Wannier functions

Macroscopic polarization (Berry phase) and related properties

Effective band structure of alloys P.Blaha (from Oleg Rubel, McMaster Univ, Canada)

Wannier functions

WANNIER90

Wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions
A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D.
Vanderbilt and N. Marzari
Comput. Phys. Commun. 178, 685 (2008)
[http://wannier.org]

Bloch vs Wannier functions

Max. localized Wannier functions (MLWF)

maximally localized wannier functions

- choose U(k) to minimize spread → MLWF
- total spread $\Omega = \Omega_{I} + \widetilde{\Omega}$ can be split into gauge-invariant part and rest

- 🛶 minimize Ω̃
 - wannier90 computes U(k) in this way

[Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)] http://wannier.org

wien2wannier provides interface to Wien2k

[Kuneš, Wissgott et al., Comp. Phys. Commun. 181, 1888]

Two flavours of Wannier functions

MLWF: applications

- analysis of chemical bonding bonding and antibonding states
- electric polarization and orbital magnetization BerryPi (O.Rubel et al.)
- Wannier interpolation (eg. Woptic, transport, ...) $H(k)|_{\kappa} \xrightarrow{F} H(R)|_{\kappa^{-1}} \xrightarrow{F^{-1}} H(k)|_{G}$
- building effective hamiltonian tight binding parameters input for dynamical mean field theory

Wannier functions as a tight-binding basis (atom centered FW)

Band structure

- + original Wien2k band structure
- Band structure computed from Wannier hamiltonian

Disentanglement

 Band structure computed from Wannier hamiltonian Souza et al.: PRB 65, 035109 (2001)

Relation to polarization (bond centered WF)

Bond-centered WF

Si

GaAs

symmetric (non-polar)

non-symmetric (polar)

$$\mathbf{P} = \frac{\mathbf{r}}{V} \left(\sum_{r} \mathbf{Z} \cdot \mathbf{r}_{r} = \sum_{n} \mathbf{r}_{n} \right)$$

Ionic part Electronic part

<u>King-Smith</u> & <u>Vanderbilt</u>, Phys. Rev. B 47, 1651 (1993)

Workflow

- Regular SCF calculation
- Band structure plot
- Initialize wien2wannier (init_w2w):
 - select bands, init. projections, # of WF (case.inwf file)
 - projected band structure "bands_plot_project" (case.win file)
 - additional options related to entanglement (case.win file)
- Compute overlap matrix element S_{mn} and projections M_{mn} (x w2w)
- Perform Wannierization (x wannier90):
 - position of Wannier centers and spreads (case.wout file)
 - Wannier hamiltonian (case_hr.dat file)
- Initialize plotting, select plotting range, r-mesh (write_inwplot)
- Evaluate WF on the r-mesh selected (x wplot)
- Convert the output of wplot into xcrysden format for plotting (wplot2xsf)
 - Plot WF

Useful resources

- Jan Kuneš *et al.* "Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions", Comp. Phys. Commun. 181, 1888 (2010).
- Wien2Wannier home and user guide: <u>http://www.ifp.tuwien.ac.at/forschung/arbeitsgrupp</u> <u>en/cms/software-download/wien2wannier/</u>
- Wannier90 home and user guide: <u>http://www.wannier.org</u>/
- Nicola Marzari *et al.* "Maximally localized Wannier functions: Theory and applications", Rev. Mod. Phys. 84, 1419 (2012)

Macroscopic polarization

+ BerryPl

Material properties related to polarization

Piezo- and Ferroelectricity

Effective charge

Dielectric screening

Pyroelectricity

What is polarization?

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a *dipole moment per unit volume* equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

Polarization for periodic solids is undefined

Modern theory of polarization

Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

 $\Delta \mathbf{P} = \mathbf{P}^{(0)}$

 $\mathbf{P}^{(1)}$

All measurable physical quantities are related to the change in polarization!

Components of polarization

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (199

Berry phase

$$\mathrm{d}\varphi_n = -i \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle \cdot \mathrm{d}\mathbf{k} = -i \ln \langle u_{n\mathbf{k}} | u_{n(\mathbf{k} - \mathrm{d}\mathbf{k})} \rangle.$$

 $\mathbf{S}_{mn}(\mathbf{k}_j, \mathbf{k}_{j+1}) = \langle u_{m\mathbf{k}_j} | u_{n\mathbf{k}_{j+1}} \rangle$ WIEN2WANNIER

$$\varphi(\mathbf{k}_{\parallel}) = 2 \operatorname{Im} \left[\ln \prod_{j=0}^{J-1} \det \mathbf{S}_{M \times M}(\mathbf{k}_{j}, \mathbf{k}_{j+1}) \right]$$

$$arphi_{\mathrm{el},lpha} = S_{\perp}^{-1} \int_{S_{\perp}} \mathrm{d}S_{\perp} \; arphi(\mathbf{k}_{\parallel})$$

$$P_{\alpha} = \frac{e(\varphi_{\mathrm{el},\alpha} + \varphi_{\mathrm{ion},\alpha})}{2\pi\Omega} R_{\alpha}$$

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)

Uncertainties

$$P_{\alpha} = \frac{e(\varphi_{\mathrm{el},\alpha} + \varphi_{\mathrm{ion},\alpha})}{2\pi\Omega} R_{\alpha}$$

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)} \pm \frac{e}{\Omega} \mathbf{R}$$

 it is challenging to determine large polarization difference ~1 C/m²

Solution: $\lambda_0 \Rightarrow \lambda_{1/2} \Rightarrow \lambda_1$

BerryPI workflow

Need wien2k, wien2wannier, python 2.7.x and numpy

Comput. Phys. Commun. 184, 647 (2013)

Choice of a reference structure

- structure file <u>must</u> preserve the symmetry
- begin with the lowest symmetry (λ_1) case
- copy case λ_1 to case λ_0
- edit structure file for case λ_0
- do <u>not</u> initialize calculation (init_lapw)
- update density (x dstart)
- run SCF cycle (run[sp]_lapw [-so -orb])
- run BerryPI

Demonstration: Effective charge of GaN

$$Z^*_{s,ij} = rac{\Omega}{e} \, rac{\Delta P_i}{\Delta r_{s,j}}$$

 $\varphi = \varphi_{\rm el} + \varphi_{\rm ion}$

General definition

$$egin{aligned} &\Delta arphi &= arphi(ext{perturbed}) - arphi(ext{unperturbed}) \ &Z^*_{s,ii} &= rac{\Delta arphi_i}{2\pi \Delta u_{s,i}} & ext{"Shortcut" (i=j, no volume change)} \end{aligned}$$

Gan 2t calculation 80 Pel (0) = -0.1538 \$\overline(0) = -1.502 Pel(1) = -0.2509 Pion(1) = -1.4451 $\Phi_{tot} \neq (0) = -1.6618$ $\Phi_{++}(1) = -1.6960$ $\Delta \Phi (0 \rightarrow 4) = -1.6960 + 1.6618$ = -0.0342 $\Delta U = 0.001 - 0 = 0.001$ $\Delta \Phi$ Z* Ξ 2V. SU. H# of atoms moved = -2.72

Reality check

GaN: effective charge, dielectric constants - Springer link.springer.com/content/pdf/10.1007%2F978-3-642-14148-5_230.pdf by D Strauch - 2011 - Related articles gallium nitride (GaN) property: effective charge, dielectric constants (lattice properties). Born effective charge (wurtzite structure). Physical. Property. Numerical. You've visited this page 2 times. Last visit: 04/06/16

GaN: effective charge, dielectric constants

substance:	gallium nitride (GaN)
property:	effective charge, dielectric constants (lattice properties)

Born effective charge (wurtzite structure)

Physical Property	Numerical Values	Remarks	Ref.
Z*	2.73(3)	from LO-TO splitting, Raman scattering from bulk GaN	01G
	2.51	ab initio DFT(LDA) calculation	01Z
	2.67	ab initio DFT(GGA) calculation	
Z_{xx}^*	2.60	ab initio DFT(LDA) calculation	02W
Z22*	2.74		
$Z_{\mathrm{B,xx}}$ *	1.14	$Z_{\mathbf{B},ij}^{*} = Z_{ii}^{*} / \sqrt{\varepsilon_{\infty,ii}}$	
$Z_{B,zz}^{*}$	1.18		
Z_{xx}^*	2.51	ab-initio DFT(LDA) calculation	06S
Z ₂₂ *	2.75		

Useful resources

- Sheikh J. Ahmed *et al.* "BerryPI: A software for studying polarization of crystalline solids with WIEN2k density functional all-electron package", Comp. Phys. Commun. 184, 647 (2013).
- BerryPI home and tutorials: <u>https://github.com/spichardo/BerryPI/wiki</u>
- Raffaele Resta "Macroscopic polarization in crystalline dielectrics: the geometric phase approach" Rev. Mod. Phys. 66, 899 (1994)
- Raffaele Resta and David Vanderbilt "Theory of Polarization: A Modern Approach" in *Physics of Ferroelectrics: a Modern Perspective* (Springer, 2007)

Effective band structure of alloys

Semiconductor alloys

Thermoelectric: Si_{1-x}Ge_x

IR detector:

(HgCd)Te

Eg = 1 eV junction: (InGa)(NAs)

1.55 µm lasers: (InGa)As (InGa)(NAsSb) Ga(AsBi)

Band structure

Zone folding

The character of Φ changes between $\Gamma - X$ from bonding to anti-bonding

Doubling the unit cell \rightarrow halfs the BZ \rightarrow backfolding of X to Γ the wavefunction can still tell you if an eigenvalue was Γ or X

Unfolding the first-principle band structure

S.

ŝ

a,

Plane wave expansion

$$\Psi_{n,\mathbf{R}}(\mathbf{r}) = \sum_{\mathbf{G}} C_{n,\mathbf{R}}(\mathbf{G}) \, e^{i(\mathbf{G} + \mathbf{G}) \cdot \mathbf{r}}$$

Bloch spectral weight

$$id_{K}(\mathbf{k}) = \sum_{\mathbf{g}\in V} \left| C_{ij,\mathbf{K}}(\mathbf{k}+\mathbf{g})
ight|^{2}$$

Popescu & Zunger: Phys. Rev. Lett. 104, 236403 (2010)

Rubel et al. Phys. Rev. B 90, 115202 (2014)

I README.md

fold2Bloch

Unfolding of first-principle electronic band structure obtained with WIEN2k DFT-(L)APW code

Contributors:

- Anton Bokhanchuk
- Elias Assmann
- · Sheikh Jamil Ahmed · Oleg Rubel

Workflow

- Construct primitive unit cell
- Make supercell (supercell)
- Run SCF calculation

XCrySDen

- Create k-path (case.klist_band file)
- Compute wave functions (case.vector[so] file) for the selected k-path:
 - x lapw1 [-p]
 - x lapwso [-p] (in the case of spin-orbit coupling)

fold2Bloch

• Unfold band structure (fold2Bloch)

Plot effective band structure (ubs_dots*.m)

Demonstration: Band structure of $Si_{1-x}Ge_x$ alloy (x ~ 0.2)

Thermoelectric material: Si0.7Ge0.3

(Hg,Cd)Te band structure evolution

Impact of alloying disorder on charge transport

 $CdTe \rightarrow (HgCd)Te$

$$\mu_h = 200 \rightarrow 10 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$$

 $\mu_e = 4,000 \rightarrow 2,500 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

 $GaAs \rightarrow Ga(AsBi)$

 $\mu_e = 1,100 \rightarrow 1,000,000 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

Useful resources

- V. Popescu and A. Zunger, Phys. Rev. Lett. 104, 236403 (2010).
- O. Rubel, A. Bokhanchuk, S. J. Ahmed, and E. Assmann "Unfolding the band structure of disordered solids: from bound states to highmobility Kane fermions" Phys. Rev. B 90, 115202 (2014)
- fold2Bloch home and tutorials: <u>https://github.com/rubel75/fold2Bloch</u>

Acknowledgement

BerryPI contributors:

- Jon Kivinen
- Sheikh J. Ahmed
- Ben Zaporzhan
- Sam Pichardo
- Laura Curiel
- David Hassan
- Victor Xiao

WIEN2WANNIER:

- Elias Assmann
- Jan Kunes
- Philipp Wissgott

fold2Bloch:

- Anton Bokhanchuk
- Derek Nievchas
- Elias Assmann
- Sheikh J. Ahmed

