
Doyle P. Hunt         May 6, 2005 
 
 

Free Riding in a Peer to Peer Networked Environment 
 

Chapter 1: History of P2P and the Free Rider Problem 
 

The History 
 

Peer to Peer, or P2P, networks, have existed since the mid-1990’s, with the 

Napster phenomenon birth just before Y2K as a marked point in the development of P2P 

networks. P2P networks are essentially a marketplace for people to share and trade digital 

files, with little regulation or oversight. As the internet emerged, the ability for any user 

to quickly connect to any other user, quickly became available and heavily utilized. The 

term ‘P2P’ does not explicitly denote any sort of use regarding file sharing, but file 

sharing quickly became a main hobby for P2P enthusiasts, along with instant messaging. 

The premise behind the concept, is quite a noble one, fulfilling the slogan of the early 

web days of living in a “truly connected world.” The Internet is not inherently a P2P 

environment, but it does provide the tools to create an efficient one; one that can connect 

any two peers together to form their own private and secure connection. These 

connections, and the ability to create byte streams between the two peers are what have 

made this technology as controversial as any other social dilemma that society currently 

faces. The problem is not the technology, but rather its implementations.  

Peer to Peer networks are now interchangeably being called ‘File Sharing 

Networks’, mostly in part because of the rise of Napster and Napster-like applications 

which allow for easy file transfers amongst a large group of peers. That in and of itself, is 

not harmful, but it does allow for the easy and uninterrupted exchange of files that may 

be digital copies of copyrighted material. This ability quickly gained the interest of many, 

 1



and fueled the fire for P2P application development. Napster’s success was a product of 

Network Effects. Networks Effects are a cyclical situation whereby more users provide 

more content, which in return, attracts more users. This effect quickly spawned a 

tremendous interest in Napster, which was allowing users to freely share and download 

music files, which otherwise would have to be paid for or obtained by physically 

recording a compact disk into a digital recording format. Because of these effects, 

Napster became by far the cheapest (free), fastest, and most convenient way of building a 

tremendous music library. This phenomenon has had tremendous ramifications, but also 

some large benefits, depending on the industry in question. According to the record 

industry, music sales are down, but at the same time, the large distribution of unprotected 

copyrighted music led to the huge surge in growth of the MP3 player market. So clearly, 

P2P networks have had effects that were not foreseen in the early days of these file 

sharing networks. 

 As these applications became as commonplace to have on a computer as 

Microsoft Word, some old-world problems began to hit the P2P application world. 

‘Network Congestion’ and ‘Free Riding’ arose as two problems that have existed in other 

social dilemmas that were now harming P2P networks as well. As both of these problems 

have been realized and studied, solutions have been made to try and forcefully remove 

the negativities that they may cause, through different application solutions that have 

tried to eliminate the problems that were inherent with Napster. Since Napster was first 

started by Shawn Fanning in his dorm room at Northeastern University, many other file 

sharing applications have come and gone, and many lawsuits have been filed against P2P 

application providers by those who feel that P2P applications are nothing more than an 

 2



outlet for outright theft. The current status of the legality of P2P networks is pending in 

the United States Supreme Court, and a ruling is not expected until June of 2005. 

Although there are obvious legal issues with infringement upon copyrighted materials, it 

is very difficult to make a case against the technology behind P2P applications, since the 

technology itself is not inherently illegal. Very similar legal issues were raised with the 

Xerox photocopier and Betamax video recorder. Both can be used for illegal means, but 

the technologies themselves are not altogether illegal, so long as there is evidence that the 

principal use of the technology does not violate any laws. 

 The legalities of P2P networks and the decisions that are yet to be made by the 

Supreme Court and potentially the Legislative Branches of our government, may have 

profound effects upon the future existence and development of P2P networks. In the 

current case pending in the Supreme Court, with twenty eight entertainment companies 

suing Grokster, a P2P application provider, for running a business where its sole profit 

comes from the exploitation of copyrighted works, although just about everyone agrees 

that file sharing should be condemned, there is a very broad consensus that the 

technology itself must not be stifled, otherwise further innovation may be thwarted. 

Dozens of companies have filed briefs supporting P2P technologies, including Intel, 

AT&T, MCI, Verizon, and Sun Microsystems along with organizations such as the 

ACLU, the National Library Associations and the Educational Defense Fund. All of these 

companies and organizations feel that P2P systems are inherently good, and that misuse 

by some does not give cause to limit the functionality of those systems. Also, even 

though many may argue that companies have an obligation to shut down a system if they 

know that it is being used to precipitate illegal activities, the Digital Millennium 

 3



Copyright Act of 1998 (the DMCA) places the burden on reasonable enforcement upon 

the owners of the material by stating that,  

 
“Contracting Parties shall provide adequate legal protection 
and effective legal remedies against the circumvention of effective 
technological measures that are used by authors in connection with the 
exercise of their rights under this Treaty or the Berne Convention and that 
restrict acts, in respect of their works, which are not authorized by the 
authors concerned or permitted by law.” 1 

 

This clause in the DMCA forces media providers to implement security measures that 

could only be defeated by a malicious hacker. The problem with this for the Recording 

Industry though, is that there are no security measures encoded in a compact disc like 

there are on dvd’s. Music cds are recorded according to the Red Book Standard that was 

developed by Phillips Electronics and the Sony Corp in the early 1980’s. This being the 

case, it has been very difficult to prosecute offenders of file sharing, and penalties have 

usually only been small monetary fines. So as file sharing networks have grown to 

gigantic sizes, lawsuits have been unable to stomp out these activities, but have also 

caused worry amongst the software development community, as members fear legal 

action against those who provide the means for the networks. In fact in an interview with 

Bram Cohen, the inventor of BitTorent, the writer writes,  

“The one person who hasn't joined the plundering (file sharing) is Cohen 
himself. He says he has never downloaded a single pirated file using 
BitTorrent. Why? He suspects the MPAA would love to make a legal 
example of him, and he doesn't want to give them an opening.” 2

 

This is a clear example of the vulnerabilities that developers face when developing P2P 

applications. BitTorrent was originally developed as a way to distribute Linux 

applications (open source, not copyrighted) that were of significant file size, to many 

users, more quickly than a direct connection between two peers. This technology was 

 4



quickly picked up (BitTorrent itself is open source) by people interested in sharing large 

movies across a network. But it can be proven that the original inattentions were not to 

create a means of distributing copyrighted material.  
     

Why P2P Applications Work 
 

 P2P applications work so well because it is possible to limit network congestion, 

processing power continues to double per dollar spent every eighteen months, bandwidth 

is becoming cheaper and cheaper, and compression mechanisms are creating smaller files 

while preserving original quality (Lossless codecs). With home personal computers and 

even laptops having the processing power of what high-end servers had only a few years 

ago, the role of client and server has began to diminish. Almost every computer has been 

used in some form or another of a server, unlike the early days of computing where the 

distinction between client and server was much clearer, with every dumb terminal having 

a physical connection to its server. P2P applications cause whatever machine is running 

the app to act as both a server and a client. A peer in a P2P network must act both as a 

client and server in order to live up to its obligation of providing and using other’s 

resources. P2P applications also create a self-fulfilling attraction in that more users that 

are attracted to the service, the faster the growth. Growth of a P2P network appears to be 

exponential and not linear, judging from the fast growth of popular P2P networks such as 

KaZaa and Napster. However, as these networks grow larger and larger, it gives users the 

ability to ‘shirk’ from their responsibilities by hiding amongst the masses, and consuming 

more than they produce. This can happen in many forms, but all are considered a form of 

‘Free Riding’.  

 5



 Congestion is limited in P2P networks in an ideal situation, since there is no 

central source for a single file. Ideally, as soon as one user has a file, multiple people can 

download the file simultaneously, and from there, multiple people can download from 

each of those peers and so forth. This exponential growth makes reliance on a single peer, 

such as in a traditional client/server model, much less important, and prevents a single 

peer or server from having the sole responsibility of providing the requested files. This 

sharing of responsibility can limit the amount of congestion on a single network or peer.  

As bandwidth and processing power have increased dramatically as well, connections 

tend to last shorter amounts of time, and network equipment can handle the requests more 

quickly as well. One thing that is not greatly changing though is the actual size of files 

that are being transferred. Music files have typically, and most likely remain, in a 

compressed form taking approximately 3x106 bytes of disk space. Video however, which 

has become ever more popular to share after the P2P craze that was started with Napster, 

takes up considerable more space, but tends to be consumed in much smaller quantities. 

While some people may consume 2,000 music files on their personal computer, users will 

typically only have a few movies or television episodes. Nevertheless, the MPAA 

(Motion Picture Association of America) is taking the lead in prosecuting file swappers, 

as they feel that the music industry has already lost their battle, and they do not want to 

end up in the same position as them. As John Malcolm of the MPAA said in an interview 

with Wired Magazine “We consider it (lawsuits and billboards urging users not to 

download movies) a regrettable but necessary step. We saw the devastating effect that 

peer-to-peer piracy had on the record industry.”2  

 6



One of the problems the movie industry is facing that is difficult to combat, is the 

consumer’s desire for on-demand availability. Downloading individual episodes of 

television shows or movies before they are released to dvd or vhs, allows users to have 

exactly what they want when they want it. Movie studios use windowing as a technique 

to maximize profits, by staging the release of movies in theatres, home video, and cable 

television. This demand by consumers and lack of remedy by the Motion Picture Industry 

has caused file swapping of movies and television shows to be the fastest growing use for 

P2P networks. BitTorrent, the P2P network that has revolutionized the file sharing 

methods used for large files has skyrocketed this problem to become a real concern in the 

industry. One report believes that one third of all internet traffic is related to the 

BitTorrent network.  

Network Congestion 
 

P2P networks go to the extreme by increasing processing power dynamically, by 

using the resources of a large number of users as a collective whole. As the number of 

users increases, ideally the amount of processing power and resources increase along 

with it, however, the Free Rider issue can hamper that perfect solution. But even with a 

small percentage of users with fairly fast connections actually providing their bandwidth, 

processing power and other resources, P2P networks can provide the same power as very 

well-built server farms. Problems, such as cracking 40-bit encryption and finding large 

Mersenne prime numbers (a prime number in the form of 2p-1), have been accredited to 

large distributed systems, which can be developed through a P2P network, instead of 

using single or clustered servers.  This is a main argument for the uninhibited 

development of P2P technologies. The academic and research possibilities that could 

 7



result from large scale P2P networks are endless. The amount of processing power that is 

unused in a simple personal computer is valuable, but all of those unused resources 

collectively are indescribably valuable.  

  Network Congestion has been a problem that has plagued file servers 

since their inception, and the solution has been to increase bandwidth and increase overall 

processing power (speed of servers in addition to the number of servers). Since Network 

Congestion is not an easily solvable problem, and an expensive one to minimize, P2P 

networks seem to have the upper hand when it comes to cost ($0) and effectiveness. The 

cost associated with P2P networks is consumed by the user, with their fees they pay for 

internet access, in whatever form they receive it, as the true cost of  a P2P network. In a 

P2P network, free of free riding, network congestion is diminished by spreading out data 

transfers. If peer A wants to send X to peer B, a connection can be established between 

the two peers, which is completely independent of a connection between Peer B and Peer 

C. With a client server model, all traffic would have to travel to Server Z, and then out of 

Server Z to the destination peer. Now, there are issues that arise with P2P networks since 

typical households have asynchronous connections, in that their upload speeds are slower 

than their download speeds. This problem was addressed by Bram Cohen’s BitTorrent 

application, which allows users to download a single file by downloading pieces 

(torrents) from different users, so that a user’s download speed can be maximized instead 

of being held to another peer’s upload speed. This is why BitTorrent has become a 

favorite amongst users who share and swap large files (such as movies and games). 

Anyway you look at it though, P2P networks seem to be addressing all of the problems, 

more efficiently in some cases, that the client – server model faces as well.  

 8



 
Free Riding 

 
 The purpose of this paper is to address the Free Riding problem that is inherent in 

a system whereby the benefits are maximized and the risk is minimized when a user ‘free 

rides’ on the system. Free riding is the social dilemma whereby one uses a community’s 

(P2P network) resources, but does not contribute to the cause. Free riding is a problem 

that occurs in different aspects of society. Anytime someone tries to obtain something for 

free or with minimal effort, that person can be thought of as a free rider. Free riders 

typically exist in large communities where their lack of participation can go unnoticed 

without repercussions in respect to the benefits available. Free riding has become a big 

problem in P2P networks because of various reasons. In academic research and other 

legal activities, there can be a tendency to desire the use of another’s machine for speed 

purposes, but when it comes to allowing others to use your processing power, there really 

is no benefit for the person who is giving up clock cycles, unless there is a mutual 

agreement for reciprocal time when the user needs the other user’s clock cycles for their 

own research. With security always being an issue, users may be weary of intentional or 

unintentional vulnerabilities in the P2P application, which can be a very legitimate cause 

for concern, especially within the Windows operating systems. With P2P networks that 

are based around illegal file sharing, the Free Rider problem is magnified due to potential 

legal consequences for providing illegal material over a network. Although peers who 

free ride are also potentially liable for copyright infringement, peers feel less likely to be 

caught if they are only downloading and not supplying the illegal files to others. This has 

caused the free rider problem to have a profound effect on these illegal file sharing 

networks, by diminishing the value of a P2P network, where a majority of users are not 

 9



contributing, but only using the community’s resources. This could potentially lead to 

self-destruction of these file sharing networks that the Movie and Music Industry have so 

greatly feared.  

 Users who have been free riding typically do so as a way to prevent viruses, 

security holes, loss of computing power and criminal prosecution. Some of these 

problems though are being addressed, and criminal prosecution tends to be the main 

deterrent from participating as a true peer in a P2P network. The idea of being shielded 

from prosecution or security vulnerabilities by free riding, is a false notion. Viruses can 

easily spread by downloading corrupted files which can then alter the current application 

and add additional security threats. Prosecution of file swappers is not limited to 

providers either. Those who contribute in any manner shape or form to the illegal 

distribution  

 
Current and Former P2P Applications 

 
 Below are some popular P2P applications, along with their purpose, their history 

and what they have developed into.  

 

Napster- First developed by Shawn Fanning in 1999, after he dropped out of 

Northeastern University in Boston, MA. Napster has been said to have had the most 

profound effect on P2P networks of any P2P application every developed. Napster was 

not a true P2P network, since there was a centralized server which registered IP addresses 

of users along with lists of files which the users were offering to share. Napster was the 

P2P network that sparked the Recording Industry Association of America (RIAA) to start 

prosecuting P2P network providers. Napster was easy to shut down because of its 

 10



centralized nature. By the time Napster was shut down, it had over 50 million users who 

were sharing files every day. By this time, the P2P craze had exploded, and there would 

be no way to stop the future development of other P2P file sharing networks. Since 

Napster, P2P applications have tried to adopt a less centralized nature, which is the way a 

true P2P network should operate. Without multicasting capabilities, a completely 

decentralized service is difficult to develop, but a less centralized solution than Napster is 

possible. 

 

BitTorrent – BitTorrent is currently the largest threat to the Movie, Game, and Software 

industry because of its ability to handle large files, and its ability to satisfy courts that its 

purpose is for something other than file swapping of copyrighted material.  BitTorrent 

was developed by Bram Cohen because he found the problem of file sharing large files to 

be a difficult one, but one that he could solve.  

 BitTorrent addresses the problems of congestion and Free Riding in the following 

ways. First off, the way BitTorrent works is that a single file must first be made available 

by a single user, known as a ‘seed’. This user must upload at least one complete version 

of the file to connected peers. Peers are found by trackers, which are simple applications 

that run over HTTP, that help peers identify other peers that have the pieces, or torrents, 

of the files they need.  These pieces are typically 250 kilobytes and are reassembled into 

one file once all pieces have been downloaded. Once all of the pieces have been 

assembled, a hash function verifies each torrent’s integrity, comparing the hash value to 

the value kept by the tracker. As a user downloads pieces of a file from another user, the 

user must also upload torrents that other users may need. At anytime, a user may be 

 11



uploading or downloading from multiple peers, with a queue of torrent requests, as a way 

to operate the most efficiently.  

 According to Bram Cohen,  

“Each peer is responsible for attempting to maximize its own download 
rate. Peers do this by downloading from whoever they can and deciding 
which peers to upload to via a variant of tit-for-tat. To cooperate, peers 
upload, and to not cooperate, they ‘choke’ peers.” 3 

 
In order to have an efficient algorithm, the resources of connected peers must be 

reevaluated in a timely fashion. BitTorrent recalculates the current transfer rate every 20 

seconds for each connection and reevaluates whether or not it is connected to the best 

peers every 30 seconds. If the algorithm finds other peers who would create a faster 

download, it will drop its slowest connection and connect to the new peer in order to 

facilitate the fastest download. Along with connection speed, the algorithm also uses a 

‘rarest first’ approach, which attempts to download torrents which are least available first, 

so that its availability will eventually increase.  

 Lastly, Cohen expresses his interest in distributed collaboration as a way to create 

a very powerful decentralized service. In order to accomplish this, the system must 

become pareto efficient. A pareto efficient system is a system in which the system is so 

optimal, that the only way to further advance any node in the system, could only come at 

a cost to another node in the same system. 

 
“In computer science terms, seeking pareto efficiency is a local 
optimization algorithm in which pairs of counterparties see if they can 
improve their lot together, and such algorithms tend to lead to global 
optima.” 3

 
Clearly, collaboration towards efficiency will ultimately lead to a fast, highly scalable 

and distributable P2P network.  

 12



 
Gnutella- Initially released in March of 2000 by Nullsoft, a subsidiary of America 

Online, it was quickly pulled back as it was quickly realized that this application had the 

same abilities as Napster, which was currently in the process of being shut down by the 

judicial system. At this time, AOL and Timer Warner were in the process of merging to 

form AOL Time Warner. As Gnutella had been released for a short while before it was 

recalled, it was enough time for the application to spread rather quickly.  

 Shortly after its release, the protocol, the Gnutella Protocol, was deciphered, and 

additional applications began to use the protocol for their own uses. Applications such as 

Morpheus and Limewire were developed using these standards, which themselves 

became hosts to very large P2P networks. The Gnutella Protocol however did not scale 

well. Once released to the entire internet, bottlenecks and bandwidth issues quickly 

became very apparent. Users would find the first peers from a list on the internet, but 

from there, all peers would be found through a sort of depth-fist search algorithm. Once 

an additional peer was found, the user could then find all of that user’s peers, and so 

forth. Once a peer was found with the proper resources, queries would be sent to request 

the resource. However, these requests could sometimes take up large portions of 

bandwidth, which would hamper the entire usability of the network. If one peer knew of 

4,000 peers, which was the application’s maximum, that peer alone would generate 4,000 

request queries Congestion caused by large numbers of request packets could cause 

Denial of Service attacks on users that had rare resources. The life of these packets was 

also a problem, as some packets did not die, and only cluttered the network, eating up 

usable bandwidth.  

 13



 Clearly the Gnutella application will work in a small closed environment, but 

large scale deployment brings about many additional concerns. One of the issues was that 

peers were trying to contact every peer directly for a request, instead of having request 

messages forwarded, which could have preserved bandwidth. Free riding also played a 

huge role in this application, because according to the First Monday Journal, “…a large 

portion of the user population, upwards of 70%, enjoy the benefits of the system without 

contributing to its content.” 5 This large free riding issue is what requires so many 

requests to be made, and peers to be searched. So if a user is connected to 4000 peers 

only 1200 of those users are actually providing content which may be desirable.  

 
Kazaa- A very similar P2P network, owned and operated by Sherman Networks of 

Australia. KaZaA is also a decentralized network that dynamically appoints nodes as 

‘Supernodes’ which are typical users that have high bandwidth and processing power. 

Every supernode indexes all of the resources that it and its peers have. When a peer sends 

a request, the request is first sent to its nearest supernode. That supernode will check its 

index to see if it knows of a peer with the requested resource. If the supernode does not 

have the resource in its index, it will send back the address of another supernode, where 

the requesting peer can re-request its resource.  

 
The Lawsuits 

 
 Undoubtedly, every week there are cases in the news regarding P2P networks, 

copyright infringement, and twelve year olds being subpoenaed by the Recording 

Industry Association of America (RIAA). Since Napster, the Motion Picture Industry and 

the Recording Industry have been trying to close P2P networks, as they believe the effect 

 14



of users downloading material for free has had a disastrous effect on their businesses. It is 

a very difficult situation because it is difficult to monitor, difficult to prevent, and 

deterrents can have additional consequences that the industries did not intend. As Bram 

Cohen says about executives in the Music and Movie industries at an awards show in Los 

Angeles last November,  

“the content people have no clue. I mean no clue. The cost of bandwidth is 
going down to nothing. And the size of hard drives is getting so big, and 
they’re so cheap that pretty soon you’ll have every song you own on one 
hard drive. The content distribution industry is going to evaporate.” 2

 

The industries have difficulty in trying to stop these P2P networks for several reasons. 

First, as P2P networks evolve, they become more and more decentralized. True P2P 

networks are made up of nodes with no hierarchy. Intentionally or not. With no center, 

there is no way to shut it down. Second, it is not possible to determine entirely who is 

using a P2P network, so the best chances the prosecution have are to find a few ‘super 

nodes’ who are providing the majority of content, shut them down, and hope that that 

deters others from doing the same. Lastly, and the most important reason that some P2P 

networks cannot be shut down is because they have a very legitimate use besides 

copyrighted file sharing. It has been determined in courts that providers of technology 

cannot be held liable for misuse of their product, so long as the technology was 

developed for a legal and meaningful purpose.  

 
 

Chapter 2: Free Riding: A Social Dilemma 
 

 
 The Free Rider problem has existed in society for a very long time, and has been 

studied in various contexts. Free Riding in a P2P network is not unexpected, especially 

 15



since the increase in criminal prosecutions of P2P file sharers.  The problem itself is not 

related to P2P networks; rather it is attributed to a natural tendency for people to obtain 

the largest benefit with the lowest cost. Realizing that free riding in a P2P network is a 

result of a deeper sociological problem, allows researchers and developers a better insight 

as to how to quell the issue. The problem stems from the lack of central authority to 

govern the group. In a sense, a P2P network is an anarchical community; no rules, and no 

hierarchy. Without this central authority, there is little fear of repercussions from minimal 

participation in the community, but there is also not authority to limit when an individual 

participates in that community. This ability to freely come and go, and pick and choose, 

is what has lead to the free riding problem in P2P networks. 

 Free riding can be seen elsewhere, and during other chronological periods in time. 

People who cheat on taxes can be seen as free riders. People who cheat on taxes are part 

of a very large community, the entire country, and the central authority, the IRS might 

not catch on to them, and any form of repercussions may be avoided. People who cheat 

on their taxes, even though they may feel justified in doing so, use the same resources as 

just about anyone else, yet feel that their contribution should be smaller.  

  All forms of social welfare can suffer from free riding, as for some people, 

they are much happier consuming resources provided by others, instead of contributing 

themselves. People on welfare for extended periods of time that are capable of supporting 

themselves and their families, people collecting unemployment benefits for lengthy 

periods of time, and people who file frivolous lawsuits are all examples of individuals 

who would rather consume than produce. Clearly another set of examples of free riding 

in a large system. This problem demonstrates strong differences in personal choice when 

 16



an individual is acting alone, and when that same individual is part of a group. The most 

famous story to demonstrate this problem is the Prisoner’s Dilemma, and this is the story: 

 
“Tanya and Cinque have been arrested for robbing the Hibernia Savings 
Bank and placed in separate isolation cells. Both care much more about 
their personal freedom than about the welfare of their accomplice. A 
clever prosecutor makes the following offer to each. You may choose to 
confess or remain silent. If you confess and your accomplice remains 
silent I will drop all charges against you and use your testimony to ensure 
that your accomplice does serious time. Likewise, if your accomplice 
confesses while you remain silent, they will go free while you do the time. 
If you both confess I get two convictions, but I'll see to it that you both get 
early parole. If you both remain silent, I'll have to settle for token 
sentences on firearms possession charges. If you wish to confess, you 
must leave a note with the jailer before my return tomorrow morning." 6 

 
 
Users of P2P networks suffer from the same dilemma that the two prisoners do because 

users of P2P networks can only achieve the best result if they cause harm to one other, 

while the other does no harm to the first. If both people ‘free ride’ (testify against the 

other), then their worst possible outcome is still better than not free riding (not testifying, 

with the possibility that the other will testify). The worst possible outcome for either 

individual will come from not free riding, while the other does. It is a difficult situation, 

and causes the individual to decide which is more important; themselves or the group.  

There is no real solution, and is left up for individuals to decide their own action. 

Likewise, this is also comparable to the Voter’s Paradox. The Voter’s Paradox is as 

follows: 

“We are all better off if most people vote, but my vote will make no 
impact and it does cost me to vote.” 7 

 

This situation becomes more and more apparent as the size of the group grows larger and 

larger. With a possible cost for participation, an individual feels that their participation is 

 17



negligible, and is not required, because of their trivial role in the group. The costs that are 

associated with P2P networking, like Tanya or Cinque going to Jail, are explained more 

thoroughly. 

 
How Does Participation in a P2P Network Harm Individuals? The Costs 

 
 One of the obvious questions in dealing with the Free Rider problem in a P2P 

network is, what is the cost? In a theoretical, legal, copyright material free, P2P network, 

the costs of participation are almost none. At least monetary costs are very close to zero, 

and labor time is pretty minimal as well. Essentially your computer is allowed to act as a 

daemon, handling requests from others on its own, and sending out requests at your 

convenience. So what harm can come from allowing others to use your resources that 

would create no cost for you? 

 There are two potential costs; viruses and criminal prosecution. I believe the latter 

is the more expensive and justified cost, since there is no evidence that only using a P2P 

network for its resources, and then free riding on the system, is more likely to make you 

safe from viruses, and thus prevent whatever costs you might incur from recovering from 

it. The idea of criminal prosecution though has been made a very real threat to individuals 

of P2P networks that are used for the sharing of copyrighted materials. Obviously sharing 

copyrighted material is illegal and wrong, but this leads to the development of a 

stereotype that P2P networks are only used for illegal activity. The potential power in a 

distributed P2P network is immense, and if this stereotype continues to develop, it will 

hinder further P2P developments. One of the inherent problems with this issue, is the 

inability to filter out illegal materials from traveling over the network. The pure definition 

of a P2P network calls for no central authority, so without a governing body, it is not 

 18



really possible to monitor all distributed content. Whether it is a newly released top 10 hit 

song, or an open-source plug in for a Linux application, they all cross the network as byte 

streams, and cannot be filtered without some form of central filter. This is probably the 

biggest problem facing developers of P2P software. P2P software developers fear 

possible legal repercussions if their software is found to contribute to this illegal activity. 

This debate is currently in the Supreme Court, and a final ruling is not expected until 

June of 2005. This ruling could potentially have a tremendous impact on the future of 

P2P development. If the ruling’s make developers liable for the uses of their products, the 

future of P2P networks might be in serious doubt.  

  
 

The Legal Ramifications for P2P Software Developers 
 

 One of the most important things that must be realized in understanding the 

technology and power behind P2P networks is that the future of this technology is in 

doubt because of the stigma that has been associated with the technology because of 

copyrighted file sharing. As the role of P2P software and network developers hangs in the 

balance in the U.S. Supreme court, firms are reluctant to embrace the technology before 

the legal responsibility questions are answered in full. The responsibility of the P2P 

application developer is unclear, because history could swing the decision either way. 

 The most important case that has ever been decided in the Supreme Court that is 

relevant to the MGM Studios v. Grokster Inc. case, the case currently pending in the 

Supreme Court, is the Sony Corp of America V. Universal City Studios Inc. case of 1984. 

In this case, Universal Studios was suing Sony because Sony was the manufacturer and 

distributor of the Betamax video recorder. Universal Studios claimed that Sony was 

 19



infringing upon its copyrights, because the video recorder allowed anyone to time-shift 

any broadcast and view it at a later time; effectively copying the original broadcast. 

Sony’s defense was that the Betamax video recorder itself was “capable of substantial 

non-infringing uses”8 The Supreme Court agreed with Sony, but only with a 5-4 decision 

in favor of Sony. Sony was found not to be responsible because they had no way of 

knowing what its consumers were doing with their products, and would have no way of 

enforcing copyright laws with the available technology. However, another point that was 

clearly made, and what separates the Sony case from the Grokster case, is that Sony did 

not maintain an ongoing relationship with the consumer after the initial purchase. After 

the sale of the Betamax recorder, the relationship between Sony and the consumer was 

completely severed. With Grokster, the same reasoning cannot be applied. Although 

Grokster may not know what is happening directly between members of its network, it is 

necessary to maintain a relationship with its consumers (users) in order for the product 

(P2P application) to function properly. In addition to the Sony case, the Napster case also 

applies, but in this case, could hurt Grokster. Napster was a very clear cut case of 

secondary copyright liability, whereby Napster clearly knew about and supported acts of 

copyright infringement. When it can be proven that a product has the capability to 

monitor a user’s usage, and those monitoring do nothing to prevent that sort of illegal 

activity, regardless of whether or not the product can be used for legitimate reasons, the 

company in charge of the service can be held liable for secondary copyright infringement.  

 This next ruling in the Supreme Court may very well have a very dramatic effect 

on the direction of P2P technologies in the very near future. If companies may be held 

liable for their users’ uses, it may be too big of a gamble to produce P2P software. One of 

 20



the technical differences between P2P technologies though involves the actual role of the 

central service. If the central service, which is required on non-multicast networks, does 

not hold any information, and simply passes user addresses to other users, there may be 

no way of that service knowing what its users are using the network for. If however, like 

in the case of Napster, the service acted as a central depository for filenames, it is much 

easier to determine whether or not the service could have in fact known what was 

transpiring on its service.  

Free Riding: The Numbers 
 
 Obviously Free Riding is a problem on P2P networks, and is only getting worse, 

as potential costs rise. With that being the case, Mr. Eytan Adar and Mr. Bernardo A. 

Huberman, of the Xerox Palo Alto Research Center, did a study of users on the Gnutella 

network, and quantified their results, pertaining to percentages of users who provided 

either minimal, undesirable, or no resources at all. In their published report, they found 

that “nearly 70% of Gnutella users share no files, and nearly 50% of all responses are 

returned by the top 1% of sharing hosts.” In addition, they note that “the free riding leads 

to degradation of the system performance and adds vulnerability to the system. If this 

trend continues copyright issues might become moot compared to the possible collapse of 

such systems.” 5 One of the possible reasons for this situation is that users who have no 

resources at all, (ie. files) will not be able to participate openly on the network, and will 

use the network to respond to their needs. Once their needs are met, they will no longer 

participate on the network, and the burden will continue on that top 1% of users. In the 

report, this reasoning is what contributes to “rampant free riding” in a large system like 

Gnutella.  

 21



 In this study, a sampling pool of 7,349 peers was monitored for traffic. Of those 

users, only 37% ever provided a response to a query. A query is sent whenever someone 

else on the network is requesting someone else’s resources. Of those responses, the top 

25% of all sharing hosts provided request responses to 98% of all queries that were 

passed through this network. With that being the case, another hypothesis was verified, 

that even though 98% of all responses come from the top 25% of users, many of the other 

users are contributing resources to the network, but only share undesirable content, which 

is why they are unable to respond to query messages in the first place. This reluctance to 

share desirable resources is another form of free riding.  

 The inherent danger of this free riding situation is that rampant free riding 

centralizes P2P networks, and these networks begin to fall back towards a client server 

model, and away from the decentralization which is critical in a P2P system. If 25% of 

peers control 98% of the resources of a network, then we no longer have a decentralized 

system. This makes the system very vulnerable, because now only that 25% needs to be 

shut down in order to render the network inoperable. In a true P2P system, an elimination 

of any 25% of users should have a minimal effect, whereas in a system with rampant free 

riding, that 25% would have a catastrophic effect, and render the system useless. 

 

Possible Solutions to the problem 

 Eliminating free riding from a non-centralized network is almost impossible, but 

measures can be installed to help make free-riding more costly to the user. Increasing the 

cost of free riding is the most effective way of retarding the problem. The best way of 

increasing the cost for a user is by limiting the services that that peer can use without 

 22



providing returns to the group. In a perfect network, only users who provide resources 

may consume them. With that however, it must be possible for users who have nothing to 

provide, to obtain something first, so that they will then have something to share with the 

rest of the peer group. In order to enforce some form of regulation, peers must be forced 

to prove to other peers that they are indeed proving a service to the rest of the group. 

Failure to provide this evidence must be met with disdain by the other peers, and force 

the non-participating peer either to participate, or to leave the group entirely. 

 In a paper, “Enforcing Fair Sharing of Peer-to-Peer Resources” from Rice 

University, the authors provide some general methods for this type of group enforcement. 

Their examples looked at a P2P network that was used to provide remote storage space to 

other peers. The most logical and decentralized approach seems to be Peer Auditing. Peer 

Auditing basically requires full disclosure by peers as to what they are actively providing 

to the group. If Peer A requests to store a file on Peer B, Peer B will first request an audit 

from Peer A, and determine whether or not it is providing an appropriated amount of 

resources to the groups. If Peer A is not providing resources to the group, than it is not 

paying for the ability to store a file on Peer B, and the request for storage would be 

denied. This solution would scale well in a large network, and does not require a central 

authority to monitor usage, as some of their other suggestions require. 

 Clearly there is no perfect way of enforcing participation, and in the above 

proposal, it does not clearly outline how a new peer would be able to join the network 

and participate if it does not have anything to give. The initialization of P2P networks can 

often times be the hardest, as situations may appear that will only appear in the beginning 

of its existence, and need to be dealt with in a special manner. If peers are required to 

 23



provide resources before they can consume, you have a problem when the group is 

formed, and all you have are new members who cannot consume, because everyone else 

is also new, and cannot use another’s resources until someone uses theirs. If no one is 

able to consume, than none of the new peers will be able to offer their resources to others. 

This is a problem with the initialization of Peer Auditing, and one that must be addressed 

in order for it to function properly.  Exceptions must also be made for those who cannot 

legitimately contribute to the group, and must be given resources first before they can 

afford to provide resources to other peers.  

   
Chapter 3: A  Free-Rider Problem Solution With  JXTA  

 My goal for this thesis was to develop a P2P application which inherently limited 

free-ridership in a way that differed from BitTorrent, which significantly reduces the 

number and strength of free riders. In order to develop a P2P application, I chose to use 

the already existing, but still developing, JXTA framework. JXTA is an open-source 

project, funded mainly by Sun Microsystems, that has all of the libraries needed to build 

and deploy a P2P application, which would create a P2P network. JXTA is written for the 

Java environment, and was started in 2001. In hindsight, this may not have been the best 

choice for a framework, but it worked out in the end, and much was learned from 

experience.  One of the interesting things about JXTA and other P2P applications is that I 

could not find any examples of fully developed and functional P2P networks, that had 

been developed with JXTA as its core. Having studied some of the large P2P network 

applications, it seems as though most P2P software is built from the ground up; each 

using a different approach to connect peers. JXTA uses small XML documents that are 

passed around from peer to peer, as a way to locate other peers and learn about what 

 24



services they are offering, or which groups they are part of.  In any P2P network, that is 

not entirely on a multicast network, at least one peer or host must be known before any 

peer information can be propagated. With Napster, there was a central server, whose 

address was contained within the application code. With a JXTA network, any peer on a 

network can act as a Rendezvous Peer, which is a peer like any other, but which has the 

ability to accept and send any other peer’s relevant information. In JXTA, information 

about a peer or service is known as an Advertisement. An Advertisement is an XML 

document that contains information such as peer name, IP address, and group affiliation. 

Once a rendezvous peer receives this information, it passes the information to every other 

peer that it is connected to.  

 In testing the application on a multicast network (IPv6), such as any single subnet, 

the multicast features of JXTA seemed to operate very efficiently and require no pre-

known information about any other peers. Because JXTA uses a specific multicast 

address and port which is common to all JXTA applications, all instances of a JXTA app 

will find other peers running on the same multicast network almost immediately. 

Although they will not initially know of any group membership or peer identification of 

the nearby peers, connections are made between the peer and all other reachable peers on 

the same multicast network so that those advertisements may be publicly advertised. The 

idea of having seeding peers, or predetermined rendezvous peers, is really just a way to 

allow a P2P application to function on an IPv4 network; a network which does not 

support multicasting.  

 The JXTA framework allows for independent group formation, which allows 

members to join groups, and allows groups to limit its members through password 

 25



protection. Every group is a sub-network of the Default Peer Group network, by which 

every peer is a member, by default. From this super group, all other groups are formed. 

When a group is formed, a PeerGroup Advertisement is created, and propogated through 

the network. PeerGroups are identified by a unique ID, and can be created by any peer. In 

order for two peers to join the same group, they must know the unique ID prior to joining 

the group. Group ID’s can be found in one of two ways. First, the peer could have the ID 

embedded within the application, or it could be obtained from an outside source, such as 

a website, with the web address already embedded within the application. The other way 

to receive the ID is by receiving the PeerGroup Advertisement from one of the other 

peers that the peer is connected to, through the Rendezvous Service. Peers can create a 

new group, and then advertise its existence, by publishing the Advertisement to its 

directly connected peers, which will then recursively propagate through all other 

connected peers. Once other peers begin joining this group, an independent P2P network 

is created.  

 This notion of multiple P2P networks co-existing under the same umbrella, is a 

main distinction between JXTA and other P2P technologies. Many peergroups may exist 

within the Default Peer Group Network, all provide different services or have different 

membership requirements, and still be able to interoperate because of the standards set 

forth in JXTA. Once a peer joins a group by knowing the group’s unique ID, the group’s 

Discovery Service will be able to search other peers for additional advertisements. Only 

advertisements published by a Discovery Service of another peer in the same group, will 

be found. With the potential for thousands of small networks all co-existing, it would be 

 26



inefficient and un-secure to have to process advertisements belonging to another group, 

for which a membership has not yet already been created.  

 Once a group has been formed, and members have been accepted, members will 

send out information about their means of communication to all of the other members of 

the group, so that direct connections can be made between any two peers. Since this is a 

P2P network, all communication occurs directly between the two peers, with no other 

involvement from any other peer, once the initial connection has been established. As 

members join the group, their information is passed through the rendezvous service, and 

is received by all peers in the group. Because there is no centralized resource to manage 

group membership, it is up to the individual application to determine when a member of 

the group is no longer available.  

 Once a peer has published its communications advertisement, known as a 

PipeAdvertisement, other peers may receive that advertisement and create a direct 

connection with the information contained within the XML document. Connections can 

be made through Pipes or Sockets. Pipes are essentially an extension of the Discovery 

Service, and messages are sent the same way advertisements are published. The problem 

with pipes is the limited message size. BiDirectional Pipes are limited to about 64Kb in 

size, and there can be some delay in transmission. The other alternative, and my choice, 

was to use sockets. Sockets are from the Java library, and are independent of JXTA. 

JXTA provides the tools necessary to resolve socket connections from Pipe 

Advertisements, but once the connection has been established, Java handles the 

communication between peers. I chose this method because there is no size limitation and 

communication is virtually free of delay. I have had no issues with transferring files as 

 27



large as 10Mb, and the issues involving larger files stem from the Java Runtime 

Environment not being able to allocate enough memory to serialize an entire large file at 

once. When large files (large than the currently available amount of memory) need to be 

sent across sockets, they need to be serialized into a byte stream, written to disk, and then 

transferred in pieces, and reassembled at the endpoint. This ability to send infinite 

amounts of data from peer to peer, make a peer group a very powerful entity, similar to a 

cluster of servers.  

 Because of the decentralized nature of one of these groups, the application that is 

using this group must be very robust and be able to handle any form of exception, and 

heal any wounds in the group, so that if a single peer falls out of the group, the group will 

still be able to function properly. This requires a very solid protocol, imbedded inside the 

application, that will allow any peer to act as both a client and server, all at the same 

time, or as the need should arise for one of those particular roles. Another role of JXTA is 

to provide redundancy, should a peer fall out of the network. By providing all peer 

advertisements to all peers in a group, a web of connections is created, instead of a linear 

set of connections. This provides the redundancy required in a P2P network. 

 JXTA provides some level of security, but not all means of security function 

properly. For my application, security was at the bottom of the list, while the issues of the 

Free Rider problem were prioritized. Security is difficult to manage, again because of the 

decentralized nature. One of ways to provide security is to use a public and private key, 

but again, one of the keys must be known prior to being granted a group membership. 

This again proves to be difficult in a P2P network. Therefore, JXTA has an authentication 

process which may be used to authenticate members of a grou. 

 28



 When a user joins a group, the user can either provide no, or bogus credentials, 

and still join a group, if the group does not have any means of authentication. If the group 

does contain a means for authentication, the user must be first verified before joining the 

group. The authentication process works as follows.  

  

Diagram of an Authentication process in JXTA. (image: API: net.jxta.membership) 

 

Minimizing Free Riding with JXTA 

 In order to minimize free riding in any application, the costs associated with free 

riding must outweigh the costs associated with active participation. BitTorrent achieves 

this relationship by relating download rates to upload rates. The more you upload, the 

more you can download. The problem with this is that it assumes that all users have 

something that others might want. If they don’t they will download very slowly until they 

have something to offer. This worked well for BitTorrent because it was primarily 

 29



focused on large Linux files, and game applications. This later turned out to be a great 

way to distribute visual media, both copyrighted and non-copyrighted. But if the pool of 

applications and files were immense, there would be little chance that more than one or 

two other peers might have what is needed. In this case there must be some other way to 

negotiate upload and download rates, if it is highly likely that one peer might not have 

what another peer wants. A case of simple file transfers involving photographs, which are 

typically not copyrighted, would be a good example of legal file sharing whereby a user 

may not have something another user may want.  

 So my application uses simple chat as a way for users to negotiate file transfers. 

Assuming two friends are both using the application at the same time, one user might 

simply want to send the other user a few files, and that would be it. If the first user 

wanted something in return, they would negotiate through the chat feature until they 

reached an agreement. In this application, files are pushed, not gotten. Only the user who 

has the file may send the file. The application does not act like a daemon, and cannot 

accept incoming requests for files. Both users must be present during the file transfer, and 

only one file can be sent at a time. Currently there are no restrictions on file type, and the 

size of the file that can be sent is dependent upon available memory. In future editions of 

this application, large files would need to be broken into smaller byte arrays, and then 

sent and reassembled at the receiver’s end.  

 When launching the application, users immediately join a unique group, called 

PhotoGroup. The unique ID of this group is: 

 urn:jxta:uuid-E3806F9067E142378FDBF2CD4962D26302 

 30



This PeerGroupID is theoretically unique, and the chances of having another group with 

the same ID is 1 in 8.7x1040. So the chances of a collision are pretty minimal. This ID is 

encoded in the application, and cannot be changed by the user. Only peers who know this 

ID may join the group. In order to prevent users who do not have the application from 

joining the group, the GroupAdvertisement is not published, and therefore other peers 

cannot see the GroupID. If the GroupAdvertisement were published in an XML 

document, by the DefaultNetPeerGroup’s DiscoveryService, any user of any JXTA 

application would eventually receive that document, and therefore the unique ID. 

 So only users that have the application can join the group, and once a user has 

joined, he or she will eventually receive all of the other peer’s PipeAdvertisements. Once 

a peer has received another peer’s PipeAdvertisement, a socket connection is made 

between the two peers, and chat and file transfers can begin. The amount of time it takes 

to discover other peers in a group varies by rendezvous setup. The more hops to the peer 

through rendezvous points, the longer it will take to receive their advertisements. These 

connections will stay alive indefinitely. 

 This method seems to be a simple way of preventing free riding, and could be 

used in many different ways. When a file is transferred, it is simply a byte stream. That 

byte stream could contain a photograph, a serialized object, or any array of bytes. This 

would be a perfect medium for a distributed application, or another form of a file sharing 

application. I compare this system to the way kids trade baseball cards, and that was the 

initial idea that I used to derive this protocol. When kids trade baseball cards, they cannot 

free ride. Each kid holds his own cards and only trades when he has reached an 

 31



agreement with the other. They do not leave their cards out for others to take, and verbal 

communication is essential to making the deal.  

 Since a user really does not have the ability to free ride, the cost of free riding is 

immense. The cost would be the inability to use the network or any services it would 

provide. Since one who free rides would not be able to obtain anything from another 

peer, unless the other peer made a conscious decision to allow the other peer to free ride 

on their own file library, it would be a long and arduous process to continually ask others 

to provide them with something for free. It might work for a short time, but is in no way a 

sustainable method for using the network. There might be an instance where one peer 

would not want anything from another peer, but would be willing to share their own 

library with another. File transfers are made through two separate peers, and broadcasting 

is not an option, although implementing broadcasting to create group chat or group file 

sharing would be possible to implement in the application, if such a feature were desired.  

 This inability to free ride, I believe, would greatly reduce the rate of transfer of 

copyrighted materials, because of the time and energy required to negotiate a transfer. 

Only files that were explicitly desired would be sought after, and without a daemon, a full 

list of available files would not be available for others to browse. One of the problems 

with other P2P file sharing applications was the ability for a user to see every available 

file from another user, and without the other user’s knowledge, download every file that 

that one user had. This accessibility greatly contributed to the distribution of copyrighted 

materials across P2P networks. Therefore, Free Ridership and easy accessibility, although 

not required in a P2P system, are what led to the widespread use of P2P networks for 

exchanges of copyrighted material. 

 32



Conclusion 

 Free riding on P2P networks is a concern for the general usability and future of 

this technology. Free riding occurs when users can receive the same benefit regardless of 

whether they bear any cost. With P2P networks, those costs could be potential criminal 

prosecution, computer viruses, or a slowdown of processing power. Either way, there are 

considerable reasons as to why any individual would like to be able to consume the 

resources of others, and receive all of those benefits free of cost. In order to circumvent 

this, there must either be costs associated with free riding, or make free riding an 

unavailable choice. P2P network applications such as BitTorrent addressed this issue by 

requiring users to upload at the same time they download. This increases the overall 

download rate for all users on the network. This approach works well for large files, and 

files that are generally wanted by large numbers of other users. This does not work well 

for instance with personal photographs, but does for software and gaming modules. 

 In order to attempt a solution to the problem, the underlying reasons for the 

dilemma must be understood. Free riding has occurred in many aspects of society, and is 

not limited to P2P networks. It is a natural phenomenon in any group setting without a 

central authority. With P2P networks, and their lack of a centralized management service, 

it can be very difficult to enforce group policies. This leaves the enforcement up to the 

application itself, and must forcefully limit a user’s ability to harm the system by 

leaching off of others. 

 My proposed solution was based off of the baseball card trading idea used by 

kids. The solution was implemented in Java, using the JXTA framework, which contains 

all necessary libraries to build a robust P2P network along with peer services. All users 

 33



must come to an agreement with one another, before any file transfer will be made. 

Instead of the traditional daemon approach, peers put files onto another’s machine, 

instead of the requesting peer going and retrieving it. This virtually limits the possibility 

of any free riding from taking place. Without a central management service, this 

enforcement must be done from within the application itself. Once the application is 

launched, it will connect to a predetermined group, and must know of at least one other 

peer in the group, unless the group is contained within a multicast environment. Once at 

least one peer, or rendezvous, is located, other peers are subsequently found, and 

connections between the peers can be made. Once these socket connections are made, 

any byte stream may be sent from one peer to another, but only after an agreement 

between the peers has been formed.  

 Although it is a simple solution in principle, it will help protect the integrity of 

P2P networks. As other P2P networks grow larger and larger, users feel more obscure, 

and do not feel as though their lack of participation will go noticed. This is similar to the 

Voter’s paradox, where one vote may not make a difference, but if everyone had the 

same mentality, there could be no election. Therefore it is imperative that the free riding 

issue be taken seriously, and directly addressed. 

 P2P networks have much potential, whether it be for file sharing applications, or 

distributed applications. The reputation of these networks has been infamous, as the early 

networks thrived and grew due to the demand for copyrighted media. File sharing is only 

a specific use for P2P networks, and should not be seen as the most impressive of such. 

Unfortunately, lawsuits have thwarted development of P2P technologies, and until they 

are settled, developers will be hesitant to develop any future products, regardless of their 

 34



use. The technology though must be able to develop, as networks of P2P communication 

would result in efficient network usage, powerful distributed systems, and the ability to 

not rely on a central server computing model. This technology can be very successful, but 

only if developers are left unhindered, and problems such as free riding are openly 

addressed, so as to not cause the self destruction of those systems, and the technology 

itself.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 35



References 

 
1) Digital Millennium Copyright Act of 1998 – U.S. Copyright Office Summary 
     http://www.copyright.gov/legislation/dmca.pdf
 
2) The BitTorrent Effect, Wired Magazine 
    http://wired-vig.wired.com/wired/archive/13.01/bittorrent.html
 
3) Incentives Build Robustness in BitTorrent, Bram Cohen, May 22, 2003 
 
4) http://ntrg.cs.tcd.ie/undergrad/4ba2.02-03/p5.html
 
5) Free Riding on Gnutella, Eytan Adar and Bernardo A. Huberman 
 http://firstmonday.org/issues/issue5_10/adar/index.html 
 
6) Kuhn, Steven, "Prisoner's Dilemma", The Stanford Encyclopedia of Philosophy (Fall  
    2003 Edition), Edward N. Zalta (ed.), 
    http://plato.stanford.edu/archives/fall2003/entries/prisoner-dilemma
 
7) Felkins, Leon, “An Introduction to the Theory of Social Dilemmas”, Nov 1994.    
    http://www.spectacle.org/995/sd.html
 
8) Knowles, Jeffrey, “The Debate over Sony-Betamax and Peer-to-Peer File Sharing”,  
    The Computer and Internet Lawyer, Vol. 22, No. 3, pg.1, March 2005 
 
9) Ngan, Wallach and Druschel, “Enforcing Fair Sharing of Peer-to-Peer Resources” 
     http://iptps03.cs.berkeley.edu/final-papers/fair_sharing.pdf
 

 36

http://www.copyright.gov/legislation/dmca.pdf
http://wired-vig.wired.com/wired/archive/13.01/bittorrent.html
http://ntrg.cs.tcd.ie/undergrad/4ba2.02-03/p5.html
http://plato.stanford.edu/archives/fall2003/entries/prisoner-dilemma
http://www.spectacle.org/995/sd.html
http://iptps03.cs.berkeley.edu/final-papers/fair_sharing.pdf

