McIntosh Synoptic Map Minimum Study

Ian M. Hewins1,2, David F. Webb2, Sarah E Gibson1, Robert H. McFadden1,2, Barbara A. Emery1,2
1National Centers for Atmospheric Research, High Altitude Observatory; 2 Institute for Scientific Research, Boston College

WHPI solar minimum Study

Introduction
In 1984 (Solar Cycle 20), Patrick McIntosh began creating hand-drawn synoptic maps of solar magnetic features, based on Hα images. These synoptic maps were unique in that they traced magnetic polarity inversion lines (PILs) and connected widely separated filaments, fibril patterns, and plage corridors to reveal the large-scale organization of the solar magnetic field (McIntosh, 1979, NOAA, UAG-70). McIntosh and his cartographer Bob McFadden created and contributed Maps to both WSM (CR1912 and CR1913) and WHI (CR2068, CR2078 and CR2085). Hewins, also a cartographer trained by McIntosh, under the guidance of McFadden will make and contribute 13 maps to the WHPI effort.

Focus of study
Through participation in WHPI, we hope to contribute to the series of coordinated observing campaigns for this year. As McIntosh style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum varies from cycle to cycle. In addition, we have done a comparison of H II data to EIT for the purposes of defining coronal hole style synoptic maps were made for the two previous minima studies, these maps can help us understand how minimum var...