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Abstract

The degree of rigidity of nominal variables is central to many predictions of modern
macroeconomic models. Yet, standard models of price stickiness are at odds with cer-
tain robust empirical facts from micro price datasets. We propose a new, parsimonious
theory of price rigidity, built around the idea of demand uncertainty, that is consistent
with a number of salient micro facts. In the model, the monopolistic firm faces
Knightian uncertainty about its competitive environment. It learns non-parametrically
about the underlying, uncertain demand and makes robust pricing decisions. The non-
parametric learning leads to kinks in the expected profit function at previously observed
prices, which generate price stickiness and a discrete price distribution. In addition,
we show that when the ambiguity-averse firm worries that aggregate inflation is an
ambiguous signal of the prices of its direct competitors in the short run, our rigidity
becomes nominal in nature.
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1 Introduction

Macroeconomists have long recognized the crucial role played by the speed of adjustment of

prices in the amplification and propagation of macroeconomic shocks. In particular, there is

ample evidence that inflation responds only slowly to monetary shocks (e.g. Christiano et al.

(2005)). In an attempt to better understand the price adjustment frictions underpinning

these aggregate findings, numerous studies have turned their attention to micro-level price

datasets and have extracted a variety of additional stylized facts that can help us build more

realistic and robust macroeconomic models. In this paper, we propose a parsimonious new

theory of price rigidity that revolves around a simple reality faced by firms: the demand for

their product is uncertain. Coupled with ambiguity aversion, this single mechanism does

not only endogenously generate price stickiness, but can also rationalize a number of other

salient pricing facts.

One of the earliest documented empirical facts in the micro price literature is that prices

at the product level tend to be sticky, that is do not change for long periods of time (Bils

and Klenow (2004)). If one plausibly believes that firms are regularly hit by demand and

cost shocks, in turn altering the profit-maximizing price, then firms would be expected to

update posted prices more often.1 This robust stylized fact led to the widespread use of

both time-dependent (e.g. Calvo (1983), Taylor (1980)) and state-dependent (e.g. menu

cost) price rigidity mechanisms. Yet other facts, such as the surprising stickiness of the set

of prices chosen by firms over time ( Eichenbaum et al. (2011)), are more difficult to generate

without expanding the standard models.

In this paper, we propose a single, parsimonious mechanism, built around the idea of

demand uncertainty, that can rationalize these robust empirical facts. In our model, the

economy is composed of a continuum of industries, each populated with monopolistic firms

that face Knightian uncertainty about their competitive environment. In particular, a firm

does not know the production function that produces the final product of its industry, which

leads to two important implications. First, there is uncertainty about the shape of the firm’s

demand function, and second, there is uncertainty about the relevant relative price, and how

it relates to the aggregate price index.

Firms understand that the quantity sold is the sum of a temporary, price-insensitive

demand shock and an underlying, time invariant price-sensitive component. They use their

observations of past prices and quantities to learn about the time-invariant component, but

cannot observe the two components separately, only the total quantity sold, and thus face

1Eichenbaum et al. (2011), for example, argue that the large fluctuations in quantities sold in weekly
grocery store data in the absence of any price change are indicative of sizable demand shocks.
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a signal extraction problem. Furthermore, firms are not confident that demand belongs

to a single parametric family, but rather use their noisy signals to build non-parameteric

estimates of their demand curves. We thus put the decision maker in charge of the pricing

action on the same footing as an econometrician outside the firm that attempts to estimate

non-parametrically the demand curve.2

We assume that the firm has enough prior knowledge to put some loose bounds on the

possible demand schedules, but not enough to impose functional form restrictions or to

put a single probability measure on the admissible demand functions. Thus, the firm faces

Knightian uncertainty about the probability distribution of demands inside these bounds

and is averse to this ambiguity. The firm (or the agent owning the firm) is ambiguity-averse

in the sense that it acts as if the true distribution of the demand at a given posted price

yields the lowest possible total quantity sold. Ambiguity aversion is described by recursive

multiple priors preferences, axiomatized in Epstein and Schneider (2003), that capture the

agents’ lack of confidence in probability assessments.

The non-parametric nature of the learning implies that uncertainty reduction is local,

not global, and this generates kinks in the subjective beliefs about demand. Unlike the case

of updating beliefs about the parameters of a given function, for example, the arrival of new

information does not change the perception of demand at all prices. By observing noisy

signals about the underlying demand at a given posted price, the firm primarily reduces

the demand uncertainty associated with the price-sensitive component at that price, while

remaining uncertain about the quantity it could sell at other prices. In essence, that signal

is given increasingly smaller weight in updating beliefs about demand at prices further away

from that posted price. This generates kinks in the subjective beliefs about demand at

previously observed prices, and an uncertainty averse price-setter is reluctant to move to a

new price since it would lead to a sharp rise in uncertainty.

For our ambiguity averse firms, the kinks show up in expected demand. A firm that

entertains switching to a higher price is worried that demand becomes more elastic in the

region above its current information set, maybe because a price increase could trigger an

exodus towards competing products. At the same time, the higher uncertainty at lower

prices generates the opposite fear that demand is in fact more inelastic in that region, and a

price cut might undermine profit margins without increasing sales much. This endogenous

switch in the worst-case scenario about the demand schedule, depending on whether the

firm is considering a price increase or decrease, leads to kinks in expected demand, which

2The equal footing between the uncertainty faced by agents inside the model and econometricians outside
the model addresses a desideratum proposed in Hansen (2007) for time-series models and more generally in
Hansen (2014).
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generates price stickiness. The kinks create a cost, in terms of expected profits, associated

with changing the price, which in turn compels the firm to abstain from changing its price,

unless it faces a sufficiently large shock. The higher is the uncertainty in the unexplored

regions of the price space, relative to the uncertainty at previously observed prices, the

steeper are the kinks in expected demand and the stronger is the stickiness.3

A corollary implication is that the firm is not only reluctant to change its current price,

but is in general inclined to repeat a price it has already seen in the recent past. These

previously observed past prices become ‘reference’ prices at which there are kinks in the

profit function. The pricing policy function then includes step-like regions of flatness around

the reference prices. When a shock moves the optimal price within such a flat area, the

posted price will be exactly equal to one of these reference prices. The steps in the policy

function also imply that each of those reference prices is associated with a positive measure

of shocks that map to it. Thus, the model is consistent with the optimal policy having ’price

memory’, characterized by discrete price changes between a set of previously posted prices.

Moreover, since signals are noisy, the uncertainty across the previously posted prices is

not equal. Prices that have been observed more frequently have accumulated more signals

and thus greater uncertainty reduction. Hence, optimal prices would not necessarily bounce

randomly around the set of ‘reference prices’, but will exhibit a greater propensity to stay

put and return to prices that have been observed more often. Among other things, this has

the implication of generating a decreasing hazard of price change. Lastly, since not all kinks

are necessarily deep, the policy function is not exclusively a step-function, but has regions

in which the optimal price tracks the optimal flexible price. Thus, the price series of this

model can look both flexible and sticky at the same time, and the unconditional distribution

of price changes features non-trivial density around zero.

Fundamentally, this demand uncertainty represents a real rigidity: it does not, in itself,

generate money non-neutrality. Nominal rigidity is the result of the interaction of demand

uncertainty with the uncertainty about the relevant relative price. The firm does not know

the final good technology of its industry, hence it does not know the appropriate industry

price level, nor how it relates to the aggregate price and sees that relationship as ambiguous.

It conducts periodic marketing reviews that reveal the industry price, but in between reviews

the firm updates beliefs on worst-case basis, using the ambiguous relationship with the

observed aggregate prices. Thus, the firm’s beliefs about the industry prices are anchored

by the value of the last review, and evolve in an ambiguous way with the observed aggregate

3We emphasize that these effects are present for any uncertainty-averse agent, and not only in the case
of ambiguity aversion. The kinks in uncertainty are a result of the non-parametric learning, and not due to
the preferences of the agent. Under risk-aversion, for example, the kinks are in the posterior variance, but
still have the same effect of introducing regions of inaction.
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inflation. Hence, in addition to not knowing the demand function, the firm is also uncertain

about its appropriate argument.

In this context, the firm understands that its demand is ambiguous in two dimensions.

First, the demand function itself is ambiguous, and second, the relative price argument

of the function is now also ambiguous. The firm sets an optimal nominal pricing action

that is robust to this two-dimensional uncertainty. The firm thus acts as if nature draws

the true DGP to be the relationship between aggregate prices and industry prices that

implies the lowest possible demand for any given combination of the non-ambiguous choice

of the firm – own nominal price versus the last observed industry price level. The resulting

characteristic of the worst-case relationship is to make the aggregate price not informative

about the unobserved industry price. The nature’s reaction defines a worst-case demand

schedule that is a function of this non-ambiguous relative price. Intuitively, the ambiguity

about the industry prices makes one of the arguments of demand ambiguous, and the robust

action is to consider the worst case conditional on the non-ambiguous arguments of demand.

Since the review signals arrive periodically, and when they are unchanged the real rigidity

created by the perceived kinks in demand becomes a nominal one, as in order to keep the

relevant relative price constant, the firm needs to keep nominal prices constant. This results

in nominal price paths that are sticky, and also resemble infrequently updated “price plans”.

Our setup has stark implications about price-setting behavior. The model’s key outcome

is that it endogenously produces a cost of adjusting prices in the form of a higher perceived

uncertainty away from previously posted prices. This is different from standard models where

there is an assumed, exogenous fixed cost of adjustment. Moreover, the single, uncertainty-

based mechanism behind this endogenous cost generates many additional features observed

in micro price data that have proven challenging, if not impossible, for standard price-setting

models to replicate. First, prices in the model can be rigid in the face of shocks despite the

absence of ad hoc costs to changing prices. Second, the firm finds it optimal to stick to a

discrete distribution of prices. This implies that unlike standard models, our mechanism

is also compatible with the pricing strategy of many retail firms to alternate between a

regular and a sale price. Finally, because the cost of moving away from a price is negatively

related to how much information was gleaned from posting it in the past, it is by nature

inherently history and state dependent. As a result, our mechanism not only predicts a

decreasing hazard function of price changes (i.e. the probability of observing a price change

is decreasing in the time since the last price movement), but it can also rationalize the

coexistence of small and large price changes in the data.

The paper is organized as follows. In Section 2, we discuss relation to literature. In

Section 3 we present some motivating evidence. Sections 4 presents a simplified model that
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studies learning under demand uncertainty, and explains the real rigidity mechanism. Section

5 derives analytical results. Section 6 introduces the full model, and the interaction that

generates nominal rigidity. In Section 7 we present a general equilibrium version.

2 Relation to literature

By connecting learning under ambiguity to the problem of a firm setting prices, this paper

is related to a range of literature strands. The economic question that we address in this

paper, of price rigidity, has generated a huge empirical and theoretical literature. On the

empirical side, the recent analysis on micro-datasets, such as Bils and Klenow (2004), Klenow

and Kryvtsov (2008), Nakamura and Steinsson (2008), Klenow and Malin (2010) or Vavra

(2014), attempts to uncover stylized pricing facts whose aim is to act as overidentifying

restrictions on theoretical models of price rigidity. Of particular motivating interest for us

are the empirical findings in Eichenbaum et al. (2011), Kehoe and Midrigan (2014) and

Stevens (2014), who find evidence of ’reference prices’, i.e. the set of prices chosen by the

firm is surprisingly sticky over time.

Our mechanism produce kinks in the expected demand and as such is related to theo-

retical work on real price rigidities based on kinked demand, such as Stigler (1947), Stiglitz

(1979), Ball and Romer (1990) and Kimball (1995). While in these models the kinks are a

feature of the true demand curve, in our setup they arise only from the uncertainty about

demand. Thus, in our model, while an econometrician would not need to find evidence

of actual kinks in the demand curve, the firm behaves as if they are. A further important

economic distinction is that in our model the size and the location of the kinks are a function

of information accumulated at observed prices.

Some papers generate sticky prices as a result of consumers’ reaction to price changes,

such as those based on kinked demand, on consumer-anger (Rotemberg (2005), Rotemberg

(2011)), or on consumers’ imperfect information (L′Huillier (2011), Nakamura and Steinsson

(2011) and Matějka (2015)). In these models, by the assumption of expected utility, firms

have full confidence in their view on the consumers’ reaction functions. The different

environments proposed in these models can be seen as examples of possible consumer demand

functions that are taken as unknown and potentially complex by the firm in our model.

In terms of theories of nominal stickiness, our mechanism does not rely on any actual

impediment to adjusting prices. This distinguishes our contribution from a large literature

specifying either a fixed length of a price contract (Taylor (1980)), an exogenous chance of

resetting the optimal price (Calvo (1983)), a physical cost of price adjustment (Barro (1972),
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Sheshinski and Weiss (1977), Rotemberg (1982))4, or a cost of information acquisition present

in more recent models of rational inattention (Woodford (2009)).5 Instead, our model is

based on the firm’s uncertainty about demand as a source of what looks like an endogenous

cost of changing prices. Moreover, the emerging cost is also time-varying, with properties

that are state and history-dependent. It is this dependence that gives rise to the economic

mechanisms that can help rationalize, within a parsimonious explanation, a set of otherwise

puzzling pricing facts, such as price discreteness, memory, small and large price changes and

a decreasing hazard function.6

The other major strand of literature that we relate to is the theoretical work on firm

pricing under demand uncertainty. The standard approach has been to study this uncertainty

in the context of an expected utility model and analyze learning about a parametric demand

curve within the Bayesian updating framework. An early contribution is that of Rothschild

(1974), who frames the learning process as a two-arm bandit problem,7 while more recent

work includes Balvers and Cosimano (1990), Bachmann and Moscarini (2011) and Willems

(2011). Learning about parametric functions, such as linear demand curves, does not produce

kinks from uncertainty reduction since the latter reflects the estimation risk of the whole

function. Different from this approach, in our model the firm learns about non-parametric

functions and establishes likely bounds by reducing uncertainty mostly locally, around the

observed prices. Coupled with aversion to this uncertainty, our learning mechanism generates

kinks in the uncertainty-adjusted expected profits.

Lastly, we connect to the literature on ambiguity aversion. We use the recursive multiple

priors preferences to capture the notion that the firm is not confident in the probability

assessments over various demand curves. Some recent work analyzes a firm pricing problem

under a related ambiguity-aversion preference, namely maxmin regret (Handel et al. (2013)

4The large ”menu cost” literature that followed includes recent contributions such as Burstein (2006),
Golosov and Lucas (2007), Gertler and Leahy (2008), Nakamura and Steinsson (2008), Nakamura and
Steinsson (2010), Alvarez et al. (2011), Midrigan (2011), and Vavra (2014).

5The imperfect information models, such as Mankiw and Reis (2002), Sims (2003), Woodford (2003),
Reis (2006), Lorenzoni (2009) and Mackowiak and Wiederholt (2009), predict sluggish adjustment to shocks.
However, in order to generate nominal prices that are constant for some periods, as we see in the data, they
typically require additional nominal rigidities. Bonomo and Carvalho (2004), Nimark (2008) and Knotek
and Edward (2010) are early examples of merging information frictions with a physical cost or an exogenous
probability of price adjustment. Our model instead not only generates a partial response of a firm’s price to
a monetary policy shock, but also actual nominal stickiness.

6Recent modeling advances address the challenge of obtaining a discrete distribution of prices out of
continuous shocks using a combination of physical adjustment costs to regular and sales price (Kehoe and
Midrigan (2014)) or information costs (Matějka (2010) and Stevens (2014)). In the latter case, given some
restrictions on the curvature in the objective function and the prior uncertainty, the firm chooses a discrete
price distribution to economize on the costs of acquiring information about the unobserved states.

7See Bergemann and Valimaki (2008) for a survey of related applications of bandit problems studied
under expected utility.
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and Bergemann and Schlag (2011)), but does not analyze learning about the distributions.

In our focus on learning under ambiguity, we also extend the decision-theoretical framework

of Epstein and Schneider (2007) to learning about functions rather than single parameters.

3 Empirical motivation

In response to the marked interest of modelers in identifying the most appropriate way to

model nominal rigidities, a large empirical literature developed around micro level price

datasets. While case studies such as Carlton (1986) and Cecchetti (1986) had given

researchers some insights into the extent of price rigidity, their scope was limited, generally

focusing on very specific products or markets. In their seminal work, Bils and Klenow

(2004) leveraged the broad coverage of the U.S. Bureau of Labor Statistics’ consumer price

index (CPI) dataset to gain general insights into the dynamics of prices at the micro level.

Numerous other studies have followed, producing results from CPI (Nakamura and Steinsson

(2008); Klenow and Kryvtsov (2008)) or scanner datasets (Eichenbaum et al. (2011)).

Macroeconomic modelers have made extensive use of the findings from these studies to

calibrate or estimate their models. To do so, they have generally relied on a subset of

moments, most frequently the frequency and average size of price increases and decreases.

One issue from relying on a small number of moments is that researchers have had a very

difficult time discriminating between the various price-setting mechanisms that have been

put forward in the literature. Yet, there exist a number of robust findings that have received

much less attention and remain a challenge for standard price-setting models. In this section,

we describe some of them using the IRI Marketing Dataset. It consists of scanner data for

the 2001 to 2011 period collected from over 2,000 grocery stores and drugstores in 50 U.S.

markets. The products cover a range of almost thirty categories, mainly food and personal

care products. A more complete description of the dataset is available in Bronnenberg and

Mela (2008). For our purposes, we focus on nine markets and six product categories.8

We start by highlighting a finding ubiquitous across price datasets: firms appear to favor

choosing from a sticky, discrete set of prices even when given a chance to pick a brand new

price. For example, the median number of unique prices in a window of 26 weeks (half a

year) is only 3. Another way to describe this empirical property is to look at the degree of

price memory. To do so, we compute the probability that when a firm resets the price of its

product, the new price is one that was visited within the last six months. This statistic is

8The markets are Atlanta, Boston, Chicago, Dallas, Houston, Los Angeles, New York City, Philadelphia
and San Francisco, while the categories are beer, cold cereal, frozen dinner entrees, frozen pizza, salted snacks
and yogurt.
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equal to 62% when we consider all price changes. Arguably such a high degree of memory

may be due to the tendency of retailers to post similar-sized discounts on a frequent basis.

Yet, even when we filter out temporary sales, memory probabilities still range between 31%

and 64% across market/category combinations, with a weighted average of 48%.

Another feature is the declining hazard function found in many micro price datasets: the

probability of a price change decreases with the time since the last price reset. As highlighted

by Nakamura and Steinsson (2008) and others, this characteristic represents a challenge to

many popular price-setting mechanisms. Despite the fact that declining hazards can be

found across numerous datasets, some have argued that the finding could be a by-product

of not taking proper care of heterogeneity: as noted by Klenow and Kryvtsov (2008), ”[t]he

declining pooled hazards could simply reflect a mix of heterogeneous flat hazards, that is,

survivor bias.” We find, however, that the declining hazard remains a robust finding in our

dataset, even once we aggressively control for heterogeneity. To construct Figure 1, we

computed the hazard function for each single product in our sample, pooling across retailers

within a specific market. Then, we took the median probability of a price change across all

products for each duration. The resulting hazard function is clearly downward sloping. This

is not only an artifact of temporary discounts: the hazard continues to decline beyond the

first few weeks, and the overall slope remains negative even if we focus on regular prices.

Standard state-dependent pricing models tend to predict that firms only reprice when

the optimal price change is sufficiently large. Yet, while it is true that the typical price

change tends to be large in absolute value, this statistic masks the pervasive coexistence of

small and large prices in the data. This is an empirical fact that has been documented in

multiple studies. Klenow and Kryvtsov (2008), for example, find that 40% and 11.3% of all

price changes in the CPI dataset are less than 5% and 1% in absolute value, respectively.

We performed a related exercise in our dataset: For each market/category, we computed

the number of price changes that are between 0% and 5% in absolute value, and did the

same for the 10%-to-15% interval. We then computed the ratio of these two numbers. The

weighted average across all market/category pairs of this ratio is 1.15, implying that small

price changes (0% to 5%) are 15% more numerous than larger ones. Next, we turn to a

model whose predictions are consistent with the empirical regularities described above.

4 Model

In this section we focus on describing the non-parametric learning framework, under demand

uncertainty. To focus on this, we present a simplified model that does not specify whether

prices are nominal or real. In Section 6 we present the full model that differentiates between
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nominal and real prices.

There is a single monopolist firm that each period sells a single good at price Pt. To focus

squarely on the main mechanism, here Pt is expressed in real terms. Later we will extend

the model to account for nominal prices. Denoting by lower-case logs, the firm’s demand is

determined as

q(pt) = x(pt) + zt, (1)

where we detail below the distributional assumptions on the two components. Having posted

the price Pt, the firm’s time t realized profit is:

υt = (Pt − ect) eq(pt) (2)

where we have assumed a linear cost function, with ct denoting the log time t marginal cost.

The decomposition of demand in (1) serves two modeling purposes. One is to generate

a motive for signal extraction. In this respect, we assume that the firm only observes total

demand q(pt)., that zt is iid and that x(pt) is constant through time. Thus the role of the

former component is to act as noisy demand realizations that will require the firm to use the

history of demand realizations q(pt) to learn about x(pt).

The second differentiating property is that we assume that the firm views zt as risky so

that the firm is fully confident that this component is drawn from a unique distribution. In

particular we assume that the firm knows the true distribution of zt

zt ∼ N(0, σ2
z)

and that zt are independent across time.

On the other hand, the x(pt) component is ambiguous. This means that the firm is not

fully confident in the distribution from which this demand has been drawn. The firm starts

at time 0 by considering a set of such possible distributions. This set of priors is defined

on the space of measurable functions and is not restricted to any given parametric family

of demand functions. Instead, the firm uses the noisy realizations of demand it observes to

learn non-parametrically about the underlying demand structure.

The firm entertains an initial set of priors, Υ0, over the space of non-increasing func-

tions, i.e. p ≥ p′ ⇒ x(p) ≥ x(p′). The individual priors are Gaussian Processes,

GP (m(p), K(p, p′)), with mean function m(p) and covariance function K(p, p′).9 We assume

that all priors have the same covariance function, but possibly different mean functions. In

9A Gaussian process distribution is the generalization of the Normal distribution to functional spaces. It
is a distribution over functions, rather than over numbers or vectors.
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particular, we consider all Gaussian Processes with a mean function that satisfies

m(p) ∈ [γl − bp, γh − bp]. (3)

This set is motivated as a limit on the ambiguity the firm faces, and its size will

be calibrated based on what the firm could reject at standard 5% levels with a small

sample of observations. Intuitively, the interpretation is that while the firm’s marketing

department provides it with some possible DGPs, it is not confident enough to restrict itself

to probabilistically weighing different demand schedules. Moreover, it has no information on

the particular functional form of the possible demand functions, but rather needs to learn

about them by combining a prior from the set Υ0 with observed signals.

We further specify the set of Υ0 by studying the limiting case when the covariance

function K goes to zero almost surely. In that case, Υ0 consists entirely of Dirac measures,

on the space of measurable, downward sloping functions. So that for any given prior φ0 ∈ Υ0,

there is a unique function x(p) which has probability one, and all other downward sloping

functions have probability zero. In addition, all possible functions fall within the tunnel (3).

Focusing on the limiting case of Dirac measures allows us to achieve a great deal of analytical

tractability and transparency.10

4.1 Uncertainty

The timing of choices and revelation of information is the following. First, the firm enters the

beginning of period t with information on the history of all previously sold quantities. We

also assume that ct is known at the end of period t− 1 and that it follows a Markov process

with a conditional distribution gc(ct|ct−1). Thus the relevant past information is the vector

of quantities qt−1 = {(q(p1), ...q(pt−1))} and the vector of corresponding prices at which those

were observed pt−1 = {(p1, ...pt−1)}, where a superscript denotes history up to that time. Let

εt−1 denote the quantity-price vector {qt−1, pt−1}. The firm does not observe separately the

history of realizations (z1, ...zt−1) and the underlying conditional means (x(p1), ...x(pt−1))

that have generated the history of sold quantities.

At the beginning of period t the firm posts a price that maximizes its objective, which we

will further specify below, conditional on qt−1 and on the observed ct. At the end of period

t the idiosyncratic demand shock zt is realized but is not observed by the firm. The firm

10At the same time, modeling Υ0 as a set of more general Gaussian Process distributions yields qualitatively
similar results and we are interested in studying it further in future research.
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observes the total demand at its posted price q(pt). In addition, the firm also observes ct+1

and the information set εt is updated with the realization q(pt).

The history of quantities sold acts as noisy signals about the underlying conditional mean

demand x(p). The key distinguishing feature of our filtering problem is that we allow for

the uncertainty faced by the firm to be both in the form of risk, i.e. the agent fully trusts

probability distributions, and ambiguity, or Knightian uncertainty, in which the agent does

not have full confidence in her probability assessments.

4.2 Preferences

The monopolist firm is owned by an agent that is ambiguity-averse and has recursive multiple

priors utility. The agent values the profits produced by the firm such that conditional

valuation is defined by the recursion

V
(
εt−1, ct

)
= max

pt
min

π∈Pt−1(εt−1)
Eπ
[
υ(εt, ct) + βV

(
εt−1, εt, ct+1

)]
, (4)

where υ(εt, ct) is the per-period profit defined in (2), being a function of the beginning-of-

period t posted price and end-of-period realized demand q(pt). The firm builds its conditional

expectations and evaluates expected profits and continuation utility using the worst possible

prior, φ0, from the set of admissible priors Υ0. However, the firm knows the true transition

process for cost shocks gc(ct+1|ct). The recursive formulation ensures that preferences are

dynamically consistent. Axiomatic foundations are in Epstein and Schneider (2003).

The maximization step is over the action of what price Pt to post. The firm cares about

profit which is a function of demand. The firm also takes into account that the price posted

today reveals information about demand, information that enters as a state variable for next

period’s value function.

The minimization is over the admissible priors, φ0, of the demand function x(pt), and

hence over the conditional expectation of demand, further denoted by x̂(pt|εt−1;φ). This

conditional expectation is a function of the information set εt−1, is computed at a specific

price pt and is a function of a specific prior, φ0. Thus, for a given history εt−1, the

minimization selects the admissible prior that yields the lowest expectation x̂(pt|εt−1;φ).

In other words, at each point in time, the firm looks at the historical data and is concerned

that, conditional on posting a price, demand at that price is the lowest possible (subject

to the constraint on prior distributions). The firm then maximizes over Pt under the belief

x̂(pt|εt−1;φmin
0 ) evaluated at the worst-case prior φmin

0 .
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The minimization step in (4) is relatively easy to solve. We conjecture that the minimizing

φ0 is such that, for a given price Pt, it implies that the worst-case expected demand realization

x̂(pt|εt−1;φ0) is low. Having solved for the optimal policy rule, including the value function,

we can then verify that the conjecture is verified. In this case, it is sufficient to establish

that the profit function υ(εt, ct) and the continuation utility are both increasing in x(pt).

The former is straightforward by formula (2). The latter needs to be verified, but it is also

intuitive: higher demand x(pt) increases not only current profits but also future expected

profits because demand is weakly increasing.

Finally, the true DGP is a line parallel to the prior boundaries of the intervals defined in

(3), but with a different intercept, and is given by

x(p) = γ − bp (5)

with γl < γ < γh. Specifying this distribution is only required here for characterizing the

dynamics of the optimal pricing policy functions, derived under the ambiguity expressed in

(3), but evaluated under the true DGP.

4.3 Updating and re-evaluation

We now describe the learning process of the firm. We follow Epstein and Schneider (2007) in

modeling how the set of priors about the conditional demand is updated as new, but noisy,

data on quantities is realized.11 Let Υt−1(εt−1), to be described below, denote the set of

posterior beliefs about the unknown demand function x(p), given information εt−1.

The dynamics of learning can be summarized by a process of one-step-ahead conditional

beliefs. However, in contrast to the Bayesian case, there is now a typically non-degenerate set

assigned to every history. We are interested in modeling an environment where the decision

maker starts with a possibly large set of prior theories on the demand schedules and then

uses the observed information to discard some prior theories that seem statistically unlikely.

Epstein and Schneider (2007) propose that this re-evaluation takes the form of a likelihood

ratio test. In particular, the decision-maker discards all priors φ0 that do not pass a

likelihood-ratio test against an alternative prior that puts maximum likelihood on the sample.

Posteriors are formed only for priors that pass the test. This re-evaluation of prior theories is

significantly simplified when each prior is a Dirac measure on a particular demand schedule

and the LR test is performed pointwise. In particular, take the observed past quantities, and

11Technically, our approach is an extension of the Epstein and Schneider (2007) framework to infinite
dimensions, and learning about functions rather than single parameters.
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only consider the likelihood ratio test done at the price points where the quantities have been

observed. Let P t−1 denote the vector of observed prices in the past. The likelihood ratio

test can be broken into two operations: first, compute the posterior φt−1 (x(pt−1); εt−1, φ0)

of having observed a particular value x(pt−1). The Dirac measure makes this updating step

trivial. The posterior probability is always equal to one or zero, depending on the prior:

φt−1

(
x(pt−1); εt−1, φ0

)
=

{
1 if φ0 (x(pt−1)) = 1

0 if φ0 (x(pt−1)) = 0

}

The second element of the update is the likelihood ratio computation. As defined in (3),

φ0 (x(pj)) = 1 if x(pj) ∈ [γl − bpj, γh − bpj] and equals zero otherwise. Thus, here we can

compute the data density at each price Pj observed in the vector of past P t−1, conditional

on a particular value of such x(pj) :

LNt−1(Pj)(x(pj)) ≡
Nt−1(Pj)∏
i=1

f (qi(pj)|x(pj))

where f (·|x(p)) denotes the density of a normal distribution with mean x(p) and variance

σ2
z , Nt−1(Pj) is the number of times that price Pj has been observed up until time t− 1 and

qi(pj) records the demand realizations at that price.

The statistical re-evaluation of prior theories takes the following form. Let x̃(pj) be the

particular function x(.) that takes probability one under a given prior φ̃0. Then, for each

element Pj, the decision-maker restricts attention to priors φ̃0 such that the hypothesis

x(pj) = x̃(pj) is not rejected by an asymptotic likelihood-ratio test performed on the

given sample, where the critical value of the χ2(1) distribution is −2 logα. Specifically,

the likelihood ratio test does not eliminate priors that satisfy:

LNt−1(Pj)(x̃(pj)) ≥ αmax
x(pj)

LNt−1(Pj)(x(pj)) (6)

Eliminating a prior φ̃ means that the firm determines a particular demand function is

inadmissible given the observed data.

For example, consider significance levels of 5% and 2.5%, which leads to α = 0.15 or a

critical value δα = 1.96 and α = 0.08 or a critical value δα = 2.23, respectively. If α = 1

then we only remain with the maximum likelihood estimate and this becomes a standard

Bayesian problem.It is useful to note that this re-evaluation of theories has to be done after

each history of events.

Thus, the set of posterior beliefs consists of the demand schedules associated with priors
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φ0 that have survived elimination, both through the statistical or economic steps:

Υt−1(εt−1) =

{
x̂(p) : x̂(pj) ∈ [γl − bpj, γh − bpj]; LNt−1(Pj)(x̂(pj)) ≥ αmaxx(pj) LNt−1(Pj)(x(pj))

and x(pj) ≤ x(pk) for ∀ pj ≥ pk

}

The set of one-step-ahead conditional beliefs, is thus a set Pt−1 (εt−1) of normal distributions

Pt−1

(
εt−1

)
=
{
f (·|x̂(p)) : x̂(p) ∈ Υt−1(εt−1)

}
When the decision-maker entertains posting at time t a price P ′, he considers a set of

normal distributions for demand at P ′, which differ in their mean. The mean can take any

of the posterior values x̂(p′) that are associated with priors φ that have not been eliminated

by the decision maker as unlikely, given the observed history of quantity realizations, i.e.

those x̂(p′) ∈ Υt−1(εt−1).

4.4 Updating with one repeatedly posted price

To build intuition for the updating formulas suppose the demand history is such that it only

contains observations of demand at some P0, for N number of times. The sample average

demand q̂N(p0) ≡
∑N

i=1
qi(p0)
N

serves as the maximum likelihood estimate of x(p0). The sample

mean has a sample standard deviation of σ̂N = σz/
√
N .

We find it analytically useful to describe the lower and upper bound of the prior tunnel,

compared to the true DGP in (5), as

γl = γ − νσz; γh = γ + νσz (7)

and the realized demand as the average demand under the true DGP, shifted by a multiple

ψ of its sample standard deviation

q̂N(p0) = γ − bp0 + ψσ̂N

The learning step in (6) amounts to keeping the priors φ0 that satisfy

x(p0) ∈ [q̂N(p0)− δασ̂N , q̂N(p0) + δασ̂N ]

where δα is the desired critical value. The resulting allowed set of demands at p0 is the
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intersection

[γ − bp0 − νσz, γ − bp0 + νσz] ∩ [γ − bp0 + (ψ − δα) σ̂N , γ − bp0 + (ψ + δα) σ̂N ] (8)

The intersection in (8) results in a non-empty set if and only if

|ψ| ≤ ν
√
N + δα (9)

Clearly the restriction is most binding for N = 1, which says that the sample mean should

not to be too large so that even the lower bound of the desired confidence interval becomes

larger than the prior upper bound, and, reversely that it’s not too low. For example, if

δα = ν = 1.96 then |ψ| < 2∗1.96. The restriction is more likely to be satisfied as N is larger.

To complete the description of the learning process, consider the case in which the

intersection in (8) results in an empty set. This is a situation in which the confidence interval

around the observed average demand is too narrow to intersect the prior tunnel. Since the

decision-maker only considers demand schedules in the latter, he treats the observed demand

as unlikely until it intersects at least in one point the prior tunnel. This means that the

critical value δα is increased until it reaches |ψ| − ν
√
N, so that condition (9) is satisfied.

The worst-case demand x∗(p0) is the minimum of the demands that survive the re-

evaluation step:

x∗(p0)| (q̂N(p0)) = max{γ − bp0 − νσz, γ − bp0 + (ψ − δα) σ̂N} (10)

Intuitively, the worst-case demand can be the lower bound of the confidence interval if

the lower bound of the confidence interval is above the lower bound of the prior tunnel, a

condition summarized by:

ν > (δα − ψ) /
√
N (11)

This is more likely to happen if the confidence interval is narrower, which is determined by

a larger N and a smaller critical value δα, if the average demand is larger, through a higher

ψ, and if the prior tunnel is wider, controlled by a larger ν. The worst-case demand instead

can remain to be the initial one, γ − bp0 − νσz, if the opposite condition holds.

Having determined the worst-case x∗(p0), we can find the solution to the rest of the

demand curve. In particular, for prices higher than p0 the worst-case posterior is the worst-

case prior

x∗(p′)| (q̂N(p0)) = γ − bp′ − νσz for ∀ p′ > p0
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For prices lower than p0, there is a threshold p2(ψ,N), characterized by

γ − νσz − bp2 = γ − bp0 + (ψ − δα) σ̂N

at which demand under the initial worst-case demand, given by the left hand side, equals

the lower bound of the demand at the observed price p0. For prices between p2(ψ,N) and p0

the worst-case posterior is higher than the worst-case prior because of the downward sloping

curve restriction. In fact, in that case the lowest demand that satisfies the weak monotonicity

is the worst-case demand at x∗(p0). For prices below p2(ψ,N), the worst-case is restricted

now by the worst-case prior.

To summarize, having observed q̂N(p0), the worst-case demand is:

x∗(p′) ≡ minx(p′)| (q̂N(p0)) =

{
max {γ − bp′ − νσz, x∗(p0)| (q̂N(p0))} for p′ ≤ p0

γ − bp′ − νσz for p′ > p0

}
(12)

where x∗(p0)| (q̂N(p0)) is given by (10).

4.4.1 Kinked expected demand

The important property of the learning process is that it can generate kinks at the observed

prices. Indeed, the worst-case expected demand in (12) has a kink at p0, as long as (11) is

satisfied. Figure 2 is an example of a plot for x∗(p′) for the above situation, where P0 = 1,

q̂N(p0) is given by the demand under the true DGP, i.e. ψ = 0, and condition (11) is

satisfied, so that the lower bound of the confidence interval is above the lower bound of the

prior tunnel. The function has in fact two kinks, at P0 and P2(ψ,N).

The kink generated at the observed P0 can obviously create price stickiness. If the firm

considers increasing the price, it will act as if the expected demand is given by the lower

bound of the prior tunnel, which is characterized by a discrete jump down from P0. If

conversely, it considers decreasing the price, on the interval (p2(ψ,N), p0), then the firm acts

as if there is no gain in demand and thus it is not optimal to lower there the price.

The intuition behind the kinked expected demand is the following. The firm does not

restrict demand to be part of a particular parametric family of functions, hence observations

are useful mostly in updating expected demand locally, not globally. As the firm gathers

information at one price, it is becoming increasingly confident about the demand there.

Specifically, as the number of those observations increases, the confidence interval shrinks

to the point the firm is convinced by the observed data that the demand is very likely to be

above its initial worst-case belief. However, due to the non-parametric stance on the demand
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schedules, having observed demand at that price puts only a few restriction on the possible

values demand takes away from that point.

The firm updates its view on the demand at the rest of the price support by considering

bounds on what the new information implies. In particular, demand cannot decrease to the

left of the observed price and it can fall up to the initial worst-case bound for higher prices.

By considering the whole set of prior demand schedules that are consistent with the observed

data, the firm acts as if there is a kink at the observed price. At this price the firm looks,

from the perspective of an econometrician, as being more optimistic about demand than at

other prices. Once the expected demand has a kink, it is then clear that for a range of small

enough cost shocks it is optimal for the firm not to change its price.

To showcase the model counterpart of expected utility, we can consider several compar-

isons. The starkest one is that where the agent knows the true DGP in (5). In this case the

expected demand is smooth everywhere and the optimal price is the solution to

max
Pt

e0.5σ2
z (Pt − Ct)eγ−b logPt (13)

which results in the standard markup over real marginal cost:

PRE
t =

b

b− 1
Ct (14)

There is clearly no price stickiness in this case.

A more complex environment is to bring in learning but consider the firm as taking a

parametric view on the shape. For example, if we model the uncertainty it faces as

x(pt) = γ − bpt; γ ∼ N(γ, σ2
γ); b ∼ N(b, σ2

b )

we impose the knowledge of a linear demand curve, just with unknown constant and slope. In

this case, once the agent has an estimate of the coefficients it simply draws a line between two

points using that mean estimate. Even if there is uncertainty, this uncertainty is not point

by point but it is simply the estimation risk of the whole function. Thus, this alternative

setup cannot generate kinks.12

12Balvers and Cosimano (1990), Bachmann and Moscarini (2011) and Willems (2011) are some examples
of models with active learning about a parametric demand curve.
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4.5 Key modeling ingredients

There are two key modeling ingredients for our mechanism of rigidity. The first one is

the non-parametric nature of learning. The role of this ingredient is to make uncertainty

reduction local in nature. As described above, a simple parametric view on demand, such as

learning about a linear demand curve, does not generate kinks. Here, instead, our mechanism

emphasizes the plausible feature that the strongest reduction in uncertainty occurs at the

prices that have been actually posted. The second ingredient is that this uncertainty should

ultimately matter for decision so the mechanism requires some uncertainty aversion. The

objective is to have a lower certainty equivalent of the price associated with the higher

uncertainty.

These two ingredients can be potentially implemented in different environments of

uncertainty. The first is within the expected utility framework, where uncertainty is

limited to risk in the form of a unique prior. There, one needs to characterize the entire

posterior distribution over functions, a challenging task even for high-level non-parametric

econometrics.13 Importantly, in terms of the economics behind the mechanism, to generate

the local reduction in uncertainty, the initial prior over functions needs to include some a-

priori demand non-differentiability. Finally, the latter non-differentiability can generate a

kink in the demand variance that would need to be accompanied by risk aversion to have an

effect on the pricing decisions.

In this paper we have taken a different approach, namely to use a model of learning under

ambiguity. The difference, and in many aspects the advantage, compared to the expected

utility case, is that the firm needs to characterize only the worst-case demand, and not the

whole set of posterior beliefs. In addition, the firm does not need a-priori demand non-

differentiability in the prior set of entertained functions in order to generate kinks. Instead,

the non-differentiability comes entirely from the ambiguity aversion, which generates a kink

in the expected demand from the switch in the worst-case beliefs.

It is useful to note in this context that the prior set Υ0 that we describe contains functions

that do not have restrictions on their derivatives. That is the reason why the worst-case

demand can range from being locally flat or vertical, as long as it belongs to the prior tunnel.

This lack of additional restrictions is done here for simplicity. We could impose limits on the

derivatives of the demand functions but that would come at the cost of a more convoluted

characterization of the updated set of likely demands. Importantly, imposing limits on the

derivatives would still lead to a non-differentiability in the worst-case demand. Intuitively,

when the firm entertains setting a higher price than the one for which demand is known, it

13See Ichimura and Todd (2007) for a survey of semi- and non-parametric estimators and Blundell et al.
(2008) for a recent contribution on non-parametric estimation of demand curves.
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is worried about an elastic demand, with potentially some bounds on those elasticities. This

belief switches, and creates a kink in the perceived derivative of the demand function, when

the firm considers setting a lower price, for which the worst-case is a more inelastic demand.

5 Optimal pricing

5.1 A static optimization problem

In this subsection we describe a static version of the profit maximization. In particular ,at

the beginning of each period t, the firm chooses the price Pt to maximizes the end-of-period

profits under the worst-case conditional expectation of demand:

max
pt

min
π∈Pt−1(εt−1)

Eπ (Pt − Ct) ex(pt)+zt

Recall that the learning process delivers a set of Dirac measures on the elements x(p). Thus,

under the worst-case posterior, the demand x(p) equals x∗(p) with probability 1. There is no

risk around that estimated mean, but rather only that coming from zt. Thus, the problem

becomes similar to that in (13), except that there is a set of possible conditional demands:

max
pt

min
x(pt)

e0.5σ2
z (Pt − Ct) ex(pt)

To highlight the solution through analytical representations, we present a case where the

firm has observed one price P0, for N number of times at an average quantity q̂N(p0). We

have described how learning about the demand schedule works in this case in section 4.4.

Suppose that condition (11) holds so that there is a kink at p0. Denote the lower bound of

the confidence interval:

q
N

(p0) ≡ q̂N(p0)− δασz/
√
N

Further denote the difference between q
N

(p0) and the lower bound of the prior tunnel as

∆(p0) ≡ q
N

(p0)− [γ − bp0 − νσz]

The worst-case demand is given by

x∗(p′) ≡=

{
q
N

(p0), for p′ ∈ [p2(ψ,N), p0]

γ − bp′ − νσz for p′ < p2(ψ,N) and p′ > p0

}

To characterize the optimal price, notice that the first order condition at an interior solution
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is the rational expectations price, as in (14): PRE
t = µCt, where µ ≡ b/(b−1) is the markup.

The reason is that, even if the firm prices under the lower bound of the prior tunnel, we

have assumed that there is the same elasticity as under the true DGP. Moreover, the optimal

price will not be p ∈ [p2(ψ,N), p0) as the demand is the same at that interval but the price

is highest at p0. So, we only need to compute the profit at P0 and compare it to that arising

from setting the RE one. The former is:

υ(Pt = P0) = e0.5σ2
z (P0 − Ct) eqN (p0)

For ease of exposition, define a hypothetical value of cost C0 ≡ P0/µ, for which the price P0

would be the optimal RE price. The profit can be rewritten as

υ(Pt = P0) = e0.5σ2
z+γ−νσz

(
C0

Ct
µ− 1

)
Ct (µCt)

−b
(
µ
C0

Ct

)−b
e∆(p0) (15)

The profit at a RE price simply sets C0 = Ct and ∆(p0) = 0 in (15), so that

υ(Pt = PRE
t ) = e0.5σ2

z+γ−νσz (µ− 1)Ct (µCt)
−b (16)

which is the standard profit of a flexibly chosen optimal price, except that the log demand

is lower by νσz compared to the valuation under the true DGP in (13).

We can now ask the question of what is the range of cost shocks Ct for which it is optimal

to stick with P0. For this, we write the difference in profits from sticking or moving from P0 as

the difference between the profits in (15) and (16) and treat it as a function of rct ≡ Ct/C0 :

h(rct ) ≡
(
µ

rct
− 1

)
(rct )

b e∆(p0) − (µ− 1) (17)

The function is above zero for rct = 1, which obviously comes from the condition that there

is a kink at p0, i.e. that ∆(p0) > 0. Moreover, h′(rct )|rt=1 = 0 and it is concave so it reaches

a maximum at rct = 1. We are interested in finding the values rct for which it equals zero. To

resort to an analytical solution, we take a second order approximation of h around rct = 1

and find the roots of that quadratic function as

rc1 = 1−

√
2(1− e−∆(p0))

b(b− 1)
; rc2 = 1 +

√
2(1− e−∆(p0))

b(b− 1)

The result is that in a range of cost shocks [C0r
c
1, C0r

c
2] it is optimal to set the price P0. As

the shocks become larger in absolute value the firm sets the RE price.
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Because the above conclusion is drawn on a second order approximation of h(rct ), the

range for which there is stickiness is symmetric. We can check the third derivative of h and

find that it adds the term −2
3
b (b− 2) (rct −1)3. Thus, if b > 2 (a condition easily satisfied by

empirically reasonable values), the function is lower (higher) for the higher (smaller) root rc2

(rc1). So the nonlinear function h(rct ) will intersect zero at values that are both smaller than

the corresponding rc1,2. This shows that there is asymmetry: the inaction region is longer to

the left than to the right so that there is a more likely pass through for positive cost shocks

than negative ones. The intuition is that the profit function is more sensitive to higher cost

shocks: if the firm does not change its price it suffers more from the loss in markup than if

it considers symmetric lower cost shocks.

5.2 Dynamics: a three-period model

In our model the observations in the information set depend on actions. Indeed, posting

different prices leads to noisy signals about different parts of the unknown demand schedule.

Thus, this becomes a dynamic problem in that choosing a price not only leads to static

profits but to future benefits in the form of learning demand. This influence goes through

two effects: one is deterministic, by increasing the number of times at which the posted price

is observed. The second is through the random innovation that will be observed at the end

of the period. The former effect arises in this model from the presence of ambiguity. The

second is more general, appearing also in dynamic problems with experimentation as in the

multi-arm bandit problems.

Solving fully optimal learning problems while allowing for experimentation is a difficult

numerical task. The main computational problem here is that the state space explodes as

the number of posted prices increases with time. For this reason we take the approach of

studying a three-period model, described below, such that in the last period there are only

static profits to be gained and no continuation utility. We believe that even the three-period

model with learning is rich enough to capture most of the important effects of the many,

possibly infinite, periods version of the dynamic model.

There are three periods. Let us start from the beginning of the second period, when

the firm starts with the information from previously observed demand realizations, denoted

below by ε1. At this point in time, the firm also knows the cost c2.

The dynamic problem of the firm is to choose the optimal price P2 that maximizes the
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worst-case expectation of the discounted sum of the second and third period profits:

max
P2

min
π∈P1(ε1)

Eπ
[
(P2 − C2) ex(p2|ε1)+z2 + βυ(P ∗3 )

]
(18)

where P ∗3 denotes the optimal price set in period 3, conditional on the ε1 and the new

demand signal q(p2) realized at the end of period 2 at the price P2; Eπ denotes the worst-

case conditional expectation, which uses the estimate of demand x∗(p2|ε1).

The third period problem is a static maximization, characterized in section 5.1:

υ(P ∗3 ) = max
P3

min
π∈P2(ε1,q(p2))

Eπ (P3 − C3) ex(p3|ε1,q(p2))+z3 (19)

The first period consists of letting the firm choose the prices that act as the initial state

variable in the problem described above. This allows us to study what would be the price

in which the firm would mostly invest knowing about.

5.2.1 Parametrization

Here we are interested in illustrating the main mechanisms of the model. It is important to

note that we do not have a discrete space for the cost as that may mechanically generate

discreteness in prices even in a standard model. The Markov process for the cost shock is

ct − c = ρc (ct−1 − c) + σcη
c
t

where ηct is white noise. The benchmark parametrization is in Table 1. We set b = 6, the

constant γ = 0 and the critical value δα = 1.96, which corresponds to a 95% confidence

interval. We set the cost shock parameters ρc and σc to values calculated by Eichenbaum

et al. (2011), where they observe marginal costs. We normalize c = (b − 1)/b so that

PRE = 1. We set the discount factor β = 0.99[1 − (1 − e−1/30)], where the second part of

the discounting models that a ’pricing regime’ lasts on average 30 weeks in the data, as

documented by Stevens (2014). We are left with setting the width of the worst-case prior

tunnel. Here we set ν = 2, which is argued in Ilut and Schneider (2014) as a reasonable upper

bound on ambiguity, and explore with setting the standard deviation of demand shocks σz.

Table 1: Calibrated parameters
b γ δα ρc σc ν σz β
6 0 1.96 0.14 0.11 2 0.1 0.9575
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5.3 Results

Worst-case expected demand

We first plot the worst-case expected average demand for the case where the firm has

observed only one price, namely p1 = 0, in Figure 2. The blue solid lines represent the

bounds on the prior tunnel, the blue dotted line is the true DGP, the red cross is the average

demand observed at p1, and the red vertical line denotes the 95% confidence interval around

it. The black line plots the worst-case demand, having observed that information, which

forms an obvious kink at p1.

To illustrate the role of certainty, in figure 3, we increase the number of times for which the

same average demand has been observed. This corresponds to increasing N in our previous

calculations. As the 95% confidence interval shrinks, the decision maker is more confident

that the observed average demand reflects the true one, and the kink becomes stronger. This

effect is at the heart of decreasing hazard function in this model: as the firm accumulates

knowledge at the observed price, it becomes more confident and thus more unlikely to change

the price, a feature that is documented in the data.

When the firms observes two prices, as for example it happens in the third period of

our simple model, the worst-case posterior demand can have two kinks. Figure 4 shows this

case, which adds an average demand observation for a higher p2. In a similar fashion, more

information at p2 strengthens the kink, as shown in Figure 5.

Pricing policy functions

In section 5.1 we developed analytical solution and intuition for a static pricing optimiza-

tion. We develop that here through the use of graphical representation. Figure 6 plots such

an optimal pricing policy under RE, in brown, against ambiguity, in blue. There is a clear

area of inaction, for which the firm finds it optimal not to change its price. As shown in

section 5.1, this inaction region is stronger to the left, implying that cost increases are more

likely to be pass-through than similar cost decreases.

Figure 7 plots the optimal price for the case where a higher p2 has been observed, which

lead to a kink in expected demand as shown in Figure 4. The two kinks in expected demand

manifest themselves as areas of inaction around the two past observed prices. This captures

the discreteness of the policy function: previously observed prices become ’focal points’. For

example, suppose there is an increase in the cost that, according to the blue policy function

with just one observed price, would have otherwise resulted in setting PRE. In the case of

two observed prices, the dark solid line shows that the optimal price does not need to adjust

monotonically, but rather jump at p2 and stick there for a range of cost realizations.
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Experimentation

Figure 8 plots the pricing policy of period 2, where the firm has observed the price p1 and

takes into account the effect of its pricing decision on the future valuation. This is marked

by the dark solid line. In comparison to a static optimization, the dynamic one features even

more stickiness, especially for higher cost shocks.

Accounting for active learning has two competing effects. On the one hand, by sticking

to the same price, the firm gets to learn more about it. On the other hand, by moving to

another price it can expect to learn something new and potentially valuable. Which force

dominates depends on state variables. Figure 9 is an example of the former effect being

stronger, which leads to more stickiness than the static policy function. To further explore

this, we compute the policy function in the case where firm will repeat the static last period

problem forever, without ever updating its information set again. The continuation value

in this case is the present discounted value of the stream of expected profits from the third

period, but all this changes is the discount factor, increasing it to β̃ = β/(1−β). The policy

function is shown in Figure 9. Not surprisingly, this only increases stickiness. In these cases

gaining more information about where the firm currently stands is important for the future

problem, and outweighs any experimentation incentives. This is because the observed price

is right at the median and would be close to the optimal price if the firm receives a cost

shock close to the mean - that is where the bulk of future realizations of cost are likely to

be anyway, hence learning about this part of the demand curve is useful.

To showcase experimentation and the role of the state variables, we now assume that the

observed price p1 is not the median price but corresponds to the 25th percentile of the cost

distribution. Figure 10 plots this case and illustrates that this is not a very useful price to

learn at. The firm is not likely to choose again to pick such a low price unless it gets very

low cost shock realizations and thus it finds it optimal to move earlier away from it so that

there is less stickiness to the right of p1. This is a case where the incentive to experiment

rather than to learn more at the same price wins out. This effect is magnified in the case

where the relevant discount factor is increased to β̃, as shown in Figure 11.

These pricing policies are taking as given an initial price p1.Due to our three-period setup

we can ask what is the initial price, or prices, that the firm would like most to know about.

In particular, we consider the following cases.

In the first case we let the firm choose one price that it can know extremely well. The

optimal such price is p1 = 0, which is also the average flexible price. This is intuitive - the

firm wants to get information around where it expects future shocks to realize. This also

means that the optimal policy figures we already have discussed above are drawn exactly for

that optimal p1.
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In the second case we let the firm choose two price p1 signals, rather than just one, and

we assume that each signal has been observed just once. Then we find that the firm will

choose both signals to be at p1 = 0. Thus, instead of getting noisy signals at two different

price points, the firm prefers to get a better signal at that high-probability price point p1.

This speaks again to the tension between experimentation and acquiring further information

at a point the firm has already seen in the past.

In the third case we let the firm choose two p1 signals, but we make them perfectly

revealing. Then the firm will choose two different signals, at ph1 = 0.07 and pl1 = −0.10.

Figure 12 plots the optimal pricing policy in period 2, where the firm has observed perfectly

demand at these two prices. In this case the kinks are so deep that the two flat spots almost

take up all of the price space. The black line plots the policy function of the forward looking

firm, while the blue line is the static maximization. Because of the deep kinks, the two

functions are essentially on top of each other.

A final experiment is to compute the policy function of a firm that has seen the two

prices ph1 = 0.07 and pl1 = −0.10 only once each. Notice that this is not necessarily ex-ante

optimal, since the firm picks those two prices at time 1 only if the associated number of

time of having observed those prices would be large, and otherwise it will pick p1 = 0 twice.

The policy function, shown in Figure 13, has two flat spots, and also a lot of action in

between. Now there are also interesting differences in the functions between the static and

the forward-looking firm. We see that the firm finds it optimal to acquire more information

about an already established kink. This means that the forward looking firm is more likely

to either (i) stay at one of its kinks or (ii) move back to one of its kinks.

Our results suggest that there is an inherent tension between the incentive to experiment

and that of acquiring further information at a previously observed action. We do not provide

general characterization of these tradeoffs but explore them in numerical experiments of the

type we reported above. While the literature on multi-arm bandit problem is extensive,

it usually provides some analytical characterizations only in the case of risk and the arms

being independent. In our model neither of these conditions are met. First, the arms are

correlated, since observing demand realizations at one price is partially informative about the

rest of the demand schedule. Second, there is ambiguity over the payoffs. A recent advance

in the theoretical literature on ambiguity and bandit problems is Li (2013), which finds

that in a context of independent ambiguous arms, the incentive to experiment is weaker

compared to the risk case. Anderson (2012) documents that in laboratory experiments

subjects undervalue information from experimentation but are willing to pay more than the

ambiguity neutral agents to learn the true mean of the payoff distribution. Our numerical

results, with the further addition of correlated arms, are consistent with a similar conclusion.
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6 Nominal Rigidity

The model presented so far was one of real rigidity, in which P is interpreted as a real price.

In particular, there was nothing that prevented nominal adjustments. For example if the

firm knew that the aggregate price level had shifted, it could exactly change its nominal

price to achieve the same real price and stay at the “safe” place.

We structure this section as follows. First, we enrich the model so as to make a distinction

between real and nominal prices. We show how nominal rigidity arises as a result of the

interaction of demand uncertainty with the uncertainty about the relevant relative price.

The model consists of monopolistically competitive firms that sell to a final good industry.

The firm’s demand is thus a function of the technology of its industry and of the relevant

relative price, equal to the ratio of its nominal price against the industry price index.

We assume that the monopolistically competitive firm does not know the technology of

its industry and is ambiguous about it. This leads to ambiguous beliefs about the relevant

industry price level, and thus about the demand-relevant relative price. As a result, in

addition to not knowing the demand curve, the firm is uncertain about its appropriate

relative price argument. Thus, the firm faces two dimensions of ambiguity – the demand

function itself is ambiguous, and its argument is ambiguous. The firm sets an optimal

nominal pricing action that is robust to both. We show that this turns the real rigidity

generated in the previous section into nominal rigidity.

Second, we provide empirical evidence based on US data for the time-variation of the

relationship between aggregate and industry prices. Here we discuss the lack of statistical

confidence that an econometrician has, when estimating this time-variation at different

horizons, in rejecting the null hypothesis that aggregate prices are not informative about

industry prices. Thus, consistent with the approach that resulted in real rigidity, the firm is

now also put on equal footing to the econometrician that cannot easily reject the fact that

aggregate prices are typically not a useful signal about the relevant relative price.

6.1 Economic Framework

There is a continuum of industries indexed by j and a representative household that consumes

a CES basket of the goods produced by the different industries:

Ct =

(∫
C

b−1
b

jt dj

) b
b−1

(20)
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This final good demand defines the aggregate price index Pt

Pt =

(∫
P 1−b
jt dj

) 1
1−b

(21)

where Pjt are the price indices of the separate industries.

Our preferred interpretation of this setup is that the final household consumes different

types of final goods that are produced by industries with potentially different structures.14

Each industry j has a representative final goods firm, which produces its good by aggregating

over intermediate goods i with the technology

Cjt = f−1
j

(∫
fj(Cijt)vj(zit)di

)
(22)

where zit is an idiosyncratic demand shock for the good i, distributed as N(0, σ2
z). Each

industry j has potentially different functions fj and vj, and price index Pjt such that

PjtCjt =

∫
PitCijtdi

where Cijt is the amount purchased of good variety i by industry j. Solving the cost

minimization problem of the representative firm in industry j yields

Cijt = f ′−1
j

(
Pit
Pjt

f ′ (Cjt)

v(zit)

)
≡ Hj

(
Pit
Pjt

, Cjt, zit

)
(23)

The demand of industry j for a given intermediate good i is a function of the relevant

relative price, Pit
Pjt

, overall industry output Cjt, and demand shocks zit. We denote this

function by Hj and note that it is a transformation of the functions fj and vj.

The intermediate goods consumed by an industry j are produced by a continuum of

monopolistic firms i. Each firm i sells to only one industry j, hence Yit = Cijt, and uses

labor Lit in the production function:

Yit = ωitAtLit,

6.2 Information structure and learning

The information of the intermediate good firms is imperfect in two ways. First, they do not

know the functional forms of the industry-level production technologies fj and vj. Moreover,

14An equivalent, alternative interpretation is that the economy is composed by a continuum j of households
with different preferences, which share risk and aggregate according to the CES basket Ct.
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the uncertainty over the production functions cannot be described by a single probability

measure – firms face Knightian uncertainty (or ambiguity) about their industry structure.

Second, they do not observe all variables every periods. They observe their own prices and

quantities, Pit and Yit, and the aggregate output and price level, Ct and Pt, every period.

However, they observe industry level prices and quantities, Cjt and Pjt, infrequently, only

every T periods. Lastly, the firms never see the demand shock zit.

6.2.1 Demand uncertainty

Thus, a firm does not know the specific functional form of the demand it faces, but rather

needs to estimate it using its observables. To make the problem more tractable, we assume

that firm i understands that the aggregate industry demand Cjt and the demand shocks zit

enter multiplicatively so that15

Cijt = Hj

(
Pit
Pjt

)
Cjt exp(zit)

The firm can also use the known structure of aggregate demand

Cjt =

(
Pjt
Pt

)−b
Ct (24)

to write its demand as

Cijt = Hj

(
Pit
Pjt

)(
Pjt
Pt

)−b
Ct exp(zit) (25)

Thus, the firm understands how the aggregates affect its individual demand through their

effect on average industry demand, Cjt. However it does not have complete information on

the specific competitive environment it faces, and hence does not know the function Hj(.),

which captures the effect of changing its own price vis-a-vis its direct competitors. Using the

convention that lower case letters denote the logs of upper-case variables, the firm obtains

a linear expression in an unknown function, hj, an unknown variable, pjt, known effects, ct

and bpt, and an unobserved shock, zit:

yit = hj(pit − pjt) + ct − b(pjt − pt) + zit. (26)

15This assumption does not affect the overall structure of the information problem the firm faces. The
learning framework we describe easily extends to the case of estimating demad as a function of multiple
variables, without any significant conceptual differences.
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We assume that the firm has a prior belief that the function hj is such that

h(r) ∈ [−γ − br, γ − br],

and hence lies in the type of a prior tunnel studied previously. The function is ambiguous,

and we will again focus on the limiting case of Delta priors where each prior awards one

possible function probability 1, and all others probability 0. The admissible functions are

all weakly decreasing functions that fall in the tunnel above.

There are two sources of uncertainty in demand – uncertainty about the shape of demand,

h(.), and uncertainty about the relevant price index pjt. Uncertainty about demand is going

to be handled in a manner very similar to the previous discussion on real rigidity, hence next

we turn to the uncertainty about pjt.

6.3 Uncertainty about the relationship with aggregate prices

The firm has two sources of information on pjt. First, every T periods, the firm conducts

marketing reviews that reveal the current industry price. Second, in between reviews, the

firm attempts to filter pjt out of the aggregate information it observes. Since the firm’s direct

competitors form only a small portion of the overall economy, the firm knows that

pjt 6= pt,

where pt is the aggregate, fully-observable price level.

Even if the firm knows that the relevant relative price is not given by the observed

aggregate price, the firm can use the latter to extract information about the industry price

pjt. Indeed, the firm understands that prices are cointegrated and that there is a link between

industry prices and aggregate prices. However, since the firm does not know the exact

structure of industry demand (i.e. the production functions fj), it does not know the

exact functional form of that relationship.16 In fact, the ambiguity about the industry’s

production structure transfers to this issue as well – different industry production functions

imply different structural relationships between aggregate and industry level prices. Due to

this ambiguity, the firm is not confident in any single relationship, and entertains a whole

set of potential relationships such that

pjt = pjs + φ(pt − pjs) + νjt, (27)

16In essence, the firm does not know the functional form of the relevant industry price index, and how it
relates to the aggregate price index.
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where pjs is the last perfectly revealing signal the firm has seen. Thus, in between reviews

the firm is trying to forecast the industry prices pjt with the aggregate price pt, but is not

certain what is the correct structure of that signal.

Ambiguity is modeled through multiple priors on the co-integrating relationship φ(.)

and the transitory term νjt. The priors about νjt are Gaussian white noise processes,

but with different, possibly time-varying variances.17 We model the uncertainty about

the cointegrating function in a similar fashion to the way we deal with uncertainty about

the demand function. As such, we assume that the priors on φ(.) are Gaussian Process

distributions that put non-zero probability on all functions that lay in a set, Υφ, around the

true DGP φ(pt − pjs) = pt − pjs. We further discipline the admissible priors by giving the

firm knowledge of the average industry level inflation V ar(πjt) = σ2
πj

. Thus, the priors on

νjt and φ(.) are picked jointly to keep the same V ar(πjt) = σ2
πj

.

The set of possible cointegrating functions φ(.) intentionally allows for a weak relationship

between industry and aggregate inflation in the short-run. We model this by specifying that

for small values of |pt − pjt|, i.e. small inflationary pressure, the function φ(.) lives in an

interval around 0,

φ(pt − pjs) ∈ [−γp, γp], for |pt − pjs| ≤ K. (28)

This allows for functions that imply no relationship between the aggregate inflation

and industry inflation, at least in the short. In the long-run, however, there is clearly a

relationship and the set of possible functions outside of this region grows linearly with the

true DGP pt − pjt :

φ(pt − pjs) ∈ [pt − pjs − γp +K, pt − pjs + γp +K], for |pt − pjs| ≥ K.

The particular boundaries of the interval of possibilities are chosen to be continuous and

to define a set of priors that is analytically tractable. This is done purely for convenience,

however, and has no bearing on the rest of the argument. The magnitude of K is chosen to

be high enough so that in between reviews the function φ(.) belongs to the set described by

equation (28). Our empirical evidence discussed in subsection 6.4 supports the notion that

it is reasonable for the firm to consider a lack of precise relationship between aggregate and

industry prices for horizons that can last even up to several years.

Note that all admissible priors imply that the price ratio pjt − pt is stationary with

probability 1, but allow for complex, non-linear relationships locally. Intuitively, this means

that the firm understands price levels are co-integrated in the long-run, however, it is not

17The assumption of White Noise νjt is not crucial and can be justified through a worst-case scenario as
well. For simplicity, we assume it outright.
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confident in extrapolating this long-run relation to short-run fluctuations, and entertains

functions φ(.) which allow for a variety of local, possibly time-varying relationships. This

is meant to capture the empirical regularity that estimates of the short-run relationship

between disaggregated inflation indices and overall inflation are imprecise and appear to be

time-varying, but estimates on long-run inflation series confidently point towards cointegra-

tion. The firm has no advantage over real-world econometricians and cannot eliminate the

uncertainty in the short-run inflation relationship by postulating a single, linear cointegrating

relationship with full certainty. Thus, our set of priors explicitly allows for the possibility

that the current short-run relationship is weak, even though in the long-run the firm expects

prices to rise in lock-step.

For tractability, we focus on the limiting case where the variance function of the GP

distributions goes to zero, so conditional on a prior, one function φ(.) has probability 1 and

all others probability zero.

6.3.1 Worst-case beliefs

The unknown portion of the firm’s demand can be written as

h(r̂it − α(pt − pjs)− νjt)− b(α(pt − pjs) + νjt),

where r̂it = pit − pjs, and is a function of two unknown functions: h(.) and φ(.). The firm

understands that its demand is ambiguous in two dimensions. First, the functional form of

the industry demand function h(.) is ambiguous, and second the argument of the function,

the relevant relative price, is also ambiguous. The firm chooses an optimal pricing action, r̂it,

that is robust to both sources of ambiguity. This amounts to choosing a profit maximizing

price, under the worst-case demand schedule, where worst-case demand is determined price-

by-price, i.e. conditional on any given pricing action r̂it.

For each admissible demand shape h(.) and pricing action r̂it, we can find a worst-case

cointegrating relationship φ(.) that yields the worst demand:

h∗(r̂it, νjt) = min
φ
h(r̂it − φ(pt − pjs)− νjt)− b(φ(pt − pjs) + νjt) (29)

This is the demand level that would prevail if nature draws the worst possible φ(.),

conditional on a particular choice of h(.) and price r̂it. Note that in the short run φ(pt−pjs) ∈
[−γp, γp], and hence variation in pt does not change the set of possible numerical values that

could be realized through φ(pt − pjs). Hence the minimization can equivalently be recast

in terms of minimizing over a parameter, φ̄ ∈ [−γt, γp], which represents the conditional
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expectation of pjt. Since movements in pt do not affect the minimization problem, the

solution is given by

φ∗(pt − pjs) = φ̄

Intuitively, the worst-case cointegrating relationship implies that movements in the

aggregate price are not informative about the industry prices in the short-run. This is

because when there is no such informative relationship, nature is free to choose the worst

possible expectation of pjt, given a demand function h(.) and price choice r̂it.

Since the transitory shocks νjt are not observed, we can also take an expectation over

them and define the expected h∗:

x(r̂it) = Et(h
∗(r̂it, νjt))

This is the object that the firm can learn about through its past prices and quantities,

since according to the optimal behavior under ambiguity, it believes that nature has mini-

mized demand in this same fashion at any point in time. For tractability, we assume that

the implied expectational errors follow a normal distribution,

h∗(r̂it, νjt) = x(r̂it) + εit; εit ∼ N(0, σ2
ε), (30)

6.3.2 Signals on relevant relative price

Finally, we assume that the firm performs reviews on a fixed schedule, with a new signal

arriving every T periods. The idea is that reviews are costly and time consuming and cannot

be done every period, but since they are useful, they are done on a regular basis. We do not

model the microfoundations of the review selection process, but rather view the assumption

of a new review every T periods as a convenient way to model the salient features of what

happens in practice.18

Given this structure of signal arrival, the beliefs of the firm about future signals evolve

as follows. Every T periods the firm’s beliefs get recentered at the true value of the industry

price, hence if there is a review at time t, then Et(pjt) = pjt. The firm expects that the signal

18We realize that in reality the review decision is most likely state-dependent, but as long as the reviews do
not happen every period, introducing state-dependent review would not change our analysis and conclusions.
Since this is not central to the main argument, for simplicity we are implicitly assuming that the firm either
does not want to perform reviews more frequently, or there are some technological constraints on the ability
to perform frequent reviews (e.g. the necessary data is not observed every period).
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at the next review is given by

Et(pj,t+T ) = pjs + min
φ∈Υφ

Et(φ(pt+T − pjs)),

which only serves to shift the expected nominal price needed to achieve some desired relative

prices from period t+ T onwards.

6.3.3 Nominal rigidity from real rigidity

The firm uses past signals to learn about the worst-case demand. Putting together (26) and

(30), the demand facing the firm is

yit = x(r̂it) + ct + b(pt − pjs) + εit + zit (31)

which is a known function of the observed aggregates, namely price pt and quantity ct, an

unknown function x(.) of its perceived relevant relative price and Gaussian noise. This forms

a well-defined learning problem that the firm approaches in the way described in Section 4.

The kinks are formed in the space of relative prices r̂it. However, the base of the relevant

relative price r̂it, the last review signal pjs, does not change often. To keep this relative

price constant, in order to take advantage of the kinks, the firm needs to keep its nominal

price constant. Hence, the model generates both nominal stickiness and memory in nominal

prices. In essence, all results from the analytic section go through, and given the structure

of this economy, their effects are now primarily on nominal prices. In addition, since the

firm does update its beliefs about pjt regularly, the stickiness in nominal prices appears as

stickiness in “price plans”. The price series tends to bounce around a few common prices

that look like a “price plan”, and then when new review signals arrive the firm shifts that

price plan accordingly. We illustrate this behavior in a quantitative model in section 7.

We have used the argument that the firm is concerned that aggregate prices do not

reveal much information about industry prices. In the next sub-section we are interested in

evaluating how reasonable is that view using empirical evidence for US data.

6.4 Empirical evidence on the link between aggregate and indus-

try prices

Here we investigate the empirical relationship between aggregate and industry prices at

different horizons. Our analysis uses the Bureau of Labor Statistics’ most disaggregated 130

CPI indices as well as aggregate CPI inflation.
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In our first exercise, we use a simple regression method to look into the statistical

significance of the relationship. For a specific industry j, we define its inflation rate between

t − k and t as πj,t,k and similarly πat,k for aggregate CPI inflation. For each industry j, we

then run rolling regressions of the form:

πj,t,k = βj,k,tπ
a
t,k + ut

over three-year windows starting in 1995 and ending in 2010.19 We repeat this exercise for

k equal to 1, 3, 6, 12 and 24 months. Finally, for each of these horizons we compute the

fraction of regression coefficients βj,k,t (across industries and 3-year regression windows) that

are statistically different from zero at the 95% level.

We find that for 1-month inflation rates, only 11.4% of the relationships between sectoral

and aggregate inflation are statistically significant. For longer horizons k, these fractions

generally remain weak but do rise over time: 26.4%, 40.6%, 58.5% and 69.1% for the 3-

, 6-, 12- and 24-month horizons respectively. This supports our assumption that while

disaggregate and aggretate price indices might be cointegrated in the long run, their short-

run relationship is weak.

In fact, not only is the relationship statistically weak in general, but it is highly unstable.

This can be seen in Figure 14 that shows the evolution of the coefficient βj,k,t for k = 3 for

3-year-window regressions starting in each month between 1995 and 2010, for four industries.

Not only are there large fluctuations in the value of this coefficient over our sample, but sign

reversals are common.

We next explore further this characteristic by estimating a hidden state model where the

connection between the aggregate and industry is allowed to be time-varying. Consider the

following state space representation:

πj,t,k = αj,k,tπ
a
t,k + σu,j,kut (32)

αj,k,t = αj,k,t−1 + σv,j,kvt (33)

where ut and vt are white noise and the other variables have been defined previously.

Equation (32) represents the measurement equation, while equation (33) is the transition

evolution of the unobserved estimate αj,k,t. The subscripts (j, k) show that this estimation

is done for each pair of industry j and horizon k.

The hidden state αj,k,t can be estimated using a standard Kalman filter. The filter

generates the Kalman smoothed estimates α̂j,k,t|N , which is the conditional expectation of

19Results are very similar if we use windows of 2 or 5 years instead.
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αj,k,t, based on the information of the whole sample of size N .20 Similarly, it produces the

smoothed estimate of the uncertainty Σj,k,t|N around that estimate. Thus, the conditional

time-t distribution is given by

αj,k,t ∼ N(α̂j,k,t|N ,Σj,k,t|N)

For a pair (j, k), we analyze the sample path of the estimate α̂j,k,t|N and its uncertainty

Σj,k,t|N . We analyze how often we cannot reject the null that α̂j,k,t|N equals zero at some

confidence value. Define that fraction of times, out of the whole sample, to be nj,k. For a

given horizon k, we vary the industries j and denote the average over nj,k as nk. Finally, we

vary the horizon k and collect the resulting nk. We interpret the measure nk as the strength

of statistical evidence for the firm to consider it reasonable to believe that within the horizon

given by k, the relation of aggregate inflation to industry inflation is typically zero.

We first plot the estimated distribution of αj,k,t for the Carbonated drinks industry,

which turns out to be a typical industry for our results. In particular, Figures 15 to 22

plot the estimate α̂j,k,t|N and the 95% confidence interval around it based on the estimated

uncertainty Σj,k,t|N , for various inflation horizons, ranging from 1 to 3, 6, 12, 24, 36, 48 and

60 months.

The pictures show that for short horizons it is typical that we cannot reject the null of no

predictive content from aggregate inflation for the evolution of industry-level inflation. Not

surprisingly, the relationship becomes more significant as the horizon lengthens. In addition,

there is a lot of time-variation in the estimated effect. This type of evidence supports the

idea that the firm considers a wide set of beliefs about the short-run relationship between the

two measures of inflation. As in our model, this set shrinks for the longer-run relationship.

Figure 23 plots the value of nj,k, defined above, and shows that the fraction of times that we

cannot reject the null of α̂j,k,t|N = 0 is indeed high at most horizons and decreases with the

horizon.21

We find similar patterns when we repeat this analysis over industries. Figure 24 plots the

value nk, defined above, and shows that on average an econometrician cannot reject the null

of zero effect of aggregate inflation for a fraction of times that decreases with the horizon,

from about 75% at 1 month to about 20% even for 5 years.

20Alternatively, we could have reported the conditional moments based only on information up to time t.
Instead, we give the econometrician the most available data, in the form of information on the whole sample,
and report the results based on the Kalman smoother.

21The 14 horizons correspond to 1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48 and 60 months.

36



7 Quantitative model

We build a quantitative model with nominal prices. The model uses the same layers of

production as in the description of the nominal rigidity section but it now expands by

endogenizing marginal costs and introducing a law of motion for the aggregate price level.

The model is intended for studying, through a more quantitative lens, the individual decision

problem of an ambiguity averse firm that faces demand uncertainty. Because we focus on

the individual behavior, a more precise way to view the setup analyzed here is to consider it

as general equilibrium model with a measure zero of myopic, ambiguity averse firms. This

means that the aggregate variables follow their flexible, rational expectations law of motion.

7.1 Model setup

As described in section 6, there are three layers of production: First, there is a unit interval

of continuum of intermediate monopolistic firms indexed by i, where each firm sells a

differentiated product. They sell to industries, indexed by j. Second, an industry buys

from monopolistic firms and sells to a final good producer. The industries are competitive

firms. Third, there is a firm producing a final good to be sold to the representative consumer.

7.1.1 Agents and shocks

Representative agent

There is a representative household that consumes and works, whose problem is

max
∑

βt
[
logCt − χ

∫
Li,tdi

]
subject to the budget constraint∫

Pj,tCjtdj + Etqt+1bt+1 = bt +Wt

∫
Li,tdi+

∫
υi,tdi

where qt+1 is the stochastic discount factor, bt+1 is state contingent claims on aggregate

shock, υi,t is the profit from the monopolistic intermediaries and consumption integrates over

the varieties produced by industries j with a CES aggregator with elasticity b as shown in

(20). The solution to the cost minimization problem of the representative agent is to demand

from each industry the amount given by (24).
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The j − th industry

The technology and resulting cost minimization solution of the j − th industry are

described by equations (22) and (23). The industries are competitive in producing the j

good. They do not exploit the demand for their variety j by the representative consumer,

and make zero profits.

The i− th monopolistic firm

The demand for the monopolistic firm i comes from the industry j in the form of (23)

which we have further restricted to be described in (25) as

Yi,t = Hj

(
Pit
Pjt

)(
Pjt
Pt

)−b
Ct exp(zit)

The firm produces variety i using the production function:

Yi,t = ωitAtLit

where ωit and At are an idiosyncratic and aggregate productivity shock, respectively, and

Lit is hours hired by firm i at wage Wt. The processes for these shocks are:

logωit = ρω logωit−1 + εωi,t

logAt = ρa logAt−1 + εat

where εωi,t is iid N(0, σ2
ξ ) and εat is iid N(0, σ2

a). The real flow profits are therefore:

υi,t =

(
Pit
Pt
− Wt

ωitAtPt

)
Yi,t

Monopolistic firms are owned by the representative agent, and thus they discount profits

using the agent’s stochastic discount factor. The economy-wide price index and aggregate

output are defined as

Pt =

∫ 1

0

Pj,t
Yj,t
Yt
di; Yt =

∫ 1

0

(
Y

b−1
b

j,t

) b
b−1

dj

Nominal aggregate spending

Nominal aggregate spending St = PtCt follows a random walk with drift

logSt = µ+ logSt−1 + εst
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where εst is iid N(0, σ2
s).

In turn, we can use the optimal hours decision of the household to substitute out for Wt:

Wt

Pt
= χCt

so that the real flow profits can be written as

υi,t =

(
Pit
Pt
− χSt
ωitAtPt

)
Yi,t (34)

7.1.2 Demand uncertainty

True data generating process

We first characterize the determination of demand under the true data generating process

(DGP). We use a simple true DGP: each industry type j has the same CES function fj and

vj in (22) of the form

fj(Cijt) = C
b−1
b

ijt ; vj(zit) = z
1/b
it

These standard CES aggregators imply the following demand for intermediate good i :

Cj,i,t = Cjtεit

(
Pi,t

P j,t

)−b
Thus, under the true DGP, the demand function is simply

yit = −bpi,t + ct + bpt + zit (35)

Notice that the whole layer of industry demand has dissapeared in this DGP. This was done

on purpose for the simplicity of the model. However, the monopolistic firm retains all the

uncertainty about the direct competitors, reflected in the unknown, relevant price pj,t.

Monopolistic firm’s information

As in section 6, we assume that the firm observes the aggregate Pt and Ct, but not its

demand function. The learning process is exactly the same as described previously in section

6, where equation (31) gives the demand to be estimated as

yit = x(r̂it) + ct + bpt + zit + εit (36)

and r̂it = pit− pjs is the price relative to the last observed pjt and the initial set of priors on
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x(r̂it) is:

x(r̂it) ∈ [−γ − br̂it, γ − br̂it].

The firm enters period t with knowledge of the history of previous realized demand and

corresponding prices, denoted by εt−1; the current productivity ωit and the aggregate state

variables: current productivity At, nominal spending St and aggregate price Pt; and an

incomplete history of past P̄j,t, where it has observed the industry price level only once

every T periods. Based on the state variables, the firm chooses its price. Demand shocks

are realized at the end-of-period and the firm fulfills demand at that price. The firm then

updates its information set.

The firm does not observe the distribution of idiosyncratic states, but needs to conjecture

how the aggregate price is formed. Here we use the assumption that there is a measure zero

of ambiguity averse firms while the rest of the economy is populated by flexible price firms

that have full confidence in their knowledge that the underlying demand is x(r̂it) = −br̂it.
This is the flexible price, rational expectations general equilibrium version of our economy.22

Its solution, up to a log-linear term, is:

pflext = log
bχ

b− 1
+ logSt − logAt (37)

and the optimal solution for the rational expectations firms’ price is to simply subtract logωit

from the aggregate level.

The ambiguity averse firm has all the knowledge about aggregate equilibrium relation-

ships of a rational expectations economy, except knowing its demand function. For the

quantitative model of this section we solve for decision rules of the firm by assuming that

the firm is myopic, so that it solves a static optimization of end-of-period profit υi,t:
23

max
r̂it

min
x̂(r̂it|εt−1)

Ex̂(r̂it|εt−1)υi,t (38)

We find it useful to compare this economy with one where the only difference is that

the measure zero firms knows the true demand function but are subject to physical menu

costs when changing their price. For a better comparison, these firms still only maximize

22A similar approach of a flexible aggregate price level is taken by Stevens (2014) in the context of a
rational inattention model. This benchmark provides an upper bound for the degree of price neutrality
compared to the case of a measure one of ambiguity averse firms. In that case, we need to employ usual
Krusell-Smith type conjectures on the equilibrium aggregate price level.

23This simplifying assumption allows us to compute easier a larger model such as this. We have investigated
more forward-looking problems in the exogenous cost section 4, which produce an incentive to experiment.
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the static profit, which in this case is

υMC
i,t =

(
Pit
Pt
− χSt
ωitAtPt

)
Yi,t − fWtIPit 6=Pit−1

(39)

where the latter term reflect the menu cost expressed in wages paid. The objective of this

comparison is to help us understand what does the new type of cost of not changing the

price proposed in this paper brings compared to the standard menu cost.

Reset shocks

Because we have modeled so far that the price-sensitive component of demand x(r̂it)

is constant through time, the firm can in principle learn it perfectly as it accumulates

new information. However, it is plausible that the firm is concerned that the underlying

demand shifts and thus it has to start learning it again. We model the decay in the

informational content of observation by introducing shocks to this learning capital, which

we call ’reset shocks’. The interpretation of this shock is that there are events that change

the competitive landscape of the firm, such as for example the entrance/exit of competitors,

the inflow/outflow of customers. The firm finds these situations as resetting the information

it has accumulated.

A reset event happens with a constant probability γ and for all prices it increases the

confidence interval for the expected demand. The reset shock brings the posterior estimates

closer to the prior, i.e. it makes the past learning less useful. In particular, for each relative

price rn that has been observed, the reset shock expands its confidence interval. For example,

if before the shock

x(r0) ∈ [q̂N(r0)− δα
σz√
N(r0)

, q̂N(r0) + δα
σz√
N(r0)

]

with the reset shock being realized the new true demand is shifted around each element of

x(r0) by

x̃(r0) = x(r0)± θ σz√
N(r0)

where θ is a parameter. At the moment of the shock, this is equivalent to finding a fraction

ψ of the N(r0) which is used in computing the 95% confidence interval:

(δα + θ)
σz√
N(r0)

= δα
σz√
ψN(r0)

; ψ =

(
α

α + θ

)2

< 1

So, conditional on a reset shock, we can reparametrize θ by modeling the state variables

N(rn) of the firm as becoming ψN(rn), where ψt = 1 if no reset shock and ψt = ψ otherwise.
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For example, ψ can be equal to 0 such that the firm discounts all the past information.

Everything else in the analysis proceeds as before.

We assume that the firm does not observe the reset shock. This means that past

information N(rn) decays deterministically at rate ϕ ≡ (1− γ + γψ) .24 The first component

is the probability that a shock has not hit and the second is the amount of loss in information

conditional on a shock. In this case, the state variable entering period t that captures the

’information relevant’ number of times, Ñt−1(r), for which a firm has observed a price r is

computed recursively as

Ñt(r) = ϕ
(
Ñt−1(r) + Irt−1=r

)
where Irt−1=r is an indicator function if price rt−1 takes the value r. Thus, the decay rate ϕ

is the sufficient parameter that determines the firm’s learning dynamic.

Optimization problem and equilibrium

The individual ambiguity-averse firm takes as given the only relevant aggregate state

variable, namely the aggregate price level, given by (37), and maximizes the objective given

by (38), where profits are defined in (34), subject to the demand uncertainty in (36) and the

assumed information structure. Finally, we compare the individual pricing behavior of this

type of firm with its menu cost version, where profits are determined in (39).

7.2 Results

7.2.1 Calibration

The model period is a week. We calibrate β = 0.97(1/52) to match an annual interest rate

of 3%. The mean growth rate of nominal spending µ = 0.00046 to match is set an annual

inflation of 2.4% and we set the standard deviation σs = 0.0015 to generate an annual

standard deviation of nominal GDP growth of 1.1%. Following the calibration in Vavra

(2014) we set the persistence and standard deviation of aggregate productivity ρa = 0.975

and σa = 0.003 to match the quarterly persistence and standard deviation of average labor

productivity, as measured by non-farm business output per hour.

24Alternatively, we can assume that the firm observes whether the shock happens at the beginning of the
period. The advantage of treating the firm as an econometrician which does not observe the reset shock
realizations is that we do not need to keep track of the shock realization as an additional state variable.
At the same time, it serves the purpose of allowing us to model the decay in the usefulness of previously
accumulated information.
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We are left with 7 parameters that refer to the firm’s problem. We start by choosing an

elasticity of substitution of b = 6, implying a markup of 20%. We set the critical value used

in the statistical evaluation step δα = 1.96, corresponding to a 95% confidence interval.

There are thus 5 parameters left. For this we use pricing and quantity moments based

on the IRI Marketing Dataset, as described in section 3. First, we calibrate the standard

deviation of demand shocks σz using empirical evidence on how difficult is it to predict

the one-period-ahead quantity. In particular, using our dataset we run linear regressions of

log(Q) on a vector of controls X, that include: 2 lags of log(Q), log(P ) plus its own 2 lags,

the weighted average of weekly prices in that category and its 2 lags as well as item and store

dummies. We do this across all items within a category/market and also for the item with

most sales in its category. We compute the absolute in-sample prediction error (Q−Xβ̂)/Q,

where β̂ are the regression coefficients based on the regression and Q is the mean quantity.

Table 4 reports the results for the moments of the prediction error of these types of

regression. We find that the median absolute ranges from 18% to 48% of the average quantity.

We calibrate σz to generate a similar median error for the prediction of quantity under the

true DGP of our model. For the benchmark model we use σz = 0.5, which corresponds to a

median forecast error of 0.50 ∗ 0.675 = 0.3375, matching our sample average.25

The persistence and standard deviation of the idiosyncratic productivity are parameters

that are standard in menu cost models. That literature suggests using pricing moments such

as the fraction of price increases and the average size of price changes to calibrate them

(see for example Vavra (2014)). There are 2 parameters that are specific to the learning

model proposed here. The first one is the width of prior tunnel, controlled by ν, which is the

multiple of standard deviations that the firm uses to form the initial set of possible demand.

The second one is the rate of information decay, ϕ, necessary for the model to not collapse

to full information about the true DGP.

For the two learning parameters we find it informative to use the following two pricing

moments: the frequency of posted price changes and the frequency of ’reference price’

changes. As in Gagnon et al. (2012), we define a ’reference price’ the modal price within

a rolling window of 13-weeks. The ambiguity parameter comes out at making the width of

the prior tunnel equal to plus-minus two standard deviations of the demand shock, a bound

argued as reasonable in Ilut and Schneider (2014). Finally, for the menu-cost model, where

the information parameters ν and ϕ do not matter, we calibrate f to the same frequency of

posted price changes, conditional on the rest of the structural parameters being the same as

in the ambiguity model. Table 2 presents the whole set of parameters.

25Here we used that Φ(−0.6745) = 0.25, with Φ(.) denoting the standard normal cdf.
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Table 2: Parameters
β µ σs ρa σa δα σz ρω σω ν ϕ f

0.97(1/52) 0.00046 0.0015 0.975 0.003 1.96 0.5 0.95 0.09 2 0.95 0.023

7.2.2 Pricing behavior

Pricing moments

Table 3 presents pricing moments generated by the models against their empirical

counterpart. Only the first four moments are targeted by the calibration.

Table 3: Pricing moments

Moment Data Model w ambiguity Model w menu cost
(1) Fraction of price increases 51% 52.14% 53.64%
(2) Average size of price changes 25.4% 25.02% 16.94%
(3) Frequency of posted price changes 22.85% 21.73% 21.96%
(4) Frequency of ’reference price’ changes 5.96% 5.29% 9.31%
(5) Fraction of time at modal price 85.4% 72.8% 59.4%
(6) Probability modal price is the max price 75.96% 46.07% 52.06%
(7) Probability of revisiting a price 62.1% 66.07% 0%
(8) Average number of unique prices (13 weeks) 2.62 2.5 3.62

The baseline model does a good job at matching the targeted moments. It is interesting

to note that by keeping the rest of the structural parameters the same, we can find a menu

cost value so that the model with rational expectations matches the same frequency of

posted price changes. However, this comes at a significant loss in matching moments (2)

and (4). Thus, the ambiguity model, in the process of matching the frequency of reference

price changes, also generates a larger average size of changes. The reason is that most of the

changes in the baseline model come from large switches between reference prices, rather than

the smaller changes implied by the menu cost. These large changes come in the ambiguity

model together with sticky reference prices.

The additional pricing moments show the main mechanism of the model. Moment (5)

indicates that the modal price accounts for a large fraction of the posted prices, similar to the

data. Movements from the modal price are relatively symmetric, as suggested by moment

(6). In the data the modal price is instead more likely to be the maximal price. The model

generates strong memory in prices, so that conditional on a price change, the probability

of selecting the same price in the last 26 weeks is about 66%, very similar to the empirical

moment. A window of 13 weeks experiences a relatively small number of unique prices, as

in the data. In comparison, in the model with menu cost, prices spend much less time at
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the modal price, have no price memory and are less discrete within a specific time-window.

Figure 25 plots the histogram of the price changes implied by, respectively, the ambiguity

and menu cost models. The latter produces a bimodal distribution, typical for menu cost

models. Compared to this, the ambiguity model produces both a bigger mass of small

price changes and a bigger mass of large price changes. Figure 26 plots the distribution of

price changes for a ‘typical’ category/market in our dataset, namely salted snacks in New

York. While some of the larger spikes can be attributed to ‘sales’, the data indicates a high

frequency of both large and small price changes.26

The reason for generating larger price changes is the existence of kinks in the policy

function and the resulting potential for frequent, large price changes as the firm switches

between the prices at those kinks. Small price changes are generated because the policy

function resembles the flexible price policy in some situations. On the one hand, this can

happen because the history of shocks may be such that the kinks in the policy function

are small, for instance because of little accumulated previous information at some prices.

On the other hand, the ambiguity price policy usually tracks the flexible price outside the

kinks. Thus, because of the endogeneity of what appears as a cost of changing a price in the

ambiguity model, there large and small price changes co-exist.27

Figure 27 plots a typical sample of shocks (demand, productivity and money supply) and

the implied pricing behavior in the top left panel. Figure 28 shows the implied flexible price

path for a firm hit with the same shocks. Figure 29 contains the path of the ambiguity averse

firm. As indicated by the population moments, this path is characterized by discreteness

and strong memory: prices return very often to the same values. Figure 30 shows in

more depth that the menu cost model behaves differently than the ambiguity model. In

particular, as suggested by table 3 there is no price memory for the former. Moreover, the

conditional behavior of the two paths is different in the sense that the price flexibility is not

greatly synchronized, although by construction the two paths have very similar unconditional

frequency of price changes.

Policy functions

Figure 31 plots pricing policies, as functions of the idiosyncratic productivity, in the case

that two previous prices have been observed once each. The kinks are very small and thus the

policy function resembles the flexible price one, and is characterized by large flexibility and

likely small price changes. However, as the number of observations at those prices increases,

26See Alvarez et al. (2014) for an analysis of small and large price changes in the French and US data.
27Midrigan (2011) uses a multiproduct firm and assumes economies of scope in price adjustment to generate

small price changes. A reduced form is to assume the random possibility of a much smaller menu cost, as
used for example in Vavra (2014).
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in the case plotted in Figure 32 to ten, the kinks become deeper. In this situation we will

mostly observe few and large (discrete) price changes, with switches to and from the two

kinks. Moreover, even in this situation, the firm may choose small price changes in the areas

further away from the kinks.

Of particular interest, from the perspective of monetary non-neutrality, is the optimal

pricing behavior as a function of monetary policy shocks. We define here the degree of

monetary neutrality as the effect of the monetary policy shock on the quantity sold, which

can be read off from the deviation of the optimal price from its flexible version. Figure 33

plots pricing policies in the case of one previously observed price. Compared to the menu cost

version, the implied inaction is smaller and thus the monetary neutrality stronger. As we

increase the number of times that this price has been observed, the inaction region becomes

wider, to the extent that it generates more stickiness than the menu cost version, as shown

in Figure 34, which plots the case of ten such previous observations.

Having multiple observed prices leads to different effects of monetary shocks. Figure 35

plots the case in which two previous prices have been observed once each. We see that there

are two flat areas in the pricing function corresponding to those two previously experienced

prices. Compared to the one observed price case, from Figure 33, there is more inaction

since now there is a second kink and thus there is a more significant effect of the monetary

policy shock. Compared to the menu cost version, the implied inaction is still smaller and

thus the monetary neutrality stronger.

As the number of observations at those prices increases, in the case plotted in Figure 36

to ten, the kinks at the two prices become deeper. Compared to the one observed price case,

from Figure 34, the monetary shocks in this case have smaller overall effects. The reason is

that with one deep kink the price would essentially not respond at all to the shock. However,

with two kinks, while the price would stay fixed for a range of policy shocks, it would also

switch drastically to move to the other kink. When it switches, the price gets closer to the

flexible version.

Indeed, in this example, if we start from the mean and analyze negative monetary policy

shocks, we see that the price is first above the flexible one, then switches to the other kink

and is thus below the flexible line. As the shock becomes even more negative, the optimal

price policy intersects with the flexible version. For this range of monetary policy shocks,

the fact that there are two kinks implies that the optimal markup is not so far from the

flexible one compared to menu cost or the one kink version. In addition, this behavior also

means that the sign of the effect on the average quantity sold changes with the size of the

monetary policy shock. Consider again a monetary policy shock that is initially negative

until the optimal price switches from the high to its low value. For that range, the price is
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too high compared to the flexible price and the firm sells on average less. However, after the

switch to the low value, the firm prices at a markup below the flexible one and in the process

sells more on average. As the monetary shock becomes increasingly negative the firm sticks

to this price which eventually will lower again its quantity below its flexible version. As the

inaction region extends further to the left than the menu cost version, this negative effect

on quantity will be significant even for large negative shocks.

To summarize, monetary policy shocks lead to effects on optimal prices that are history

and size dependent. History matters because it affects where in the state space the kinks

are formed and how large they are. For example, there may be a history of shocks, either

idiosyncratic or aggregate, that has lead the firm to optimally select prices that implies

larger kinks. Following such a history, the firm will behave as if there are significant

costs of changing its nominal price, together with potentially strong memory in its price.

Alternatively, the firm may find itself in a situation where these kinks are much smaller, and

as such monetary non-neutrality is likely to be small. At the same time, for a given history,

the current size of the shock matters through the standard effect of pulling the optimal

price out of an inaction area. However, when there are multiple kinks, the qualitative

and quantitative effect on the sign on the average quantity sold depends on the interaction

between the size of the shock and the history-dependent kink formation.

8 Conclusion

Despite its central role in modern macroeconomic models, a price-setting mechanism that

happens to be both plausible and in line with the numerous pricing facts that have been

documented in the literature remains elusive. In this paper, we model an uncertainty-averse

firm that learns about the demand it faces by observing noisy signals at posted price. The

limited knowledge allows the firm to only characterize likely bounds on the possible non-

parametric demand schedules. Since the firm is ambiguity-averse, it acts as if the true

demand is the one that yields the lowest possible total quantity sold at a given price. In

other words, for a price decrease the firm is worried that there will be very little expansion

in demand; while it fears a drastic drop in quantity sold if it were to raise its price. This

endogenous switch in the worst-case scenario leads to kinks in the expected profit function.

This is akin to a cost, in terms of expected profits, associated with moving to a new price.

A corollary implication is that because signals are noisy, repeated observations are useful in

order to learn about demand at a specific price. The firm thus finds it beneficial to stick

with prices that it has less uncertainty about by having repeatedly posted them in the past.

This discrete set of previously observed past prices become ’reference prices’ at which there
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are kinks in the profit function. In addition, we show that if publicly available indicators

such as aggregate inflation are ambiguous signals of the price aggregate most relevant for

the firm, then our real rigidity becomes nominal in nature and money shocks can have real

effects.

Our parsimonious mechanism naturally predicts that prices should be sticky, unless

shocks are sufficiently large. In addition, it can explain many pricing facts that have proven

challenging for standard models to match: prices exhibit ’memory’ as firms find it optimal

to stick to a discrete distribution of prices; retailers often alternate between a regular and a

sale price, both sticky; the probability of observing a price change is decreasing in the time

since the last price movement; small and large price changes coexist in the data.

While our mechanism appears promising, more work remains to test empirically its

predictions but also its implications for the aggregate properties of DSGE models. For

example, the fact that firms are more reluctant to change prices after a long period of

inaction may have interesting implications, such as history dependence or even asymmetry in

an economy’s response to shocks. This could, in turn, imply some novel policy implications.

We plan on exploring these avenues further in future research.
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Table 4: Predicting demand

(1) Across all items

Median p10 p25 p75 p90

Spaghetti sauce Detroit 0.26 0.05 0.12 0.5 0.95

Beer Boston 0.3 0.05 0.14 0.5 0.87

Frozen pizza Dallas 0.46 0.07 0.2 0.91 1.63

Peanut butter Seattle 0.45 0.08 0.2 0.83 1.36

(2) Item with most sales in category/market

Salted snacks Seattle 0.3 0.04 0.11 0.65 1.16

Beer NYC 0.46 0.17 0.3 0.71 1.23

Frozen dinner LA 0.48 0.09 0.23 0.84 1.35

Spaghetti sauce Dallas 0.28 0.05 0.13 0.53 0.9

The dependent variable is log(Q). Independent variables are: 2 lags of log(Q), log(P )+2

lags; log(P )2; log(P ) + 2 lags; log(P )
2
; item/store and week dummies, where log(P ) :

weighted average of weekly prices in category/market. The Table reports the moments

on the absolute in-sample prediction error: (Q−Xβ̂)/Q.
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Figure 14: 3-year rolling regressions of 3-month industry inflation on 3-month aggregate
inflation for four categories. The solid line plots the point estimate of regression coefficient
on aggregate inflation. The dotted lines plot the 95% confidence intervals.
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Figure 15: Effect of current aggregate inflation on Carbonated drinks industry inflation,
both measured over a 1 month horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% confidence interval using the smoothed estimated uncertainty.
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Figure 16: Effect of current aggregate inflation on Carbonated drinks industry inflation, both
measured over a 3 months horizon. The solid line plots the Kalman smoothed estimate. The
dotted line plots the 95% confidence interval using the smoothed estimated uncertainty.
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Figure 17: Effect of current aggregate inflation on Carbonated drinks industry inflation, both
measured over a 6 months horizon. The solid line plots the Kalman smoothed estimate. The
dotted line plots the 95% confidence interval using the smoothed estimated uncertainty.
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Figure 18: Effect of current aggregate inflation on Carbonated drinks industry inflation,
both measured over a 1 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% confidence interval using the smoothed estimated uncertainty.
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Figure 19: Effect of current aggregate inflation on Carbonated drinks industry inflation,
both measured over a 2 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% confidence interval using the smoothed estimated uncertainty.
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Figure 20: Effect of current aggregate inflation on Carbonated drinks industry inflation,
both measured over a 3 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% confidence interval using the smoothed estimated uncertainty.
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Figure 21: Effect of current aggregate inflation on Carbonated drinks industry inflation,
both measured over a 4 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% confidence interval using the smoothed estimated uncertainty.
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Figure 22: Effect of current aggregate inflation on Carbonated drinks industry inflation,
both measured over a 5 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% confidence interval using the smoothed estimated uncertainty.
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Figure 23: Fraction of times that the current aggregate inflation has an estimated effect
on Carbonated drinks industry inflation that is not statistically different from zero, at 95%
confidence interval. Inflations are computed over various horizons, ranging from 1 month to
5 years.
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Figure 24: Average, over industries, of the fraction of times that the current aggregate
inflation has an estimated effect on industry inflation that is not statistically different from
zero, at 95% confidence interval. Inflations are computed over various horizons, ranging from
1 month to 5 years.
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