NESN

A STUDY OF NEW ENGLAND SEISMICITY

Quarterly Earthquake Report

January - March 1999

NEW ENGLAND
SEISMIC NETWORK

Weston Observatory
381 Concord Road
Weston, MA 02493

Earth Resources Lab
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142
NEW ENGLAND SEISMIC NETWORK

John E. Ebel, Principal Investigator M. Nafii Toksoz, Principal Investigator
Weston Observatory Earth Resources Lab
Dept. of Geology and Geophysics Dept. of Earth, Atmospheric, and Planetary Sciences
Boston College Massachusetts Institute of Technology
381 Concord Road 42 Carleton Street
Weston, MA 02493 Cambridge, MA 02142
Email: ebel@bc.edu Email: toksoz@mit.edu
Award # 1434-HQ-98-AG-01943 Award # 1434-HQ-98-AG-01926

Prepared by Charles Doll, Jr.
Email: doll@erl.mit.edu
and Susan O’Connor
Email: dannolfo@bc.edu

May 2000
for
United States Geological Survey
905 National Center
12201 Sunrise Valley Drive
Reston, Virginia 20192

Notice

Network operation supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS award number 1434-HQ-98-AG-01943 and award number 1434-HQ-98-AG-01926. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

Quarterly Earthquake Report

January - March 1999

Table of Contents

- Introduction
- Current Network Operation and Status
- Seismicity
- Data Management
- Tables
 - Explanation of Tables
 - Table 1 Project Personnel
 - Table 2 Seismic Stations
 - Table 3 Earthquake Hypocenter List
 - Table 4 Earthquake Phase Data List
 - Table 5 Microearthquakes and Other Non-locatable Events
- Figures
 - NESN Station Map
 - NESN Strong-Motion Station Map

https://www.bc.edu/research/westonobservatory/nesnbc99a.html
Introduction

The New England Seismic Network (NESN) is operated collaboratively by the Weston Observatory (WES) of Boston College and the Earth Resources Lab (ERL) of the Massachusetts Institute of Technology. The mission of the NESN is to operate and maintain a regional seismic network with digital recording of seismic ground motions for the following purposes: 1) to determine the location and magnitude of earthquakes in and adjacent to New England and report felt events to public safety agencies, 2) to define the crust and upper mantle structure of the northeastern United States, 3) to derive the source parameters of New England earthquakes, and 4) to estimate the seismic hazard in the area.

This report summarizes the work of the NESN for the period January - March 1999. It includes a brief summary of the network's equipment and operation, and a short discussion of data management procedures. A list of participating personnel is given in Table 1. There were 8 earthquakes that occurred within or near the network during this reporting period. Phase information for these earthquakes is included in this report.

Return to Table of Contents

Current Network Operation and Status

The New England Seismic Network currently consists of 11 broadband three-component, 4 short-period vertical, and 8 strong-motion stations. The coordinates of the stations are given in Table 2, and maps of the weak- and strong-motion networks are shown in Figures 1 and 2, respectively.

WES operates 11 stations with broadband instruments consisting of Guralp CMG-40T three-component sensors. Ground motions recorded by these sensors are digitized at 100 sps with 16-bit resolution. Additional gain-ranging provides 126 dB dynamic range. These stations are operated in dialup mode with waveform segments of suspected events transmitted in digital mode to Weston Observatory for analysis and archiving. WES is continuing to upgrade its recording stations with 4 more broadband instruments scheduled for installation in 1999. WES also maintains 8 SMA-1 strong-motion instruments in New England.

ERL at MIT currently operates 4 short-period stations, all located within 100 km of Boston. The short-period instruments have 1.0 Hz L4C vertical seismometers. Data recorded by these seismometers is transmitted continuously in analog mode to ERL and digitized (12-bit) into a PC at 50 sps. Personnel at ERL are in the process of installing a new three-component, high dynamic range instrument at Station WFM. The instrument has a CMG-40T sensor and transmits 3-channel, 24-bit data at 100 sps continuously to a central processor (Pentium PC) at ERL. Waveform windows of suspected events are extracted from the data stream, analyzed and archived. WES and ERL record some stations in analog format on helicorders to provide additional data for analysis.

Return to Table of Contents

Seismicity

There were 8 earthquakes that occurred in or adjacent to the NESN during this reporting period. A summary of the location data is given in Table 3. Figure 3 shows the locations of these events. Figure 4 shows the locations of all events since the beginning of network operation in October, 1975.

Table 4 gives the station phase data and detailed hypocenter data for each event listed in Table 3. In addition to NESN data, arrival time and magnitude data sometimes are contributed for seismic stations operated by the Geological Survey of Canada (GSC), the Lamont-Doherty Cooperative Seismographic Network, and the US National Seismic Network. Final locations for this section were computed using the program HYPO78. For regional events (those too far from the NESN to obtain accurate locations and magnitudes) phase data are given for NESN stations, but the entry in Table 3 lists the hypocenter and geographic location information adopted from the authoritative network. Accordingly, the epicenter is plotted on the maps using the entry from Table 3.

Return to Table of Contents

Data Management

https://www.bc.edu/research/westonobservatory/nesnbc99a.html
Recent event locations are available via FTP at: SEISMOEAGLE.BC.EDU. Waveform data are saved in Nanometrics, ASCII, and SEED formats and are available via SEISMOEAGLE.BC.EDU or through personal contact. Earthquake lists can be fingered at QUAKE@SEISMOEAGLE.BC.EDU. Weston Observatory maintains two web pages with information about local earthquakes: “http://www.bc.edu:80/bc_org/avp/cas/wesobs/” and “http://seismoeagle.bc.edu/”. The latter page is still under construction. Currently available on the seismoeagle web page is the full catalog of northeastern earthquake activity to 1991. This will be updated as new Northeastern U.S. Seismic Network Bulletins are produced.

The entire MIT/ERL earthquake database can be accessed through the World Wide Web using the address "http://www-erl.mit.edu/NESN/homepage.html". For extraction of waveforms (recorded by the MIT stations of the NESN through March 1995) and hypocenter data, use our database search engine. Link to "Seismic Event Server at MIT ERL (SESAME)" and then click on "Interactive query form" under the heading "Custom Materials". Alternatively, the more recent local earthquake data, recorded by the MIT stations, may be accessed by logging in to our anonymous FTP directory ("ftp sunda.mit.edu"). To be added to the list of users permitted to access this FTP directory, contact Charles Doll. The waveform files are in SAC format at both sites. Waveforms are downloaded as a Unix-compressed tar volume from our web-site and as individual, Unix-compressed, station files from our FTP site.

For more information on matters discussed in this report or general earthquake information (reports, maps, catalogs, etc.) consult our web-sites www-erl.mit.edu/NESN and www.bc.edu:80/bc_org/avp/cas/wesobs/ or contact:

Charles Doll
MIT Earth Resources Lab
42 Carleton Street
Cambridge, MA 02142

Voice: 617-253-7863 / FAX: 617-253-6385 / Email: doll@erl.mit.edu

Prof. John Ebel
Weston Observatory
381 Concord Road
Weston, MA 02493

Voice: 617-552-8319 / FAX: 617-552-8388 / Email: ebel@bc.edu

Return to Table of Contents

Explanation of Tables

Table 1: List of personnel operating the NESN

Table 2: List of Seismic and Strong Motion Stations

1. Code = station name
2. Lat = station latitude, degrees north
3. Long = station longitude, degrees west
4. Elev = station elevation in meters
5. Location = geographic location
6. Operator = network operator
Table 3: Earthquake Hypocenter List

1. Date = date event occurred, Yr (year)/Mo (month)/Dy (day)
2. Time = origin time of event, Hr (hour):Mn (minute):Sec (second)
 in UCT (Universal Coordinated Time, same as Greenwich Mean Time)
3. Lat = event location, latitude north in degrees
4. Long = event location, longitude west in degrees
5. Depth = event depth in kilometers
6. Mag = event magnitude
7. Int = event epicentral intensity
8. Location = event geographic location

Table 4: Earthquake detailed hypocenter and phase data list

Table Header: detailed hypocenter data

1. Geographic location
2. DATE = date event occurred, yr/mo/dy (year/month/day)
3. ORIGIN = event origin time (UCT) in hours, minutes, and seconds
4. LAT N = latitude north in degrees and minutes
5. LONG W = longitude west in degrees and minutes
6. DEPTH = event depth in kilometers
7. MN = Nutalli Lg phase magnitude with amplitude divided by period
8. MC = signal duration (coda) magnitude
 WES: 2.23 Log(FMP) + 0.12Log(Dist) - 2.36 (Rosario, 1979)
 MIT: 2.21 Log(FMP) - 1.7 (Chaplin et al., 1980)
9. ML = local magnitude
 WES: calculated from Wood-Anderson seismograms (Ebel, 1982)
 GSC (Geological Survey of Canada): Richter Lg magnitude
10. GAP = largest azimuthal separation, in degrees, between stations
11. RMS = root mean square error of travel time residual in seconds
12. ERH = standard error of epicenter in kilometers
13. ERZ = standard error of event depth in kilometers
14. Q = solution quality of hypocenter
 A = excellent
 B = good
 C = fair
 D = poor

Table Body: earthquake phase data

1. STN = station name
2. DIST = epicentral distance in kilometers
3. AZM = azimuthal angle in degrees measured clockwise between true north and vector pointing from epicenter to station
4. Description of onset of phase arrival
 I = impulsive
 E = emergent
5. R = phase
 P = first P arrival
 S = first S arrival
6. M = first motion direction of phase arrival
 U = up or compression
 D = down or dilatation
7. K = weight of arrival
 0 = full weight (1.0)
 1 = 0.75 weight
 2 = 0.50 weight
 3 = 0.25 weight
 4 = no weight (0.0)
8. HRMN = hour and minute of phase arrival
9. SEC = second of phase arrival
10. TCAL = calculated travel time of phase in seconds
11. RES = travel time residual (error) of phase arrival
12. WT = weight of phase used in hypocentral solution
13. AMX = peak-to-peak ground motion, in millimeters, of the maximum envelope amplitude of vertical-component signal, corrected for system response
14. PRX = period in seconds of the signal from which amplitude was measured
15. XMMG = Nutalli magnitude recorded at station
16. FMP = signal duration (coda), in seconds, measured from first P arrival
17. FMAG = coda magnitude recorded at station
Table 5: Microearthquakes and other non-locatable events

1. Date = date event occurred, Yr (year)/Mo (month)/Dy (day)
2. Sta = nearest station recording event
3. Arrival Time = phase arrival time, Hr (hour):Mn (minute):Sec (second)

Return to Table of Contents

TABLE 1

WESTON OBSERVATORY PERSONNEL

<table>
<thead>
<tr>
<th>Name</th>
<th>Network Position</th>
<th>voice phone</th>
<th>email address</th>
</tr>
</thead>
<tbody>
<tr>
<td>John E. Ebel</td>
<td>Principal Investigator</td>
<td>617-552-8319</td>
<td>ebel@bc.edu</td>
</tr>
<tr>
<td>Alan Kafka</td>
<td>Research Seismologist</td>
<td>617-552-8300</td>
<td>kafka@bc.edu</td>
</tr>
<tr>
<td>Susan O’Connor</td>
<td>Seismic Analyst</td>
<td>617-552-8337</td>
<td>dannolfo@bc.edu</td>
</tr>
<tr>
<td>Edward Johnson</td>
<td>Project Engineer</td>
<td>617-552-8332</td>
<td>johnson@bc.edu</td>
</tr>
<tr>
<td>Patricia Tassia</td>
<td>Administrative Secretary</td>
<td>617-552-8311</td>
<td>tassia@bc.edu</td>
</tr>
<tr>
<td>W. Richard Ott, S.J.</td>
<td>Assistant to the Director</td>
<td>617-552-8335</td>
<td>ottwi@mail1.bc.edu</td>
</tr>
<tr>
<td>Weston Observatory</td>
<td></td>
<td>617-552-8300</td>
<td></td>
</tr>
</tbody>
</table>

MIT/ERL PERSONNEL

<table>
<thead>
<tr>
<th>Name</th>
<th>Network Position</th>
<th>voice phone</th>
<th>email address</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Nafi Toksöz</td>
<td>Principal Investigator</td>
<td>617-253-7852</td>
<td>toksoz@mit.edu</td>
</tr>
<tr>
<td>Charles Doll</td>
<td>Research Seismologist</td>
<td>617-253-7863</td>
<td>doll@erl.mit.edu</td>
</tr>
<tr>
<td>Charles Doll</td>
<td>Seismic Analyst</td>
<td>617-253-6290</td>
<td>doll@erl.mit.edu</td>
</tr>
<tr>
<td>Sara Brydiges</td>
<td>Administrator</td>
<td>617-253-7797</td>
<td>sara@erl.mit.edu</td>
</tr>
<tr>
<td>Earth Resources Lab</td>
<td></td>
<td>617-253-8027</td>
<td></td>
</tr>
</tbody>
</table>

Return to Table of Contents

TABLE 2

SEISMIC STATIONS OF THE NEW ENGLAND SEISMIC NETWORK

<table>
<thead>
<tr>
<th>Code</th>
<th>Lat</th>
<th>Long</th>
<th>Elev (m)</th>
<th>Location</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCX</td>
<td>42.3350</td>
<td>-71.1705</td>
<td>61.0</td>
<td>Chestnut Hill, MA</td>
<td>WES</td>
</tr>
<tr>
<td>BRY</td>
<td>41.9178</td>
<td>-71.5388</td>
<td>380.0</td>
<td>Smithfield, RI</td>
<td>WES</td>
</tr>
<tr>
<td>DNH</td>
<td>43.1225</td>
<td>-70.8948</td>
<td>24.0</td>
<td>Durham, NH</td>
<td>MIT</td>
</tr>
<tr>
<td>DXB</td>
<td>42.0610</td>
<td>-70.6992</td>
<td>8.0</td>
<td>Duxbury, MA</td>
<td>MIT</td>
</tr>
<tr>
<td>GLO</td>
<td>42.6403</td>
<td>-70.7272</td>
<td>15.2</td>
<td>Gloucester, MA</td>
<td>MIT</td>
</tr>
<tr>
<td>HNH</td>
<td>43.7050</td>
<td>-72.2860</td>
<td>180.0</td>
<td>Hanover, NH</td>
<td>WES</td>
</tr>
<tr>
<td>MIM</td>
<td>45.2436</td>
<td>-69.0403</td>
<td>140.0</td>
<td>Milo, ME</td>
<td>WES</td>
</tr>
<tr>
<td>NH1</td>
<td>43.5473</td>
<td>-71.5743</td>
<td>402.0</td>
<td>Sanbornton, NH</td>
<td>WES</td>
</tr>
<tr>
<td>QUA2</td>
<td>42.2789</td>
<td>-72.3525</td>
<td>168.0</td>
<td>Belchertown, MA</td>
<td>WES</td>
</tr>
<tr>
<td>TRY</td>
<td>42.7311</td>
<td>-73.6669</td>
<td>131.0</td>
<td>Troy, NY</td>
<td>WES</td>
</tr>
<tr>
<td>VT1</td>
<td>44.3317</td>
<td>-72.7536</td>
<td>410.0</td>
<td>Waterbury, VT</td>
<td>WES</td>
</tr>
<tr>
<td>WES</td>
<td>42.3850</td>
<td>-71.3220</td>
<td>60.0</td>
<td>Weston, MA</td>
<td>WES</td>
</tr>
<tr>
<td>WFM</td>
<td>42.6106</td>
<td>-71.4906</td>
<td>87.5</td>
<td>Westford, MA</td>
<td>MIT</td>
</tr>
<tr>
<td>WVL</td>
<td>44.5648</td>
<td>-69.6575</td>
<td>85.0</td>
<td>Waterville, ME</td>
<td>WES</td>
</tr>
<tr>
<td>YLE</td>
<td>41.3100</td>
<td>-72.9269</td>
<td>914.0</td>
<td>New Haven, CT</td>
<td>WES</td>
</tr>
</tbody>
</table>
Table 3

Earthquake Hypocenter List

New England and Adjacent Regions

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Lat</th>
<th>Long</th>
<th>Depth (km)</th>
<th>Mag</th>
<th>Int</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999/01/10</td>
<td>10:52:16.3</td>
<td>-42.8416</td>
<td>-70.9788</td>
<td>2.0</td>
<td>3.0</td>
<td></td>
<td>MA, ~1 Mile S of Amesbury</td>
</tr>
<tr>
<td>1999/01/10</td>
<td>15:20:44.3</td>
<td>-42.8438</td>
<td>-70.9733</td>
<td>2.12</td>
<td>2.9</td>
<td></td>
<td>MA, ~1 Mile S of Amesbury</td>
</tr>
<tr>
<td>1999/01/10</td>
<td>15:22:16.8</td>
<td>-42.8450</td>
<td>-70.9782</td>
<td>.94</td>
<td>1.9</td>
<td></td>
<td>MA, S of Amesbury</td>
</tr>
<tr>
<td>1999/01/14</td>
<td>06:11:24.6</td>
<td>-42.8425</td>
<td>-70.9772</td>
<td>4.2</td>
<td>2.3</td>
<td></td>
<td>MA, NE of Merrimac</td>
</tr>
<tr>
<td>1999/02/26</td>
<td>03:38:42.9</td>
<td>-44.4885</td>
<td>-69.5390</td>
<td>1.03</td>
<td>3.6</td>
<td></td>
<td>ME, 11 km SE of Waterville</td>
</tr>
<tr>
<td>1999/03/09</td>
<td>12:07:09.1</td>
<td>-44.6716</td>
<td>-73.6050</td>
<td>5.0</td>
<td>2.6</td>
<td></td>
<td>NY, 7 Miles W of Plattsburgh</td>
</tr>
<tr>
<td>1999/03/12</td>
<td>09:58:09.4</td>
<td>-42.0688</td>
<td>-72.1696</td>
<td>5.05</td>
<td>1.9</td>
<td></td>
<td>MA, 2 km WNW of Holland</td>
</tr>
<tr>
<td>1999/03/16</td>
<td>12:50:56.2</td>
<td>-49.0400</td>
<td>-66.9445</td>
<td>5.0</td>
<td>4.5</td>
<td></td>
<td>PQ, Lower St. Lawrence</td>
</tr>
</tbody>
</table>

Table 4

Earthquake Phase Data List

New England and Adjacent Regions

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Lat N</th>
<th>Long W</th>
<th>Depth</th>
<th>MN</th>
<th>MC</th>
<th>ML GAP</th>
<th>RMS</th>
<th>ERH</th>
<th>ERZ</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999/01/10</td>
<td>1052</td>
<td>42.8416</td>
<td>-70.9788</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>1.00</td>
<td>3.0</td>
<td>2.0</td>
<td>0.45</td>
<td>1.0</td>
</tr>
</tbody>
</table>

SOUTH & COASTAL NEW ENGLAND, CHIBURIS, 1979

99JAN10 MA, APPROX 1 MILE S OF AMESBURY

https://www.bc.edu/research/westonobservatory/nesnbc99a.html
<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>LAT N</th>
<th>LONG W</th>
<th>DEPTH</th>
<th>MN</th>
<th>MC</th>
<th>ML GAP</th>
<th>RMS</th>
<th>ERH</th>
<th>ERZ Q</th>
</tr>
</thead>
</table>

SOUTHEAST MAINE CRUSTAL MODEL

99FEB26 ME, 11 KM NW OF WATERVILLE

| STN DNM AKN RKN HRN SEC TOBS TCAL RES WT AMX PRX XHAG FMP HMAC |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| WVL 215.2 29 S 3 | 611 64.92 60.30 58.39 1.90 0.00 |

SOUTH & COASTAL NEW ENGLAND, CHIBURIS, 1979

99MAR09 NY, 7 MILES WEST OF PLATTSBURGH

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>LAT N</th>
<th>LONG W</th>
<th>DEPTH</th>
<th>MN</th>
<th>MC</th>
<th>ML GAP</th>
<th>RMS</th>
<th>ERH</th>
<th>ERZ Q</th>
</tr>
</thead>
</table>

SOUTH & COASTAL NEW ENGLAND, CHIBURIS, 1979

99MAR12 MA, 2 KM NWW OF HOLLAND

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>LAT N</th>
<th>LONG W</th>
<th>DEPTH</th>
<th>MN</th>
<th>MC</th>
<th>ML GAP</th>
<th>RMS</th>
<th>ERH</th>
<th>ERZ Q</th>
</tr>
</thead>
</table>

NORTHWEST MAINE CRUSTAL STRUCTURE

99MAR16 PQ, LOWER ST. LAWRENCE

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>LAT N</th>
<th>LONG W</th>
<th>DEPTH</th>
<th>MN</th>
<th>MC</th>
<th>ML GAP</th>
<th>RMS</th>
<th>ERH</th>
<th>ERZ Q</th>
</tr>
</thead>
</table>

https://www.bc.edu/research/westonobservatory/nestnc99a.html
TABLE 5

MICROEARTHQUAKES AND OTHER NON-LOCATABLE EVENTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Arrival Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr/Mo/Dy</td>
<td>Sta Hr:Mn:Sec</td>
</tr>
<tr>
<td></td>
<td>None recorded this quarter</td>
</tr>
</tbody>
</table>

Return to Table of Contents

NESN Station Map
Figure 1: Map of stations of the New England Seismic Network (NESN) in operation during period January - March, 1999. Also included are the US National Seismic Network stations operating in New England during this period.
Figure 2: Map of strong-motion stations of the New England Seismic Network (NESN) in operation during period January - March, 1999.

NESN Quarterly Seismicity Map
Figure 3: Earthquake epicenters located by the NESN during period January - March, 1999.
Figure 4: Seismicity for period October, 1975 - March, 1999.
Acknowledgments

We would like to thank the Undergraduate Research Opportunities Program (UROP) of MIT for its support to the network. Our map database has been developed in-house using ARCINFO and in part basemap data provided by ESRI, Inc. (Arcdata Online), USGS GTOPO30 Elevation Data, and TIGER/Line '94, '95, and '97 (US Census Bureau) spatial data.

References

