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A dynamic programming algorithm is presented for calculating the partition 
function and the pairwise base-pairing probabilities over all secondary structures 
for a given RNA nucleotide sequence, and the calculation of the pairwise base-
pairing probabilities; the algorithm is an application of the approach used by 
McCaskill to accomplish this for nested secondary structures to the class of 
structures inclusive of pseudo-knots, using a technique due to Eddy et. al.  
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Introduction 
 
RNA is a single stranded nucleotide sequence that can form Watson-Crick  (A-U, 

C-G) and the weaker G-U hydrogen bond-pairs with itself, thus forming a 

complicated secondary and tertiary structure, consisting of certain well-defined 

substructures, such as hairpin loops, stacked base pairs, bulges and interior loops, 

multi-loops, and pseudo-knots. 

 

Conventionally, nested secondary structure prediction is the standard, where in a 

sequence of nucleotides each base pairs with at most one other base, and the 

overall structures correspond to matched parentheses structures; hence if i , j 

base-pair, and i<k<j , then if k, l base-pair, then i< l <j.  The cases where l <i or  

l >j are pseudo-knots and where nested structures can be represented in a linear 

fashion with a single set of parentheses, e.g. (..(..)..), a structure 

containing a pseudo-knot may require an arbitrary number of symbols to 

represent, as an example (..{..)..}.  

 

RNA secondary structure prediction is a computationally feasible and broadly 

studied problem, with a number of approaches available in the literature. It is a 

problem of interest, as RNA performs certain catalytic functions and triggers 

retranslation events which depend on its complex three dimensional structure, 

which is to a large extent determined by the secondary structure of the RNA.  

 

The types of algorithms that attempt to recognize or predict RNA secondary 

structure are of two broad classes: those that apply knowledge of the structures of 

other similar sequences to predict probable correspondence, and those that 

predict the folding of the sequence solely on the basis of the thermodynamic 

contributions of its substructures; the most common of which predict the single 
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secondary structure that has the optimal (minimum) free energy of all the possible 

conformations the sequence may take on. 

 

In the next section, we examine an algorithm of the former type that was created 

over the course of the thesis, as well as one of the applications with which we 

attempted to ascertain its usefulness. We examine its shortcomings and assess the 

representation decisions that made them necessary. 

  

In the remainder of the thesis, we present an algorithm of significantly greater 

complexity, based upon evaluation of the thermodynamics of the ensemble of 

possible secondary structures. The great majority of the algorithms dealing with 

secondary structure that are based on structure thermodynamics examine only 

nested structures; that the region interior to a given base-pair interacts solely with 

itself and nothing exterior to it lends itself to reasonable and straightforward 

dynamic programming algorithms.  

 

The nested model, however, is an oversimplification of the secondary structure 

model; there are instances where pseudo-knotted structures are known to occur, 

and perform biologically significant functions. Additionally, optimal prediction 

algorithms such as Zuker's or Eddy-Rivas predict only the individual structure 

whose energy is the minimum. RNA secondary structure is known to be dynamic 

over the regions of lowest energy. Our technique, which was originally applied by 

McCaskill, accounts for this by giving base-pairing probabilities for all structures 

derived from the statistical mechanical model, which utilizes the Boltzmann 

probability distribution, thus encompassing an ensemble of likely structures. Our 

initial application of these base-pairing probabilities is via a maximum weight 

matching of bases, accounting only for those base-pairing probabilities above a 

given threshold. 
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Profile PatScan:  
A filter based on PSSMs and 0th and 1st order Markov Models 
 
Expanding upon a computational screening approach used to identify likely 

SECIS elements by both Kryukov and Lescure, the algorithm consists of a 

several step process. Given a quantity of known positive examples of a given 

secondary structure, we are interested in rapidly searching full genomes, applying 

what amounts to a 'filter', which loosely constrains the resulting possibilities. 

Having done so, we can reasonably expect to have a set of data which contains 

the majority of true unknowns within the data examined. The resulting set is 

ranked according to its similarity to known positives, by applying PSSMs , relative 

frequencies and 1st order Markov models, according to the constraints imposed 

by the initial filter.  

 

It was found, however, that this approach failed to capture the necessary 

information to correctly distinguish unknown positives from negatives, likely due 

to its failure to capture dependencies between the scored regions. Approaches for 

capturing covariation and mutual information are frequently effective at resolving 

these dependencies, as they depend on the pair-wise relative frequencies of all 

nucleotides within a sequence, or the way that dependencies are displayed by 

mutual pointwise changes in sequences in the known examples. The difficulties in 

these approaches is that the motif in question is likely to contain some regions of 

variable length, which must be fit to the fixed length PSSM developed in a 

sensible fashion, by using sequence alignment methods or other means, lest 

variability in inter-sequence length cause incorrect predictions.  

 

SECIS elements are a conserved stem-loop structure present in eukaryotic RNA 

that codes for selenocysteine. Selenocysteine is incorporated by a retranslation 

event, mapping an in-frame UGA codon to selenocysteine in the translational 
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process. To prevent the UGA codon from being interpreted as a stop codon, as 

is normally the case, requires the presence of a selenocysteine insertion sequence 

(SECIS element) residing in the downstream untranslated portion of the mRNA. 

 
FIG 1: The conserved SECIS motif from Kryukov 

The initial filtering process uses a regular-expression based filter called PatScan, 

written by Ross Overbeek and similar in function to the tools used by Kryukov 

and Lescure in the initial phases of their screening techniques. It allows the 

following constraints to be enforced: 

 1. Specific sub-expressions may be of variable or fixed length 
2. A sub-expression may have a specific nucleotide sequence, or may be a                       

nucleotide drawn from a set of such 
3. A sub-expression may be constrained such that it must be possible to base-

pair, helically, with another sub-region given a set of base-pairing possibilities 
(Watson-Crick and potentially G-U) 

4. The constraints in (3) may be loosened by allowing specific gaps or 
mismatches in the helical regions 
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The designations for variable, fixed-length regions, helices, and invariant 

sequences imposed in constructing a profile for PatScan require a multiple 

sequence alignment of the input sequences whose correspondence to each of 

these basic types (invariant regions, fixed length regions, and variable length 

regions) allows the results to be examined differently. Where multiple examples 

of a sought secondary structure exist, and where there is a sensible multiple 

alignment to correspond to this structure, then PatScan should meaningfully filter 

out those sequences that cannot reasonably correspond to the consensus 

secondary structure because they fail to allow for the required helical hydrogen 

bonds between nucleotides.  

 

Our approach was a refinement on other computational screens such as Lescure's 

that loosely screened data and then examined them with successive levels of 

refinement to garner results of increasingly likely correspondence. As an example, 

an additional layer of refinement in Lescure was to apply a minimum free energy 

algorithm to assess the comparative energetic stability of the possible hits to that 

of known SECIS elements, while Kryukov used open reading frame analysis to 

search for upstream UGA codons.  

 

The method utilized position-specific scoring matrices (PSSM) to measure 

similarity in fixed length regions. PSSMs are maximum likelihood estimators for 

the known examples which are used to construct them. They are derived from 

pseudocounts of the relative frequencies of nucleotide occurrence in a specific 

position, and hence are the probabilistic model most likely to generate the 

sequences from which they are derived. For the variable length regions, a first 

order markov model was constructed from the input sequences, and this was 

used  to judge with what probability a sequence was generated by that model. 

Invariant sequences, which are required to be conserved according to the 
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restriction imposed by the initial filter, were not measured for the purpose of 

ranking the hits that passed the screen.  

 

It became apparent with use of this application, however, that the models 

constructed from the known SECIS elements were insufficiently constrictive. 

Application of the Vienna-RNA package to the results judged most likely upon 

running the screening technique upon various EST databases rendered results 

that failed to correspond in both predicted secondary structure and 

thermodynamic stability to the stem-loop structure for which we were scanning.  

 

The failure of the ranking algorithm is at heart a conceptual one; the approach 

breaks up the structure into regions that are scored independently, and doing so 

prevents proper assessment of covariation between individual nucleotides, which 

is known to occur when random mutation alters bases but the pairing within the 

secondary structure is conserved. The only way in which the algorithm measures 

covariation is in the initial restriction of the regular-expression based filter, that 

constrains helical base-pairing. Additionally, the imprecision is introduced into 

the scoring of the variable length regions by making it dependent upon solely its 

0th and 1st order compositional frequencies; the PSSMs have the advantage that 

relative position in the structure is maintained, while the variable length regions 

may unpredictably interact with other portions of the global structure.  
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Minimum Free Energy Prediction: Nussinov and Zuker 
 

In the absence of a large body of known examples of a given secondary structure 

motif, the only available technique for prediction is to infer structure based on 

the thermodynamic contributions of possible structures. The Nussinov-Jacobson 

and Zuker-Sankoff minimum free energy prediction algorithms predict the 

secondary structure of a sequence to be the conformation that has the minimum 

free energy according to thermodynamic parameters approximated using 

experimental measurement. This is not entirely accurate, though: the folded 

conformation of an RNA sequence exists in flux around the region of minimum 

energy, and thus does not necessarily correspond to the optimal structure. 

 

Of the two, Nussinov-Jacobson is the simpler: It uses a dynamic programming 

algorithm to maximize the number of base-pairs in the output structure. This aim 

does not reflect current understanding of thermodynamic contributions within 

structures; outermost base-pairs have no inherent stabilizing contribution, which 

is dependent upon the conformation interior to the base pair. As classified below, 

stacked base pairs and unpaired bases exterior and interior to base-pairs tend to 

have stabilizing contributions, while interior loops, bulges, hairpins, and multi-

loops have destabilizing contributions. Still, the maximization of base-pairs serves 

as a useful introduction to the dynamic programming techniques of the more 

sophisticated algorithms. The recursions are as follows: 

Where S is the sequence of n nucleotides let S= S0, S1 . . . Sn-1 

Let bp(i,j) =0 if Si and Sj cannot basepair, and 1 otherwise.   
Let P is the contribution of a single base-pair and let  Q be the contribution of an 

unpaired base. 
Where i<=j let wx(i,j) be the minimum free energy of the sequence from Si to Sj  and 

wx(i,i)=0 

Then wx(i,j)= min{  bp(i,j) * ( wx(i+1, j-1) + P) ,         

                                wx(i, j-1) + Q , wx(i+1, j) +Q,                              

     min of for i<k<j-1   bp(k+1, j)  * (wx(i,k) + wx(k+1,j) + P) }                   
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FIG 2: Energetically contributing substructures, from Wuchty et al. 
 
In the recursion, the first case corresponds to the jth base bonding with the ith, 

the next two cases are dangles, and the last case accounts for when the jth base 

bonds with some base between i and j. 

 

Revising Nussinov Jacobson to account for the actual thermodynamic 

contributions of substructures requires several cases: 

Hairpin loops interior to a base-pair i,j; bulges, stacked base-pairs and interior 

loops which are determined by two base-pairs, as seen in figure 2; and multi-

loops which are enclosed by an outermost base pair and have several independent 
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substructures contained by it. In all cases, the outermost base-pair does not have 

an energy contribution.  

Hence Zuker-Sankoff is: 

 

 

 

 
 
 

 
vx(i,j) is defined to be the energy of the secondary structures from i to j given that 

i, j base-pair. EIS1 corresponds to Hairpin loops, and EIS2 to those structures 

dependent on two base-pairs for their determination. M is a penalty for initiating 

a multi-loop.  

 

This algorithm is the standard one, implemented in both mfold and the Vienna 

RNA package. Its recursions are designed around the nested convention, and as 

previously noted, predict only the single structure considered to be optimal out of 

the ensemble of conformations around the region of minimum free energy. 
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McCaskill's algorithm for Nested Structures 
 

McCaskill's algorithm has a distinct advantage over the minimum free energy 

structure prediction algorithms, in that it captures the entire ensemble of 

secondary structures, rather than restricting its output to a single optimal 

structure. This probabilistic ensemble is normally output in terms of the 

probabilities of individual base-pairs, and this functionality is implemented for the 

standard nested model as described by Zuker and Sankoff in the Vienna RNA 

package.  

 

McCaskill's algorithm utilizes the statistical mechanical model to predict 

probabilities of individual secondary structures' occurrence, and as an extension 

of this, the probability that a given pair i,j will base-pair. This is accomplished by 

means of computing the partition function. Where K is the gas constant, T is the 

temperature, and S is a given secondary structure, the partition function is the 

sum of  e^ ( -Energy(S)/(K*T) ) over all structures. Since there are exponentially 

many secondary structures, McCaskill exploits the fact that additivity of energy 

for secondary structures implies multiplicativity of the previous term.  

 

In order to count each structure's energy contribution once and only once in the 

calculation of the partition function, McCaskill introduces several additional 

restricted matrices. 

  

Qij is the partition function from i to j. Qb
ij is the partition function given that i,j 

base-pair. Qm
ij is the contribution of multi-loops over i,j. In order to calculate 

these, two additional auxiliary matrices are computed: Q1
ij, which is the sum over 

i<=h<=j of Qb
ih and Qm1

ij is the sum over i<h<=j of Qb
ih*e^(Penalty) where the 

Penalty is a function of the number of unpaired bases in the multi-loop.  
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Then the recurrences for the remainder are: 

 
Qm

ij= the sum over i<h<=j of ( e^(Penalty) + Qm
i,h-1)*Qm1

hj*e^(base) where 
Penalty is a function of the unpaired bases in the left hand portion of the 
multi-loop and base is the contribution of an additional base-pair inside a 
multi-loop.  

 
Qb

ij=e^ (-EIS1(i,j)/KT) + for i<h< l<j the sum of e^(-EIS(i,j;h, l)/KT)  
          + for i<h<j the sum of Qm

i +1,h-1 * Qm1
h,j-1*e^(-(M +base)/KT) 

 
Qij =1.0 + for i<=h<=j the sum of Qi,h-1 * Q1

h,j 
 

Having introduced these matrices, the entry in Q0,n-1 will be the sum over all 

secondary structures. The probability of any one secondary structure's occurrence 

is then, according to the statistical mechanical model, (e^(-E(S)/KT)/Q0,n-1. From 

this, the individual base-pairing probabilities can be derived in cases of two 

varieties: where the base-pair is exterior to all others, and where the base-pair is 

included in a secondary structure interior to another base-pair. We will examine 

how to calculate these values for the non-nested model later in the thesis. 
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Eddy-Rivas Algorithm: Adding Hole Matrices 
 

Pseudoknots are functionally important in a number of RNA sequences. They are 

conserved in ribosomal RNAs, and are apparently used to mimic tRNAs by some 

viruses. Eddy-Rivas is an algorithm that finds the minimum free energy structure 

for RNA sequences including pseudoknots in O(n^6) worst case running time. 

The violation of the nested convention causes the recurrence relation strategy of 

Zuker-Sankoff to break down, but Eddy-Rivas introduces a new variety of matrix 

that is quartic in n, called a 'hole'-matrix, to account for structures that have 

interactions that violate the nested convention.  

 

The premise is that by combining such matrices, that within them contain 

combinations of other holed matrices, arbitrary pseudoknotted structures can be 

compared optimally. A simple example combination of the holed matrices is 

displayed in figure 3. 

 

 
FIG 3: a combination of two holed matrices. 

 

The actual secondary structure corresponding to a simple pseudoknot occurs 

when a region up or downstream of a loop containing unpaired bases pairs folds 

back and hydrogen-bonds to bases within the loop, as displayed in figure 4. 
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FIG 4: An elementary pseudoknot 

 

The maximization relies upon some untested thermodynamic parameters, due to 

the relative infrequency of the occurrence of psedoknots, which were chosen for 

their ability to reproduce experimentally determined results without unduly over-

predicting pseudoknotted structures. The parameters punish construction of 

pseudoknots within pseudoknots, and negative (stabilizing) secondary structure 

contributions within pseudoknots are lessened by a scaling factor. Eddy-Rivas 

also implements stabilizing energetic contributions for coaxial stacking, where if i 

and k base-pair, and l and j base-pair, and l=k+1, then there is a stabilizing energy 

contribution dependent upon the types of bases in the two respective pairings. 

Regrettably, in designing and implementing the partition and base-pairing 

probabilities for RNA secondary structure containing pseudoknots, we were 

unable to account for the contributions due to coaxial stacking.  

The broad specifications for the hole matrices are: 
 
Where i<k<l<j: 
whx(i,j;k,l) is the energy of the optimal secondary structure for the region 
between i and j, excluding the region between k and l.  
 
zhx(i,j;k,l) is the energy of the optimal secondary structure for the region between 
i and j, excluding the region between k and l, given that i and j base-pair.  
 
yhx(i,j;k,l) is the energy of the optimal secondary structure for the region between 
i and j, excluding the region between k and l, given that k and l base-pair.  
 
vhx(i,j;k,l) is the same, given that both i and j base-pair, and k and l base-pair.  
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The recurrences for these matrices recurse on themselves and on the unholed 

matrices, which are preserved largely intact from the Zuker-Sankoff Algorithm. 

Notably, the recurrences contain bifurcating cases that allow for a holed matrix 

element to contain contributions from the sum of two other holed matrices. 

In figure 5 we see non-nested bifurcations that contribute to whx.  

 

  
FIG 5: Non-nested contributions to whx(i,j;k,l) 

 

These non-nested bifurcations allow arbitrary, unrestricted pseudoknots to be 

produced. In figure 6 we see how to construct a pseudoknot of the form  

(..[..{..)..]..} and thus can produce k-ary pseudoknots, requiring an 

arbitrary number of sets of parentheses is ultimately accounted for in producing 

the optimal secondary structure. 

 

 
FIG 6: Pseudoknot Construction 
 

In Eddy-Rivas, the final computation is truncated by combining only two hole 

matrices at the top level. As a result, inclusion of certain types of knots, such as 

those of a parallel beta-sheet, cannot be determined.  
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Calculating the Partition Function and  
Base-Pairing Probabilities with Pseudo-knots 
 
 
The algorithm presented in this thesis calculates the partition function and base-

pairing probabilities for RNA secondary structure including pseudoknots. This is 

a reasonably straightforward extension of the approach McCaskill used to 

calculate the partition function for Zuker-Sankoff. The algorithm restricts itself to 

a subclass of the pseudoknots examined by Eddy-Rivas, being 2-ary pseudoknots 

which require only two sets of parentheses to represent with a matched 

parentheses structure. This is equivalent to running Eddy-Rivas in approximation, 

and restricts pseudoknot varieties to the elementary class. This represents a large 

improvement in running time over the case where all pseudoknots covered by 

Eddy-Rivas were examined in the calculation of the partition function, but was in 

fact a compromise required by the extreme difficulty of accurately incorporating 

the contributions of pseudoknots crossing pseudoknots without over- or under-

counting their contribution. At this juncture, the algorithm suffers from 

overwhelming time complexity, but I have hopes that several optimizations will 

allow a reduction in running time.  

 

Several fundamental simplifications of Eddy's algorithm were made, in order to 

reduce the recurrences to manageable size and complexity. In addition to the 

failure of the algorithm to examine non-nested bifurcations within pseuodknots, 

it was also necessary to ignore thermodynamic contributions from coaxial 

stacking. In the nested case, this was an advantage, in as much as Vienna RNA 

package, the principal point of comparison, did not implement coaxial stacking. 

Ignoring coaxial stacking contributions was motivated by the difficulty of 
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introducing subcases that were mutually exclusive and allowed for positive 

identification of the contiguity of two stem-loops. 

 
As in Eddy-Rivas, we have the unholed matrices wx and vx, and the holed 

matrices whx, vhx, and zhx. Notably, the matrix yhx has been eliminated. Rather 

than being the energy of the optimal structure over the region i to j, or i to j 

excluding k to l, these matrices contain the sum of e^(- Energy(S)/KT)  over all 

secondary structures S that the respective region can take on, with wx roughly 

corresponding to the term Q in McCaskill's algorithm and vx corresponding to 

Qb . Additionally, we have wx1 equating to Q1, and the additional matrices wm 

and wm1, which are Qm and Qm1 from McCaskill. 

 

The recurrences for these expressions are defined in precisely the same fashion as 

McCaskill, but it is notable that the various matrices are not close analogues to 

those in Eddy-Rivas.  The optimization algorithm was unconstrained in 

comparison to our adaptation: given that only the minimum free energy structure 

of a given conformation would be traced back for a given entry in the matrices, 

the Eddy-Rivas algorithm can examine the same substructure multiple times, 

treating it as a different case in each instance, relying on maximization to choose 

only the optimal of the examined structures. 

 

Tracing through the Eddy-Rivas recursions renders any number of duplications, 

all of which are necessarily eliminated in a correct calculation of the partition. The 

most important of these alterations is that the holed matrices whx, vhx, and zhx 

are constrained to have at least one base pair such that g,h base-pair, where 

i<=g<=k and l<=h<=j. This requirement is trivial for the matrices vhx and zhx, 

which already constrain at least one pairing, but is necessary to avoid recounting 

nested structures that would result from combinations of whx and other holed 

matrices. Hence we have that any contribution from the combination of two hole 



 

17 

matrices is a contribution from a structure containing a pseudoknot, which was 

not the case in Eddy-Rivas, which depended upon the weighting and penalizing 

of combinations of hole matrices to prevent their being chosen as optimal when 

there was an available nested structure in the same conformation. 

 

Thus the vx(i,j) is the partition function over all nested and non-nested structures 

between i and j given that i,j base-pair, and wx(i,j) is the partition function for all 

nested and non-nested structures from i to j. 

 

The recursions for these two functions are as follows: 

 
With wx(i,i-1)=1.0, wx(i,i)=1.0 
wx(i,j) = 1.0+ the sum for i<=h<=j of wx(i,h-1) * wx1(h,j) (1) 
               for all  i<=a<=k< m-1 <m<=l <j 
                + wx(i,a-1)*vhx(a,l;k,m)                   (2) 
                  *whx(k+1,j;l+1, m-1)* 3P10P*P11  
            
Notably, recursion (1) is identical to the nested recursion from McCaskill; though 

the contributing elements of wx1 (a sum over vx) can themselves contain 

pseudoknots, wx1 contains no explicit bifurcation term. Since whx is constrained 

to contain a base pair across the hole, if (2) addresses all of the pseudoknot 

structure contributions once and only once, then the recursion is correct. Note 

that the loop bounds allow vhx to be decreased in size to only one base on the 

left hand side, and one base on the right. This case is undefined in Eddy-Rivas for 

vhx, but is defined in our vhx. Additionally, where we write energy parameter 

names or functions as they are defined in Eddy-Rivas e.g. P10P or EIS1, they 

actually correspond to e^(P10P/KT) where the initial value of P10P is already the 

negation of the energy contribution of its corresponding structure element.  
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vx(i,j) = EIS1(i,j) + the sum for i<g<h<j of  
                       EIS2(i,j;g,h)                        (1) 
                    + the sum for i<h<j of  
                       wm(i+1,h-1)*wm1(h,j-1)*P5            (2) 
                    + wx(i,a-1)*vhx(a,l;k,m) 
                      *whx(k+1,j;m+1,l-1)*3P10P*P11         (3) 
                  for all  i<a<=k< m-1 <m<=l <j-1 
Again, as matrices wm and wm1 are identical to their counterparts in McCaskill, 

the topmost recursions (1) and (2) are identical to the nested case while (3) 

attempts to uniquely account for the pseudoknot contributions.  

 

There are then three additional recurrences in the calculation of the partition: 

whx, vhx, and zhx. Of the three, zhx is the most constrained. It has been 

redefined 

 
zhx(i,j;k,l)= wx(i+1, k) * wx(l,j-1) +                      (1) 
              for i<h<=k and l<g<=j the sum of 
                 if (h,g can basepair): 
                     vx(i,j;h,g)*zhx(h,g;k,l)               (2) 
                     else: 0 
The first case handles structures interior to the base-pair, and the second recurses 

on vhx.  

 
vhx(i,j;k,l)=  
       if(i,j can't basepair or k,l can't basepair): 0      (1) 
                   else if(i=k and l=j): 1.0                (2) 
                   else if(i=k or l=j): 0                   (3) 
                   else 
                     wx(i+1,k-1)*wx(l+1,j-1) +              (4) 
                     EIS2(i,j;k,l) +                        (5) 
                     for i<g<k and l<h<j the sum of                             
                        (wx(i+1,g-1)*wx(h+1,j-1) + EIS2 
                                      (i,j;g,h) ) * vhx(g,h; k,l)        (6)                                 
                      
Equation (1) and (3) are base cases for vhx; they prevent the two base-pairs 

required to satisfy the constraint. Equation (2) is a base case that is necessary to 
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maintain the recursion on vhx in wx and vx. Equation (4) is the case where no 

additional pairs cross the hole, equation (5) is the contribution of vhx as a stack, 

bulge, or interior loop. Equation (6) recurses inwards on stacked vhx's internal to 

this one.  

  

Finally: 

 
whx(i,j;k,l)=   
                     for i<=g<=k and l<=h<=j the sum of 
                       wx(i,g-1)*zhx(g,h;k,l)*wx(h+1,j)     (1) 
  
 
Equation (1) recurses on zhx, upon having enountered an exterior base-pair.  

This completes the recursions. In total, they primarily differ in effect from Eddy-

Rivas in that they do not count non-nested bifurcations within pseudoknots. 
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Correctness of Probability Backtracking 
 
The central premise of the backtracking to produce base-pairing probabilities is 

that the energy of an individual base-pair is equivalent to the sum of the 

probabilities of all of the secondary structures in which it appears. Again, the 

difficulty lies in setting up the recurrences in such a fashion as to measure the 

contributions consistently. 

 

In my algorithm, which in this particular is an outright approximation, the 

probability matrix is developed from largest entry to smallest, as the innermost 

probabilities are dependent upon the occurrence of secondary structures exterior 

to them. 

 
Probability recurrences: 
Pr(h,l)= wx(0,h-1) *vx(h,l) * wx(l+1,n-1)/wx(0,n-1) +       (1) 
             For i<h<l<j: 
             += Pr(i,j)* vx(h,l) *EIS2(i,j,h,l)/vx(i,j) +   (2)             
              Pr(i,j) vx(h,l)* (  wm(l+1,j-1) + wm(i+1,h-1) (3)        
                              + wm(l+1,j-1) * wm(i+1,h-1) )                     

/vx(i,j) 
             For l+1<k<m <n and 0<=a<h-1 
             +=wx(0,a-1)*vhx(a,m-1;h-1,k)*vx(h,l)           (4)                 
                        *whx(k+1,n-1;l+1,m)/wx(0,n-1) 
             For 0<=k<m<h and l<b<=n                                            
               += whx(0,h-1;k,m) *vhx(k+1,b;m-1,l+1)        (5) 
                      *vx(h,l)*wx(b,n-1)/(wx(0,n-1) 
             For h<=m<k<=l 
               +=wx(0,h-1)*vhx(h,l;m,k)                     (6) 
                  *whx(m+1,n-1;k-1,l+1)/wx(0,n-1) 
               +=whx(0,k-1;h-1,m+1)*vhx(h,l;m,k)            (7) 
                  *wx(l+1,n-1)/wx(0,n-1)                      
                For  0<=a<=i<h<l<=j<=b<=n: 
                +=wx(0,a-1)*vhx(i,j;h,l)                    (8)                 
                      *vhx(h,l;m,k) 
                      *whx(m+1,n-1;k-1,j+1)/wx(0,n-1) 
                +=whx(0,k-1;i-1,m+1)*vhx(i,j;h,l)           (9)                 
                      *vhx(h,l;m,k)*wx(j+1,b)/wx(0,n-1) 
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Equations (1), (2), and (3) are drawn from McCaskill's algorithm for nested 

structures, and are functionally identical to those. They account for the 

appearance of a given base in an outermost structure, in a bulge, stack, interior 

loop or multi-loop.  

 

The remaining equations, (6) - (9), attempt to account for a base-pairs occurrence 

within a pseudoknot. Equations (4) and (5) attempt to account for the occurrence 

of a base-pair within the interior of a multi-loop but within a nested structure; 

cases exterior are handled by (1).  Equations 4 and 5 are notably in error in this 

approximation: they constrain unduly the contiguity of the helices at h-1 and h. In 

these equations, there is a requirement that for correctness, the vhx term be 

substituted with zhx, and the whx term with yhx, which is defined symmetrically 

to zhx but recurses outwards from a base-pair on the interior of a holed structure. 

It is regrettable, but due to time-constraints, it is not possible to incorporate this 

change at this time.  

 
Equations (6) and (7) account for the instances where the considered base-pair is 

participating in a bifurcation, and is the outermost such base-pair crossing the 

hole.  

 

Equations (8) and (9) account for cases where the base-pair is participating in a 

bifurcation, but is not an outermost base-pair.  
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Application of Maximum Weight Matching 
 
Withstanding the remaining under-counts recognized in the formulation, the 

majority of the contributions from elementary pseudoknots are accounted for in 

the probability back-trace. In order to determine to what extent they could be 

used to predict pseudoknotted structures, maximum weight matching was applied 

to the output probability matrices from running the program on a short database 

of pseudoknotted structures. The structures in question were a well-formed 

subset of those available in PseudoBase, and included instances of non-

elementary structures.   

 

The output probability matrices were mapped into weighted graphs, to which a 

well known O(n^3) maximum weight matching algorithm was applied, 

thresholding the edge weights at a threshold of  probability .05 to avoid 

outputting trivial probabilities. Of the 1615 base-pairs, our algorithm identified 

56.7%; incorrectly predicting 734. Some pseudoknot was predicted the great 

majority of the time, predicting ones occurrence all but 3 of the instances were 

one occurred. Running the same routine on the data sample produced 57.5% 

correct but incorrectly predicted 808 base-pairs. At a .10 threshold, our algorithm 

correctly predicted 53.7%, with 663 incorrect base-pairs, while the nested version 

of McCaskill at the same threshold predicted 55% correctly with 744 incorrectly 

predicted.  

 

No figures are as yet available as to the extent to which the algorithm 

overpredicts pseudo-knots using maximum weight matching, but it is likely to be 

higher than Eddy-Rivas at threshold values that are not-prohibitive, since even 

with pseudoknots unconstrained, nested contributions that are mutually exclusive 

may be large.   
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Additional test runs to answer these questions in particular must wait for a 

provably correct formulation.  
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Conclusions 
 
 
Construction of the algorithm to handle elementary pseudoknots was not wholly 

without problem; the difficulties of correctly handling the energetic contributions 

of the restricted set of structures uniquely was impressive. There are certain 

parameter uses that are omitted from the recurrences for the sake of simplicity- 

among them are the relative over-counts for dangle contribution. The dangle 

handling adopted a convention from Vienna RNA packages handling of dangle 

contributions. The convention is that at any point where a dangle could be 

placed, that is where a base-pair abuts an unconstrained structure, the base-pair is 

treated as having a dangle contribution for all secondary structures within the 

unconstrained region, including those that contain coaxial stacking with the base-

pair in question, which should ideally preclude the dangle contribution.  

 

This serves as an example of the magnitude of the difficulties of correctly 

handling the contribution of thermodynamic parameters with respect to Zuker-

Sankoff, a substantially simpler algorithm. It should be noted that my original 

intent was to handle all classes of pseudoknots handled by Eddy-Rivas, but it was 

eventually necessary to omit those cases that contained non-nested bifurcations 

crossing holed structures.  

 

The resulting approximation algorithm, while provably not optimal with respect 

to a few cases, is not without its merits. Besides providing a foundation for an 

optimal algorithm, its results in base-pair and pseudoknot prediction are by no 

means poor. It correctly incorporates most of the energetic contributions of the 

class of pseudoknots it handles, and produces meaningful probabilities that at 
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their worst account for more of the energetic contributions to the bases in 

question than does the McCaskill implementation in Vienna RNA package.  

 

Further work includes finding an optimal solution to the problem of dangles 

based upon mutually exclusive sub-cases of various matrices that additionally will 

allow the incorporation of coaxial stacking contributions. Additionally, the 

correction of the undercounts in the probability back-tracking are necessary, as 

previously noted. Finally,  the probability algorithm should be redesigned in such 

a way as to be able to incorporate information about how one base-pair binding 

effects the probabilities of the other bindings.   
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