

Boston College
Computer Science Department

Senior Thesis 2002
John Weicher

Distributed 3D Raytracing
Prof. William Ames

Introduction

Since their advent, computers have been used to aid humans in tasks that would

be too complex or too time consuming to do without them. However, as computers
became more and more powerful, they also began to show potential usefulness in areas
that before were completely beyond our ability at all. People were finding a use for
computers in all areas of activity, and visual art was no exception. The idea arose that
perhaps computers could be used to generate pictures that looked so real, a person would
not be able to tell that they weren’t real photographs to begin with. This concept became
know as “photo-realism.” Photo-realistic images are those that have been generated by a
computer by doing mathematical and geometric calculations based on the physics of the
real world, but are images which are indistinguishable from two-dimensional
photographs taken of a real life three-dimensional scene. As computers became more
powerful, several techniques were developed in attempts to do this. Raytracing is one of
those techniques, and is probably one of the most popular 3d image-synthesis techniques
in use today. Raytracing is actually a remarkably simple process, providing one has a bit
of background understanding first. To understand how raytracing works, and where the
inspiration for its development came from, one should have an understanding of how
vision works within the human eye.

1. Human Vision

 Our eyes are actually nothing more than complex “light catchers.” The internal
surfaces on the backs of our eyeballs are vast arrays of “rods” and “cones”, organic
devices that are sensitive to different wavelengths, or energies, of light. As is probably
common knowledge now, light has been shown to be a particle that travels at immense
speeds, always in a strictly straight line, yet oscillating as it goes. This causes a particle
to appear to have a wave-like behavior (Fig. 1).

The varying of the speed of oscillation of a particle enables light to occur in many
different wavelengths and energies. It is these different energies of light particles that
actually make up the different colors that we can perceive with our eyes (Fig. 2). Our
eyes perceive an image by having light particles of different colors enter the eye and
strike the rods and cones on the rear surface. These rods and cones then send signals
based on the energies of the particles to the brain to be interpreted as colors, and
ultimately an image. Without light we would not be able to see anything. And not for

the obvious reason of it simply being too dark to see anything, but because it is these
particles of light which make the very image our eyes see altogether!
 The process of image formation within the eye is very simple. Every scene or
environment in which we can see has light sources: things that actively emit light
themselves, or things that “emit” light by reflecting it. When an object emits light, such
as a light bulb for example, it is actually emitting billions and billions of individual light
particles in all directions. These particles of light are generally of all or at least many of
the possible wavelengths and colors. They bounce around a scene, such as a room for
example, with some being absorbed by various objects, and others reflected. Some of the
particles manage, through their chance reflections, to have the necessary path to enter the
eye in a straight line and strike the back (Fig. 3). Furthermore, different materials absorb
different wavelengths of light. It is the wavelengths which a material or object reflect
which give it its color. When we see a red wall for example, it is because the materials of
the wall are absorbing all the colors of light except red. Because of this, red light is able
to strike the wall, not be absorbed, and perhaps reflect off of it into our eye.

2. The Raytracing Process

 2.1 Forward Raytracing

 It is this process through which the human eye perceives images that raytracing
tries to mimic. Based on the way light particles produce images within the human eye,
the idea behind raytracing is very intuitive. First, a scene and all the objects within it are
defined to the raytracing program based on their geometry within a three-dimensional
coordinate space. Everything in this world can be described in geometric terms. For
example, a ball is really just a three-dimensional sphere, for which we know a geometric
equation. Now, this is of course a simplified example for the sake of this explanation. In
reality a ball probably isn’t a perfect sphere. It may have deformities or irregularities in
its surface. However, in this way everything (practically) can be defined in terms of a
collection of geometric primitives, such as spheres, cubes, cylinders, planes, or other
shapes defined by higher order geometric equations. Once these objects are defined
geometrically, their surface or material properties are defined. These properties would
include things like color, how shiny they are or how well they reflect light. Next, light
sources are defined according to their location in three-dimensional space, along with

their color and intensity. Finally an “eye-point” and direction are defined. This is the
location from which the image will be generated. Finally, the raytracing algorithm is
applied to the scene. Light rays are simulated leaving the active light sources (those
which actively emit light), bouncing off the objects in the scene based on the surface
normal of the objects at the points of contact, having their colors altered depending on
what objects they come in contact with. Determining the color of light rays that
eventually come in contact with the eye-point forms an image (Fig. 4).

This process is more accurately called forward raytracing, as it models how light

rays actually leave their source and travel forward in their journey until they either reach
the eye-point or it is determined they never will. In theory this is an algorithm which
more or less perfectly models real life, and therefore should generate a photo-realistic
image. However, in practice, this type of algorithm is never implemented. Because of
the nature of light, it would take the simulation of potentially billions of rays, each one
involving numerous calculations to determine which objects it came in contact with or
intersected along the way, before finding all the rays which actually enter the eye-point
and form an image. Using this algorithm would take huge amounts of time to actually
generate an image, because it involves doing the extra calculations for a vast majority of
rays that end up being useless anyway. However, by making a slight alteration to the
forward raytracing process, we get a much more practical and usable algorithm.

 2.2 Backward Raytracing

 By modifying the forward raytracing algorithm and simulating only the rays that
we are sure will actually enter the eye-point and be relevant to the formation of an image,
we can greatly reduce the number of unnecessary calculations. Therefore we will have a
much faster algorithm; one that can actually be effectively implemented. However, to do
this we must abandon the notion of tracing light rays from their source to their origi n, as
we have no idea which of the infinite number of rays are actually the ones that make it to
the eye point. Instead we must trace light rays from the eye point into the scene, and
determine which objects they intersect to determine what colors they will be. This
process is appropriately called backward raytracing, as it involves simulating rays
backward from their final destination to their source.

3. Implementation

 Now that I have explained what backwards raytracing is, it is now appropriate to
discuss my particular implementation of a backward raytracer. This will also serve to
better explain how the raytracing process is actually achieved. I have chosen to
implement my raytracer in the C++ language, as C is a very efficient procedural
language. Although a language such as Java would have offered a much easier means of
opening windows and plotting pixels, as well as of doing network socket operations, the
additional overhead that Java brings is unacceptable, considering how time consuming
the raytracing process already is. I chose instead to utilize the OpenGL libraries available
to Linux for opening windows and plotting pixels, as OpenGL provides a relatively
simple way to do this. Furthermore, C++ has the ability to incorporate an object-oriented
structure, which was very desirable. Using an object-oriented approach, I was able to
easily construct a hierarchical object structure for the objects that my raytracer is able to
trace. These individual classes, one for each object, contain all the specific information
about the object, such as location, size, as well as physical properties such as color,
transparency, etc. These classes also include the object specific methods for determining
the intersection between an object of its type and a line.
 In addition, I chose to implement my raytracer on a Linux platform, because the
network and socket programming that was necessary for the distributed aspect of my
program is much more straightforward that on a Windows platform. However, the
distributed aspect of this project will be discussed further on in this paper.

 3.1 Ray Construction

 Because backward raytracing is essentially the process of determining the
intersection points of light rays and objects within the scene, an appropriate
representation of these components is needed. For the light rays, this can be achieved by
representing them as lines. This way we can geometrically solve for the intersections that
each of these lines has with the objects in the scene, which are also represented by
geometric equations. This will determine which objects the light ray, which this line
represents, would have reflected off of.

It is a well-known fact in geometry that any two points make up a line. Therefore,
given two correct points for each, we can define the lines that make up the light rays we
wish to simulate, or “trace”. Once we have these lines we can solve for their actual
intersections. But again, so far this is still just a reiteration of the raytracing process in
general. We still need a way to determine which rays are the ones that we know are
going to affect the image. We can do this by observing the way an image is formed on a
screen. An image is actually a two-dimensional array of pixels. A pixel is the smallest
component of color a screen is able to display. It is a single “dot” of color on a computer
screen. We know that the color of each pixel the image we want to create is going to be
determined by the ray that must pass through both it and the eye point. This means that
the pixel represents a point on the actual light ray line. Using the eye point as one, and
the pixel point within the image as a second, we can construct all the lines that we know
will create the image by tracing one ray per pixel (Fig. 5).

Any point within a three-dimensional coordinate system can be described by three
components: the ‘x’, ‘y’, and ‘z’ components of its location. If a user were to sit in front
of the screen, the x and y components would represent the horizontal and vertical
component of a point, respectively, while the z component measures how far “in” or
“out” of the screen the point is. The screen represents a ‘z’ of zero, with negative values
increasing “into” the screen. By placing the eye point essentially “outside” of the screen,
we are able to use it as one point to define each ray. I created a data structure comprised
of three floats, called a “point3d”, to represent a point in the coordinate system. A “ray”
is another data structure made up of two point3d variables.

3.2 Object Construction

 Information about objects within the scene is stored within C++ classes for these
objects. Characteristics such as location, orientation, and surface properties are stored in
variables within the object itself. This way the object “knows” all it needs to know about
itself within the 3d world. Also present within the object are all the methods necessary to
compute intersections. The main raytracing engine can therefore pass to the object the
two points that make up a ray, and the object determines whether or not the ray intersects
it. This was a design decision I made because solving for the intersection between a ray
and different types of objects is different for each object. This way the raytracing engine
needs only to iterate through rays, polling the objects in the scene for intersections, and
needs to know nothing of how to solve for intersections with different objects. The
objects handle that work themselves.

3.3 Finding the Intersection (and The Depth Problem)

 The problem with simply polling the objects for their intersections is that a ray
may intersect multiple objects. For example, if there is one object positioned behind
another, it is possible that a ray fired at the first object will intersect the second as well.
Because we are just doing geometric calculations, there is no mechanism for “stopping” a
ray once it has its primary intersection with an object. Therefore, every time more that

one intersection is calculated for a ray, it would need to be determined which intersection
is “first” or closer to the eye. The algorithm would need to do this to ensure that the
proper object’s surface information is used to color a pixel, and not the surface
information of the object that should actually be covered or obscured by another.

We can solve this problem using parametric equations. Given some ray
comprised of two points, p0 and p1, each having an x, y, and z component, we can
generate any point further along the ray by using the following equations:

Xi = Xp0 + t(Xp1 – Xp0)
Yi = Yp0 + t(Yp1 – Yp0)
Zi = Zp0 + t(Zp1 – Zp0)

In other words, there is some coefficient t, such that when inserted into each of these
equations, generates the three components of intersection point on the surface of the
object. For example, take the equation of a sphere:

(X-a)2 + (Y-b)2 + (Z-c)2 = r2

This equation defines all the points on the surface of a sphere centered at (a, b, c) with a
radius of r. If we simply assume that there is an intersection between a ray and this
object, we can solve for “when” (or for what t) this intersection occurs along the ray line.
By simply plugging the equations for Xi, Yi, and Zi in for the X, Y, and Z, of the sphere
equation, we can solve for t. If we therefore do this for all the objects in the scene using
the same ray, and have the objects return their t values instead of their actual intersection
point (which means nothing to the raytracing engine anyway), we can simultaneously
calculate what objects intersect the ray, as well as which object does it first. The object
that returns the smallest positive t clearly has an intersection with the ray earlier along its
path from the eye, and is therefore the intersecting object that is most “in front.” This
object can then be polled for its color at that point on its surface, and the pixel can be
colored.

3.4 The Algorithm

 My raytracing engine goes through the following simple algorithm to generate an
image. This assumes the scene has already been constructed and passed to the raytracing
engine through the appropriate methods. This process of actually constructing the scene
will be covered later in this paper. The algorithm follows:

 Fir st point of all r ays is always t he eye point
 - For each y pixel value in the image
 - For each x pixel value in the image
 - Set the second point of ray to (x, y, 0)
 - Fire ray at scene by passing ray to each object
 - Collect t values from all objects
 - Compare which object returned the smallest positive t
 - Poll this object for its color at the intersection point

 - Set that pixel to the returned color

All complex calculations are performed within the objects themselves. The main
raytracing loop needs only to poll all the objects for their t values, and then request the
intersection point color from the appropriate object. Objects with no valid intersection
with the ray simply return a negative one for t. In the process of solving for t, each object
can also determine the actual point of intersection on its surface. Once it has solved for t,
an object can immediately solve for the intersection by putting the ray points and t into
the original parametric equations for Xi, Yi, and Zi. This intersection can then be stored
in the object itself in case the object is later polled for its color at this point.

 3.5 Determining Color Values

To determine the color of an object at a certain point, my raytracer implements a
simple Lambertian Shading model. Within the Lambertian model, as with most shading
models, the point of an object that is going to be most brightly lit is the point on the
surface of the object where the perpendicular surface normal of the object at that point
happens to be aimed directly at the light source illuminating the object. Colors get
proportionally dimmer as the distance from this point. An example of this is the bright
highlight on a balloon that is held next to a light. The bright spot always occurs on the
balloon in the spot where, if we were able to draw a line perpendicular to the surface of
the balloon, the line would point directly to the light bulb. Points on the surface of an
object are lit at an intensity which is inversely related to the magnitude of the angle
between a vector pointing at the light, and the surface normal vector of the object at that
point (Fig. 6). As this angle increases, the object has a lesser degree of illumination by
the light source.

The intensity of a pixel’s color using this shading model can be defined as:

I = Cp * cos θ

Where Cp is the red, green, or blue component of the original object color (perhaps
specified by a texture map), and θ is the angle between the vector pointing towards the
light, and the surface normal. Therefore, to calculate the color of an object at an

intersection point, all that is needed is the surface normal at that point, a vector pointing
to the light source from that point, and the object’s original color. Cos θ can be easily
computed by taking the dot product of the two vectors after normalization. An example
of this calculation is below:

 Normalize both vectors: VL = sqrt(LVx

2 + LVy
2 + LVz

2)
 LVnorm = (LVx/|VL|, LVy/|VL|, LVz/|VL|,)

VSN = sqrt(SNx
2 + SNy

2 + SNz
2)

 SNnorm = (SNx/|VL|, SNy/|VL|, SNz/|VL|,)

 Compute the Dot Product: (LVx*SNx) + (LVy*SNy) + (LVz*SNz)
 (VL*VSN) (VL*VSN) (VL*VSN)
 = Cos θ

 Apply to original color: CR = CR * Cos θ
 CG = CG * Cos θ
 CB = CB * Cos θ

This method accurately shades an object based on its location relative to a light source.
And example image of Lambertian shading is included in Appendix B of this paper.

 3.6 Reflectivity

 Lambertian shading is only an effective coloring method providing an object has
nothing more than a simple color. However, what if an object is to be slightly mirrored?
In other words, what if it reflects the light around it? This scenario is also handled
accurately through a few more simple calculations. If a ray intersects a mirrored object,
the color of that point on the object must be determined by calculating what that ray
would intersect with after it “bounces off” that first object into a second.
 When an object is polled for its color and it is mirrored, instead of simply
returning its own color, it assembles a new ray along the properly reflected vector of the
original ray, and fires this new ray at the scene to see what it hits. This new color is then
factored in to the original object’s color proportionally to the amount of mirroring. This
new modified color is then returned as the pixel color (Fig. 7).

The computation for a reflected vector, much like that of Lambertian shading, is
dependant only on the incoming ray (vector), and the surface normal vector of the object
at the intersection point. The angle of the incoming vector relative to the surface normal
of the object at that point is the same as that angle that the reflected vector will make with
the surface normal at the same point (Fig. 8).

A reflected vector can be computed using the formula:

VREF = 2 * (VINC • VSN) * VSN – VINC

The operation within the parenthesis is the dot product operation, just like in the
computation for Lambertian Illumination. I will not go through an example of this
computation within this paper, as it is a bit time consuming. It is sufficient to know
however, that this calculation generates a reflected vector that can be used to generate the
reflected ray of a mirrored object.

4. Additional Implementation Information

 4.1 Matrix Transformations

 One of the problems that I encountered when initially designing my
implementation was the deriving of the equations that actually solve for the intersection
between the objects and a line. This was often a very tedious and difficult task. For
example, deriving the equation to solve for the parametric coefficient “t”, in an
intersection between a line and a sphere is relatively simple, albeit a little long. This is
because the equation for a sphere already has built into it the ability to easily define an
arbitrary sphere (one centered at an arbitrary location), and not just one centered at the
origin of the coordinate system, or a unit sphere. The problem is that for other objects, in
particular infinite objects, such as planes, the equations define a set of points in such a
manner that deriving the intersection equation for an arbitrarily oriented plane was
extremely complex. To do this for even more complex objects, such as a torus (a donut
shape), while incorporating to ability to have arbitrary definitions was next to impossible,

even with the help of software such as Mathematica. Of course these derivations are not
literally impossible, but they were beyond my means.
 Once I became aware of this problem, I decided to make a design decision that
would handle all of these problems. I decided to implement all transformations of objects
such as location, rotation, and scale (size), by way of matrices. By doing so, I would only
need to derive the intersection equations for unit objects, or those centered at the origin,
having no arbitrary rotation or scaling. The process is quite simple. By putting any point
in a 4x1 matrix, and multiplying it with certain matrices for each of the transformation
operations, you get the corresponding point with all the proper transformations applied.
For example, if I have the point (0,1,0), and want to know what point results if I rotate it
around the x-axis 90 degrees, I can simply multiply this point by the matrix for x-axis
rotation, and get the resulting point (0,0,1) (Fig. 9).

There are corresponding matrices for each of the possible transformations (which I have
listed in an appendix at the end of this paper): Rotation, translation or relocation, and
scaling, all three of which can be applied to each of the three axes independently.
Furthermore, by multiplying all the desired transformation matrices together in the
reverse order from which you would like them applied, the resulting matrix is a
Composite Matrix with which all the transformations can be applied to a point at once.
Even further, an Inverse Composite Matrix can be computed which exactly reverses the
transformation s of the Composite Matrix. With these two matrices, all the problems of
deriving complex equations to be used for finding intersections are no longer relevant.
 When a user defines an arbitrary object, they now only need to describe the object
in terms of the transformations they wish to have applied to it. A sphere of radius of 5,
located at (10,20,30) is the same thing as a unit sphere of radius 1 centered at the origin
with the correct scale and translation then applied to it. With this tool, I no longer needed
to do complex derivations of equations.

Now, before raytracing beings, the Composite and Inverse Composite Matrices
need to be computed for each object in the scene. The raytracing algorithm then changes
in the following way:

 - When an object is polled for its intersection, it applies its Inverse Composite

 Matrix to the incoming ray, in order to make it relative to a non-transformed,
 more simple, unit-version of the object. Because the Inverse Composite Matrix
 applies the exact opposite of the transformations that the user wanted applied to
 the object, this is the same as firing the original ray at transformed object.

 - Then it solves for the intersection of this transformed ray with a unit version of
 an object of its type (these equations are much simpler).
 - The resulting intersection point is the transformed back to its actual location

 using the Composite Matrix of the object.

This process produces the same resulting intersections as would be computed using the
original ray and the much more complicated equations derived for arbitrary versions of
every object. By using this process of matrix transformations, I eliminated the need for
doing these derivations. Matrices also allow for an easy means to stretch, rotate, and
move objects in creative ways.

 4.2 Anti-Aliasing

 One of the problems with raytracing is the fact that the pixels of a computer are a
finite size, and can only be set to one color. Because pixels are the smallest unit of color
on a screen, it is impossible to set one half of a pixel to one color, and the second half to
another. This causes problems because situations can arise (and usually do), in which if
we could “zoom in” on a scene, we would notice places in the image where the edge of
an object really only should cover part of a pixel. This usually occurs because pixels are
often represented as a square. Therefore, trying to represent curved edges in particular
usually results in an edge that looks “jagged.” In Figures 10 and 11, we see how trying to
represent a true circle with square pixels is impossible. Figure 10 represents the circle we
would like to draw on the screen, but Figure 11 shows the “circle” we have to settle with
due to the nature of pixels:

In this case it would be ideal to be able to color only part of certain pixels black, and the
rest white. This negative side affect of the shape of pixels is called aliasing.
 There are techniques to correct this problem, however. These techniques are
appropriately called anti-aliasing techniques. My program implements a simple form of
anti-aliasing, which can be turned on or off. When anti-aliasing is enable, the raytracer
fires not just one ray per pixel, but several (Fig. 12). Each ray is offset slightly to various
locations all within in the same pixel. This way, if a pixel should ideally be partially
colored by more than one color, some of these rays are going to return these different
colors. The pixel is then actually set to a color that is an average of all the colors that are
returned by the anti-aliasing rays (Fig. 13). This sometimes produces a blurring affect
along the edges of objects, but works very well to eliminate “the jaggies.”

When viewing this circle at its normal size, and not enlarged to the pixel level as it is
above for the sake of explanation, it would appear as a much more accurate circle. It
should also be noted that while anti-aliasing makes an image look more realistic and
servers to smooth edges, it obviously takes much longer. In the case of my
implementation, there are five times as many rays fired, and so five times the number of
calculations to perform per pixel. I have included other examples of anti-aliasing that has
been applied to actual images generated by my raytracer in Appendix B of this paper.

 4.3 Shadows

 Another, very simple to implement component of raytracing is shadowing. To
make an image more realistic, objects that are between a light source and other objects
should cast shadows on objects behind it. This can be implemented very easily by using
“shadow rays.” When an object is found to intersect a ray fired from the camera, and to
be the object that is most “in front” and so is polled for its color information, it computes
its own color at that point, then fires a shadow ray. A shadow ray is simply a ray shot
from an intersection point on an object, directly at the light source. If any valid
intersections are detect which are not “beyond” the light source, then there is clearly a
second object between the light source and the first object. The original object then
darkens its color by a preset amount to signify being in shadow, before returning this
color to the raytracer. Shadowing is one of the easiest features of raytracing to
implement.

 4.4 Texture Mapping

 The vast majority of objects in this world are not made up of just a single color.
Most are comprised of multiple colors or hues. Because of this, it would be nice if there
were a practical way applying or “painting” a custom face or “skin” onto an object. Well
in fact, this is a very simple thing to do in raytracing. The process through which this is
done is called texture-mapping. When defining an object within a scene file, the
“texture” attribute can be included, along with the name of a supported image file. Upon
parsing of the input file and the creation of the scene within the raytracer, this picture file
can be opened and read into a buffer within the object class. Additionally, the object
classes need to be modified to include methods that determine an appropriate “longitude”
and “latitude” of an intersection point on the object, relative to the entire object. This
way, when a ray intersects an object and that object is polled for its color, instead of just
returning a simple color, the object first determines the longitude and latitude of the
intersection point, and maps this to a location in the texture image. The color of the pixel
in the texture image at the mapped location is the color that is returned by the object.
This process serves to “wrap” the image around the object, much like the peel of an
orange.
 My initial raytracing program supported texture mapping using image files of the
PPM format, a simple bitmap format. The current implementation of my distributed
raytracer, however, does not support texture mapping. This is because the client would
need to send to a server not just the source file, but also any files that were needed as
textures. This way a server would have these needed files when they parsed and built a
scene for themselves. Currently, I have not implemented a mechanism within the client
to parse a source file prior to sending it, in order to determine additional files that would
be needed and to send them as well.

4.5 Scene Construction and File Format: The Parser

 One topic that I have not yet discussed is that of how a scene is actually inputted
or defined to the raytracer. For this task I had to develop a parsing module for the
raytracer, as well as a file format in which a user could describe a scene properly and give
it to the raytracer.
 The “.ray” format that I decided upon is a very simple text markup language
consisting of “tags” which are flags to the parser, such as [OBJECT] and [GLOBAL],
and a series of keywords used to set attributes of an object to a particular value. For
example, to create a red sphere centered at (10, -10, 10), with a radius of 5.25, the user
would put in their source file the following lines of text:

[OBJECT]
type=sphere

 radius=5.25
 color1=<1.0, 0, 1.0>
 translate=<10, -10, 10>
 [/OBJECT]

Colors are specified by a 3-tuple of their red, green, and blue components. Attributes
other than the ones seen above are available, such as “mirror”, “reflection”, and “color2”,

which causes an interesting checkerboard affect on the object. Objects can be scaled,
rotated, and moved through the use of the “scale”, “rotate”, and “transl ate” keywords.
These keywords essentially tell the parser to set the object’s transformation matrices to
the desired value. A user also has the ability to set certain global scene parameters, such
as the ambient lighting value of the scene, the shadowing factor, or to enable or disable
anti-aliasing. These attributes must be defined between the [GLOBALS] and
[/GLOBALS] tags at the beginning of the file.
 A scene file is passed to the raytracer as a command-line argument. The parsing
module then parses the file line by line. Object classes are instantiated, and have their
attributes set as they are encountered within the file. They are organized within the
raytracer as a linked list, which allows an easy, efficient way to query all objects within
the scene, as well as allowing for the number of objects within a scene to be dynamic.
Resources need not be pre-allocated to accept a certain maximum number of objects, a
number that might not be reached with every scene.
 An example of an entire scene file is included in Appendix A of this paper.

5. Distributed Raytracing

It is finally appropriate to discuss the second portion of this project. The idea of
distributed raytracing is not a complicated one, and so very little time is actually needed
to explain it. However, it is extremely effective in increasing the performance of the
raytracing algorithm, and so is an important adaptation to standard raytracing.

Although the calculations done to determine the color of each pixel are the same
(of the same form of course, variables do differ), they are all completely independent of
each other. Because of the nature of the raytracing processes, a ray shot through a pixel
into a scene never has any influence on other rays shot through other pixels, nor is it
dependant on others. Therefore, determining the color of one pixel is totally unrelated to
determining the color of another. This means that a raytracer could begin doing the
calculations for a second pixel, before it is even done with a first. This fact allows the
raytracing algorithm to lend itself extremely well to being distributed over multiple
computers, all doing the calculations for different portions of the same image.

5.1 Implementation

In order to incorporate distributed processing into my raytracer, the structure of

the program had to change. My raytracer in actuality had to become two separate
programs. What was at first a stand-alone raytracing application became a collection of a
main client program, responsible for breaking up the work and distributing it, and one or
more “number-crunching” servers. It is the server components that actually implement
the raytracing algorithm. The client component simply distributes the work of one image
evenly throughout available servers, and displays the resulting image generated by the
servers. The process works as follows:

1) The client program is started with command line arguments of the scene file
that is to be traced, as well as an arbitrary number of servers to distribute the
work among.

2) The server addresses are checked to make sure they are valid.
3) For each server, a portion of the client program is threaded off for each server

to handle communication between it and the server.
4) Each thread then connects to a server, and once a valid connection is made to

the waiting server, the scene file and a range of pixels to trace is sent.
5) The server then parses the file and builds its own copy of the scene. It then

raytraces the range of pixels that was allocated to it, storing the resulting pixel
locations and color values in a buffer.

6) Once a server has finished all its calculations, it sends the contents of its
buffer back to the waiting client thread.

7) Upon receiving pixel information from the server, the client thread transfers
this information into a global image buffer, and terminates.

8) Once all threads have completed their communication with their respective
servers, and all pixel data has been received, the main client thread opens a
window and displays the completed image.

The main client program basically becomes one that only has the capabilities of network
communication and the ability to open a window and plot pixels via OpenGL. Likewise,
the server programs have all the necessary capabilities to raytrace a scene, but no ability
to display it, as this would not be necessary.
 Distributed raytracing is obviously very effective because it significantly reduces
the amount of time it takes to render a single image. This is because the work for an
image is not being done by a single computer, but is broken up among many computers
all doing work concurrently. It is a very simply process, but one that is very effective.

6. Improvements

 It is of course appropriate for me to mention a few aspects of this project that I
wish I had been able to do differently, or to do at all. As it stands, my program only
supports the raytracing of spheres and planes. If there had been more time available, I
would have liked to incorporate more objects, such as the torus, cylinder, cone and cube,
to at least support all the geometric primitives. The derivations of intersection equations
for these objects even in their unit forms, were things I did not have time to do.
 I also would have liked to implement the idea of allowing an arbitrary camera
point into the program. As the program stands now, the eye point is fixed and cannot be
moved or specified. Because of this a scene must be defined within view or there is
really no point to the raytracing. I believe this process would not have involved much
more that a series of matrix transformations on the camera, but was one that I could not
spend time on developing.
 Finally, I would have liked to be able to incorporate the use of multiple light
sources. It is very rare that a scene looks good while using a single point light source,
and so I would have liked to have been able to support more. This too would not have
been too difficult if I have thought of it earlier on in the design process. When it finally

occurred to me, too much of my application was already coded hard fast to the idea of a
single light source.

 These are the three primary improvements that I wish I could have made to my
program. Obviously there are countless other features that I would have like to
incorporate as well, such as the ability to create more complex objects through the use of
the boolean operations (union, intersection, subtraction) of simple objects. But this type
of feature, as well as most others, would probably require a major change in the design of
my program in order to be supported. With this said, I am extremely satisfied with the
way my project came out.

Conclusion

 Raytracing is not without its faults. The raytracing algorithm is incredibly time
consuming as it usually involves the solving of very complex geometric formulas, and
doing this thousands, if not millions of times in order to create a single image. Yet
because of the nature of the raytracing algorithm, it is also one that is a great candidate
for distributed computing. By designing a raytracing application so that it utilizes
multiple computers to complete the work that would have otherwise been done by just
one, we can drastically reduce the time cost of rendering.
 With this said, raytracing is a very intuitive way of creating photo-realistic images
on a computer. By simulating the way light behaves in the real world, and how the
behavior works to “create images” within our own eyes, we are able to create incredibly
realistic pictures of objects or scenes based purely on geometry and math. It is also
relatively simple to effectively implement a basic raytracing application, as I think I have
shown through my project and paper. Because of this, raytracing has become one of the
most popular and widely used techniques for creating stunning visual images.

Bibliography

Angel, Edward, Interactive Computer Graphics: A Top-down Approach with OpenGL.
(New York: Addison Wesley Longman, 2000.)

Glassner, Andrew S., Ed. An Introduction to Ray Tracing. (New York: Academic Press,
Inc., 1989.)

Ma, Kwan-Liu, Painter, James S., Hansen, Charles D., Krogh, Michael F. “A Data
Distributed, Parallel Algorithm for Ray-Traced Volume Rendering.” ACM Computer
Graphics. (SIGGRAPH Proceedings 1993). (New York: ACM Press, 1993.)

A special thanks to Prof. William Ames for all his time and help.

Appendix A – Scene File Format

 Below is the format for a scene file:

[rayfile]

[GLOBALS]
attribute1 = value1
attribute2 = value2
…
attributen = valuen
[/GLOBALS]

[OBJECT]
type = value
attribute1 = value1
attribute2 = value2
…
attributen = valuen
[/OBJECT]

…

more object definitions

…

[/rayfile]

Appendix B – Samples Images

Below is an example image of the Lambertian shading model used on an illuminated
sphere:

(App. B Con’t)
Below are two sample images illustrating anti-aliasing. The same segment has been
enlarged in both images. However, in the first image, the enlarged segment of the image
shows jagged edges in the plane, and the edges of the sphere and shadow. The second
image has anti-aliasing applied, and it shows how the edges are now softer, and looked
more realistic when not “zoomed in” to the pixel level.

Appendix C – Transformation Matrices

Below are the matrices through which the various transformations can be applied to a
point: Translation, Scaling, and Rotation in each of the three axes.

Appendix D – Source Code

Below is the listing of all source code:

Client:
Main.cpp
Main.h

Server:
Server.cpp
Server.h
Tracer.cpp
Tracer.h
Sphere.cpp
Sphere.h
Plane.cpp
Plane.h
Parser.cpp
Parser.h
Error.cpp
Error.h

A printout of these source code files follow this page.

