZZ‘, Zj)] .

Notice that the structure of Ay is the same as Equation (26) and Ps, P31, P32 here are correspond-
ing to Pa, Pa1, Pag respectively. By the results in Step 2 that Equation (26) is equal to Equation
(29), similarly, As is equal to

R 1
5 2 B3l = Bl 4o (7).
The above expression could be rewritten as
1 & r(z;) Tj— X
- ; {Sz’fw(wi)E [ i K ( W

= % > A (@)sifu(ws) fo(@i) — B [r(2i)sifuw(wi) fo(2i)] + Rni — B (Rni)},
i=1

zz] —E [P31(Zz‘,zj)]},

where

Rpi = s fuw(wi)E [T(I_ZC;)K (xj ; a:z>

] — ()5t i) o (22).

Easy to see that E(R2,) = O(h?), by i.i.d. assumption on 2; and Lindeberg Levy CLT,

1 < p
— Y " [Rni — E(Bn)] 2 0.
VS
So As is equal to

1 « )
" ; {r(@i)sifuw(wi) fo(xi) — Er(@:)s: fu(w:) fz(z:)]} + op <\/ﬁ>

15



For Agj, it has the same structure as As. Similarly, one could get that Ag is equal to

LS (s ) fao) — B o)) o)) + 00

\/ﬁ> . (35)

At this stage, from Equation (32), (34), and (35), we could get that A; + As 4+ Az is equal to

S )i ) fo 1) + (i) o) B [ fu )| ] (36)
=1

+r(xi)E (s5|w;) fu(wi) fo(ws) — 2E [r(2) s fuw(ws) fo(xi)]} + 0p <\/15> :

Sum up the results in Step 1, 2, and 3, we know that the Equation (13) is equal to Equation (36),

which is the conclusion of this lemma. m

Lemma 4.3 Adopt the same notation and assumptions as in Lemma 4.2. Then

(nil) i ijw(wj)%K <ag;xz> — Elsi fu(wi)|zi] fo(z:) = Op(R’) + Op ( ! )1 .

=1,

This Lemma is a complement to Lemma 4.2. The result will be used to determine the rate of

convergence of the residual terms after decomposing our estimator.

Proof of Lemma 4.3. The proof of this lemma use some results in lemma 4.2.

First note that

o 3 ek () Bl e

j=1,j#i

- & i 5 3 ijw(wj)%K (””j - 5”) — B[sifulw)|zi] Fa ()

j=157

B [sifu(wi)ei) (Folen) = fol@) + (Elsifulw)lai] - Blsifu(w)lei ) fole).

Under Assumption n'=¢h%+2 — oo, from Li and Racine (2007) Chapter 2.3,

()]

sup [ [s: fu(wi)|i] = B [sifu ()]

:Op
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o=

} . So we only need to focus on

From Silverman (1978), sup |fx(2;) — fo(z;i)] is also O, [(ﬁ)

(ni 1) > ijw(wj)%K <”j ; xl) — E[si fulw)|zi] folw:) (38)
PR
which is

n

(n—12h2k+1 Z Z ;K < i>K(wl;wj)—(n_11)hk > sifu(w)K <x32$2>

j=1,5#11=1,l#j J=1j#i

Drop [ =i in the first part of the above expression to make it look more like a U-statistics. This
term is of the order O, (W) which is o, [(nl_ilghk)%] by some simple calculation, so this term

could be ignored. After dropping one term, the above term becomes

(n—l)( 2) 2k +1 Z Z ;K < i>K(wl;wj) (39)

J=1j#ul=11#1]

_(n—ll)hk Z 8j fu(wj) K (x] ; xz) :

=L

As already discussed in the Step 1 of Lemma 4.2,

o 33 e () re

J=lj#i1=11#4,5

is y/n-equivalent to Equation (16). For the convenience of reading, Equation (16) is rewritten as
follows:

n

Sj Tj— T wp — wy 1 1 4 x;
E[h2k+1K< h >K( h )$1:|+n_1'2'{hk53K< h )fw(wj) (40)
J=Lj#
T 1 Ti— X
+ E(sjlw;) K 7 _ - )fw (wj) —E [hkst< J - )fw wj) ajz}

-E [ E(sjlw;)K <

17



Substitute Equation (40) into Equation (39), then Equation (39) becomes

S T — T; w; — Wj 1 Ti— T
E|:h2kj+lK< jh >K< h j) xl:| _E|:h]gSJK( ]h Z) fw<w])

vt 3 Lt (25 st 8 [t (255 futwy

=Ly
1
+Rnij — E(Rpijla;) + op <\/ﬁ) } .

We will discuss each term in Equation (41).

a:] (41)

:

By the assumption that fy,,E(s;|x;), fo are p-th order differentiable and p-th derivatives are

bounded, and the kernel function we use is of p-th order, we know that
55 Tj— X w; — Wwj
Bt () KU

o[ (*457) ot

x] — B3 fu(25) fu(w5) | 2] + Op(IP),

] = E[sifu (@) fu(wi)| 2] + Op(HP),

SO

5j Tj— T w; — wj
B |t () KU

=t > Lt (B fut) B [t (252 fu tw)|+

=1,

By i.i.d. assumption, j-th observation is independent of [-th observation when j # [. So

ilvar [(hk (sjlw;) K (xj ; ml) Jw (%‘))2 ﬂfz] .

E(A%|z;) =
(Iw)n

18



E [(;CE(SHU@')K (xj ;x,,) fu (wj)>2 xz]

= /Q (&E(Sﬂw]’)f( (x];x’> fu (wg')>2fw(wj)dwj

J

: 1
T /Q [E(sjlzi + huj, vi) K (u)) fu (i + hug, vj)]2 fw(@i + huj, vj)du;dv; = Op(ﬁ)’
g,
we know
—1
E(A%xz) = Op I:(nhk:> :| .
According to Markov inequality,
1
A=0| ! ] )
(nh*)2
Similarly, let
1 n
k== > [Ruij — B(Ruijlzi)],
Jj=1,j#i
and we can get that
1
R:%[ 1]‘ m
(nhk)2

Equation (38) is equal to Equation (41). The order of Equation (41) could be obtained from

Equation (42), (43) and (44), which is O, (h?) + O, ( i)%] . u
nh

Corollary 4.4 Adopt the same notation and assumptions as in Lemma 4.2. Then

Si

f(vilzi)

ASi\xz‘] folz:)—E {

Bl rxz-] fo) = 0,(")+0,

1 1
(nh’f)% ] + Op(n1—5h2(k+1) ) <45)

This Corollary is a direct result of Lemma 4.3. It is useful, since our estimator includes a

nonparametric estimate of conditional density in the denominator.

19



Proof of Corollary 4.4.

O ]~ F [ ] £t

All terms except the first term are easily seen to be O, [(nl_shk)fé] . For the first term

11ﬁ<»—[<3mmjﬁm>

x; sjfe(x;) 1 - T
)t X e ()

j=1,j#i

|
(Uz‘%)
_ ni1 Zn: Sifx(xj)1K<$j

k
jorggi fwlws)

h
1 &5 [f:v(wj) - fx(l“j)] 1. (:pj —xi)
h

Tl 2T L) W 1o
+n1%§;%ﬁ@ﬂ2$gmwﬂ;ﬂ<%hm> Mn
4n1%§;j4ﬁ@>fm2gﬁw»(m%};K<jh%) )

S .
3 )

According the results in Lemma 4.3, and by seeing that Equation (46) is exactly Equation (38),
Equation (46 is of order O,(h”) + O, [(nhk) ] For the same reason, Equation (47) is also of
order O,(hP) + O, {(nhk) } From Silverman (1978),

~

2(3) = Folay)| = O [ =5mb) 73]

sup

sup | fu (wy) = fulwy)| = O [(n! =R+ 73]

for any € > 0, so together with the bounds condition on each term in Equation (48) and (49), we

know that Equation (48) and (49) are of the order Op(nlfiih%) and OP(W) respectively.

20



Combine results so far, the conclusion is proved. m
n
Proof of Theorem 2.6. We will first derive the property of %Z 121(%) It could be divided

i=1
into several components as follows

17)1(%) _ E(/l\zli xz> - E (hu; :m))

E (91i| z:) E (Eh x;

_ + R;, (50)

|2) B (hu]e) [B (] ) - Bl o)
) [E (gul2))”

s ml) - E (ﬁu wl>] [E (Eu o mz) [E (Eu ﬂﬂz) - E(§1i|fﬂi)}2

[E (il z:)]? RIGHEDE
According to Corollary 4.4, and assumption that m is bounded, R; is of order Op(hQP) +

Oy [1ks] + Ol s ). which oy( 1), by Assumption that 2 — 0, and m1-“Htk+4 — oo

n
So 1 Z ¥ (z;) is equal to
i=1

o B <le $z> i E<7L1z’ mz) {E (311 xz) —E(?hz‘!xi)] —|—op<

n <=\ E(gulw) [E (Gil i)

\}ﬁ) RN

Notice that

_ ~ 1 D;Y; 1 <xj :cz>
n(n—1) ;]ﬁ%# (glz‘ .CU,) f(vﬂxj) h* h
B 1 LA 1 DiYifulz;) 1 [z —
- -1 ;j:;j#{E@um) fiv(jﬂﬁjav;’j) th( J h > 2

1 D]Y]fx(xj) |:f/.\x'u(xj7vj) - fxv(xj7vj):| 1 Ti— T;
E (g1i| :) f2,(x5,v5) th( J >+Rij ’

21



where

n > 2
R, D;Y; fo () [fzv($javj) - fm(acj,vj)] 1, <xj _mi>
E (il zi) f2,(x5,0;) fao(zj,05) B h
D;Y; {J?x(xj) - f:c(l‘j)} {fm(xj,vj) - fm(xj,vj)] L (52
) E (guil z:) f3,(xj, v5) hk ( h > '

Consider the residual term first, again from Silverman (1978) and those bound conditions, we

1 1
sup ‘R”’ = Op (nl_ath) - Op <\/’I’>l) 3 (53)

1—6h4k+4

know that

the second equality follows by Assumption that n — 00. Apply Lemma 4.2 (by letting

sj = s5j,7(xi) = r5(x;)) on the first term in Equation (52)%,

1 D;Yifo(z;) 1 o
e X we P ().

=1 j=1 i E (g1i| z:) fwv(fvjavj)

we know that is equal to

;; Ui * oy~ st ) o (7).

which by further simplification is:

1 Z [QE Vil + g7 gh;l‘x) g (Yl)} . (54)

The second component in Equation (52) can be rewritten as

n

Z S D]Y]fx xj)fm(x],vg)th< —$i> (55)

21 o1 E (gl =) f2,(%5,v5) h

_ DiYifelzy) 1o <33j —xz)]
E(gli‘xi)frv(ivjavj)h h ’

Apply Lemma 4.2 (by letting s; = s¢;,7(z;) = r6(x;)) on the first term in Equation (55), we could

4By assuming v in Lemma 4.2 is empty.
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get that it is equal to

T2 [poit g+ ) —mon] o () o

Apply Lemma 4.1 on the second term in Equation (55), we could get that it is equal to

B+ [E(Yllxi)JrE(;iBi)—QE(Yl)} o <;ﬁ> (57)

=1

From Equation (56), (57), we know that Equation (55) is equal to

h12|mz;'vz :| < 1 >
— —-EY1)| +o, | —= . 58
Z[ PR AW o
n E hlv Zq
Combine Equation (53), (54), (58), and (52), we can get that - Z TGz 1S equal to
i=1

n

1 hli E(hli\xi,vi) N o L
20+ 3 (e ~ Bl 2B B0 e (7). 69

=1

Use the same strategy on another term in Equation (51),

1 n B (Elz xz) [E <§11 sz) —E(ﬁlz\%)}

i [E (G| z:))?

1 & E<}~lli xl)E<§1z 37z> E<f~llz‘ sz>
- ”; [E (g1 z:)]  E(Gul )

from which we could get that it is equal to

(hailzi) gui E (hailzs) E (grilzi, vi) o) o (L
Z{ S B B B0 (7).

Sum up the results for 721[)1 x;). From Equation (50), (51), (59), (60), we know that
1=1
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3|

L Z (x;) is equal to the difference between Equation (59) and Equation(60),

1y hii  E(hulzivi)  E(ha|2i) gu
BE(Y1) + ; {E (guilzi)  E (gui|zs) IE (gus|z0)]? (61)

E (hilzi) E (guilzi, vi) N a
[E (g1il2)] + EMf) E(Yl)]}+ p(\/ﬁ>'

Equation (61) is very similar to Equation (9). Compared to Equation (9), the additional term

E(hy;|x;, v;) exists is because we also estimate f,, nonparametrically.

Do the similar analysis for % Z , it is equal to
B(Yo) + 1 Zn: { hai  E(hailwi,vi)  E(hoi|wi) goi (62)
n <= (E(glz:)  E(g2ilz:) [E (g2i| @)

E (hailzi) E (g2l zi, vi) N e
[E (g24]2:))? + (B (Yol) E(YO)]}+ p(\/ﬁ>'

From Equation (61) and (62), the conclusion is proved. m

Lemma 4.5 a;,b; are random vectors that satisfy Assumption 2.10. w; are random vectors and
wit L wiprlaq, fort #t', wip L wyg|by for i # 1, wie L wyy fori £, t £t h(a;, by, wit) are a real
function that the first and second moment exist, and E[h(ai, by, wit)z] = o(n). Elh(a;, by, wit)] =FElh(ay, by, wiy))

for any i,t,7',t'. T — oo as n — oo. Then

n T

% Z Z h(ai, bt, wit)

i=1 t=1
s equal to

n T

E[h(a;, by, wit)] +nLT Z Z [E[h(ai, by, wit)|ai] + E[h(a;, by, wit) |be] — 2E [h(ai, be, wit)]]4+o0p (\%> .

=1 t=1

wjy are heterogeneous across ¢, but E(h) are assumed the same across t. It is not strange as it

looks; one typical case that satisfies those is that E(h) = 0 for any ¢, ¢.
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Proof of Lemma 4.5. Let
n T

Q= % > [hlai, be, wir) = E(h(ai, by, wir)|ai) — E(h(as, by, wir) |be) + E(h(ai, by, wir))],  (63)
i=1 t=1

then it is equivalent to show that @ = Op(ﬁ)'

n T n T
BIQY = g 00 S0 ST R{(h — Blblas)  B(hlbn) + E(h)) (h — B(hlar) ~ B(hlbe) + E(h)].

i=1t=14¢=1¢=1

For i # 4',t # t/, the term inside summation is zero. For the case when only one index is equal to

the other one, i.e., i =1, t # t/, since

E [h(ai,bt,'(Uit)h(ai, bt’awit’)] = E [E [h(aivbtawit)h(aivbt'awit’)|ai]]

= E[E[h(ai, b, wit)|a;|E[h(as, by, wip)|as]]

the term inside summation is zero again. So we can rewrite E[Q?] as

n T

BIQY = g D S0 B [(h — Blblas) ~ B(hlb) + E()?]

i=1 t=1

By assumption E(h?) = o,(n), so E[Q?] = o, (%) , which implies Q = o, (ﬁ) .

Lemma 4.6 Under the same assumptions in Lemma 4.5 and Assumption 2.9. Further assume

var(E [h(a;, by, wit)|as)) < M, for all i, where M is a finite positive number. Then

n T

71 E E [E[h(a;, by, wit)|a;] + Eh(as, b, wir)|be] — 2E [h(aq, by, wit)]]
nT
i=1 t=1

T
is equal to Y [E[h(ai, by, wie)|be] — E[h(ai, by, wir)]] + op (ﬁ) :
t=1

Proof of Lemma 4.6.

n T

% > > B [hlai, by wi)|ai] + B [A(as, be, wie)[be] — 2B(A(as, be, wi))]
i=1 t=1
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First by assumption that w;|b; is i.i.d across i, we know that
E [h(as, b, wir)|be] = E [h(air, by, wire)|by]

which gives

n T
% D> (B [h(as, by wie) o] = E(h(as, b, wa))] (64)

For the other part, note that

n T
nLT Z Z [E [h(ai, by, wit)|ai] — E(h(as, by, wir))]

i=1 =1
I [1
= 7 Z - Z [E [h(a;, b, wir)|a;] — E(h(a;, b, wzt))]] ;
=1 L=t

where E[h(a;, by, wit)|a;] is independent across i.

. 2
E {(1112 [E [A(ai, be, wit)|a;] — E(h(aiabtvwit))]) ]

)

= LY B[(Eha b wila] — Bh(as b)) < 2
=1

by Markov’s inequality,

n

: 1
n ; [E [R(ai, by, wit)|a;] — E(h(ai, by, wir))] = Op(%),

which gives that

n

1

T
—F > [ [h(as, b, wir)|ai] — E(h(as, b, wir))] = Op(

1
—=)- (65)
i=1 t=1 vn
Combining Equation (64) and Equation (65), the lemma follows. m

Lemma 4.7 Denote ¢, = (A1n, Bin, Aan, Ban)', a 4-by-1 vector, where A1y, Biy, Aoy, Bo, are
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random wvariables that evolve as n goes to infinity. Assume that (, converge in probability to

¢ =(0,B1,0,Bs), where By # 0, By # 0, and

d
where ) is a positive definite matrix

2
04, OA1By 0A1Ay OA1B
2
B OB1A2 OUB1Bs
2
04, 0 A2Bs

2
UBQ

Then

\/ﬁ<‘41”_‘42”>iN 00—?41_2£A£42+0?42 )
By, Ban "B, BiB: B

Proof. The Lemma follows immediately after delta method. m

Proof of Theorem 2.8. First note that

T n

S e B,

t=1 i=1

T n

S My T,

t=1 i=1

we will show the Equation (3) is equal to

nT Alit nT A2zt 1
t=1 i=1 t=1 i=1
T n a T n + Op( 7’L)
1 1
o § i 7 § ot
t=1 1=1 t=1 =1

It is enough to show that

1 T n Dit (Y; —E(&,+gt+Y1)) 1 T n 1
T ZZ ﬁ}t(vit) = ;;Am + Op(ﬁ)-

t=1 i=1
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To this end,

T n Dy (Y —E@+ b+ Y7)
1 it ) t 1
B S o ) @0
[ fu, (vit)
1 i n D <th E(@; + b + Yl))
- TEE Fou(vir)
Dy (Y~ B@ + b +71))
- fgf ('Uit) (fvt (Uit) - f’l)t (Uit)) + Rnih
where B
Dz’t(YL’t—E(ai-i-bt—i-Yﬂ) 2 (o) ) 2
Rnit: = <fv Vit _fv Vit ) .
12, (vit) fo, (vit) t t
Again, by Silverman (1978), = Z Z | Rpit| = = 5h2) which is o, (f) by n!=¢h% — oo.
t=1 i=1
Generalize Lemma 4.1 a little bit, by Assumption 4.6, not hard to see that,
1 I Dit (Yit - E(a; + b+ Yl)) -
> Yom (o i) = fuu (i)
is equal to
1 E [(th E(@; + by + Yl)) Dy vlt} 1
= +op|l —= 1.
n; fu, (vit) P <\/ﬁ>
L N D (Yie— B (@bt Y;
Substitute this back to Equation (66), we could get % Z io( lt_f ((aﬁ; %)) is equal to
t=1 i=1 v

ani " ( - (Eii-i-bt'i‘yl)> Dit—E[(}/it_E(ai‘f‘bt‘f‘Yl)) Dit|Uz’t] +0p< 1 ))

=1 i=1 Fou(vir)

which is == Z Z At + op (T) . For the same reason
t=1 i=1



Therefore, we know the Equation (23) is equal to

T n T n
%ZZAMt %ZZAZ%

1 i 1 i 1
t=1 i=1 t=1 i=1
T n T n + Op > ’
D IPMUTI DD 1%
nT 1at nT 21t
t=1 i=1 t=1 i=1

Applying Lemma 4.6 on this expression, it is equivalent to

t=1 i=1 t=1 i=1
we have now shown that
T n T n (
1 DitYit 1 1-Di)Y
nT ; Z fvt(vzt) nT =1 ie1 fut Uzt) » " » -
o - T — E(a; + b + Y1) + E(a; + b + Yo)
1 Dy 1 (1 th
nT Z ﬁ,t(vit) nT Z Z Foy (vit)
t=1 i t=1 i=1
T T n
1 1
TZZMtWZZMt ,
_ t=1 t=1 i=1 B
- T n T n + Op <\/ﬁ>
1 1
s> Mhie gy ) Taa
t=1 i=1 t=1 i=1
~ T ~
FY B [ Mulbib| R DO Al b 1
_ t=1 _t=1 Yoy —=),
n \/T

n
,%TZZHW %TZZHM

t=1 i=1 t=1 i=1

which gives the conclusion by applying Lemma 4.7. =
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