Nuclear hyperfine interactions

F. Tran, A. Khoo, R. Laskowski, P. Blaha

Institute of Materials Chemistry Vienna University of Technology, A-1060 Vienna, Austria

25th WIEN2k workshop, 12-16 June 2018 Boston College, Boston, USA

Introduction

What is it about? Why is it interesting in solid-state physics?

- It is about the energy levels of the spin states of a nucleus.
- An electric or magnetic field at the position of the nucleus may lead to a splitting of the nuclear spin states
- The energy splitting depends on the intensity of the field, which in turns depends on the environment around the nucleus The measured spin nuclear transition energy provides information on the charge distribution around the nucleus

Introduction

What is it about? Why is it interesting in solid-state physics?

- It is about the energy levels of the spin states of a nucleus.
- An electric or magnetic field at the position of the nucleus may lead to a splitting of the nuclear spin states
- The energy splitting depends on the intensity of the field, which in turns depends on the environment around the nucleus The measured spin nuclear transition energy provides information on the charge distribution around the nucleus
- Outline of the talk
 - Hyperfine interactions
 - Electric (isomer shift, electric-field gradient)
 - Magnetic (Zeeman effect, hyperfine field)
 - Nuclear magnetic resonance
 - Calculation of chemical shielding (orbital and spin contributions)

Hyperfine interactions \rightarrow Shift and splitting of energy levels of a nucleus

- Interactions between a nucleus and the electromagnetic field produced by the other charges (electrons and other nuclei) in the system.
- Beyond the point charge model for the nucleus.
- Produces hyperfine structure (shift and splitting of the nucleus energy levels).

Hyperfine interactions \rightarrow Shift and splitting of energy levels of a nucleus

- Interactions between a nucleus and the electromagnetic field produced by the other charges (electrons and other nuclei) in the system.
- Beyond the point charge model for the nucleus.
- Produces hyperfine structure (shift and splitting of the nucleus energy levels).

Different types of hyperfine interactions:

- Electric:
 - Electric monopole interaction (isomer shift, shift of the spectrum)
 - Electric quadrupole interaction (quadrupole splitting of the spectral lines)
- Magnetic:
 - Magnetic dipole interaction (Zeeman splitting of the spectral lines)

Experimental study of hyperfine structure

Nuclear hyperfine structure can be experimentally studied using:

- Nuclear magnetic resonance (NMR)
- Nuclear quadrupole resonance (NQR)
- Time differential perturbed angular correlation (TDPAC)
- Time differential perturbed angular distribution (TDPAD)
- Muon spin resonance (µSR)
- Mössbauer spectroscopy

Electron hyperfine structure can be experimentally studied using:

Electron paramagnetic resonance (EPR)

Mössbauer spectroscopy¹

- Mössbauer effect (1958): In solids, emission and absorption of γ-ray can occur at the same energy (resonance)
- Reason: recoil-free transition in the nucleus (no exchange of vibration energy with the lattice)
- Allows for precise measurement of
 - Energy changes due to electrical, magnetic or gravitational fields
 - Isomer shift, quadrupole splitting, Zeeman splitting
- The fraction of recoil-free events and lifetime of the excited state limit the number of isotopes that can be used successfully for Mössbauer spectroscopy:

¹ R. Mössbauer, 1961 Nobel Prize in physics

Electric interactions

 ρ_n : charge density of a nucleus $V_{e|}$: electrostatic potential due to all charges outside the nucleus

$$E = \int \rho_{n} V_{el} d^{3}r$$

$$= \underbrace{V_{el}(0) \int \rho_{n} d^{3}r}_{\text{Point charge model}} + \underbrace{\sum_{i=1}^{3} \frac{\partial V}{\partial x_{i}}}_{=0 \text{ since no electric dipole moment}} + \underbrace{\frac{1}{2} \sum_{i,j=1}^{3} \frac{\partial^{2} V}{\partial x_{i} \partial x_{j}}}_{E_{3}} \int \rho_{n} x_{i} x_{j} d^{3}r + \dots}$$

$$E_{3} = \underbrace{\frac{2\pi}{3} z |\psi(0)|^{2} \langle r^{2} \rangle}_{\text{Electric monopole interaction } \delta E} + \underbrace{\frac{1}{6} \sum_{i,j=1}^{3} V_{ij} Q_{ij}}_{\text{Electric quadrupole interaction For nculei with spin } l > \frac{1}{2}}_{\text{Electric quadrupole interaction For nculei with spin } l > \frac{1}{2}}$$

Electric monopole interaction: isomer shift

Energy of emitted γ -ray by a source:

$$E_{\rm s} = E_0 + \delta E_{\rm s}^{\rm e} - \delta E_{\rm s}^{\rm g}$$

Energy of absorbed γ -ray by an absorber:

 $E_{a} = E_{0} + \delta E_{a}^{e} - \delta E_{a}^{g}$

Isomer shift (a measure of the difference in the *s* electron density at the nuclei in the source and in the absorber):

$$\delta = E_{a} - E_{s} \approx \alpha(\rho_{a}(0) - \rho_{s}(0))$$

 α is the calibration constant that can be negative or positive ($\alpha=-0.24$ mm/s for $^{57}{\rm Fe}).$

 $\rho(0)$ is :RTO in case.scf

Fig. 2.1 (a) Shift of nuclear energy levels due to electric monopole interaction. (b) A typical Mössbauer spectrum in the presence of an isomer shift.

Isomer shift: YBaFe₂O₅ (charge-ordered and valence-mixed phases) ¹

TABLE VIII: Hyperfine fields B (in Tesla), isomer shifts δ (mm/s) and quadrupole coupling constants eQV_{zz} (mm/s) for the CO phase for various exchange and correlation potentials and experiment^{8–10}.

<u> </u>		exp.		LDA	GGA			
CU	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-16.29	-16.49	-16.66	-16.83	-6.68	-12.67
	B_{orb}		-6.73	-6.90	-8.26	-7.65	-9.57	-6.34
$Fe2^{2+}$	$B_{contact}$		32.25	32.23	32.58	32.60	32.21	31.58
	B_{tot}	~ 8	9.23	8.83	7.66	8.13	15.96	12.57
	δ	~ 1	0.92	0.94	0.96	0.99	0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74	3.81	3.89	-0.82	2.60
	B_{dip}		-0.67	-0.60	-0.52	-0.45	1.29	0.39
	Borb		-0.52	-0.45	-0.37	-0.28	-7.96	-2.65
$Fe1^{3+}$	$B_{contact}$	<u></u> -	37.65	38.28	38.15	37.86	29.64	31.63
	B_{tot}	~ 50	36.46	37.24	37.26	37.12	22.97	29.37
	δ	~ 0.4	0.33	0.30	0.28	0.25	0.50	0.47
	eQV_{zz}	$1 - 1.5^{a}$	1.46	1.50	1.51	1.52	1.04	-0.30
^a dependir	ng on rare earth ion							
VM		exp.		GG	A+U		LDA	GGA
V I*I	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-3.00	-2.98	-2.95	-2.87	-2.13	-2.83
	B_{orb}		-3.11	-2.99	-2.84	-2.74	-5.47	-4.56
$\mathrm{Fe}^{2.5+}$	$B_{contact}$		41.17	40.96	41.45	41.17	33.10	36.36
	B_{tot}	~ 30	35.06	34.98	35.67	35.56	25.50	28.98
	δ	~ 0.5	0.53	0.52	0.51	0.49	0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13	0.13	0.13	0.19	-0.27

¹C. Spiel, P. Blaha, and K. Schwarz, Phys. Rev. B **79**, 115123 (2009)

Electric quadrupole interaction: Electric quadrupole splitting

Quadrupole Hamiltonian:

$$H_{\mathsf{Q}} = \frac{1}{2} \sum_{i,j=1}^{3} V_{ij} Q_{ij}$$

 V_{ij} : electric field gradient (EFG) Q_{ij} : nuclear quadrupole Eigenvalues (nuclear spin $I > \frac{1}{2}$):

$$E_{\rm Q} = \frac{QV_{ZZ}}{4I(2I-1)} \left(3m^2 - I(I+1)\right) \left(1 + \frac{\eta^2}{3}\right)^{1/2}$$

m: nuclear spin magnetic quantum number \implies quadrupole splitting of the nucleus spin levels

The EFG can be calculated by WIEN2k

Fig. 2.6 (a) Quadrupole interaction splits the ⁵⁷Fe energy levels. (b) A quadrupole splitting Mössbauer spectrum.

Electric field gradient (EFG)

- ► $V_{ij} = \frac{\partial^2 V}{\partial x_i \partial x_j}$: 2nd derivative of the electrostatic potential V at the position of a nucleus.
- 3×3 tensor V_{ij} made diagonal by similarity transformation:

$$\begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \Rightarrow \begin{pmatrix} V_{xx} & 0 & 0 \\ 0 & V_{yy} & 0 \\ 0 & 0 & V_{zz} \end{pmatrix}$$

with $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$

- Since V_{xx} + V_{yy} + V_{zz} = 0, only two quantities are necessary to fully characterize the EFG:
 - The largest component V_{zz} (:EFG in case.scf)
 - Assymetry parameter $\eta = |V_{xx} V_{yy}| / |V_{zz}|$ (:ETA in case.scf)
- By symmetry, the EFG is zero for atoms with cubic point group

EFG: Nuclear quadrupole moment Q of ¹¹¹Cd ¹

 $u_{Q} \propto QV_{zz}$

- Experimental quadrupole interaction frequency ν_Q
- Calculatd EFG Vzz
- Q obtained from the slope of V_{zz} versus $\nu_Q \implies$ 0.76(2) barn
- Importance of geometry and temperature effect

host lattice	ν_Q (MHz)	V _{zz} (10 ²¹ V/m ²)
Ga	-148.6(1)	-7.89(90)
Hg	-112(2)	-6.45(50)
bct-In	24.82(20)	1.25(50)
β-Sn	43.56(30)	2.65(50)
Sb	132(3)	7.0(6)
Cd	136.02(40)	7.53(60)
Zn	136.5(1.0)	8.6(1.1)

¹L. Errico et al., J. Phys. Chem. C 120, 23111 (2016)

EFG: YBaFe₂O₅ (charge-ordered and valence-mixed phases) ¹

TABLE VIII: Hyperfine fields B (in Tesla), isomer shifts δ (mm/s) and quadrupole coupling constants eQV_{zz} (mm/s) for the CO phase for various exchange and correlation potentials and experiment^{8–10}.

<u> </u>		exp.		LDA	GGA			
	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-16.29	-16.49	-16.66	-16.83	-6.68	-12.67
	B_{orb}		-6.73	-6.90	-8.26	-7.65	-9.57	-6.34
$Fe2^{2+}$	$B_{contact}$	<u></u>	32.25	32.23	32.58	32.60	32.21	31.58
	B_{tot}	~ 8	9.23	8.83	7.66	8.13	15.96	12.57
	δ	\sim 1	0.92	0.94	0.96	0.99	0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74	3.81	3.89	-0.82	2.60
	B_{dip}		-0.67	-0.60	-0.52	-0.45	1.29	0.39
	Borb		-0.52	-0.45	-0.37	-0.28	-7.96	-2.65
$Fe1^{3+}$	$B_{contact}$		37.65	38.28	38.15	37.86	29.64	31.63
	B_{tot}	~ 50	36.46	37.24	37.26	37.12	22.97	29.37
	δ	~ 0.4	0.33	0.30	0.28	0.25	0.50	0.47
	eQV_{zz}	$1 - 1.5^{a}$	1.46	1.50	1.51	1.52	1.04	-0.30
^a dependin	g on rare earth ion							
VM		exp.		GG	A+U		LDA	GGA
V 1*1	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-3.00	-2.98	-2.95	-2.87	-2.13	-2.83
	B_{orb}		-3.11	-2.99	-2.84	-2.74	-5.47	-4.56
$\mathrm{Fe}^{2.5+}$	$B_{contact}$		41.17	40.96	41.45	41.17	33.10	36.36
	B_{tot}	~ 30	35.06	34.98	35.67	35.56	25.50	28.98
	δ	~ 0.5	0.53	0.52	0.51	0.49	0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13	0.13	0.13	0.19	-0.27

¹C. Spiel, P. Blaha, and K. Schwarz, Phys. Rev. B **79**, 115123 (2009)

EFG: Importance of the geometry (²⁷AI) ¹

Using (inaccurate) geometry from X-ray powder diffraction data:

Much better agreement after geometry optimization:

¹M. Body *et al.* J. Phys. Chem. A, **111**, 11873 (2007)

EFG: Effect of exchange-correlation ¹

- GLLB-SC is the most accurate method
- mBJLDA is not recommended
- Standard PBE is inaccurate for CuO and Cu₂O

			• • • • • • • • • • • •	very made		a c m rou.			
Method	Ti	Zn	Zr	Тс	Ru	Cd	CuO	Cu ₂ O	Cu ₂ Mg
LDA	1.80	3.50	4.21	-1.65	-1.56	7.47	-1.86	-5.27	-5.70
PBE	1.73	3.49	4.19	-1.61	-1.46	7.54	-2.83	-5.54	-5.70
EV93PW91	1.61	3.43	4.13	-1.57	-1.33	7.63	-3.17	-6.53	-5.82
AK13	1.65	3.86	4.17	-1.28	-1.13	8.53	-3.56	-7.92	-5.44
Sloc	1.44	3.93	2.75	-0.52	-0.35	8.01	-3.97	-11.97	-4.10
HLE16	1.70	3.29	3.78	-0.95	-0.73	7.66	-4.18	-10.10	-4.59
BJLDA	1.97	3.51	4.25	-1.27	-1.16	7.61	-5.42	-7.74	-5.20
mBJLDA	1.99	3.35	4.33	-1.20	-0.90	7.56	-13.93	-7.40	-4.89
LB94	0.94	3.78	1.83	-0.72	-1.05	7.47	-1.23	-11.16	-4.97
GLLB-SC	1.62	3.72	4.42	-1.66	-1.26	8.05	-4.65	-9.99	-5.58
HSE06	1.5	4.4	4.5	-2.0	-1.3	9.4	-8.9	-8.3	-6.3
Expt.	1.57(12)	3.40(35)	4.39(15)	1.83(9)	0.97(11)	7.60(75)	7.55(52)	10.08(69)	5.76(39)

EFG in 10²¹ V/m². Very inaccurate values are in red.

¹ F. Tran *et al.* Phys. Rev. Materials, **2**, 023802 (2018)

Magnetic dipole interaction

Hamiltonian of the interaction between the magnetic dipole moment μ of a nucleus and the magnetic field ${\bf B}$ at the nucleus:

$$H_{M} = -\boldsymbol{\mu} \cdot \mathbf{B} = -g\mu_{N}\mathbf{I} \cdot \mathbf{B}$$

Eigenvalues (nuclear spin $I > \frac{1}{2}$):

$$E_{\rm M} = -gmB\mu_{\rm N}$$

where *m* is the nuclear spin magnetic quantum number → Nuclear Zeeman effect (splitting of the nucleus spin energy levels)

B can be calculated by WIEN2k

Fig. 2.14 (a) Magnetic splittings of the 57 Fe nuclear energy levels. (b) A Mössbauer spectrum of FeF₃ at 4.2 K showing a sextet due to magnetic splittings [44].

Components of the magnetic field **B** at a nucleus position

Spin-polarized calculcation (runsp_lapw)

- Spin-polarized calculcation (runsp_lapw)
- ▶ **B**_{Fermi} (in kGauss) is :HFF in case.scf

- Spin-polarized calculcation (runsp_lapw)
- B_{Fermi} (in kGauss) is :HFF in case.scf
- **B**_{dip} and **B**_{orb} are calculated by the lapwdm program:

case.indm:

-1	2.		Emin cutoff energy
1			number of atoms for which density matrix is calculated
1	1	2	index of 1st atom, number of L's, L1
0	0		rindex, lsindex

 $\begin{array}{l} (rindex, lsindex) = (3, 5) \mbox{ for } {\bm B}_{dip} \\ (rindex, lsindex) = (3, 3) \mbox{ for } {\bm B}_{orb} \\ \mbox{ Execute "x lapwdm (-up/dn)" and search for :XOP in case.scfdm(up/dn)} \\ {\bm B}_{dip/orb} \mbox{ (in Tesla) is the difference :XOP(up)-:XOP(dn)} \\ \mbox{ More details in $WIENROOT/SRC/Bhf_3.ps} \end{array}$

- Spin-polarized calculcation (runsp_lapw)
- B_{Fermi} (in kGauss) is :HFF in case.scf
- **B**_{dip} and **B**_{orb} are calculated by the lapwdm program:

case.indm:

-1	12.		Emin cutoff energy
1			number of atoms for which density matrix is calculated
1	1	2	index of 1st atom, number of L's, L1
0	0		rindex, lsindex

 $\begin{array}{l} (rindex, lsindex) = (3, 5) \mbox{ for } {\bm B}_{dip} \\ (rindex, lsindex) = (3, 3) \mbox{ for } {\bm B}_{orb} \\ \mbox{ Execute "x lapwdm (-up/dn)" and search for :XOP in case.scfdm(up/dn)} \\ {\bm B}_{dip/orb} \mbox{ (in Tesla) is the difference :XOP(up)-:XOP(dn)} \\ \mbox{ More details in $WIENROOT/SRC/Bhf_3.ps} \end{array}$

B_{lat} is calculated by the dipan program:
 Prepare case.indipan and execute "x dipan"
 More details in \$WIENROOT/SRC_dipan/dipfield.pdf

Hyperfine field: YBaFe₂O₅ (charge-ordered and valence-mixed phases) ¹

TABLE VIII: Hyperfine fields B (in Tesla), isomer shifts δ (mm/s) and quadrupole coupling constants eQV_{zz} (mm/s) for the CO phase for various exchange and correlation potentials and experiment⁸⁻¹⁰.

<u> </u>		exp.	p. GGA+U				LDA	GGA
CU	U_{eff} [eV]		5	6	7	8		
	B_{dip}		-16.29	-16.49	-16.66	-16.83	-6.68	-12.67
	Borb		-6.73	-6.90	-8.26	-7.65	-9.57	-6.34
$Fe2^{2+}$	Bcontact		32.25	32.23	32.58	32.60	32.21	31.58
	B _{tot}	~ 8	9.23	8.83	7.66	8.13	15.96	12.57
	δ	~ 1	0.92	0.94	0.96	0.99	0.74	0.79
	eQV_{zz}	$3.6 - 4^{a}$	3.66	3.74	3.81	3.89	-0.82	2.60
	B_{dip}		-0.67	-0.60	-0.52	-0.45	1.29	0.39
	Borb		-0.52	-0.45	-0.37	-0.28	-7.96	-2.65
$Fe1^{3+}$	Bcontact		37.65	38.28	38.15	37.86	29.64	31.63
	Btot	~ 50	36.46	37.24	37.26	37.12	22.97	29.37
	δ	~ 0.4	0.33	0.30	0.28	0.25	0.50	0.47
	eQV_{zz}	$1 - 1.5^{a}$	1.46	1.50	1.51	1.52	1.04	-0.30
^a dependi	ng on rare earth ion							
VM		exp.		GGA	A+U		LDA	GGA
V I'I	U_{eff} [eV]		5	6	7	8		
	B _{dip}		-3.00	-2.98	-2.95	-2.87	-2.13	-2.83
	Borb		-3.11	-2.99	-2.84	-2.74	-5.47	-4.56
$\mathrm{Fe}^{2.5+}$	Bcontact		41.17	40.96	41.45	41.17	33.10	36.36
	B _{tot}	~ 30	35.06	34.98	35.67	35.56	25.50	28.98
	δ	~ 0.5	0.53	0.52	0.51	0.49	0.60	0.60
	eQV_{zz}	~ 0.1	0.12	0.13	0.13	0.13	0.19	-0.27

¹C. Spiel, P. Blaha, and K. Schwarz, Phys. Rev. B **79**, 115123 (2009)

Non-magnetic systems: NMR spectroscopy

Non-magnetic systems:

- No spontaneous magnetic field $B \Rightarrow$ no Zeeman effect
- An external magnetic field Bext is applied
 - \Rightarrow B_{ind} is induced and depends on the environment of the nucleus
 - \Rightarrow Zeeman effect

NMR: Nuclear shielding and chemical shift

- Total shielding: $\overline{\sigma} = \overline{\sigma}_{orb} + \overline{\sigma}_{spin}$
- $\overline{\sigma}_{\rm spin}$ more important in metals
- Isotropic shielding: $\sigma = \frac{1}{3} \operatorname{Tr} \overline{\sigma}$
- Chemical shift (WRT a reference compound): $\delta = (\sigma_{ref} \sigma) \cdot 10^6$ [ppm]

NMR: Calculation of B_{ind}^{orb} and σ_{orb} (nmr module) ¹

1. Perturbed orbitals ψ_i (1st-order perturbation theory):

$$\begin{split} |\psi_i\rangle &= |\psi_i^{(0)}\rangle + |\psi_i^{(1)}\rangle \\ |\psi_i^{(1)}\rangle &= \sum_{j=1}^{\infty} \frac{\langle \psi_j | \mathcal{H}^{(1)} | \psi_i \rangle}{\epsilon_i - \epsilon_j} |\psi_j^{(0)}\rangle \\ \mathcal{H}^{(1)} &= \frac{1}{2c} \mathbf{L} \cdot \mathbf{B}_{\text{ext}} \end{split}$$

Also the unoccupied orbitals need to be accurately calculated

2. Induced current:

$$\mathbf{j}_{ind}(\mathbf{r}) = \sum_{i=1}^{N} \langle \psi_i \left| \mathbf{\hat{j}} \right| \psi_i \rangle$$

3. Biot-Savart law:

$$\mathbf{B}_{\text{ind}}^{\text{orb}}(\mathbf{R}) = rac{1}{c}\int \mathbf{j}_{\text{ind}}(\mathbf{r}) imes rac{\mathbf{R} - \mathbf{r}}{\left|\mathbf{R} - \mathbf{r}
ight|^3} d^3 r$$

4. $\overline{\sigma}_{\rm orb}(\mathbf{R}) \sim \mathbf{B}_{\rm ind}^{\rm orb}(\mathbf{R})/\mathbf{B}_{\rm ext}(\mathbf{R})$

¹R. Laskowski and P. Blaha, Phys. Rev. B **85**, 035132 (2012)

NMR: WIEN2k steps to calculate B_{ind}^{orb} and σ_{orb}

- 1. Run usual SCF calculation: run_lapw
- Prepare case.in1_nmr (LO basis functions added to basis set): x_nmr_lapw -mode in1
- NMR calculation: x_nmr_lapw
- 4. The results are in: case.outputnmr_integ

NMR: Work flow of x_nmr_lapw

prepare case.in1

x_nmr -mode in1

integrates the Biot-Savart law and computes the shielding

x_nmr -mode integ

computes induced current

x_nmr -mode current

executes x lapw2 -fermi
in ./nmr_xxx (weights)

x_nmr -mode lapw2

executes *x lcore* (core wave-functions)

x_nmr -mode lcore

NMR: output (σ_{orb})

The results are in case.outputnmr_integ:

:NMRTOT001 ATOM: Te 1 NMR(total/ppm) Sigma-ISO= 1295.27 Sigma_xx= 1356.01 Sigma_yy= 1356.01 Sigma_zz= 1173.79 :NMRASY001 ATOM: Te 1 NMR(total/ppm) ANISO(delta-sigma)= -182.21 ASYM(eta) = 0.000 SPAN= 182.21 SKEW=-1.000

:NMRTOT \rightarrow Isotropic value and principal components

:NMRASY \rightarrow Anisotropy, asymmetry, span and skew

 B_{ext} is applied $\Rightarrow B_{\text{ind}}^{\text{spin}}$ is induced

$$\mathbf{B}_{\rm ind}^{\rm spin} = \mathbf{B}_{\rm hf}^{\rm spin} = \mathbf{B}_{\rm Fermi} + \mathbf{B}_{\rm dip}, \qquad \quad \sigma_{\rm spin} = \sigma_{\rm spin}^{\rm Fermi} + \sigma_{\rm spin}^{\rm dip}$$

- 1. Calculation in spin-polarized mode but with a zero moment:
 - instgen_lapw -nm (non-magnetic case.inst)
 - init_lapw -b -sp -fermit 0.004 -numk XXX (non-magnetic case.inst)
 - runsp_c_lapw (run SCF with a moment constraint to be zero)
 - save_lapw (save the calculation)

 B_{ext} is applied $\Rightarrow B_{\text{ind}}^{\text{spin}}$ is induced

$$\mathbf{B}_{\text{ind}}^{\text{spin}} = \mathbf{B}_{\text{hf}}^{\text{spin}} = \mathbf{B}_{\text{Fermi}} + \mathbf{B}_{\text{dip}}, \qquad \quad \sigma_{\text{spin}} = \sigma_{\text{spin}}^{\text{Fermi}} + \sigma_{\text{spin}}^{\text{dip}}$$

- 1. Calculation in spin-polarized mode but with a zero moment:
 - instgen_lapw -nm (non-magnetic case.inst)
 - init_lapw -b -sp -fermit 0.004 -numk XXX (non-magnetic case.inst)
 - runsp_c_lapw (run SCF with a moment constraint to be zero)
 - save_lapw (save the calculation)
- 2. Copy input file specifying $B_{\text{ext}} = 100 \text{ T}$:
 - cp \$WIENROOT/SRC_templates/case.vorbup(dn)_100T case.vorbup(dn)

 B_{ext} is applied $\Rightarrow B_{\text{ind}}^{\text{spin}}$ is induced

$$\mathbf{B}_{\text{ind}}^{\text{spin}} = \mathbf{B}_{\text{hf}}^{\text{spin}} = \mathbf{B}_{\text{Fermi}} + \mathbf{B}_{\text{dip}}, \qquad \quad \sigma_{\text{spin}} = \sigma_{\text{spin}}^{\text{Fermi}} + \sigma_{\text{spin}}^{\text{dip}}$$

- 1. Calculation in spin-polarized mode but with a zero moment:
 - instgen_lapw -nm (non-magnetic case.inst)
 - init_lapw -b -sp -fermit 0.004 -numk XXX (non-magnetic case.inst)
 - runsp_c_lapw (run SCF with a moment constraint to be zero)
 - save_lapw (save the calculation)
- 2. Copy input file specifying $B_{\text{ext}} = 100 \text{ T}$:
 - cp \$WIENROOT/SRC_templates/case.vorbup(dn)_100T case.vorbup(dn)
- 3. SCF calculation with $B_{\text{ext}} = 100$ T:
 - runsp_lapw -orbc
 - ► B_{Fermi} = :HFF
 - $\sigma_{\text{spin}}^{\text{Fermi}} = -1000 \mathbf{B}_{\text{Fermi}}$ (in ppm and for $B_{\text{ext}} = 100 \text{ T}$)

 B_{ext} is applied $\Rightarrow B_{\text{ind}}^{\text{spin}}$ is induced

$$\mathbf{B}_{\text{ind}}^{\text{spin}} = \mathbf{B}_{\text{hf}}^{\text{spin}} = \mathbf{B}_{\text{Fermi}} + \mathbf{B}_{\text{dip}}, \qquad \quad \sigma_{\text{spin}} = \sigma_{\text{spin}}^{\text{Fermi}} + \sigma_{\text{spin}}^{\text{dip}}$$

- 1. Calculation in spin-polarized mode but with a zero moment:
 - instgen_lapw -nm (non-magnetic case.inst)
 - init_lapw -b -sp -fermit 0.004 -numk XXX (non-magnetic case.inst)
 - runsp_c_lapw (run SCF with a moment constraint to be zero)
 - save_lapw (save the calculation)
- 2. Copy input file specifying $B_{\text{ext}} = 100 \text{ T}$:
 - cp \$WIENROOT/SRC_templates/case.vorbup(dn)_100T case.vorbup(dn)
- 3. SCF calculation with $B_{\text{ext}} = 100$ T:
 - runsp_lapw -orbc
 - ► B_{Fermi} = :HFF
 - $\sigma_{\text{spin}}^{\text{Fermi}} = -1000 \mathbf{B}_{\text{Fermi}}$ (in ppm and for $B_{\text{ext}} = 100 \text{ T}$)
- Spin dipole:
 - 1. After the steps above for \mathbf{B}_{Fermi} are done, do:
 - cp \$WIENROOT/SRC_templates/case.indm case.indm
 - Set (rindex,lsindex) to "3 5" in case.indm
 - x lapwdm -up/dn
 - ► **B**_{dip} = :XOP(up) :XOP(dn)
 - $\sigma_{\rm spin}^{\rm dip} = -10000 {\rm B}_{\rm dip}$ (in ppm and for $B_{\rm ext} = 100 {\rm T}$)

NMR: ¹⁹F in alkali fluorides ¹

1st-order perturbation theory:

$$|\psi_{j}^{(1)}\rangle = \sum_{j=1}^{\infty} \frac{\langle\psi_{j}|\mathcal{H}^{(1)}|\psi_{j}\rangle}{\epsilon_{j}-\epsilon_{j}}|\psi_{j}^{(0)}
angle$$

Most important contributions to the variation of σ through the series:

- Valence F-p unoccupied metal–*d*: σ is negative and decreases
- Semicore metal -p unoccupied metal -d: σ is positive and increases

Also important: covalent bonding and antibonding interaction between metal-p and F-p

¹ R. Laskowski and P. Blaha, Phys. Rev. B **85**, 245117 (2012)

NMR: Effect of exchange-correlation ¹

Becke-Johnson leads to slope closer to 1, but larger RMSD

¹ R. Laskowski, P. Blaha, and F. Tran, Phys. Rev. B 87, 195130 (2013)

NMR: Metals ¹

The orbital and spin contributions are both important

¹ R. Laskowski and P. Blaha, J. Phys. Chem. C **119**, 19390 (2015)

NMR: ⁸⁹Y in intermetallic compounds ¹

Possible reasons for the strong disagreement with experiment for YMg and YZn:

- Probably disorder
- Overestimation of magnetism by DFT?

¹L. Kalantari *et al.*, J. Phys. Chem. C **121**, 28454 (2017)

Brief summary

Nuclear hyperfine interactions

Electric interactions:

- Monopole interaction:
 - ► ⇒ Isomer shift
 - Related to electron density p at nucleus
- Quadrupole interaction:
 - ⇒ Quadrupole splitting
 - Related to EFG at nucleus
 - Non-zero for nucleus with $I > \frac{1}{2}$ and non-cubic point groups
- Magnetic interactions:
 - Dipole interaction:
 - ► ⇒ Zeeman splitting
 - Related to hyperfine field
 - Magnetic systems
 - Non-magnetic systems in B_{ext} (NMR spectroscopy)