
WEB 2.0 AND COMMUNICATION IN

NONPROFIT ORGANIZATIONS:
A Case Study and Proof of Concep!

William Clerico

clericow@bc.edu

Boston College

Computer Science Department

Senior Thesis

Advisor: William Ames

ameswi@bc.edu

Web 2.0 and Communication in NonPro"t Organizations# 1

mailto:clericow@bc.edu
mailto:clericow@bc.edu

TABLE OF CONTENTS

Forward! 3

Chapter 1: The Opportunity! 5

Chapter 2: Web 2.0! 9

Chapter 3: The Shortcomings of the Web! 11

Chapter 4: Ruby on Rails! 14

Chapter 5: The Application! 16

Conclusion! 21

Bibliography! 22

Code Appendix! 23

Web 2.0 and Communication in NonPro"t Organizations! 2

FORWARD

Dedication
! The list of people to thank for their help with this thesis is far too long to be all en"

compassed here, but I will attempt to mention a few.

Professor Ames " Your bravery in agreeing to advise a thesis on a technology which neither

of us knew anything about " as well as your regular input and technical support " were in"

valuable. Thanks for keeping me on task while still being #exible and understanding.

Professor Gallaugher " The insights I gained into technology strategy in your courses

shaped the way I approached this thesis, and helped me analyze the exact needs of the or"
ganization.

Hugh Drummond " Your insight into the American Red Cross$s use of the Internet was

some of the most realistic advice that I received throughout this whole process and pro"

vided a great foundation for the rest of my research.

John Solman " The desire that you express to improve the operations of the Red Cross and
the time you commit to doing so are inspiring. Thanks for your advice, time, and e%ort.

Mike Klau & the Monday Night Team " Mike, the passion and regularity with which you

serve others is inspiring, and your charismatic style of leadership is unrivaled. My four

years on your team have shaped the way I view volunteering and non"pro&ts in general "

not merely as a result of your leadership, but also through my interactions with the team
members.

Mom & Dad " Thanks for putting a roof over my head and taking care of me when I had

to come home to meet deadlines. Your support and love is what sustains me.

Jen Kaye & Becca LaPlante " The late night entertainment and motivation that you both

provided in the study lounge is a large part of the reason why I$m not still writing this the"
sis right now. Sorry about all the swearing.

Je%, Tyler, Nick, & Bagley " Though I would have had much more time to work on this

without your distractions, I can$t help but say thanks for how much fun you made my sen"

ior year, and how sane you kept me during my all nighters.

Web 2.0 and Communication in NonPro"t Organizations! 3

Why this topic?
! In high school, volunteerism was something that everyone did; a necessary part of
getting into a good college. Once in college, however, it took on a much more elective role.

I was fortunate enough to give it a try, and ended up becoming a regular volunteer with the

Disaster Services department of the American Red Cross of Massachusetts Bay.

! Coordinating a team of volunteers is a di'cult challenge in any activity, but espe"

cially so in disaster services when time and information are of the essence. As I took on
more responsibility, eventually becoming a team leader, I became frustrated by various prob"

lems involving communication and record keeping " problems that I felt could be easily

solved through the application of technology.

! This thesis is by no means a complete application or complete exploration of the

possibilities, it is merely an attempt to address some of the issues and show how technology
can be used to solve them.

Web 2.0 and Communication in NonPro"t Organizations! 4

CHAPTER 1: THE OPPORTUNITY
The Non Pro"t Sector#s $100 Bi%ion Opportunity

Sector Introduction
! The nonpro&t sector is a large piece of the U.S. economy with tremendous growth.
There are 1.5 million di%erent organizations with revenues of (670 billion annually. 109 mil"

lion Americans volunteer each year.1 With such large amounts of money #owing through

these organizations each year, there has been several studies looking at the e'ciencies with

which they operate.

! In 2003, the Harvard Business Review published a comprehensive study of the non"
pro&t sector, speci&cally the largest 200,000 organizations which have revenue of more

than (25,000 every year.2 They identi&ed &ve major areas for improvement:

1. Reduce funding costs

2. Distribute holdings faster

3. Reduce program service costs

4. Trim administrative costs

5. Improve sector e%ectiveness

! The authors of the article made several suggestions about how to improve these

various areas, even brushing upon the topic of technology by way of online solicitation do"

nation. However, they also mentioned the di'culties of improving e'ciency without sig"
ni&cant time and capital investment. It is also di'cult to talk in the general sense about the

application of technology when the scope of nonpro&t organizations is so broad and so var"

ied.

The American Red Cross
! The American Red Cross is a national organization that o%ers services in six areas:

domestic disaster relief; community services that help the needy; support and comfort to
military members and their families; the collection, processing and distribution of lifesaving

blood and blood products; educational programs that promote health and safety; and inter"

Web 2.0 and Communication in NonPro"t Organizations! 5

1)What You Should Know About Nonpro&ts*. National Center for Nonpro&t Boards & Independent Sector.

2 Bill Bradley, Paul Jansen, and Les Silverman.)The NonPro&t Sector$s (100 Billion Opportunity*. The Harvard Business
Review, May 2003.

national relief and development programs.3 Nationally, they have over one million volun"
teers and 35,000 employees spread across 800 chapters. They assist the victims of over

70,000 disasters every year, and pride themselves upon the fact that 91 cents out of every

dollar they spend is spent directly on services and programs. They are completely donor

funded.

! The case study presented here focuses exclusively on the Massachusetts Bay chapter,
the seventh largest chapter in the nation.4 The information gathered comes from personal

observation while working within the chapter, or from interviews conducted with employ"

ees and volunteers.

! As previously mentioned, the American Red Cross provides six di%erence categories

of service. Since the vast majority of my experience is within the Disaster Services depart"
ment, that is what I focused my research upon, though some of the people interviewed do

work across all six service areas. The Disaster Services department in the Massachusetts

Bay chapter is one of the chapter$s busiest departments, and is also its most fragmented. In

2006, the department responded to 396 local disasters, assisting 2,324 people, and providing

(400,000 in &nancial assistance. In addition, the department educated 61,759 people
through community outreach. The department responds primarily to house &res, providing

emergency money, food, clothing, and shelter to those displaced by disaster. The depart"

ment is on call 24 hours a day, 7 days a week, 365 days a year, and averages more than one re"

sponse per day.

! I interviewed Hugh Drummond, director of external relations, about their website
+http://www.bostonredcross.org,. A company that subsequently went bankrupt developed

the site in 2001 pro bono. The site has minimal interactivity, and consists of standard

HTML and Javascript. Hugh listed the purposes of the site:

• Communicate information

• Internally

• Externally

• Media

• Emergency partners

• Public

• Recruit Volunteers

Web 2.0 and Communication in NonPro"t Organizations! 6

3)About Us*. American Red Cross. http://www.redcross.org/aboutus

4)Monday Night Team*. American Red Cross. http://www.arcmb.org

http://www.bostonredcross.org
http://www.bostonredcross.org
http://www.arcmb.org
http://www.arcmb.org

• Solicit Donations

• Enroll students in classes

• Allow products to be purchased

! Ideally, Hugh said, the site would be customizable by audience and speed collection

and dissemination of information in manner which could be easily updated. He pointed to

other chapters of the Red Cross which had e%ective websites, and also pointed to Presiden"
tial campaigns as e%ective users of the web medium to accomplish fundraising and commu"

nication goals.

! The site is also the victim of a structural challenge at the Red Cross. Since Hugh is

the sole person in the public relations department, it is tough for him to dedicate enough

time to the site to keep it fresh, especially if technical aptitude is required. The majority of
nonpro&ts simply do not have the manpower or &nancial resources to appoint full"time

webmasters to maintain their web presence.

! Another weakness that I observed in the Massachusetts Bay chapter$s web strategy

was the lack of extensibility. Several volunteers had built various sites separate from the

main chapter$s site to log hours and keep track of team schedules, but these sites did not in"
tegrate with the chapter$s main web presence. This lack of oversight worried many, as the

reputation of the Red Cross is one of its greatest assets, and as scandals have shown, very

vulnerable. Also, some teams had built sites to house team photos and stories. This infor"

mation would be much more valuable as a donation solicitation tool if it were on the site

that donors visited.

! While my interview with Hugh focused on his current use of the web, my interviews

with John and Mike, both &eld workers, focused on what tools would help them do their

jobs more e%ectively. Both of them shared their techniques for record keeping, which con"

sisted of a mixture between Microsoft Excel and paper records. When asked what sort of

functionality would be most useful, they provided the following answers:

1. Searchable team rosters

2. Simpli&ed contact information

3. Mapping & direction capability

4. Automatic paging & noti&cation

5. Scheduling

Web 2.0 and Communication in NonPro"t Organizations! 7

! John, a recent appointee to the position of North Zone manager, had scheduled ap"
pointments with every team leader +of which there are more than ten, in order to gather the

most updated rosters. For a volunteer who also works full"time as a pediatric nurse, this is a

tremendous expense of e%ort and time, not to mention the additional labor of consolidating

this information and keeping it updated. Also, as the information is passed along and ma"

nipulated, the chances for error are compounded. These factors all combine to result in a
&nal product which is outdated, labor"intensive, and unreliable. I immediately identi&ed

this dilemma as one easily solved by web technology.

! Being a team leader who hails from New Jersey, I constantly found myself unable to

visualize the 127 towns and cities that the Massachusetts Bay chapter serves. It was not as

simple as plotting the route from my location to the disaster I was responding to " there
were many factors which had to be considered, including the location of disaster vehicles

and equipment, the location of other volunteers, my location, and the location of the disas"

ter. Typically, when I received a call, it took me 10"15 minutes to plan what I was going to do

before I began calling people. This was due to my lack of familiarity with the geography of

eastern Massachusetts and directly impacted my team$s response time to a disaster, which is
a metric measured and recorded by the American Red Cross. Prolonged response time leads

to lengthier responses, which can result in the need for a second team to be on call and re"

spond in the event of a second emergency. Supporting and equipping a second team re"

quires further expense and e%ort, and is redundant if the &rst team can quickly and nimbly

respond.

Web 2.0 and Communication in NonPro"t Organizations! 8

CHAPTER 2: WEB 2.0
The potential o&ered by the new web

An Internet platform
! During our interview, Hugh indicated the lack of an adequate IT department as one
of the major factors behind the Massachusetts Bay chapter$s antiquated use of technology.

There simply wasn$t enough manpower and money to maintain complicated applications or

to train sta% and volunteers on how to use them. Any application, he said, would have to be

simple enough not to require training, and be hosted in such a way that required minimal

maintenance by the chapter$s sta%.

! These needs are easily met by the use of the Internet as a platform. Web"based ap"

plications, or)software as a service* have grown tremendously popular in the presence of

inexpensive bandwidth and pervasive Internet connectivity. In fact, it is projected that IT

spending on software as a service +SaaS, will reach (10.7 billion in 2009.5 The model here is

simple " instead of purchasing applications and installing them locally on desktops or serv"
ers, companies or organizations pay a monthly or yearly fee for access to a web site. In fact,

there are many SaaS tools which already exist for nonpro&t organizations as plugins to the

popular Salesforce.com software. However, extending this software requires added com"

plexity, and the cost for access is upwards of (1000 for only &ve licenses.6 This model is

simply too cost prohibitive for an organization like the American Red Cross, which enlists
the help of thousands of employees and volunteers.

! One drawback on the use of the Internet as a platform is that access to the software

can be completely cuto% in the event that data connectivity is compromised. This must be

a serious consideration for all organizations, especially those that provide disaster and emer"

gency services. This risk can be mitigated by the appropriate use of power & network
backup equipment.

Applications built around data
! The 20th century approach to e'cient record keeping was a well"designed Microsoft

Excel spreadsheet. But in the age of the web, much more information must be collaborated,

and the expectation is that it is done with higher accuracy and speed. The practice of email"

ing spreadsheets is simply obsolete and ine'cient.

Web 2.0 and Communication in NonPro"t Organizations! 9

5 Eric Knoor, Leon Erlanger, and James R. Borck.)A &eld guide to software as a service*. InfoWorld. 4/18/05.

6)CRM Software Leader*. Salesforce.com. http://www.salesforce.com

http://www.salesforce.com
http://www.salesforce.com

! The concept of Web 2.0 is founded upon the idea that applications should not only
be web"based, but also share a common copy of data which is shared and manipulated by

various clients. This model is a good &t for the fragmented nature of Disaster Services,

where many users in many di%erent locations need to access a common, updated copy of

information. The code written by the programmer is merely an intermediary that controls

presentation and regulates integrity. It sits between the end user and the information that
he or she seeks.

Harnessing collective intelligence
! The advantage of such data"centric applications is that the information that can be

gathered from them is far more accurate and far"reaching than what could be gathered from

a highly distributed application. With more data in one place, it is easier to produce corre"

lated reports and to provide greater visibility into the wisdom that the organization already
has.

! An example of a process at the American Red Cross of Massachusetts Bay which

could stand to bene&t from harnessing collective intelligence is hours reporting. The Red

Cross receives a large amount of its funding from the United Way, which pays the Red Cross

a #at amount for each hour that a volunteer works. In order to receive this funding, the Red
Cross must document all of the hours that volunteers spend working. There are processes

which collect this from paperwork &led after incidents, but there are also a large amount of

)non on the scene* hours which must get reported. These hours include attendance at

meetings, administrative work, and planning. Currently, these are gathered by way of a

monthly email which goes out to all volunteers, and a sta% member is tasked with gathering
the responses and reporting them properly.

! While this task is critical to the funding of the Red Cross, it is also a waste of the

sta%$s time. If there was a web"based medium through which to report hours, these reports

could be consolidated and created automatically, freeing the sta% up to do less mechanical

tasks. In addition to being less time consuming, the quality of the report would also be en"
hanced, with less chance for error or omission.

Web 2.0 and Communication in NonPro"t Organizations! 10

CHAPTER 3: THE SHORTCOMINGS

OF THE WEB
PHP, JSP, ASP, and the di'culties they presen(

PHP
! During the initial phases of my research, I was searching for various tools with which

to build the web application. Being as it is very popular and versatile, PHP was one of the
&rst technologies I worked with. I built a simple sample application to test its capabilities.

! I created an HTML form that fed comments from and information about a user into

a database using PHP. The basic architecture was an html form, with a PHP form handler.

The form handler established a connection to the database +csweblab.bc.edu, - wrote the

data to a table +)feedback*, and then closed the connection using SQL.

SQL statement to create table:

CREATE TABLE feedback +comment_id MEDIUMINT UNSIGNED NOT NULL

AUTO_INCREMENT, name VARCHAR+20, NOT NULL, email VARCHAR+50,, gender

varchar +1, NOT NULL, role varchar+1,, comments varchar+500,, PRIMARY KEY +com"

ment_id,,

Issues encountered:

• Tedious data checking is required to protect the integrity of the database

• Tedious technical troubleshooting

• Long development timeline

• Not easily scalable

Advantages:

• Popular & well known language

• Requires no special software besides a web server

• Easily modi&able

! I encountered a multitude of technical issues when I was writing in PHP since I was
designing the application from scratch. It was very easy to have errors in my SQL queries,

and I realize that users could easily wreck my database by improperly answering the form.

In production, I would have to use javascript or PHP to do more extensive error checking.

While I listed one of the advantages of PHP as not requiring special software, I also en"

Web 2.0 and Communication in NonPro"t Organizations! 11

countered errors with a di%erence in PHP versions, resulting in outdated password hashes
and other di'culties when connecting to the database.

! On the whole, PHP is a very powerful low"level web programming language. How"

ever, due to the time constraints of IT departments in the nonpro&t sector, I decided that it

would not be the best choice for development. Since the functionality that was required by

my application design did not require any great degree of complexity, just high level data or"
ganization, I decided upon another technology.

Active Server Pages
! Active Server Pages, or ASP, is Microsoft$s engine for server side scripting.7 It is

highly object oriented, and provides a variety of methods and libraries for creating dynamic

web pages, including the use of technologies like Asynchronous Javascript And XML

+AJAX,, which is an important part of creating responsive web applications.

! However, ASP.NET is designed to be run on Microsoft Windows Server, and is obvi"

ously a commercial tool. There are open source products like InstantASP and ChiliASP

which can run ASP on Linux or other open source operating systems, but these tools must

be constantly updated, and can be di'cult for an unsophisticated IT department to

maintain.8 ASP also relies heavily on cookies, which can cause security problems and
browser incompatibility issues.

Java Server Pages
! Java Server Pages, or JSP, is Sun Microsystem$s solution for server side scripting. The

libraries are closed source, but it runs on free, open source software and relies upon the me"

chanics of the Java programming language, which is wildly popular. It is also platform inde"

pendent, meaning that it can be moved amongst multiple servers and machines and adapted
to whatever hardware is available. This is highly advantageous to organizations with limited

resources.

! However, developing websites in JSP is very labor intensive and very complex. There

is no simple way to manage objects in relation to the database, or at least not as simple a

method as other technologies. Since the high level abstraction of data is one of the central
tenets of the application, this is a rather large stumbling block.

Web 2.0 and Communication in NonPro"t Organizations! 12

7)The O'cial Microsoft ASP.NET 2.0 Site*. Microso) Corporation. http://www.asp.net

8)Introduction to Active Server Pages*. AHref.com. http://www.ahref.com/guides/technology/199806/0601buz.html

http://www.asp.net
http://www.asp.net
http://www.ahref.com/guides/technology/199806/0601buz.html%06
http://www.ahref.com/guides/technology/199806/0601buz.html%06

! Furthermore, JSP does not run on a standard web server. Instead, it must be run and
con&gured with specialized plugins. Since JSP is actually an extension of the Java servlet

API, it is released as part of the Java Enterprise Edition speci&cation. This adds an addi"

tional layer of complexity that novice Java developers may not be familiar with. It is also

hardware"intensive in that it requires a powerful server with lots of memory to work e'"

ciently.

Web 2.0 and Communication in NonPro"t Organizations! 13

CHAPTER 4: RUBY ON RAILS
A Web Application Framewor*

! In the end, I decided upon using Ruby on Rails +also known as RoR or Rails, to de"
velop my application. This was partially motivated by sel&sh reasons: Ruby on Rails devel"

opers are in high demand in the current Web 2.0 craze. However, there are strong reasons

for its popularity. RoR provides simple abstraction from the database, a host of tools to

simplify development, easy interoperability, and elegant object orientation.

! Ruby on Rails is open source, and enforces strict adherence to the Model"View"
Controller design pattern.

Principles
! The &rst tag"line of Ruby on Rails is)Don$t Repeat Yourself* +sometimes shortened

to DRY,. The idea behind this philosophy is that information in an application is located in

one place, where it can be accessed by all parts of the application that require that informa"

tion.

! The second guiding principle of Ruby on Rails is)Convention over Con&guration*.

This means that Ruby is)smart* enough to understand semantics in code, and provides a

variety of automatically generated methods and objects to help, all without being asked to

by the programmer. For example, Rails is smart enough to know that a table in the database

called)pro&les* will correspond with a class)pro&le*. Instead of coding all the methods
which go along with retrieving &elds from a database, packaging them into objects, and re"

lating these objects, one can simple use the methods and relationships which Rails auto"

matically provides.

! In the spirit of convention over con&guration, Rails also provides functionality

known as)sca%olding*. Sca%olding is a series of scripts included with the framework that
will create various default methods and views based solely upon the variables in a class. For

example, creating sca%olding on a sale object might create an rHTML view of the sale ob"

ject which displayed its price, description, quantity, and customer. It would also automati"

cally generate a view which provided the functionality to change these values.

Model " View " Controller
! Model " View " Controller +MVC, is a popular architecture for software design, and
the architecture around which Rails is designed. The idea behind MVC is that by separat"

Web 2.0 and Communication in NonPro"t Organizations! 14

ing an application into these three layers, applications can be easily designed and modi&ed.
Changes in one layer do not require sweeping changes in the other to keep the application

functional.

ActiveRecord
! ActiveRecord is the pattern by which Rails interfaces with the database. In fact,

throughout my entire programming experience with RoR, I never once had to write a SQL

query. ActiveRecord converts the Ruby classes that the programmer writes into SQL que"
ries, and manages the database directly. One merely calls class methods like)save* and)up"

date_attributes* in order to generate this SQL in the background. In addition to the sim"

pli&cation of code, this provides security bene&ts as well.

Security
! One of the major drawbacks of web"based applications is that they are physically

available for all to see and to exploit. An inexperienced web programmer can easily create a
site which leaves an entire network vulnerable to hacking, or exposes personal information

to the public. Therefore, while this project is not focused on security, it is still important to

be conscious of security when designing web applications.

! The most basic form of security on a web application is the authentication scheme.

Ruby on Rails makes this very simple; in my application I was able to implement SHA1
authentication with only a few lines of code. SHA1, while not completely unbreakable, is

widely accepted in the web community as a security standard.9 With only one additional

line of code, I locked down every method on every controller, requiring authentication be"

fore allowing the method to be called.

! There are a variety of attacks which web applications are vulnerable to: Cross"Site
Scripting, SQL injection, session forgery, bu%er over#ow, etc. However, a major advantage

of using Ruby on Rails, as opposed to PHP or other web languages, is the degree of insula"

tion that the framework provides the developer from the database and web server. The

methods and practices that are contained within RoR have been examined by the open

source community, and are relatively safe and secure.

Web 2.0 and Communication in NonPro"t Organizations! 15

9 Schneir, Bruce.)Cryptanalysis of SHA"1*. http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html

CHAPTER 5: THE APPLICATION
A proof of concept for volunteers

Login
! In this application, the &rst page a potential user is greeted with is the login view of
the login controller. This page interrogates the user for a username and password, and pro"

vides them the capability to create an account if they do not have one. After authenticating

their username and password using the SHA"1 encryption scheme, this controller stores the

user$s session ID for later use. This will be used to retrieve his or her pro&le by the portal

controller. The Login controller also provides views to create pro&les, and methods to con"
trol login and logout.

Portal
! The central piece of my application is the Portal Controller. This class manages

most of the interaction between the user and the database through its many views. It has

four main features:

1. Edit Pro&le

2. Search

3. Availability

4. Map

! These features are accessed by way of a layout"based menu. Any view or method in"

cluded within the portal controller is rendered by way of the portal menu. This conforms
with the Don$t Repeat Yourself Principle, in that all menu and layout design is done in one

place. See the layout code appendix portal.rhtml.

Screenshot of the index view displayed in portal layout.

Web 2.0 and Communication in NonPro"t Organizations! 16

! The index view will prompt the user to create a pro&le if that user does not have an
existing one. If not, it will simply display the user$s &rst name and availability status. This

could eventually be expanded to have messaging and alert functions.

! The availability method searches all existing pro&les and returns a list of pro&les

which indicate they are available along with the pro&le$s contact information.

Availability View

! The edit_pro&le view and corresponding controller method are one of the pivotal

pieces of this application. It is through this view that users can input the data which drives
the rest of the processes. The &rst, and most important, information is personal data and

contact information. The integrity and format of this data is enforced by regular expres"

sions in the pro&le model. For example, the email address is validated by the following

statement in pro&le.rb +See code appendix for more details,:

! validates_format_of :email,

! ! :with => .r/.+@.+0..+1i,

! ! :message =>)must be of the form name@domain.su'x.*

! The edit_pro&le view also provides the capability to store skills & certi&cations.

These will be used later in the search function.

! All of this information is written to the database by way of ActiveRecord. The con"
troller merely has to call Object.new and Object.save to create new objects and write them

to the database. To retrieve rows, Object.&nd is called, which can be passed a variety of

helpful attributes. Rather than write the SQL queries to create these tables, best RoR prac"

tice is to use a database migration. These migrations provide automatic versioning, along

Web 2.0 and Communication in NonPro"t Organizations! 17

mailto:name@domain.suffix
mailto:name@domain.suffix

with the capability to roll the database back to previous versions. See the migration code
appendix for more details.

Edit Pro"le view.

!

Web 2.0 and Communication in NonPro"t Organizations! 18

! The search view of the portal controller provides access to a series of calls to)&nd*
by the search method. This view allows searches by skill or by last name. After searching,

this method calls another view, search2&rst or search2last to display the results of the query.

Pro"le search view.

!

Web 2.0 and Communication in NonPro"t Organizations! 19

! One of the biggest issues facing the red cross was the issue of speeding up response
time, and one of the suggestions made was a visual representation of search data.

show_google_map view

! While there is much more functionality that this view could bene&t from +plotting

incidents, <ering results, etc.,, this exists as a proof of concept " that a geography based

display of volunteers can greatly assist with planning. The process to do this is somewhat
lengthy " one must apply for a Google Maps API key, and then write javascript to interface

with Google Maps. This javascript is dynamically generated by calls to ruby methods. Fur"

thermore, there is no API ability to map addresses " instead, addresses must be geocoded,

and the corresponding longitude and latitude sent to google to be placed on the map. This

geocoding can take a few seconds, so rather than geocoding each address every time the
map is requested, I geocode the addresses in the :edit_pro&le method and store these in the

database. This had a dramatic increase on performance.

Admin
! In addition to the portal controller, there also exists an admin controller, which is

designed to be used as a control panel for a site administrator to add and remove users. This

control panel is protected by the :authorize_as_admin method, which checks to make sure a
user is considered an administrator before permitting access.

Web 2.0 and Communication in NonPro"t Organizations! 20

CONCLUSION
! While this application is by no means a complete implementation of the needs and

desires expressed to me by those I interviewed in my case study, it is an attempt to illustrate
that these needs can be met through an elegant application of web programming. However,

solving these needs is not as simple as merely writing code; creative solutions must be de"

veloped to &nance, host, and sustain the development of this application. While the archi"

tectural underpinnings of Ruby on Rails make this simpler than if other technologies were

used, these di'culties still exist and must be addressed.

! By keeping with the design principles of Web 2.0: the use of the Internet as a plat"

form, data"centric programming, and harnessing collective intelligence " application design

can be more closely married with the problems that it is trying to solve. This marriage will

ultimately lead to an increase in e'ciency and e%ectiveness, and a decrease in cost.

Web 2.0 and Communication in NonPro"t Organizations! 21

BIBLIOGRAPHY

)A Second Century of Service: 2006 Annual Report*. The American Red Cross of Massachusetts Bay.
http://www.bostonredcross.org/your_red_cross/2006AnnualReport.&nal.pdf

)About Us*. American Red Cross. http://www.redcross.org/aboutus

Bill Bradley, Paul Jansen, and Les Silverman.)The NonPro&t Sector$s (100 Billion Opportunity*. The Harvard Business
Review, May 2003.

Drummond, Hugh. Director of External Relations, American Red Cross of Massachusetts Bay. Interview. 11/4/06.

Eric Knoor, Leon Erlanger, and James R. Borck.)A &eld guide to software as a service*. InfoWorld. 4/18/05.

Fowler, Chad. Rails Recipes. Raleigh: The Pragmatic Bookshelf, 2006.

Gatzke, Ludwig. Web 2.0 Graphic. http://#ickr.com/photos/stabilo"boss/

)Introduction to Active Server Pages*. AHref.com. http://www.ahref.com/guides/technology/199806/0601buz.html

Jacque Bughin and James Mayika.)How businesses are using Web 2.0: A McKinsey Global Survey*. The McKinsey Quar+
terly, 2007.

Klau, Michael. Team Leader, American Red Cross of Massachusetts Bay. Interview. 10/17/06.

)Locomotive: Ruby on Rails development done the Mac way*. http://locomotive.raaum.org

)Monday Night Team*. American Red Cross. http://www.arcmb.org

Orsini, Rob. Rails Cookbook. Cambridge: O$Reilly, 2007.

Schneir, Bruce.)Cryptanalysis of SHA"1*. http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html

Solman, John. North Zone Manager, American Red Cross of Massachusetts Bay. Interview. 3/20/07.

)CRM Software Leader*. Salesforce.com. http://www.salesforce.com

)The O'cial Microsoft ASP.NET 2.0 Site*. Microso) Corporation. http://www.asp.net

Thomas, Dave. Agile Web Development with Rails. Raleigh: The Pragmatic Bookshelf, 2006.

)Using Ruby on Rails for Web Development on Mac OS X*. Apple Developer Connection.
http://developer.apple.com/tools/rubyonrails.html : 6/8/06.

)What You Should Know About Nonpro&ts*. National Center for Nonpro&t Boards & Independent Sector.
http://www.independentsector.org.

Web 2.0 and Communication in NonPro"t Organizations! 22

http://flickr.com/photos/stabilo-boss/
http://flickr.com/photos/stabilo-boss/
http://locomotive.raaum.org
http://locomotive.raaum.org
http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
http://www.salesforce.com
http://www.salesforce.com
http://developer.apple.com/tools/rubyonrails.html
http://developer.apple.com/tools/rubyonrails.html
http://www.independentsector.org
http://www.independentsector.org

CODE APPENDIX

Web 2.0 and Communication in NonPro"t Organizations! 23

1 ! database.yml ! 2007-05-03 14:08 ! William Clerico

MySQL (default setup). Versions 4.1 and 5.0 are recommended.

#

Install the MySQL driver:

gem install mysql

On MacOS X:

gem install mysql -- --include=/usr/local/lib

On Windows:

There is no gem for Windows. Install mysql.so from RubyForApache.

http://rubyforge.org/projects/rubyforapache

#

And be sure to use new-style password hashing:

http://dev.mysql.com/doc/refman/5.0/en/old-client.html

development:

 adapter: mysql

 database: resources_development

 username: root

 password:

 host: localhost

Warning: The database defined as 'test' will be erased and

re-generated from your development database when you run 'rake'.

Do not set this db to the same as development or production.

test:

 adapter: mysql

 database: resources_test

 username: root

 password:

 host: localhost

production:

 adapter: mysql

 database: resources_production

 username: root

 password:

 host: localhost

1 ! admin_controller.rb ! 2007-05-03 14:08 ! William Clerico

class AdminController < ApplicationController

 before_filter :authorize

 def index

 list

 render :action => 'list'

 end

 # GETs should be safe (see http://www.w3.org/2001/tag/doc/whenToUseGet.html)

 verify :method => :post, :only => [:destroy, :create, :update],

 :redirect_to => { :action => :list }

 def list

 @profile_pages, @profiles = paginate :profiles, :per_page => 10

 end

 def show

 @profile = Profile.find(params[:id])

 end

 def new

 @profile = Profile.new

 end

 def create

 # @cart = Cart.new

 @profile = Profile.new(params[:profile])

 # @profile.cart = @cart

 if @profile.save

 flash[:notice] = 'Profile was successfully created.'

 redirect_to :action => 'list'

 else

 render :action => 'new'

 end

 end

 def edit

 @profile = Profile.find(params[:id])

 end

 def update

 @profile = Profile.find(params[:id])

 if @profile.update_attributes(params[:profile])

 flash[:notice] = 'Profile was successfully updated.'

 redirect_to :action => 'show', :id => @profile

 else

 render :action => 'edit'

 end

 end

 def destroy

 Profile.find(params[:id]).destroy

 redirect_to :action => 'list'

 end

end

1 ! application.rb ! 2007-05-03 14:09 ! William Clerico

Filters added to this controller will be run for all controllers in the application.

Likewise, all the methods added will be available for all controllers.

class ApplicationController < ActionController::Base

private

def authorize

unless User.find_by_id(session[:user_id])

session[:original_uri] = request.request_uri

flash[:notice] = "Please log in"

redirect_to(:controller => "login", :action => "login")

end

end

def authorizeadmin

@user = User.find_by_id(session[:user_id])

unless @user != nil and user.admin = 1

flash[:notice] = "You must be logged in as an administrator to access this

area."

redirect_to(:controller => "login", :action => "login")

end

end

end

1 ! login_controller.rb ! 2007-05-03 14:09 ! William Clerico

class LoginController < ApplicationController

before_filter :authorize, :except => [:login, :add_user]
 #before_filter :authorizeadmin, :except => [:login, :logout, :index]

 def add_user

 @user = User.new(params[:user])
 if request.post? and @user.save
 flash.now[:notice] = "User #{@user.name} created"
 redirect_to(:action => "login")
 @user = User.new
 end
 end

 def login
 session[:user_id] = nil
 if request.post?
 user = User.authenticate(params[:name], params[:password])
 if user
 session[:user_id] = user.id
 uri = session[:original_uri]
 session[:original_uri] = nil
 redirect_to(uri || { :controller => 'portal', :action => "index"})
 else
 flash[:notice] = "Invalid user/password combination"
 end
 end

 end

 def logout
 session[:user_id] = nil
 flash[:notice] = "Logged out"
 redirect_to(:action => "login")
 end

 def index
 end

 def delete_user

 user = User.find(params[:id])
 user.destroy

 redirect_to(:action => :list_users)
 end

 def list_users
 @all_users = User.find(:all)
 end
end

1 ! portal_controller.rb ! 2007-05-03 14:09 ! William Clerico

class PortalController < ApplicationController

 #require 'rubygems' # Unless you install from the tarball or zip.

 #require 'icalendar'

 #require 'date'

 #include Icalendar # Probably do this in your class to limit namespace overlap

 before_filter :authorize

 def index

 @currentuser = User.find_by_id(session[:user_id])

 @myprofile = Profile.find_by_id(@currentuser.profileid)

 #flash[:notice] = "Current user name: " + @currentuser.name.to_s + " Profile: " +

@currentuser.profileid.to_s

 end

 def find_user_id

 unless session[:user_id]

 session[:user_id] = Login.login

 end

 session[:user_id]

 end

 def availability

 @profiles = Profile.find_available

 @availprofiles = Profile.find_available

 @currentuser = User.find_by_id(session[:user_id])

 end

 def create

@profile = Profile.new(params[:profile])

 if @profile.save

 @user = User.find_by_id(session[:user_id])

 if @user.update_attribute(:profileid, @profile.id)

lookup_geocode(@profile.street_address)

 redirect_to :action => 'index'

 else

 flash[:notice] = "Error updating user. Please contact technical support."

 render :action => 'new'

 end

 else

 flash[:notice] = "Error saving profile. Please contact technical support."

 render :action => 'new'

 end

 end

 def edit_profile

 @user = User.find_by_id(session[:user_id])

 #flash[:notice] = "User id: " + @user.id.to_s + " Profile id: " + @user.profileid.to_s

 @profile = Profile.find_by_id(@user.profileid)

 @user.save

 end

 def update

 @profile = Profile.find(params[:id])

 if @profile.update_attributes(params[:profile])

 lookup_geocode(@profile.street_address)

 redirect_to :action => 'show', :id => @profile

2 ! portal_controller.rb ! 2007-05-03 14:09 ! William Clerico

 else

 flash[:notice] = "There was an error updating your profile."

 render :action => 'edit_profile'

 end

 end

 def show

 @profile = Profile.find(params[:id])

 end

 def display

 @profile = Profile.find(params[:od])

 end

 def new

 @profile = Profile.new

 end

 def search

 end

 def search2first

 @profiles = Profile.find(:all, :conditions=> params[:profile])

 end

 def search2last

 @profiles = Profile.find(:all, :conditions=> params[:profile])

 end

 def lookup_geocode(address)

@currentuser = User.find_by_id(session[:user_id])

@myprofile = Profile.find_by_id(@currentuser.profileid)

 geocode = get_geocode address

 # geo_code is now a hash with keys :latitude and :longitude

 # place these values back into our "database" (array of hashes)

 @myprofile.latitude = geocode[:latitude]

 @myprofile.longitude = geocode[:longitude]

 @myprofile.save

 end

 def show_google_map

 # all we're going to do is loop through the @places array on the page

 @currentuser = User.find_by_id(session[:user_id])

 @myprofile = Profile.find_by_id(@currentuser.profileid)

 @profiles = Profile.find_available

 end

 private

 def get_geocode(address)

 logger.debug 'starting geocoder call for address: '+address

 # this is where we call the geocoding web service

 server = XMLRPC::Client.new2('http://rpc.geocoder.us/service/xmlrpc')

 result = server.call2('geocode', address)

 logger.debug "Geocode call: "+result.inspect

 if result

 return {:success=> true, :latitude=> result[1][0]['lat'],

:longitude=> result[1][0]['long']}

3 ! portal_controller.rb ! 2007-05-03 14:09 ! William Clerico

else

flash[:notice] = "There was an error looking up your address for GeoCoding. Please

check it."

end

 end

end

1 ! profile.rb ! 2007-05-03 14:09 ! William Clerico

class Profile < ActiveRecord::Base

#attr_reader :id

def self.find_available

find_all_by_available(true)

end

validates_presence_of :first_name, :last_name, :phone_number, :email, :street_address

validates_format_of :email,

:with => %r{.+@.+\..+}i,

:message => "must be of the form name@domain.suffix."

validates_format_of :phone_number,

:with => %r{...-...-....}i,

:message => "must be of the form xxx-xxx-xxxx."

validates_format_of :street_address,

:with => %r{.+,.+,.+}i,

:message => "must be a proper address of the form: Street, City, State"

end

1 ! user.rb ! 2007-05-03 14:10 ! William Clerico

class User < ActiveRecord::Base

validates_presence_of :name

validates_uniqueness_of :name

attr_accessor :password_confirmation

validates_confirmation_of :password

def validate

errors.add_to_base("Missing password") if hashed_password.blank?

end

def password

@password

end

def password=(pwd)

@password = pwd

create_new_salt

self.hashed_password = User.encrypted_password(self.password, self.salt)

end

def prid

self.profileid

end

def prid=(pi)

self.profileid = pi

end

def aid

self.admin

end

def aid=(adid)

self.admin = adid

end

def self.authenticate(name, password)

user = self.find_by_name(name)

if user

expected_password = encrypted_password(password, user.salt)

if user.hashed_password != expected_password

user = nil

end

end

user

end

#clever active record trick - creates a finder even though we don't define a method

private

def self.encrypted_password(password, salt)

string_to_hash = password + "wibble" + salt

Digest::SHA1.hexdigest(string_to_hash)

end

def create_new_salt

self.salt = self.object_id.to_s + rand.to_s

2 ! user.rb ! 2007-05-03 14:10 ! William Clerico

end

end

1 ! _form.rhtml ! 2007-05-03 14:10 ! William Clerico

<%= error_messages_for 'profile' %>

<!--[form:profile]-->

<p><label for="profile_first_name">First name</label>

<%= text_field 'profile', 'first_name' %></p>

<p><label for="profile_last_name">Last name</label>

<%= text_field 'profile', 'last_name' %></p>

<p><label for="profile_phone_number">Phone number</label>

<%= text_field 'profile', 'phone_number' %></p>

<p><label for="profile_email">Email</label>

<%= text_field 'profile', 'email' %></p>

<p><label for="profile_street_address">Street address</label>

<%= text_field 'profile', 'street_address' %></p>

<p><label for="profile_available">Available</label>

<select id="profile_available" name="profile[available]"><option value="false">False</

option><option value="true">True</option></select></p>

<!--[eoform:profile]-->

1 ! edit.rhtml ! 2007-05-03 14:10 ! William Clerico

<h1>Editing profile</h1>

<%= start_form_tag :action => 'update', :id => @profile %>
 <%= render :partial => 'form' %>
 <%= submit_tag 'Edit' %>
<%= end_form_tag %>

<%= link_to 'Show', :action => 'show', :id => @profile %> |
<%= link_to 'Back', :action => 'list' %>

1 ! list.rhtml ! 2007-05-03 14:11 ! William Clerico

<h1>Listing profiles</h1>

<table>

 <tr>

 <% for column in Profile.content_columns %>

 <th><%= column.human_name %></th>

 <% end %>

 </tr>

<% for profile in @profiles %>

 <tr>

 <% for column in Profile.content_columns %>

 <td><%=h profile.send(column.name) %></td>

 <% end %>

 <td><%= link_to 'Show', :action => 'show', :id => profile %></td>

 <td><%= link_to 'Edit', :action => 'edit', :id => profile %></td>

 <td><%= link_to 'Destroy', { :action => 'destroy', :id => profile }, :confirm => 'Are

you sure?', :post => true %></td>

 </tr>

<% end %>

</table>

<%= link_to 'Previous page', { :page => @profile_pages.current.previous } if

@profile_pages.current.previous %>

<%= link_to 'Next page', { :page => @profile_pages.current.next } if

@profile_pages.current.next %>

<%= link_to 'New profile', :action => 'new' %>

1 ! new.rhtml ! 2007-05-03 14:12 ! William Clerico

<h1>New profile</h1>

<%= start_form_tag :action => 'create' %>

 <%= render :partial => 'form' %>

 <%= submit_tag "Create" %>

<%= end_form_tag %>

<%= link_to 'Back', :action => 'list' %>

1 ! show.rhtml ! 2007-05-03 14:12 ! William Clerico

<% for column in Profile.content_columns %>
<p>
 <%= column.human_name %>: <%=h @profile.send(column.name) %>
</p>
<% end %>

<%= link_to 'Edit', :action => 'edit', :id => @profile %> |
<%= link_to 'Back', :action => 'list' %>

1 ! admin.rhtml ! 2007-05-03 14:12 ! William Clerico

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!--
 ! Excerpted from "Agile Web Development with Rails, 2nd Ed."
 ! We make no guarantees that this code is fit for any purpose.
 ! Visit http://www.pragmaticprogrammer.com/titles/rails2 for more book information.
-->
<html>
<head>
 <title>Administration</title>
 <%= stylesheet_link_tag "scaffold", "depot", :media => "all" %>
</head>
<body id="admin">
 <div id="banner">
 <!---->
 <%= @page_title || "Administrator's Panel" %>
 </div>
 <div id="columns">
 <div id="side">
 <p>
 <!--<%= link_to "Products", :controller => 'admin', :action => 'list' %>-->
 </p>
 <p>
 <%= link_to "List users", :controller => 'login', :action => 'list_users' %>

 <%= link_to "Add user", :controller => 'login', :action => 'add_user' %>
 </p>
 <p>
 <%= link_to "Logout", :controller => 'login', :action => 'logout' %>
 </p>
 </div>
 <div id="main">
 <% if flash[:notice] -%>
 <div id="notice"><%= flash[:notice] %></div>
 <% end -%>
 <%= yield :layout %>
 </div>
 </div>
</body>
</html>

1 ! login.rhtml ! 2007-05-03 14:12 ! William Clerico

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhmtl1-transitional.dtd">

<html>

<head>

 <title>Login: <%= controller.action_name %></title>

 <%= stylesheet_link_tag 'scaffold', 'depot' %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>

</html>

1 ! portal.rhtml ! 2007-05-03 14:13 ! William Clerico

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!--
 ! Excerpted from "Agile Web Development with Rails, 2nd Ed."
 ! We make no guarantees that this code is fit for any purpose.
 ! Visit http://www.pragmaticprogrammer.com/titles/rails2 for more book information.
-->
<html>
<head>
 <title>Portal</title>
 <%= stylesheet_link_tag "scaffold", "depot", :media => "all" %>
</head>
<body id="admin">
 <div id="banner">
 <!---->
 <%= @page_title || "Welcome to the Volunteer Portal" %>
 </div>
 <div id="columns">
 <div id="side">
 <p>
 <%= link_to "Home", :controller => 'portal', :action => 'index' %>
 </p>
 <p>
 <%= link_to "Availability", :controller => 'portal', :action => 'availability' %>
 </p>
 <p>
 <%= link_to "Edit Profile", :controller => 'portal', :action => 'edit_profile' %>
 </p>
 <p>
 <%= link_to "Search", :controller => 'portal', :action => 'search' %>
 </p>
 <p>
 <%= link_to "Map", :controller => 'portal', :action => 'show_google_map' %>
 </p>
 <p>
 <%= link_to "Logout", :controller => 'login', :action => 'logout' %>
 </p>
 </div>
 <div id="main">
 <% if flash[:notice] -%>
 <div id="notice"><%= flash[:notice] %></div>
 <% end -%>
 <%= yield :layout %>
 </div>
 </div>
</body>
</html>

1 ! add_user.rhtml ! 2007-05-03 14:14 ! William Clerico

<div class="resources-form">
<%= error_messages_for 'user' %>

<fieldset>
<legend>Enter User Details</legend>

<% form_for :user do |form| %>
<p>

<label for="user_name">User Name:</label>
<%= form.text_field :name, :size =>40 %>

</p>

<p>
<label for="user_password">Password:</label>
<%= form.password_field :password, :size =>40 %>

</p>

<p>
<label for="user_name">Confirm Password:</label>
<%= form.password_field :password_confirmation, :size =>40 %>

</p>

<%= submit_tag "Add User", :class => "submit" %>

<% end %>
</fieldset>

</div>

1 ! index.rhtml ! 2007-05-03 14:26 ! William Clerico

<h1>Welcome to the American Red Cross Volunteer Portal</h1>

<% if @myprofile -%>

Hello, <%= h(@myprofile.first_name) %>.

<%if @myprofile.available = true -%>

You are currently available.

<% else -%>

You are currently unavailable.

<% end %>

<% end %>

<HR>

<h2>Availability:</h2>

<% for profile in @availprofiles -%>

<div class="entry">

<h3><%= h(profile.last_name)%>, <%= h(profile.first_name) %></h3>

<%= profile.phone_number %>

</div>

<% end %>

<HR>

<%= link_to "Edit my profile", :controller => 'portal', :action => 'edit_profile' %>

1 ! list_users.rhtml ! 2007-05-03 14:26 ! William Clerico

<h1>Users</h1>

 <% for user in @all_users %>

 <%= link_to "[X]", { # link_to options

 :controller => 'login',

 :action => 'delete_user',

 :id => user},

 { # html options

 :method => :post,

 :confirm => "Really delete #{user.name}?"

 } %>

 <%= h(user.name) %>

 <% end %>

1 ! login.rhtml ! 2007-05-03 14:26 ! William Clerico

<h1>Welcome to the Volunteer Portal</h1>

<div class="depot-form">

 <fieldset>

 <legend>Please Log In</legend>

 <%= form_tag %>

 <p>

 <label for="name">Name:</label>

 <%= text_field_tag :name, params[:name] %>

 </p>

 <p>

 <label for="password">Password:</label>

 <%= password_field_tag :password, params[:password] %>

 </p>

 <p>

 <%= submit_tag "Login" %>

 </p>

 <%= end_form_tag %>

 </fieldset>

</div>

Don't have an account? <%= link_to 'Click here', :action => 'add_user' %> to create one.

1 ! logout.rhtml ! 2007-05-03 14:27 ! William Clerico

<h1>Login#logout</h1>

<p>Find me in app/views/login/logout.rhtml</p>

1 ! _first.rhtml ! 2007-05-03 14:27 ! William Clerico

<%= error_messages_for 'profile' %>

<!--[form:profile]-->

<p><label for="profile_first_name">First name</label>

<%= text_field 'profile', 'first_name' %></p>

<!--[eoform:profile]-->

1 ! _form.rhtml ! 2007-05-03 14:27 ! William Clerico

<%= error_messages_for 'profile' %>

<!--[form:profile]-->

<p><label for="profile_first_name">First name:</label>

<%= text_field 'profile', 'first_name' %></p>

<p><label for="profile_last_name">Last name:</label>

<%= text_field 'profile', 'last_name' %></p>

<p><label for="profile_phone_number">Phone number:</label>

<%= text_field 'profile', 'phone_number' %></p>

<p><label for="profile_email">Email:</label>

<%= text_field 'profile', 'email' %></p>

<p><label for="profile_street_address">Street address:</label>

<%= text_field 'profile', 'street_address' %></p>

<p><label for="profile_available">Available:</label>

<select id="profile_available" name="profile[available]"><option value="false">False</

option><option value="true">True</option></select></p>

<h3>Skills & Certifications:</h3>

<p>

<%= check_box 'profile', 'introtodisasterservices' %>

<label for="profile_introtodisasterservices">Introduction to Disaster Services:</

label>

</p>

<p>

<%= check_box 'profile', 'onthescene' %>

<label for="profile_onthescene">On the Scene</label>

</p>

<p>

<%= check_box 'profile', 'cpraed' %>

<label for="profile_cpraed">CPR / AED</label>

</p>

<p>

<%= check_box 'profile', 'firstaid' %>

<label for="profile_firstaid">First Aid for the Professional Rescuer</label>

</p>

<p>

<%= check_box 'profile', 'masscare' %>

<label for="profile_masscare">Mass Care</label>

</p>

<p>

<%= check_box 'profile', 'shelterops' %>

<label for="profile_shelterops">Shelter Operations</label>

</p>

<p>

<%= check_box 'profile', 'driver' %>

<label for="profile_driver">Driver</label>

</p>

2 ! _form.rhtml ! 2007-05-03 14:27 ! William Clerico

<p>

<%= check_box 'profile', 'teamleadership' %>

<label for="profile_teamleadership">Team Leadership</label>

</p>

<p>

<%= check_box 'profile', 'wmd' %>

<label for="profile_wmd">Weapons of Mass Destruction</label>

</p>

<!--[eoform:profile]-->

1 ! availability.rhtml ! 2007-05-03 14:28 ! William Clerico

<h1>Available Profiles:</h1>

<% for profile in @availprofiles -%>

<div class="entry">

<h3><%= h(profile.last_name)%>, <%= h(profile.first_name) %></h3>

<%= profile.phone_number %>

</div>

<% end %>

<HR>

<%= link_to "Edit my profile", :controller => 'portal', :action => 'edit_profile' %>

1 ! calendar.rhtml ! 2007-05-03 14:28 ! William Clerico

1 ! create.rhtml ! 2007-05-03 14:28 ! William Clerico

<H1> Profile creation</h1>

<% if @profile -%>

Your profile says your first name is <%= h(@profile.first_name) %>.

Your profile id is: <%= h(@profile.id.to_s) %>.

<% else -%>

Your profile is not valid.

<% end %>

1 ! display.rhtml ! 2007-05-03 14:28 ! William Clerico

<% for column in Profile.content_columns %>

<p>

 <%= column.human_name %>: <%=h @profile.send(column.name) %>

</p>

<% end %>

1 ! edit_profile.rhtml ! 2007-05-03 14:28 ! William Clerico

<h1>Editing profile</h1>

<%= start_form_tag :action => 'update', :id => @profile %>

 <%= render :partial => 'form' %>

 <%= submit_tag 'Edit' %>

<%= end_form_tag %>

<%= link_to 'Show', :action => 'show', :id => @profile %>

<%= link_to 'Back', :action => 'list' %>

1 ! index.rhtml ! 2007-05-03 14:29 ! William Clerico

<h1>Welcome to the American Red Cross Volunteer Portal</h1>

<% if @myprofile -%>

Hello, <%= h(@myprofile.first_name) %>.

<!--Available: <%= h(@myprofile.available) %>-->

<%if @myprofile.available == true -%>

You are currently available.

<% else -%>

You are currently unavailable.

<% end %>

<% else -%>

You haven't created a profile yet!

<%= link_to "Click here", :controller => 'portal', :action => 'new' %> to create a

profile.

<% end %>

<HR>

<%= link_to "Edit my profile", :controller => 'portal', :action => 'edit_profile' %>

1 ! new.rhtml ! 2007-05-03 14:29 ! William Clerico

<h1>New profile</h1>

<%= start_form_tag :action => 'create' %>

 <%= render :partial => 'form' %>

 <%= submit_tag "Create" %>

<%= end_form_tag %>

<%= link_to 'Back', :action => 'list' %>

1 ! search.rhtml ! 2007-05-03 14:29 ! William Clerico

<h1>Profile Search</h1>

<%= start_form_tag :action => 'search2first' %>

<h2>Search by Skills:</h2>

<p>

<%= check_box 'profile', 'introtodisasterservices' %>

<label for="profile_introtodisasterservices">Introduction to Disaster Services:</

label>

</p>

<p>

<%= check_box 'profile', 'onthescene' %>

<label for="profile_onthescene">On the Scene</label>

</p>

<p>

<%= check_box 'profile', 'cpraed' %>

<label for="profile_cpraed">CPR / AED</label>

</p>

<p>

<%= check_box 'profile', 'firstaid' %>

<label for="profile_firstaid">First Aid for the Professional Rescuer</label>

</p>

<p>

<%= check_box 'profile', 'masscare' %>

<label for="profile_masscare">Mass Care</label>

</p>

<p>

<%= check_box 'profile', 'shelterops' %>

<label for="profile_shelterops">Shelter Operations</label>

</p>

<p>

<%= check_box 'profile', 'driver' %>

<label for="profile_driver">Driver</label>

</p>

<p>

<%= check_box 'profile', 'teamleadership' %>

<label for="profile_teamleadership">Team Leadership</label>

</p>

<p>

<%= check_box 'profile', 'wmd' %>

<label for="profile_wmd">Weapons of Mass Destruction</label>

</p>

 <%= submit_tag "Search" %>

<%= end_form_tag %>

<%= start_form_tag :action => 'search2last' %>

2 ! search.rhtml ! 2007-05-03 14:29 ! William Clerico

<p>

<h2><label for="profile_last_name">Search by last name:</label></h2>

<%= text_field 'profile', 'last_name' %>

</p>

 <%= submit_tag "Search" %>

<%= end_form_tag %>

<HR>

1 ! search2first.rhtml ! 2007-05-03 14:29 ! William Clerico

<h1>Profile Search</h1>

<table>

 <tr>

 <% for column in Profile.content_columns %>

 <th><%= column.human_name %></th>

 <% if column.human_name == "Street address" %>

 <% break %>

 <% end %>

 <% end %>

 </tr>

<% for profile in @profiles %>

 <tr>

 <% for column in Profile.content_columns %>

 <td><%=h profile.send(column.name) %></td>

 <% if column.human_name == "Street address" %>

 <% break %>

 <% end %>

 <% end %>

 </tr>

<% end %>

</table>

<HR>

1 ! search2last.rhtml ! 2007-05-03 14:29 ! William Clerico

<h1>Profile Search</h1>

<table>

 <tr>

 <% for column in Profile.content_columns %>

 <th><%= column.human_name %></th>

 <% end %>

 </tr>

<% for profile in @profiles %>

 <tr>

 <% for column in Profile.content_columns %>

 <td><%=h profile.send(column.name) %></td>

 <% end %>

 </tr>

<% end %>

</table>

<HR>

1 ! show_google_map.rhtml ! 2007-05-03 14:30 ! William Clerico

<html>

<head>

 <title>Map</title>

 <h1> Available Volunteers by Location:</h1>

 <!-- This includes the google maps API code.

 You need to put your own key here -->

 <script src="http://maps.google.com/maps?

file=api&v=2&key=ABQIAAAA5UUmMkZKOQxTN7jPWRhQyRRd_f1wgoxrA90ATXKnKNuxhfd85BRu4K2Aug1ssstNY_g

nKS7HiOTrHA"

type="text/javascript"></script>

 <script type="text/javascript">

 // helper function to create markers

 function createMarker(point,html) {

 var marker = new GMarker(point);

 GEvent.addListener(marker, "click", function() {

 marker.openInfoWindowHtml(html);

 });

 return marker;

 }

 // this is called when the page loads.

 // it initializes the map, and creates each marker

 function initialize() {

 var map = new GMap(document.getElementById("map"));

 map.addControl(new GSmallMapControl());

 var point = new GPoint(<%=@myprofile.longitude%>,<%=@myprofile.latitude%>);

 map.centerAndZoom(point, 7);

 var marker = createMarker(point,'<div>Me!</div>')

 map.addOverlay(marker);

<% for profile in @profiles %>

<% if profile.id != @myprofile.id %>

var point = new GPoint(<%=profile.longitude%>,<%=profile.latitude%>);

 var marker = createMarker(point,'<div><%=h profile.first_name%> <%= h

profile.last_name%>
 <%= h profile.phone_number%></div>');

map.addOverlay(marker);

 <% end %>

<% end %>

 }

 </script>

</head>

<body onload="initialize()">

<!-- This is the element in which the map will be displayed. -->

<div id="map" style="width: 650px; height: 500px"></div>

</body>

</html>

1 ! show.rhtml ! 2007-05-03 14:30 ! William Clerico

<% for column in Profile.content_columns %>
<p>
 <%= column.human_name %>: <%=h @profile.send(column.name) %>
</p>
<% end %>

<%= link_to 'Edit', :action => 'edit', :id => @profile %> |
<%= link_to 'Back', :action => 'list' %>

1 ! 001_create_profiles.rb ! 2007-05-03 15:57 ! William Clerico

class CreateProfiles < ActiveRecord::Migration
 def self.up
 create_table :profiles do |t|
 t.column :first_name, :string
 t.column :last_name, :string
 t.column :phone_number, :string
 t.column :email, :string
 end
 end

 def self.down
 drop_table :profiles
 end
end

1 ! 002_add_address.rb ! 2007-05-03 15:57 ! William Clerico

class AddAddress < ActiveRecord::Migration

 def self.up

 add_column :profiles, :street_address, :string

 end

 def self.down

 remove_column :profiles, :street_address

 end

end

1 ! 003_add_test_data.rb ! 2007-05-03 15:57 ! William Clerico

class AddTestData < ActiveRecord::Migration

 def self.up

 Profile.create(:first_name => 'John',

 :last_name => 'Doe',

 :phone_number => '617-555-1212',

 :email => 'jdoe@microsoft.com',

 :street_address => '123 Pleasant Street',

 :available => true)

 Profile.create(:first_name => 'James',

 :last_name => 'Smith',

 :phone_number => '732-342-392',

 :email => 'jsmith@apple.com',

 :street_address => '123 Commonwealth Avenue',

 :available => true)

 Profile.create(:first_name => 'Marisa',

 :last_name => 'Tester',

 :phone_number => '507-321-6677',

 :email => 'mtester@hp.com',

 :street_address => '99 Infinite Loop',

 :available => false)

 Profile.create(:first_name => 'Father',

 :last_name => 'Leahy',

 :phone_number => '617-655-6392',

 :email => 'leahy@bc.edu',

 :street_address => '26 Campanella Way',

 :available => false)

 end

 def self.down

Profile.delete_all

 end

end

1 ! 004_add_availability.rb ! 2007-05-03 15:57 ! William Clerico

class AddAvailability < ActiveRecord::Migration

 def self.up

 add_column :profiles, :available, :boolean

 end

 def self.down

 remove_column :profiles, :available

 end

end

1 ! 005_create_users.rb ! 2007-05-03 15:57 ! William Clerico

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.column :name, :string
 t.column :hashed_password, :string
 t.column :salt, :string
 end
 end

 def self.down
 drop_table :users
 end
end

1 ! 006_add_sessions.rb ! 2007-05-03 15:57 ! William Clerico

class AddSessions < ActiveRecord::Migration
 def self.up
 create_table :sessions do |t|
 t.column :session_id, :string
 t.column :data, :text
 t.column :updated_at, :datetime
 end

 add_index :sessions, :session_id
 end

 def self.down
 drop_table :sessions
 end
end

1 ! 007_add_profile_to_user.rb ! 2007-05-03 15:58 ! William Clerico

class AddProfileToUser < ActiveRecord::Migration

 def self.up

 add_column :users, :profileid, :integer

 end

 def self.down

 remove_column :users, :profileid

 end

end

1 ! 008_add_admin_to_user.rb ! 2007-05-03 15:58 ! William Clerico

class AddAdminToUser < ActiveRecord::Migration

 def self.up

 add_column :users, :admin, :boolean

 end

 def self.down

 remove_column :users, :admin

 end

end

1 ! 009_create_cart.rb ! 2007-05-03 15:58 ! William Clerico

class CreateCart < ActiveRecord::Migration
 def self.up
 create_table :friends do |t|
 t.column :friendid, :integer
 end
 end

 def self.down
 drop_table :friends
 end
end

1 ! 010_create_carts.rb ! 2007-05-03 15:58 ! William Clerico

class CreateCarts < ActiveRecord::Migration
 def self.up
 create_table :carts do |t|
 # t.column :name, :string
 end
 end

 def self.down
 drop_table :carts
 end
end

1 ! 011_add_geocode.rb ! 2007-05-03 15:58 ! William Clerico

class AddGeocode < ActiveRecord::Migration

 def self.up

 add_column :profiles, :longitude, :decimal, :precision => 9, :scale=> 6

 add_column :profiles, :latitude, :decimal, :precision => 9, :scale=> 6

 end

 def self.down

 remove_column :profiles, :longitude

 remove_column :profiles, :latitude

 end

end

1 ! 012_add_skills.rb ! 2007-05-03 15:59 ! William Clerico

class AddSkills < ActiveRecord::Migration

 def self.up

 add_column :profiles, :introtodisasterservices, :boolean, :default=> false

 add_column :profiles, :onthescene, :boolean, :default=> false

 add_column :profiles, :cpraed, :boolean, :default=> false

 add_column :profiles, :firstaid, :boolean, :default=> false

 add_column :profiles, :masscare, :boolean, :default=> false

 add_column :profiles, :shelterops, :boolean, :default=> false

 add_column :profiles, :driver, :boolean, :default=> false

 add_column :profiles, :teamleadership, :boolean, :default=> false

 add_column :profiles, :wmd, :boolean, :default=> false

 end

 def self.down

 remove_column :profiles, :introtodisasterservices

 remove_column :profiles, :onthescene

 remove_column :profiles, :cpraed

 remove_column :profiles, :firstaid

 remove_column :profiles, :masscare

 remove_column :profiles, :shelterops

 remove_column :profiles, :driver

 remove_column :profiles, :teamleadership

 remove_column :profiles, :wmd

 end

end

