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A B S T R A C T 
______________________________________________________________________________ 
 
 

In recent years there has been a dramatic increase in the amount of online 
content. Recommender systems software has emerged to help users navigate through 
this increased content, often leveraging user-specific data that is collected from users. A 
recommender system helps a user make decisions by predicting their preferences, 
during shopping, searching, or simply browsing, based on the user's past preferences as 
well as the preferences of other users. This thesis explores different recommender 
system algorithms such as User-User Collaborative and Item-Item Collaborative 
filtering using the open source library Apache Mahout. We simulate recommendation 
system environments in order to evaluate the behavior of these collaborative filtering 
algorithms, with a focus on recommendation quality and time performance. We also 
consider how recommender systems behave in real world applications. We explore the 
implementation of a web service that serves as a front end to a recommender system, 
keeping in mind our evaluation results, as well as ease of access to applications, and the 
overall user experience. 
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1 AN INTRODUCTION TO RECOMMENDER SYSTEMS 
 
 

1.1 What Are Recommender Systems? 

Throughout the internet there are web sites, applications, and systems being 
built with a focus on user interaction and data. The users of these systems expect to be 
introduced to new content, to be recommended content that their friends like, and want 
interfaces through which they can submit feedback to improve these recommendations. 
Recommender systems (RSs) are the tools and techniques that address these demands 
by utilizing user data and algorithms to suggest new items that will be of use to users 
[1, 2]. A RS can provide suggestions for products to buy, books to read, places to eat, or 
movies to watch. 

 

1.2 Recommender System Components 

Recommender systems are often comprised of several components known as 
users, items, preferences/ratings, and neighborhoods. Items are the things or objects 
that are being recommended to a user. For example, items are often products, news 
articles, songs or movies. These items can be characterized by their respective metadata 
that include relevant titles, tags, or keywords. For example, news articles can be 
characterized by content category, songs can be characterized by artists and genre, and 
movies can be characterized by genre and director. Users are the people who are being 
recommended items. They often need assistance or guidance in choosing an item within 
an application and use recommendation to help them make an informed and 
hypothetically better decision. A user model can be built over time in an effort to make 
better recommendations for each particular user. This user model acts as a profile in 
which preferences and actions are encoded and is representative of the history of a user 
and their interactions with items within the RS. These interactions are known as 
preferences. Preferences can be interpreted as the user’s opinion of an item in a RS and 
can be both explicit or implicit. Preferences are often categorized as ratings if a RS 
provides an interface to rate items. A rating is a type of explicit preference that 
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represents a relationship between a user and an item. Every rating can describe, for 
example, how a user feels about certain items. An example of an explicit rating is a user 
rating a movie with five stars. From this rating, the RS can definitively conclude that the 
user likes the movie item. An implicit preference can be a user clicking on a link or 
skipping a video. In these examples, we can infer data from these implicit preferences 
and assume that the user may like an item if they click on its link, or do not like a video 
that they skip. A neighborhood relates users and their preferences and represents a 
group of similar users. In collaborative filtering (CF) environments, which will be 
discussed later, neighborhoods of similar users help a RS decide on items to 
recommend to a user based on users with similar tastes [2]. 
 

1.3 Recommender System Dimensions 

Every RS is uniquely characterized by several dimensions that can provide 
insight into how and why a RS has been implemented. Dimensions such as domain, 
purpose, context, personalization level, interface, and algorithm selection can explain a 
recommender system’s goals. The domain of recommendation can help identify the 
components of a RS; for example, an application that recommends movies establishes a 
movie as the item component of the RS. The purpose of these recommendations are 
often to encourage movie watching users and to help users discover new movies they 
may want to watch. The context of such a RS can be a user browsing new movies or 
movies they have already seen in order to be suggested similar movies they may like. 
Personalization of a RS helps explain the choice of the RS algorithm that is implemented. 
For example, if the personalization level is based on ratings of movies on a five star 
scale, a User-User CF algorithm can be used to suggest movies that similar users have 
rated. Two important dimensions of RSs are the interfaces through which preferences 
are inputted into the RS and how recommendations are outputted from the RS. Lastly, 
one of the most influential dimensions on a RS is the algorithm used to make a 
recommendation. Some common algorithms include Non-Personalized, Content-Based, 
Collaborative, and Hybrid filtering. This thesis primarily examines Non-Personalized, 
User-User CF, and Item-Item CF filtering algorithms [3]. 
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1.4 Recommendation Algorithms 

The definition, components, and dimensionality help us describe and understand 
RSs. This leads to a discussion of the specific implementation of commonly used RS 
algorithms that are evaluated and implemented in this thesis. Every RS attempts to 
predict items that a user will find most relevant and useful. While this concept is 
common across all types of RSs, the manner by which a RS calculates relevance and 
usefulness varies. 
  The amount and type of available data about RS components such as users, 
items, and preferences often dictate how this relevance and usefulness is calculated and 
ultimately impacts a RS algorithm selection. When data about a user and their 
preferences are lacking, a Non-Personalized RS can be an appropriate algorithm 
selection. A Non-Personalized RS algorithm will rely on the overall data about popular 
items amongst all users and generate recommendations such as a Top-N list of most 
popular items (see Figure 1.1). Non-personalized recommendation algorithms do not 
provide personalized or diverse recommendations to different users based on past 
preferences of users. Instead, the RS assumes an item that is liked by most users will 
also be liked by a generic user [2].  While not heavily researched, non-personalized 
algorithms provide a simple and effective interface to provide recommendations to 
users when they lack previous preferences, also known as the cold start problem. 
 

 
Figure 1.1 A non-personalized algorithm uses all data from a recommender system’s data model to 
produce recommendations such as a Top-N list of the most popular items. This is a generic, non-
personalized recommendation since recommendations are given to a user without taking their specific 
preferences into consideration; only the collective of all user preferences are used. 
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In recent years, an algorithm known as Collaborative Filtering has become 
commonly implemented in RSs. CF algorithms use the similarity between data such as 
the preferences of users, neighborhoods, and items in order to more effectively 
recommend items from a growing set of choices [4]. This thesis examines both User-
User and Item-Item Collaborative Filtering algorithms and the evaluation of their 
recommendation to users. 

If there are user preference data in a recommender system’s model, it is possible 
to make personalized recommendations based on similarities of user tastes or 
preferences. In a User-User CF RS (shown in Figure 1.2), correlations can be identified 
between different users based on past preferences that are similar in order to make 
predictions on what each user will like in the future. If two users have rated many items 
similarly in the past, they may be considered in the same neighborhood. Often, a 
neighborhood of similar users is built by a RS and used to help recommend items [2]. 
User-User CF has a personalized advantage over Non-Personalized RSs; the 
recommendations from User-User CF will be specific to each user and will adapt with 
the user as they introduce new preferences into the RS. 
 
Figure 1.2 A User-User CF RS recommends items to a user by building a neighborhood of similar users 
and recommending items based on these neighbors’ past ratings. In this figure, the RS is being asked to 
produce recommended items for a user named Peter who has liked, or positively rated, the movies 
Inception and Forest Gump as shown by A. The RS first builds a neighborhood of similar users: Alex and 
Chris, who have both expressed similar positive ratings for the same movies as Peter as shown in B-C. 
Since Alex and Chris have also liked the movies Dallas Buyers Club and Lawless, the RS may recommend 
these items to Peter as shown in D. The RS will consider these movies more likely to be positively rated 
by Peter than other movies since Peter’s neighbors have rated them positively. This is based on the 
intuition that similar users like similar items. 
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In an Item-Item CF RS (shown in Figure 1.3), the similarities between items are 
used in order to make recommendations. Rather than building a neighborhood and 
making recommendations based on similar users, correlations are made between items’ 
preferences. For example, in order to recommend a new item to user u, all of the items 
for which u has a preference are compared to all other items i using a similarity 
algorithm. The intuition is that u will be recommended items that are most similar to 
items u has already rated based on past preferences [5]. Item-Item CF can be 
advantageous because of the smaller scale of items; for example, items tend to grow at a 
slower pace than users and items also change less over time than users. The 
implementations of algorithms for calculating User-User, Item-Item CF, user similarity, 
and item similarity are discussed in section 2.2 Mahout Recommender Systems and 2.3 
Mahout Similarity Algorithms. 
 
Figure 1.3 A Item-Item CF RS makes recommendations based on similarities between items. In this 
diagram, A shows that Peter has rated the movie The Dark Knight with a 4. If the RS must provide Item-
Item CF recommendations to Peter, it will attempt to recommend movies that are similar to the movie 
The Dark Knight since Peter has positively rated this movie in the past. In this example, we see through B 
that Treven and Max have positively rated The Dark Knight with a 4 while Nick has rated it with a 2. In 
C-E, we see that Treven, Max, and Nick have rated The Avengers, Spiderman, and Watchmen similarly in 
comparison with The Dark Knight. Therefore, the RS will recommend these similar movies as shown in F. 
This is based on the intuition that users will like items that are similar to items they have liked in the past. 
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Lastly, a Hybrid RS combines algorithms to produce recommendations. Non-
personalized and collaborative filtering are not exclusive algorithms; a hybrid RS can 
compensate for when other RSs do not have enough data to produce quality 
recommendations. This thesis does not go into hybrid RSs in detail, but they are 
important in real world applications of RSs where problems such as cold start, data 
sparsity, and scaling are realities. 

 

1.5 Examples of Recommender Systems 

In order to better understand recommender systems, their dimensions, and 
algorithms, there are several helpful examples of RSs used on websites. 

 
Amazon.com 

Amazon.com, one of the most popular e-commerce web sites on the internet, has 
pioneered collaborative filtering recommender systems that consumers now expect 
when shopping. In Figure 1.4, similar books are being recommended to a user browsing 
for books about recommender systems. Using our framework of RSs, dimensions, and 
algorithms we can extract information about the RS that is being used. This is an Item-
Item CF algorithm recommending items, that are books, to users who are browsing web 
pages that contain information about books and imply this user is thinking about 
purchasing books about recommender systems. 
 
Figure 1.4 Amazon often provides recommendations to users by displaying similar items that other 
users have purchased. 
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Netflix.com 
 

Netflix.com has built an application that revolves around movie 
recommendation. After logging into Netflix, a user is immediately recommended 
movies based on their preferences, top-n lists of movies, and movies that are similar to 
other movies a user has watched. In Figure 1.5, a simple example of a Top-N Non-
Personalized algorithm is indicative of a RS that is recommending items, in this case 
movies, to users who want to watch movies or discover new movies. 
 
Figure 1.5 Netflix movie recommendations that are presented to a user upon login. These are non-
personalized Top-N recommendations that represent the most popular movies on Netflix. 
 

 

 

1.6 Addressing Common Recommender System Problems 
As we have discussed, there are several components and dimensions of RSs that 

contribute to a complex system that must be designed with factors such as 
recommendation accuracy, coverage, scale, and speed kept in mind. This thesis explores 
common problems with designing and implementing RSs through experiments and 
simulations that evaluate and implement RSs using various algorithms. 
 In particular, the experiments in the following sections are concerned with the 
variability of data such as users, items, and preferences, how RSs respond to issues such 
as a lack of user preferences for new users (the cold start problem), as well as how a RS 
adapts as the data model grows with new users, items, and preferences. 
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 Evaluation, however, is only part of the process of understanding how RSs 
behave in different environments. In a production environment, RSs must be able to 
provide accurate recommendations in a reasonable amount of time in order to maintain 
consistent user interaction and a positive user experience. For example, a user on 
Netflix will not wait 10 seconds to receive movie recommendations. In Section 3, we 
evaluate a RS exposed as a web service and utilize open source libraries to measure 
recommendation response times to client applications. 
 
 

2   EVALUATING RECOMMENDER SYSTEMS USING 
APACHE MAHOUT 
 
 

2.1 What is Apache Mahout? 

Apache Mahout is an open source machine learning library that consists of a 
framework of tools that allow developers to create powerful and scalable recommender, 
clustering, and classification applications. Mahout started in 2008 as a spin off 
technology from the Apache Lucene project, which was primarily concerned with 
content search and information retrieval technologies. Since there was much overlap 
between the techniques and algorithms used in the projects such as clustering and 
classification, Mahout became its own project and also included an open source 
collaborative filtering project known as Taste. Today, the Mahout library is suitable for 
applications that require scaling to large datasets because it was opened to 
contributions for implementations that run on top of Apache Hadoop and now will 
accept implementations that run on top of Apache Spark (see Section 4.3 Future Work).  
This thesis primarily examines Apache Mahout and implementing a recommender 
system using Mahout’s collaborative filtering recommender engine libraries [6]. 
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2.2 Mahout Recommender Systems 

 The Mahout library contains several commonly used RSs. For the purposes of 
this thesis, there are specific RSs that are measured, explored, and exposed as web 
services. This section discusses how Mahout has implemented the following RSs: Non-
Personalized Item Average, User-User Collaborative Filtering, and Item-Item 
Collaborative Filtering. 

2.2.1 Non-Personalized Item Average RS 

The non-personalized item average recommender estimates a user’s preference 
for an item by calculating the average of all of the known preferences for that item. This 
RS is non-personalized since none of the user’s past preferences are considered to 
rescore the recommendations [7]. The pseudo code to estimate a user’s preference for an 
item is: 
 

Pseudo Code to Estimate User Preference in Non-Personalized RSs 
 
for every preference p for item i 
 include p in a running average of all p’s for i 
 
return the running average of all p’s for I [7] 

 
2.2.2 User-User Collaborative Filtering RS 
 

 The User-User CF RS first creates a neighborhood nu of users that are similar to 

user u based on similarity algorithms that are described below in Section 3.3. Then, 

using nu , the RS estimates the user u’s preference for item i by taking into consideration 

all of the preferences of neighbors in nu that have rated item i. User-User CF therefore 

focuses on similarities between users’ preferences [8]. The pseudo code for Mahout’s 
User-User CF to estimate a user u’s preference for an item i is: 
 
 
 



15 

Pseudo Code to Estimate User Preference in User-User CF RSs 
 

for every other user w 
 compute a similarity s between user u and user w 
 
 store users with the greatest similarity s in a neighborhood n 
 
for every neighbor wn in n 

 if wn has a preference for item i 

  retrieve this preference value p, apply a weight with 
value of s, and incorporate it into u’s preference for 
item i 

 
return u’s normalized preference for item i [8, 9] 
 

 

The similarity algorithm used to create this neighborhood is discussed in the next 
section, 3.3 Mahout Similarity Algorithms. 

2.2.3 Item-Item Collaborative Filtering RS 
The Item-Item CF RS will also recommend an item i to user u by using a 

similarity algorithm. It differs from User-User CF because the RS focuses on the 
similarity between different items’ preferences rather than the similarity between 
different users’ preferences. The pseudo code for Mahout’s Item-Item CF to estimate a 
user u’s preference for an item i is: 
 

Pseudo Code to Estimate User Preference in Item-Item CF RSs 
 

for each item j that user u has a preference for, calculate the similarity s between j’s 
preferences and item i’s preferences 
 
for each j that is similar with i 
 calculate a weighted preference pw for i by multiplying 

u’s preference for j by s 
 

incorporate pw into an overall preference value po 
 

return a normalized po      [10, 11] 
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When making Item-Item CF based recommendations, Mahout uses this estimation 
process by applying this pseudo code to every other item in the data model. 
 

2.3 Mahout Similarity Algorithms 
In the CF algorithms recently mentioned, there is a commonality between how 

users and items are determined to be similar to other users and items. The Mahout 
library has implemented several widely used similarity algorithms and allow 
developers to plug them into the CF RSs in order identify similar neighborhoods for 
users or calculate similarities between items. While Mahout has implemented similarity 
algorithms including Euclidean Distance Similarity, Tanimoto Coefficient Similarity, 
and Uncentered Cosine Similarity, for the purposes of this thesis the Pearson 
Correlation Coefficient Similarity and the Log Likelihood Ratio Similarity algorithms 
are described and measured using the data sets discussed in 4.1 Data Sets Used.  

In the following similarity algorithms, user preference values are the basis from 
which similarities can be calculated between different users and different items. 
Therefore, both of these similarity algorithms can be used in User-User and Item-Item 
CF RSs. 

2.3.1 Pearson Correlation Coefficient 
The Pearson Correlation Coefficient (PCC) determines the similarity between 

two users or items by measuring the tendency of two series of preferences to move 
together in a proportional and linear manner [12]. In this thesis’ experiments, the PCC 
similarity algorithm only considers preferences on which both users or items overlap. It 
attempts to find each users’ or items’ deviations from their average rating while 
identifying linear dependencies between two users or items. The formula uses actual 
preference values, in our case the movie rating value, to find correlation between users 
or items, and gives larger weights to users or items that agree often especially in 
extreme cases [3]. The PCC similarity calculation used in this thesis is: 
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Where w and u represent the two users or items for which the coefficient is being calculated, i is an item, 

rw,i and ru,i are individual ratings from w and u for i, and 𝑟!and 𝑟!  are average ratings for user (or item) w 
and u, respectively. 
 

Helpful explanations of the issues with the PCC similarity algorithm are 
discussed in the book Mahout in Action. For example, PCC does not take into 
consideration the number of overlapping preferences. This is intuitively naïve; for 
example if two users have rated 10 movies similarly, these users will have a lower 
similarity than two users who rated only two movies very similarly. As a result of these 
problems, the PCC may not always provide the most accurate recommendation, which 
is exemplified in later experiments [13]. In the next section, we discuss the Log 
Likelihood Ratio, which does not consider preference values but does take into 
consideration statistics such as the number of overlapping preferences.  
 

2.3.2 Log Likelihood Ratio Similarity 

The Log Likelihood Ratio (LLR) was created by Ted Dunning in his paper, 
“Accurate Methods for the Statistics of Surprise and Coincidence.” The LLR relies on 
calculating similarity between two users or items based on statistics that revolve around 
occurrences related to these users or items. LLR focuses on events where these users or 
items overlap in preferences, events where both users or items have preferences where 
the compared user or item does not, and events where both users or items do not have 
preferences. A helpful explanation and chart is available at [14] and summarizes these 
events [15, 16]. 

[5] 
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The LLR predicts how unlikely the overlap between preferences is due to chance 
or if the overlap represents a genuine similarity. For example, if two users have five 
preferences in common, but have both only introduced 20 preferences into the data 
model, they will be considered more similar than two users who have five preferences 
in common but have both introduced over 100 preferences into the data model [16]. 

In Mahout, the LLR is used to calculate similarities between items and users. 
When calculating these similarities, it never considers the actual preference value; LLR 
only considers the events recently discussed and uses the ratio calculated using the LLR 
formula as a weight to estimate preferences to users. See Sections 3.2.2 and 3.3.3 for 
pseudo code that shows the similarity value being used as a weight in estimating a 
preference. 

 
2.4 Experiments, Results, and Discussion 

2.4.1 Data Sets Used 
 In the experiments with the Apache Mahout library, the GroupLens’ MovieLens 
data sets from [17] are used. This collection of data sets includes data about movies 
including users, movies, and movie ratings from users. Some of the data sets include 
metadata about users and movies, but this thesis does not utilize those features. In some 
experiments, different data set sizes are used. These include the MovieLens 100k 
(ML100k) data set that contains around 100,000 ratings from ~1,000 users on ~1,700 
movies, the MovieLens 1M (ML1M) data set that contains around 1,000,000 ratings from 
~6,000 users on ~4,000 movies, and finally the MovieLens 10M (ML10M) data set that 
contains around 10,000,000 ratings and ~100,000 tags applied to ~10,000 movies by 
~72,000 users [17]. 
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Table 2.1 Data set sizes and their respective number of preferences, users, and items. In the context of 
the data set, the items are movies and the preferences are users’ ratings on movies. The rating can be a 
whole number from one to five. 
 

Data Set Preferences Users Items 

ML100K 100,000 943 1,682 

ML1M 1,000,209 6,040 3,383 

ML10M 10,000,054 71,567 10,681 
 

2.4.2 Evaluation and Metrics 
When evaluating a RS it is necessary to use subsets of a data set in order to 

estimate and verify recommendation. In the evaluation process, training data refers to 
the subset of data that is used to “build” a RS; with this training data, the RS evaluator 
will attempt to estimate a user’s preference for an item. After the RS estimates this 
preference, it uses actual user preference data from the evaluation data set in order to 
determine how accurate the estimated preference was. Evaluation data is therefore the 
subset on which deviations from actual and predicted user rates are measured. 

There are several metrics by which a RS can be evaluated and interpreted for 
accuracy. In the following experiments, this thesis evaluates the different datasets using 
three common evaluation metrics: Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), and Coverage.  

MAE and RMSE are known as predictive accuracy or statistical accuracy metrics 
because they represent how accurately a RS estimates a user’s preference for an item. In 
our movie dataset context, MAE and RMSE will evaluate how well the RS can predict a 
user’s rating for a movie based on a scale from one to five stars [4]. MAE is calculated 
by averaging the absolute deviation of a user’s estimated rating and actual rating. 
 

The formula for MAE is: 

MAE = |  !!!!!  |!
!

!
      [18] 

 
 
 



20 

RMSE is calculated by finding the square root of the average squared deviations of a 
user’s estimated rating and actual rating. The formula is: 
 

RMSE = (!!!!!)!!
!   

!
      [19] 

 
Where in both formulas for MAE and RMSE n is the total number of items, i is the current item, ri 

is the actual rating a user expressed for i, and ei is the RS’s estimated rating a user has for i.  

 
Since RMSE squares the deviations and MAE only sums the deviations, RMSE 

will weight larger deviations more than MAE. In the context of movie ratings, RMSE 
may provide a more insightful accuracy metric but we provide both RMSE and MAE 
evaluation on the RS algorithms. The smaller RMSE and MAE are, the more accurate a 
RS. This is because RMSE and MAE will calculate smaller values if the deviations 
between actual and predicted ratings are smaller. 

Coverage measures how many recommendations a RS is able to make for users. 
It is calculated by dividing the total number of preferences that a RS was able to 
estimate by the total number of preferences the RS attempted to estimate. In some cases, 
there is not enough data for a RS to provide recommendations. When this is a common 
case, a RS coverage will be a low value. 
 

Coverage= Total  #  of  Estimated  Preferences
Total  #  of  Attempted  Estimated  Preferences 

[20] 

2.4.3 Baseline Evaluation of Mahout RSs and Similarity Algorithms 
Using the Apache Mahout library with the Movielens Dataset, these first 

experiments are concerned with evaluating commonly implemented RS and similarity 
algorithms. Specifically, the ML100K, ML1M, and ML10M are evaluated using CF RSs 
that utilize both the Pearson Correlation Coefficient and Log Likelihood similarity 
algorithms. The purpose of this experiment is to determine how an increasing data size 
of users, items, and user preferences affect the accuracy of a RS. 
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As a preface, it is interesting to note that the Netflix Prize was awarded to the 
team that improved recommendation accuracy, specifically RMSE, by 10 percent. The 
RMSE for the winning team was approximately 0.8567, which gives some perspective to 
the following results [21]. 
 

 
2.4.3 Results 

The following results used all three datasets (ML100K, ML1M, ML10M), used 80 
percent training data, and 20 percent evaluation data on each dataset. Tables and Charts 
3.1-3.2 represent evaluation of User-User CF algorithms with both Pearson and Log 
Likelihood similarity algorithms. Tables and Charts 3.3-3.4 represent evaluation of Item-
Item CF algorithms with both Pearson and Log Likelihood similarity algorithms. 

 
Evaluation of User-User CF 
 
Table 2.2 Evaluation of User-User RMSE using the Pearson Correlation and Log Likelihood similarity 
algorithms shows how as the user, item, and preference content in a data set increases, the RMSE 
improves for both similarity algorithms. 
 
 

Data Set Pearson RMSE Log Likelihood RMSE 

ML100K 1.15 1.03 

ML1M 1.10 1.03 

ML10M 1.09 0.96 

Total Change +0.06 +0.07 
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Chart 2.1 Reflects data from Table 2.2. 

 
 
 
Table 2.3 Evaluation of User-User MAE using the Pearson Correlation and Log Likelihood similarity 
algorithms shows how, as the user, item, and preference content in a data set increases, the MAE 
improves for both similarity algorithms. 
 

Data Set Pearson MAE Log Likelihood MAE 

ML100K 0.90 0.81 

ML1M 0.84 0.82 

ML10M 0.840 0.75 

Total Change +0.06 +~0.059 
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Chart 2.2 Reflects data in Table 2.3.

 
 
 
 
 
 
 
Evaluation of Item-Item CF 
 
Table 2.4 Evaluation of Item-Item RMSE using the Pearson Correlation and Log Likelihood similarity 
algorithms shows how, as the user, item, and preference content in a data set increases, the RMSE 
improves for both similarity algorithms. 
 

Data Set Pearson RMSE Log Likelihood RMSE 

ML100K 1.06 1.03 

ML1M 1.04 1.01 

ML10M 0.94 0.99 

Total Change +0.12 +0.04 
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Chart 2.3 Reflects data from Table 2.4. 
 

 
 
 
 
 
Table 2.5 Evaluation of Item-Item MAE using the Pearson Correlation and Log Likelihood similarity 
algorithms shows how, as the user, item, and preference content in a data set increases, the MAE 
improves for both similarity algorithms. 
 

Data Set Pearson MAE Log Likelihood MAE 

ML100K 0.83 0.82 

ML1M 0.82 0.81 

ML10M 0.73 0.78 

Total Change +0.10 +0.04 
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Chart 2.4 Reflects data in Table 2.5. 

 
 
Table 2.6 As the data set size increases, the median number of ratings per user increases from ML100k 
to ML1M but decreases from ML1M. The mean number of ratings per item increases from ML100k to 
ML10M. 
 

Data Set Median # Ratings Per User Median # Ratings Per Item 

ML100K 106.04 59.45 

ML1M 165.60 269.89 

ML10M 143.11 936.60 

 
Table 2.7 As the data set size increases, the mean number of ratings per user increases from ML100k to 
ML1M but decreases from ML1M. The mean number of ratings per item increases from ML100k to 
ML10M. 
 

Data Set Mean # Ratings Per User Mean # Ratings Per Item 

ML100K 65 27 

ML1M 96 123.5 

ML10M 69 135 
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Chart 2.5 This chart reflects the change in RMSE as a function of dataset size across each User-User and 
Item-Item CF and similarity algorithms 
 

 
 
2.4.3 Discussion 

Across all of the evaluations, the results show that an increase in the overall 
content of a dataset including users, items, and user preferences improves 
recommendation accuracy for both User-User and Item-Item CF and both Pearson and 
Log Likelihood similarity algorithms. For User-User CF, the improvement is attributed 
to the growth in users and user preferences that allow the RS to find better 
neighborhoods of similar users. For Item-Item CF, the improvement is not only related 
to the increased number of items, but also an increase in number of user preferences for 
each item which allows the RS to find more similar items based on these user 
preferences. 

It is important to note the increase in data amount between datasets and the 
respective change in recommendation accuracy. From data set ML100K to ML1M, there 
are around 6.5x more users, 2x more movies, and 10x more preferences. From ML1M to 
ML10M there are around 12x more users, 3x more movies, and 10x more preferences. 
The results show that the improvement in RS accuracy is related to an increase in 
content, but not directly proportional to the increase in content between data set sizes. 
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We also found that the most improvement in accuracy occurred for Pearson 
Item-Item CF. Referring to Tables 2.6 and 2.7, the mean number of preferences per item 
increases by 5x from ML100K to ML10M and the median number of preferences per 
item increases by 15x from ML100K to ML10M. For User-User CF, there is an increase in 
median number of preferences per user and a decrease in mean number of preferences 
per user, but the ML10M contains more overall user preferences. Since there are more 
preferences per item, Item-Item CF can better predict users’ ratings for movies since 
more similar items can be calculated, and explains why there is a bigger improvement 
in Item-Item CF than User-User CF since the latter had less significant increases in 
typical user behavior and a decreased average ratings per user. 

These results should be taken into consideration when designing a RS. While we 
found that an increase in overall content of users, items, and preferences improves 
accuracy, there was better improvement for Item-Item CF than User-User CF, and Item-
Item Pearson CF performed the best. This implies that utilizing the similarity between 
movies is a better method of recommendation than relying on the social and peer 
context of the similarity between users. 
 

2.4.4 Recommendation Accuracy and Coverage As A Function of Target 
User Ratings Pool 

The baseline evaluation of RSs with varying data sets proved how different CF 
RSs and similarity algorithms improve with more content. This experiment was 
designed to examine how recommendation accuracy and coverage change as users 
introduce new movie ratings to the RS in increments. It also simulates how RSs respond 
to the cold start problem, or when a RS must provide “recommendations to novel users 
who have no preference on any items,” since the experiment does not use the target 
user’s preferences in the training data model and adds one increment at a time in 
chronological order, just as a new user would be introduced to the data model, rating 
one movie at a time [22]. 
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2.4.4 Pseudo Code 

Pseudo Code to Evaluation RSs as a Function of Target User Ratings Pool Size 
 
For each user u 
 
 Add all preferences from other users that occurred before u’s first preference 
            to training data model dt 

 
 Get all of u’s preferences pu in chronological order 
 
 For each preference p from pu 

Add p to dt 
   
                        Evaluate recommendation (using RMSE and MAE) on the evaluation 
                        data set for u using dt as the training data 

 

2.4.4 Results 
The following results used the ML1M dataset, 50 percent training data, and 50 

percent evaluation for each user that rated 20 movies (which is every user in this 
dataset). Only 20 movies were considered, therefore the training data consisted of 10 
movie ratings in increments of one movie and the evaluation was on the last 10 
preferences of each user. It evaluated accuracy using both CF and similarity algorithms 
and recommendation coverage. 
 

 
 
 
 
 
 
 
 
 



29 

 
Evaluation of User-User CF 

Table 2.8 As the number of preferences in the training model increases for each user, User-User CF 
RMSE improves for both similarity algorithms. 
 
Number of Preferences Per 

User Pearson RMSE Log Likelihood RMSE 

1 #N/A 1.18 

2 1.43 1.16 

3 1.34 1.15 

4 1.28 1.14 

5 1.25 1.14 

6 1.23 1.13 

7 1.22 1.13 

8 1.20 1.12 

9 1.20 1.12 

10 1.18 1.11 
 
Chart 2.6 Reflects data from Table 2.8.
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Table 2.9 As the number of preferences in the training model increases for each user, User-User CF 
MAE improves for both similarity algorithms. 
 

Number of Preferences Per 
User Pearson MAE Log Likelihood MAE 

1 #N/A 0.85 

2 0.92 0.85 

3 0.90 0.84 

4 0.88 0.84 

5 0.87 0.84 

6 0.86 0.84 

7 0.86 0.83 

8 0.86 0.83 

9 0.85 0.83 

10 0.85 0.83 
 
Chart 2.7 Reflects data from Table 2.9.
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Table 2.10 As the number of preferences per user increases for User-User CF, Pearson Coverage 
initially increases but eventually decreases while Log Likelihood consistently increases. This slight 
decrease in Pearson Coverage is discussed in Chart 2.9 and in 2.4.4 Discussion. 
 
Number of Preferences Per 

User Pearson Coverage Log Likelihood Coverage 

1 #N/A 0.45 

2 0.85 0.66 

3 0.86 0.72 

4 0.86 0.74 

5 0.84 0.75 

6 0.83 0.76 

7 0.82 0.78 

8 0.81 0.80 

9 0.80 0.81 

10 0.78 0.83 
 
Chart 2.8 Reflects data from Table 2.10. 
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Chart 2.9 As increments of preferences for a target user are introduced to the data model, the average 
number of preferences for every users’ neighborhood decreases for Pearson and increases for Log 
Likelihood similarity.

 
 
Evaluation of Item-Item CF 
 
Table 2.11 As the number of preferences in the training model increases for each user, Item-Item CF 
RMSE improves for both similarity algorithms. 
 

Number of Preferences Per 
User Pearson RMSE Log Likelihood RMSE 

1 #N/A #N/A 
2 2.36 1.89 
3 2.33 1.80 
4 2.30 1.73 
5 2.27 1.67 
6 2.23 1.63 
7 2.20 1.59 
8 2.17 1.56 
9 2.14 1.53 
10 2.11 1.50 
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Chart 2.10 Reflects data from Table 2.11 

 
 
Table 2.12 As the number of preferences in the training model increases for each user, Item-Item CF 
MAE improves for both similarity algorithms. 
 

Number of Preferences Per 
User Pearson MAE Log Likelihood MAE 

1 #N/A #N/A 

2 1.19 1.09 

3 1.18 1.07 

4 1.17 1.05 

5 1.17 1.04 

6 1.16 1.03 

7 1.15 1.02 

8 1.14 1.01 

9 1.13 1.00 

10 1.12 0.99 
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Chart 2.11 Reflects data from Table 2.12.  

 
 
Table 2.13 As the number of preferences in the training model increases for each user, Item-Item CF 
coverage improves for both similarity algorithms. 
 
Number of Preferences Per 

User Pearson Coverage Log Likelihood Coverage 

1 #N/A #N/A 

2 0.95 0.98 

3 0.97 0.99 

4 0.98 0.99 

5 0.98 0.99 

6 0.98 0.99 

7 0.98 0.99 

8 0.99 0.99 

9 0.99 0.99 

10 0.99 0.99 
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Chart 2.11 Reflects data from Table 2.13 

 
Chart 2.12 This chart reflects the RMSE as a function of target user ratings pool across each User-User 
and Item-Item CF and similarity algorithms. We see that UU Log Likelihood is the most accurate 
algorithm combination. 
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2.4.4 Discussion 

From this experiment, we learned how a RS responds to the cold start problem 
and found that as a target user’s preferences were incrementally added one preference 
at a time, recommendation accuracy improved while coverage varied according to the 
CF and similarity algorithm. 

In User-User CF, Pearson similarity had greater improvement of 
recommendation accuracy but Log Likelihood performed with a better overall accuracy. 
Coverage slightly increased for Pearson similarity before decreasing while coverage 
consistently increased for Log Likelihood. This decrease in coverage for User-User CF 
Pearson can be explained using Chart 2.9. We see as each target user’s preferences are 
incremented, the number of total preferences rated by this user’s neighbors decreases. As 
a user rates more movies, while the RS creates more similar neighborhoods (reflected by 
an increase in accuracy), these neighbors span less preferences and therefore increase 
the chances of the RS not being able to predict a rating for the target user. In User-User 
CF, Log Likelihood similarity was able to provide recommendations for users who have 
only rated one movie whereas Pearson similarity is unable to make recommendations 
until a user has rated two movies. 

In Item-Item CF, the Log Likelihood similarity algorithm improved its accuracy 
and was overall significantly more accurate than Pearson. In both similarity algorithms, 
the coverage approaches 100 percent. Neither Pearson nor Log Likelihood similarity are 
able to make recommendations for a user who has rated one movie. This is related to 
the scale of users and items and the behavior of similarity algorithms. There are many 
more users than items, explaining why there are enough users for User-User CF to find 
neighborhoods for Log Likelihood, while there may not be enough similar items for 
Item-Item CF to find with both similarity algorithms. 

It is interesting to note that this was one of several experiments that attempted to 
examine the accuracy and coverage of RSs after incrementally adding preferences. In 
other experiments, larger increments of 5 and 10 preferences were introduced and 
recommendation was evaluated. For these larger increments, recommendation accuracy 
actually decreased. While this behavior needs further exploration beyond this thesis, 
some variables that should be taken into consideration are the number of preferences 
and the timestamps between these preferences. For example, users’ or items’ 
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preferences may change over time, changing the similarities and neighborhoods from 
which similarity is calculated. If a user has not rated a movie in a long time period, and 
then rates another movie, discrepancies in neighborhoods and similarities may arise 
from changing user tastes or opinions about movies. 

Overall, we found that when a RS is facing the cold start problem, User-User CF 
provides more accurate recommendations while Item-Item CF have better 
recommendation coverage. When designing a RS, the trade offs between these 
algorithms must be taken into consideration along with how accuracy and coverage will 
affect user experience. 
 

2.4.5 Recommendation Accuracy and Coverage As a Function of Non-
Target User Ratings Pool 

We have seen how an increase in overall data set size as well as an increase in the 
amount of target users’ preferences improves recommendation accuracy. This next 
experiment examines how introducing non-target data changes recommendation 
accuracy. For example, if a user does not rate many or any more movies, how does 
recommendation accuracy change for this user if other users rate more movies and new 
movies are added to the data model? The following results help answer this question. 
2.4.5 Pseudo Code 

Pseudo Code to Evaluate RSs as a Function of Non-Target Ratings Pool Size 
 
For each user u 
 
 Add all preferences from other users that occurred before u’s 

first preference and after u’s last preference, and training 
percentage of u’s preferences, all in random order, to training 
data model dt 

 
 For each increment of preferences pi from dt 

 
Add pi to dt 

 
  Evaluate recommendation (using RMSE and MAE) on the evaluation 
                        data set for u using dt  as the training data 
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2.4.5 Results 
 
The following results used the ML1M dataset, 80 percent training data, and 20 percent 
evaluation on each user from the dataset. 
 
Evaluation of User-User CF 
 
Table 2.14 As the number of non-target preference data per user increase, User-User CF RMSE 
improves for both similarity algorithms. 
 

Number of Non-Target 
Preference Data Per User Pearson RMSE Log Likelihood RMSE 

100,000 1.02 1.10 

200,000 1.02 1.09 

300,000 0.97 1.07 

400,000 0.92 1.05 

500,000 0.89 1.02 

 
Chart 2.13 Reflects data from Table 2.14. 
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Table 2.15 As the number of non-target preference data per user increase, User-User CF MAE improves 
for both similarity algorithms. 
 

Number of Non-Target 
Preference Data Per User Pearson MAE Log Likelihood MAE 

100,000 0.70 0.77 

200,000 0.70 0.77 

300,000 0.67 0.77 

400,000 0.64 0.76 

500,000 0.62 0.75 

 
 
Chart 2.14 Reflects data from Table 2.15. 
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Table 2.16 As the number of non-target preference data per user increase, User-User CF coverage 
improves for both similarity algorithms. 
 

Number of Non-Target 
Preference Data Per User Pearson Coverage %  Log Likelihood Coverage 

% 

100,000 0.19 0.25 

200,000 0.28 0.53 

300,000 0.34 0.71 

400,000 0.37 0.80 

500,000 0.39 0.86 

 
 
Chart 2.15 Reflects data from Table 2.16. 
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Evaluation of Item-Item CF 
 
 
Table 2.17 As the number of non-target preference data per user increase, Item-Item CF RMSE 
improves for both similarity algorithms. 
 

Number of Non-Target 
Preference Data Per User Pearson RMSE Log Likelihood RMSE 

100,000 1.86 1.04 

200,000 1.61 1.02 

300,000 1.46 1.01 

400,000 1.36 1.00 

500,000 1.28 0.99 

 

Chart 2.16 Reflects data from Table 2.17. 
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Table 2.18 As the number of non-target preference data per user increase, Item-Item CF MAE improves 
for both similarity algorithms. 
 

Number of Non-Target 
Preference Data Per User Pearson MAE Log Likelihood MAE 

100,000 1.02 0.80 

200,000 0.95 0.79 

300,000 0.90 0.78 

400,000 0.87 0.77 

500,000 0.84 0.77 

 

Chart 2.17 Reflects data from Table 2.18 
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Table 2.19 As the number of non-target preference data per user increase, Item-Item CF coverage 
improves for both similarity algorithms. 
 

Number of Non-Target 
Preference Data Per User Pearson Coverage %  Log Likelihood Coverage 

% 

100,000 0.951 0.995 

200,000 0.992 0.999 

300,000 0.997 0.999 

400,000 0.999 0.999 

500,000 0.999 1.000 

 

Chart 2.18 Reflects data from Table 2.19. 
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Chart 2.19 This chart shows RMSE as a function of the amount of non-target preference data across all 
User-User and Item-Item similarity algorithms. 
 

 
 
2.4.5 Discussion 

The results generally show that with an increase in non-target preference data, 
recommendation accuracy and coverage improve with both User-User and Item-Item 
CF and similarity algorithms. During this experiment, while each user may or may not 
have introduced new ratings, the focus on an increase in the “surrounding” non-target 
preference data introduces more users and items, allowing better user neighborhoods 
and item similarities to be calculated by the User-User and Item-Item CF algorithms, 
respectively. 

In Item-Item CF we found that while Pearson had the most improvement in 
accuracy, overall Log Likelihood outperforms Pearson in accuracy. With both similarity 
algorithms, coverage improves and quickly approaches 100 percent. In User-User CF, 
we found that Pearson outperformed Log Likelihood in overall accuracy. Log 
Likelihood had considerably better coverage and approaches 90 percent, while Pearson 
had around half of the coverage by the time a user rates 10 movies. 
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User-User CF performed better than Item-Item CF with a lower RMSE and MAE, 
but had considerably less coverage. As more non-target data was introduced into the 
data model, the coverage improved with each increment, but User-User CF had 
considerably worse coverage than Item-Item CF’s coverage. Since each increment 
introduced 100,000 more movie ratings, it is reasonable that overall, User-User CF with 
Pearson had the most accurate recommendation. With each introduction of 100,000 user 
preferences, it is more likely that the increase in data provides more overall similar user 
data than similar item data. This increase in user preferences provides better 
opportunities for more similar user neighborhoods to be generated by the RS. But, we 
still found that coverage is a problem for User-User CF algorithms and must be 
considered in the design and implementation of RSs. 

 
2.4.6 Conclusions 

From these experiments, we learned about which combinations of CF and 
similarity algorithms perform the best within the context of dataset size, accuracy, and 
coverage. These factors are important decisions in evaluation and designing a RS. 

 
Larger Datasets Provide Better Recommendation Accuracy 
 

From the results and discussion, we can conclude that a larger dataset size with 
more overall content including users, items, and preferences improve recommendation 
accuracy and coverage. In our results, Item-Item CF with Pearson similarity was the 
most accurate RS algorithm combination across all data sets, meaning movie similarities 
was a better factor in recommendation than social and peer user similarities. 

 
Multiple RS Algorithms Must Be Used To Address The Cold Start Problem 
 

The simulations of user increments (a new user to the data model) helped us 
understand how RSs behave with the cold start problem when there is varying to little 
availability of user preferences and similarity data. In a large dataset, when new users 
are introduced to the RS or a user has rated one to ten movies, User-User CF using the 
Log Likelihood similarity is the most accurate algorithm. However, if a user has only 
rated one movie, this algorithm is only able to cover around 45 percent of 
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recommendations. Furthermore, User-User CF with Pearson similarity is not able to 
make any recommendations if a user has rated only one movie. This raises questions in 
the implementation of RSs; some algorithms are more accurate, but may have little to no 
coverage. Other algorithms evaluated in the increment experiment such as Item-Item 
CF with both Log Likelihood and Pearson similarity achieved at least 94 percent 
coverage after a user rates only one movie. For RSs that are attempting to recommend 
to new users, our results suggest alternating algorithms according to the amount of 
ratings a user has submitted to the RS. Item-Item CF with Log Likelihood may be the 
best algorithm for users with smaller amounts of preferences while they are still 
building their “profile” of movie ratings. After a user has rated enough movies and the 
RS is able to make more recommendations, User-User CF with Log Likelihood could be 
utilized to make more accurate recommendations. 

 
Increasing Surrounding Non-Target User Preference Data Improves Accuracy 
and Coverage 
 

With our final experiment, we isolated a RS so that only non-target user data was 
incrementally added, providing a picture of how recommendation for users improves 
as a dataset increases in preference content around them. We found that User-User CF 
with Pearson similarity was the most accurate algorithm, but the Item-Item CF 
algorithms achieved much higher coverage. With only 100,000 movie ratings out of a 
large data set, it is reasonable that a RS has difficulty finding similar user 
neighborhoods. This allows us to conclude that in a small or growing dataset, it may be 
necessary to utilize Item-Item CF, despite its lower accuracy in some cases, in order to 
ensure that users have a positive user experience with a RS that is actually able to make 
movie recommendations. Perhaps users who have rated more movies, or once the data 
model reaches a certain size, the RS can utilize the more accurate User-User CF 
algorithms. It is important to consider our previous results in overall dataset size that 
showed Item-Item CF performs the best with larger dataset sizes. This experiment is 
specific to smaller dataset sizes where non-target “surrounding” preference content is 
increasing. 
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Evaluation Is Only Part Of The Bigger Picture 

These results raise critical issues of evaluating a RS but do not necessarily 
provide a realistic evaluation of implementing a RS in production. As a RS’s dataset 
grows and new users join the system and add new movie ratings, constraints such as 
speed and scale need to be considered. Which algorithms are able to provide 
recommendations while not interrupting the user experience with slow responses? How 
can we provide accurate and helpful recommendations while still meeting this 
requirement of a positive user experience? This next section discusses these constraints 
of implementing a RS as a web service.  

 
 
3  IMPLEMENTING A RECOMMENDER SYSTEM AS A 
    WEB SERVICE 
 

 

Because the Apache Mahout project is a RS library, it can be used within other 
applications. This section of the thesis explores exposing Mahout as a web service using 
commonly implemented concepts including Service Oriented Architecture and RESTful 
Web Services. 
 

3.1 Service Oriented Architecture 

Service Oriented Architecture (SOA) is a method of organizing software systems 
so that there are an “interconnected set of services” that are accessible and able to 
communicate through “standard interfaces and messaging protocols”. SOA is 
commonly implemented with a Service Provider that readily provides services and a 
Service Client that make requests to a service provided by a Service Provider. There is 
also a Service Registry that provides a description of the available services from a 
Service Provider to a Service Client. SOA focuses on designing services that maintain 
properties such as interoperability and loose coupling so that other applications can 
easily communicate with these services over common interfaces, regardless of the 
client’s implementing technologies, while remaining decoupled from each other so that 
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the service provider and service client do not need to understand what the other is 
doing [23]. 

 
 
3.2 RESTful Web Services 
 

A web service is a modular application, or Service Provider, that provides an 
interface by which Service Clients can retrieve application data through requests that 
are made through the Web [24]. REST, which stands for Representational State Transfer, 
is a network based application architectural style that places constraints on how 
elements of data can be requested and provided [25]. Therefore, a RESTful Web Service 
exposes web services that are available according to constraints imposed by a RESTful 
interface. We focus on exploring and implementing three of the main constraints of a 
RESTful interface including a client-server relationship, stateless communication, and a 
uniform interface. 
 

3.2.1 Client-Server 

The client-server constraint is based on a system architecture that is composed of 
two components: a server and a client. The server exposes services by listening to 
requests while clients make requests to this server to access these services. The server 
then responds accordingly, perhaps with the client’s desired data from the web service 
or an error message if the request could not be completed [24, 25]. This architecture is a 
powerful constraint on RESTful Web Services because it decouples the server logic from 
the client; the server can focus on scaling independently and communicating with back 
end services such as databases while the client can focus on the user interface and 
application aesthetics. 
 
 
3.2.1 Stateless Communication 
 

The stateless constraint on communication between clients and servers 
guarantees that every request made by the client contains all of the application session 
state data, such as user information, required for the server to process the request and 
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respond. The server does not contain any context of this session state data, requiring the 
client to be responsible for maintaining state. This constraint on RESTful Web Services 
inherently provides “properties of visibility, reliability, and scalability” [24]. Every 
request provides all of the necessary data for the server’s service to process the response 
and make a request often without the need of additional data retrieved internally by the 
service through other services. Each request ensures a high level of reliability since the 
design ensures all necessary request information is provided by each single request. For 
example, if there is a web service failure during an interaction between the client and 
server, the system knows that it can repeat the request since all of the data is 
encapsulated by the request. Lastly, a RESTful Web Service is independent of 
application state data, meaning it is not responsible for maintaining state across 
requests. The web service logic can assume that before and after every request, it does 
not need to concern itself with the context and state of past requests. This allows the 
server to “free resources” between requests and also provides for simpler distributed 
capabilities, since state would not need to be distributed [24, 25]. 

 
3.2.2 Uniform Interface 
 

Lastly, the interactions between clients and servers in a RESTful web service 
occur over a uniform interface. This uniform interface revolves around components 
known as Uniform Resource Identifiers (URIs), Resources, Representations, and 
Hypertext Constraint that are involved in the communication process between a client 
and a server. A URI “is an identifier of a resource” to which a client can send requests 
and expect a response indicating the request’s status. The Resource is the service with 
which the client is attempting to communicate. A Representation is an “encapsulation 
of the information (state, data, or markup) of the resource” such as a JSON request or 
response that contains resource information. Clients communicate with servers by using 
the Hypertext Transfer Protocol (HTTP) to submit requests to Resources and expect 
Representations as responses. Lastly, each response from a server to a client “represents 
the state of the [client’s] interaction within the application”. This concept, known as the 
Hypermedia Constraint, implies the server’s response causes an altered client state and 
is indicative of the lack of state data in a request and response [26]. 
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3.3 Web Service Environment 

In order to build an environment in which a RS can be exposed as a web service, 
this thesis leveraged popular open source technologies including Java, Grizzly, Jersey’s 
implementation of JAX-RS, Codahale Metrics, SLF4J, Apache Mahout, and MySQL (see 
Appendix A for descriptions of these technologies). 

Within a Grizzly container, we use Jersey to provide RESTful web services in 
resource classes that are able to provide recommendations using the Apache Mahout 
library and underlying MySQL database with the MovieLens dataset [17] to 
recommend movies from a MySQL database (see Figure 3.1). 

 
Figure 3.1 In the diagram above, we see the process of a client making an HTTP request to a web 
service through a RESTful interface. The web service uses a recommender system that leverages Apache 
Mahout and a MySQL database instance. 
 

3.4 Experiments, Results, and Discussion 

The following experiment uses the architecture described in Section 4.1. The web 
service application was run on an Amazon C3.Large Elastic Compute Cloud and uses 
an Amazon DB.M3.Medium Relational Database with MySQL. 
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3.4.1 Improving Recommendation Response Time 
 

In order to simulate a web service that is handling requests from users using a 
movie recommendation application, we used Apache JMeter to simulate 1,000 users by 
making HTTP requests every second. JMeter ramps up users incrementally, so every 
second a new user makes an HTTP request until 1,000 users have made requests for 
movie recommendations. The resources available as web services are shown in Table 
3.1. 
 
Table 3.1 Resource URI’s that represent web services that provide recommendations using varying 
Mahout API’s. 
 

Resource URI 

/ii/file/similarity/pearson 

/ii/file/similarity/loglikelihood 

/ii/db/similarity/pearson 

/ii/db/similarity/loglikelihood 

/uu/file/similarity/pearson 

/uu/file/similarity/loglikelihood 

/uu/db/similarity/pearson 

/uu/db/similarity/loglikelihood 
 

Each URI represents a different manner by which recommendations are made. 
All URI’s that contain file use a file as a data model that contains user preferences and 
uses standard Mahout API’s to make recommendations. All URI’s that contain db use a 
database as the data model but also leverage efficient Mahout caching API’s that cache 
user neighborhoods, item similarities, and item-item and user-user recommenders. 
These web services focus on bringing recommendation data such as user preferences in 
memory for faster recommendation and responses to HTTP requests. One API in 
particular reloads data from a database into memory and also allows the data model to 
be refreshed so new preference data can be taken into consideration. 
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3.4.1 Results 

Response Times For 1,000 Unique Clients 

Table 3.2 Shows the performance of algorithms with varying data models. All algorithms labeled with 
DB used a database as a data model and also utilized Mahout’s API’s. All algorithms labeled with File 
used a File as a data model and did not utilize Mahout’s caching API’s. 
 

RS Algorithm and Data Model Median Response Time 
(Milliseconds) 

Mean Response Time 
(Milliseconds) 

UU DB Pearson 76 79 
UU DB Log Likelihood 215 250 

II DB Pearson 3434 5614 
II DB Log Likelihood 3691 5888 

UU File Pearson 4325 4470 
UU File Log Likelihood 5000 5195 

II File Pearson 18082 13835 
II File Log Likelihood 11582 15161 

 
Chart 3.1 Reflects the Median Response time in Table 3.2. 
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Chart 3.2 Reflects the Mean Response time in Table 3.2. 

 

Response Times For One Unique Client 

Table 3.3 Represents the Median and Mean Response times for one unique client that makes 1,000 
HTTP requests to a web service client. 
 

RS Algorithm Median Response Time 
(Milliseconds) 

Mean Response Time 
(Milliseconds) 

UU Pearson 43 45 

UU Log Likelihood 22 25 

II Pearson 19 49 

II Log Likelihood 17 42 
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Chart 3.3 Reflects Median Response times from Table 3.3 

 

Chart 3.4 Reflects Mean Response times from Table 3.3. 
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3.4.1 Discussion 

 In our first experiment, we found that the typical response time for User-User DB 
Pearson was the fastest while the typical response time for Item-Item File Pearson was 
the slowest. In the second experiment, however, we found that both Item-Item 
algorithms provided the fastest recommendation response times. In the second 
experiment, User-User DB Pearson had double the response times of other Item-Item 
algorithms. 
 Our first simulation of 1,000 unique clients requesting recommendations 
represents the behavior of a RS that is being accessed by many different users at once. In 
some cases this may be unrealistic since not all, or many different, users would be 
logged into a movie recommendation service at once. The second experiment simulates 
the repeated HTTP requests of one client. For example, a user may log into a movie 
recommendation web site and browse through the recommendations. This simulation 
shows how caching this data for one user results in much more acceptable response 
times as fast as around 17 milliseconds. 
 

3.4.2 Conclusions 

By utilizing Mahout API’s, the response times across all algorithms were 
significantly improved. In some cases, such as Item-Item Pearson, response time 
improved by around 20 percent. The Mahout API’s implemented in algorithms labeled 
with DB focused on caching data in memory for fast access. For example, we utilized 
API’s that provided a cached data model from a MySQL database, cached user and item 
similarity algorithms such as Pearson and Log Likelihood, cached user neighborhoods, 
cached item similarities, and even cached RSs. While recommendation accuracy is 
important to the success and user experience of a RS, if the recommendations take too 
long to be presented to a user, it can negatively affect a product or service. Therefore, it 
is important to cache data or provide faster access to data than repeated requests to a 
file or database storage of preference data. 
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4  FUTURE WORK 
 
 

4. Precomputing Item Similarities and Storing in Database 
While Item-Item CF algorithms ran slower than User-User CF algorithms in 

Experiment 4.3.1, Item-Item CF algorithms can be faster for data sets that have a much 
larger amount of users than items. Furthermore, the item similarities between items can 
be precomputed and stored in a database. This would allow more systems to easily 
access these precomputations when needed, rather than using memory. 
 

4.1 Improving CF Algorithms 
The Apache Mahout library is powerful because it provides baseline algorithms 

for effective CF algorithms. It also provides a framework and easy methods to introduce 
new recommendation algorithms. While exploring the Mahout APIs, we experimented 
with an Item Average Recommender that produces Top-N item recommendations 
based on overall rating averages across all items. In a simple experiment, we rescored 
items based on how many total ratings each item received. For example, if an item 
received an average rating of five stars, but only had two total ratings, this item would 
be “penalized” according to a pessimistic constant value. Items that may have a lower 
average, such as four stars, but have over 100 ratings, will not be penalized as much. In 
some experiments, this algorithm performed significantly better than the Item Average 
Recommender implemented in Mahout. 
 

4.2 Utilize Scalability of The Cloud 
While the web service prototype we present utilizes important architectural 

design decisions such as a RESTful interface, it does not offer true scaling capabilities. 
In order to utilize the scalability of the cloud, a RS web service would implement load 
balancing and have multiple EC2 and RDS instances that would be listening for and 
serving HTTP requests. This would improve web service performance, provide faster 
recommendations, and allow the RS to scale with an increasing number of users. 
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4.3 Distributed Recommender Systems 
The Apache Mahout library uses algorithms implemented by a popular open 

source project called Apache Hadoop. Hadoop is “software for reliable, scalable, 
distributed computing” that uses, for example, thousands of machines to complete 
computation. The benefit is that each machine uses its own local resources to complete 
these computations and is synchronized at the application level [27]. This could 
dramatically reduce computation times of tasks such as precomputing item-item 
similarities. 

In April, the Mahout project announced that it would not be accepting future 
algorithm implementations that utilize MapReduce, Hadoop’s “system for parallel 
processing of large data sets” [27]. Instead, Mahout will rely on a domain specific 
language for “linear algebraic operations” that will run on Apache Spark, another open 
source project that is an “engine for large-scale data processing” [28, 29]. 
 

A   WEB SERVICE IMPLEMENTATION APPENDIX 
 
 
 
A.1 Codahale Metrics Instrumentation 

When evaluating the performance of a web service, it is important to have a way 
of measuring metrics such as response time. We used a Java library called Codahale 
Metrics that “provides a powerful toolkit of ways to measure the behavior of critical 
components in your production environment” [30]. Specifically, we used a metric unit 
called a timer that measured response times each type of RS and similarity algorithm 
combination. 
 

A.2 Logging 

An important part of a RS prototype is logging debugging, error, and general 
information about the system. While logging provides various ways of monitoring the 
health of a system, it is also critical to instrumenting the code base and providing 
important data from which efficiency and behavior can be extracted. In order to 
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interface with other libraries such as Codahale Metrics for instrumentation, two logging 
libraries are used in the prototype: Simple Logging Facade for Java (SLF4J) and Log4J. 

SLF4J provides a facade design pattern that abstracts common logging 
frameworks. Different libraries utilize different logging frameworks such as 
java.util.logging or Log4J. SLF4J allows a developer to decide on the underlying logging 
framework at deployment while easily integrating with other libraries. This allows a 
developer to be unbound by library dependencies on multiple logging frameworks [31]. 

In the RS implementation, Apache’s Log4j 2 is used to log important events in 
the RS’s lifecycle as well as a way to record the instrumentation information provided 
by the Codahale Metrics library. Using XML, a system can configure default and class 
level logging behavior as well as establish appenders that record logging information. 
In this prototype, logging is recorded in text files [32]. 
 
A.3 Grizzly 

Grizzly is a Java framework that helps developers build scalable server 
applications that take advantage of powerful Java API’s such as NIO [33]. 
 

A.4 MySQL 

MySQL is an “Open Source SQL database management system, is developed, 
distributed, and supported by Oracle Corporation”. It provides a database management 
system with relational database structures and is “very fast, reliable, scalable, and easy 
to use” [34]. 
 
 

 
 
 
 
 
 

 



59 

References 
[1] N. Rastin and M. Zolghadri Jahromi, “Using content features to enhance 
performance of user-based collaborative filtering performance of user-based 
collaborative filtering,” Int. journal of artificial intelligence and applications, vol. 5, no. 1, 
pp. 53-62, Jan, 2014. 
 
[2] F. Ricci et al, “Introduction to Recommender Systems Handbook,” in Recommender 
Systems Handbook. New York: Springer, 2011, pp. 1-35.  
 
[3] J. Konstan and M. Ekstrand. (2014, September 3). “Introduction to Recommender 
Systems: Module 1-8” [Online lecture]. Available: 
https://www.coursera.org/course/recsys 
 
[4] J. Herlocker et al, “Evaluating collaborative filtering recommender systems, ” ACM 
Transactions on Information Systems (TOIS), vol. 22, no. 1, pp. 5-53, Jan, 2004. 
 
[5] B. Sarwar et al, “Item-based collaborative filtering recommendation algorithms,” in 
Proceedings of the 10th international conference on World Wide Web, New York, 2001, pp. 
285-295. 
 
[6] S. Owen et al, “Meet Apache Mahout,” in Mahout in Action. New York: Manning, 
2014, ch. 1, sec. 1-2, pp. 1-3. 
 
[7] The Apache Foundation. (2014, April 19). ItemAverageRecommender.java [Online]. 
Available: 
https://github.com/apache/mahout/blob/391cd431dc6b0f2ff1bcdae9f5420c710716b2d
4/mrlegacy/src/main/java/org/apache/mahout/cf/taste/impl/recommender/Item
AverageRecommender.java 
 
[8] The Apache Foundation. (2014, April 19). GenericUserBasedRecommender.java 
[Online]. Available: 
https://github.com/apache/mahout/blob/trunk/mrlegacy/src/main/java/org/apac
he/mahout/cf/taste/impl/recommender/GenericUserBasedRecommender.java 
 
[9] The Apache Foundation. (2014, April 19). GenericItemBasedRecommender.java 
[Online]. Available: 
https://github.com/apache/mahout/blob/trunk/mrlegacy/src/main/java/org/apac
he/mahout/cf/taste/impl/recommender/GenericItemBasedRecommender.java 
 
[10] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York: 
Manning, 2014, ch. 4, sec. 1-2, pp. 43-45. 
 
[11] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York: 
Manning, 2014, ch. 4, sec. 4, pp. 56-59. 
 
[12] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York: 
Manning, 2014, ch. 4, sec. 3, pp. 48. 



60 

 
[13] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York: 
Manning, 2014, ch. 4, sec. 3, pp. 50. 
 
[14] T. Dunning. (2007, March 21). Surprise and Coincidence [Online]. Available: 
http://tdunning.blogspot.com/2008/03/surprise-and-coincidence.html 

[15] T. Dunning, “Accurate methods for the statistics of surprise and coincidence,” 
Comput. Linguist, vol. 19, no. 1, pp. 61-74, Mar, 2003. 
 
[16] S. Owen et al, “Making Recommendations,” in Mahout in Action. New York: 
Manning, 2014, ch. 4, sec. 4, pp. 55. 
 
[17] G. Lens. (2014). MovieLens [Online]. Available: 
http://grouplens.org/datasets/movielens 
 
[18] C. Aggarwal et al, “Horting hatches an egg: A new graph-theoretic approach to 
collaborative filtering,” in Proceedings of the fifth ACM SIGKDD international conference on 
Knowledge discovery and data mining, New York, NY, 1999, pp. 201-212. 
 
[19] J. Leskovec et al, “Recommender Systems,” in Mining of Massive Datasets, 2nd ed. 
New York: Cambridge University Press, 2011, ch. 9, sec. 9.4.2, pp. 327.  
 
[20] N. Good et al, “Combining collaborative filtering with personal agents for better 
recommendations” in Proceedings of the sixteenth national conference on Artificial 
intelligence and the eleventh Innovative applications of artificial intelligence conference 
innovative applications of artificial intelligence (AAAI '99/IAAI '99), Meno Park, CA, 1999, 
pp.439-446. 
 
[21] Netflix. (2014). Netflix Prize: View Leaderboard [Online]. Available: 
http://www.netflixprize.com/leaderboard 
 
[22] X. Lam et al., “Addressing cold-start problem in recommendation systems,” in 
Proceedings of the 2nd international conference on Ubiquitous information management and 
communication, New York, NY, 2008, pp. 208-211. 
 
[23] M. Papazoglou, “Service-oriented computing: Concepts, characteristics and 
directions,” in Web Information Systems Engineering, Rome, Italy, 2003, pp. 3-12. 
 
[24]  J. Rao and X. Su, “A survey of automated web service composition methods,” in 
Proceedings of the First international conference on Semantic Web Services and Web Process 
Composition, San Diego, CA, 2004, pp. 43-54. 
 
[25] R. Fielding, “Architectural styles and the design of network-based software 
architectures,” Ph.D. Dissertation, Inform. and Comput. Sci., Univ. of California, Irvine, 
CA, 2000. 
 



61 

[26] S. Allamaraju, “Appendix Overview of REST,” in RESTful Web Services Cookbook, 
Sebastopol, CA: O’Reilly Media / Yahoo Press, 2010, ch. B, pp. 261-263.  

[27] The Apache Software Foundation. (2014, April 10). Welcome to Apache™ 
Hadoop®! [Online]. Available: http://www.hadoop.apache.org/  

[28] The Apache Software Foundation. (2014, April 25). What is Apache Mahout? 
 [Online]. Available: https://mahout.apache.org/ 

[29] The Apache Software Foundation. (2014, April 9). Spark: Lightning Fast Cluster 
Computing 
 [Online]. Available: http://spark.apache.org/ 
 
[30] C. Hale and Y. Inc (2014). Metrics: Mind the Gap [Online]. Available: 
http://metrics.codahale.com 

[31] QOS.ch (2014). Simple Logging Facade for Java (SLF4J) [Online]. Available: 
http://www.slf4j.org/ 
 

[32] The Apache Software Foundation (2014). Apache Log4j 2 [Online]. Available: 
http://logging.apache.org/log4j/2.x/ 

 
[33] Project Grizzly (2014, January 24). Project Grizzly: NIO Event Development 
Simplified [Online]. Available: https://grizzly.java.net/ 
 
[34] Oracle (2014). What is MySQL? [Online]. Available: 
http://dev.mysql.com/doc/refman/4.1/en/what-is-mysql.html 


