Density functional theory (DFT) and the concepts of the augmented-plane-wave plus local orbital (L)APW+lo method

Karlheinz Schwarz
Institute for Material Chemistry
TU Wien
Vienna University of Technology
K. Schwarz, P. Blaha, S. B. Trickey,

Wien2k is used worldwide by about 3000 groups
The WIEN2k code: comments

- Walter Kohn: density functional theory (DFT), 1965
- J.C. Slater: augmented plane wave (APW) method, 1937
- O.K. Andersen: Linearized APW (LAPW), 1975

Wien2k code: developed during the last 38 years

- In the year 2000 (2k) the WIEN code (from Vienna) was called wien2k
- One of the most accurate DFT codes for solids
- All electron, relativistic, full-potential method
- Widely used in academia and industry

Applications:

- **solids**: insulators, covalently bonded systems, metals
- **Surfaces**: catalysis
- **Electronic, magnetic, elastic, optical, … properties**
- Many application in literature
- See www.wien2k.at
Aspects at this workshop

- Atomic structure
 - Periodic boundary condition (approximation)
- Quantum mechanical treatment
 - DFT (functionals) and beyond (GW, DMFT, RPA, BSE, …)
- How to solve the QM (basis set)
 - LAPW method and local orbitals as implemented in WIEN2k
- Applications
 - Structure, surfaces, core-level spectra, NMR, hyperfine, Wannier,…
- Software development
 - Accuracy, efficiency, system size, user-friendliness, commercial
- Insight and understanding
 - Analysis to find trends, computer experiments (artificial cases)
- Combination of expertise
 - Chemistry, physics, mathematics, computer science, application
Four big challenges for theorists:

- **large scale applications to simulate “real” materials**
 - at the atomic scale

- **A proper quantum mechanical treatment (accurate)**
 - develop more accurate DFT functionals
 - beyond DFT (GW, DMFT, BSE, RPA…)

- **Efficiency (make calculations faster):**
 - improve numerics,
 - parallelization,
 - algorithms (iterative diagonalization)

- **calculate “new” properties**
 - for direct comparison with experiment
Crucial aspects for a simulation

Theory vs. experiment: Agreement or disagreement: What can cause it?

- **Structure model:** unit cell, supercell, surface
- **Quantum mechanics:** mean field (DFT), many body theory, ground vs. excited states
- **Convergence:** basis sets, k-points
- **Other effects:** temperature T>0 K, pressure

Stoichiometry, disorder, impurities, defects, electron core-hole, satellites, all electron, relativistic effects, vacuum, supercell, ℓ quantum nr., average, vibrations

These aspects need to be considered when comparing **theory** with **experiment**.
The atomic structure

- A crystal is represented by a unit cell
 - We assume periodic boundary condition (approximation)
 - The unit cell is repeated to infinity (makes calculations feasible)
 - A real crystal is finite (with surfaces, impurities, defects …)
 - Nano materials differ from bulk
 - Symmetry helps (space group, Bloch theorem, …)

- In theory
 - The atomic structure is an input and thus well defined.
 - Artificial structures can also be studied

- In experiment
 - The atomic structure is not perfectly known
 - Single crystals, micro crystals, powder samples, nano
 - e.g. by X-ray: averaged with uncertainties (defects, disorder)
A few solid state concepts

- **Crystal structure**
 - Unit cell (defined by 3 lattice vectors) leading to 7 crystal systems
 - Bravais lattice (14)
 - Atomic basis (Wyckoff position)
 - Symmetries (rotations, inversion, mirror planes, glide plane, screw axis)
 - Space group (230)
 - Wigner-Seitz cell
 - Reciprocal lattice (Brillouin zone)

- **Electronic structure**
 - Periodic boundary conditions
 - Bloch theorem (k-vector), Bloch function
 - Schrödinger equation (HF, DFT)
Assuming an ideal infinite crystal we define a unit cell by

Unit cell: a volume in space that fills space entirely when translated by all lattice vectors.

The obvious choice:

- a parallelepiped defined by \(\mathbf{a}, \mathbf{b}, \mathbf{c} \), three basis vectors with
- the best \(\mathbf{a}, \mathbf{b}, \mathbf{c} \) are as orthogonal as possible
- the cell is as symmetric as possible (14 types)

A unit cell containing one lattice point is called **primitive cell**.
Crystal system: e.g. cubic

Axis system

- $a = b = c$
- $\alpha = \beta = \gamma = 90^\circ$

primitive

- \text{P (cP)}

body centered

- \text{I (bcc)}

face centered

- \text{F (fcc)}
3D lattice types:

7 Crystal systems and 14 Bravais lattices

<table>
<thead>
<tr>
<th>Crystal System</th>
<th>Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>1</td>
<td>“no” symmetry</td>
</tr>
<tr>
<td>Monoclinic (P, C)</td>
<td>2</td>
<td>Two right angles</td>
</tr>
<tr>
<td>Orthorhombic (P, C, I, F)</td>
<td>4</td>
<td>Three right angles</td>
</tr>
<tr>
<td>Tetragonal (P, I)</td>
<td>2</td>
<td>Three right angles + 4 fold rotation</td>
</tr>
<tr>
<td>Cubic (P, I, F)</td>
<td>3</td>
<td>Three right angles + 4 fold + 3 fold</td>
</tr>
<tr>
<td>Trigonal (Rhombohedral)</td>
<td>1</td>
<td>Three equal angles (≠ 90°) + 3 fold</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>1</td>
<td>Two right and one 120° angle + 6 fold</td>
</tr>
</tbody>
</table>
Form **connection** to all neighbors and **span a plane normal** to the connecting line at half distance
Finite particle with a length in nm

Fraction of atoms on surface (black) or edge (red) as function of particle size n
The quantum mechanical treatment

- The electronic structure requires a QM treatment
- The main scheme is density functional theory (DFT)
 - It is a mean field approach and requires approximations
 - According to Hohenberg Kohn, it is sufficient to know the electron density of a system to determine its total energy. The many electron wave function (which depends on many variables) is not needed. In principle this is an enormous simplification, but in practice approximations must be made.
 - The direction of improving the QM treatment is summarized pictorially in Jabob’s ladder:
- There are schemes which go beyond DFT:
 - GW method (for excitations or band gaps)
 - The Bethe Salpeter equation (BSE) for excitons (core hole - electron)
 - Dynamical mean field theory (DMFT) based on DFT (wien2wannier)
Bloch-Theorem:

\[
\left[-\frac{1}{2} \nabla^2 + V(r) \right] \Psi(r) = E \Psi(r)
\]

1-dimensional case:

\(V(x) \) has lattice periodicity ("translational invariance"): \(V(x) = V(x+a) \)

The electron density \(\rho(x) \) has also lattice periodicity, however, the wave function does **NOT**:

\[
\rho(x) = \rho(x + a) = \Psi^*(x) \Psi(x) \quad \text{but}:
\]

\[
\Psi(x + a) = \mu \Psi(x) \quad \Rightarrow \quad \mu^* \mu = 1
\]

Application of the translation \(\tau \) \(g \)-times:

\[
\tau^g \Psi(x) = \Psi(x + ga) = \mu^g \Psi(x)
\]
periodic boundary conditions:

- The wave function must be uniquely defined: after G translations it must be identical (G a: periodicity volume):

\[
\tau^G \Psi(x) = \Psi(x + Ga) = \mu^G \Psi(x) = \Psi(x)
\]

\[\Rightarrow \quad \mu^G = 1\]

\[\mu = e^{2\pi i \frac{g}{G}} \quad g = 0, \pm 1 \pm 2, \ldots\]

Def.: \[k = \frac{2\pi}{a} \frac{g}{G}\]

\[\mu = e^{ika}\]

Bloch condition: \[\Psi(x + a) = e^{ika} \Psi(x) = \Psi_k\]
Bloch functions:

Wave functions with Bloch form:

$$\Psi_k(x) = e^{ikx} u(x) \quad \text{where:} \quad u(x) = u(x + a)$$

Replacing \(k \) by \(k+K \), where \(K \) is a reciprocal lattice vector, fulfills again the Bloch-condition.

\(k \) can be restricted to the first Brillouin zone.

$$\exp \left(\frac{i 2\pi K}{a} \right) = 1 \quad \text{where} \quad -\frac{\pi}{a} < k < \frac{\pi}{a}$$
Two communities in solid state theory

<table>
<thead>
<tr>
<th>LDA bandstructure</th>
<th>many body theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ ● material-specific, “ab initio”</td>
<td>● electronic correlations</td>
</tr>
<tr>
<td>● often successful, quantitative</td>
<td>● qualitative understanding</td>
</tr>
<tr>
<td>- ● effective one-particle approach</td>
<td>● model Hamiltonian</td>
</tr>
</tbody>
</table>

- **time averaged electron density**

- **W: Coulomb WW**
 - ⇒ correlations
 - ← lattice pot.
Ab-initio Hamiltonian

(non-relativistic/Born-Oppenheimer approximation)

\[
H = \sum_i \left[-\frac{\hbar^2 \Delta_i}{2m_e} + \sum_l \frac{-e^2}{4\pi \varepsilon_0} \frac{Z_l}{|r_i - R_l|} \right] + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi \varepsilon_0} \frac{1}{|r_i - r_j|}
\]

LDA bandstructure corresponds to

\[
H_{\text{LDA}} = \sum_i \left[-\frac{\hbar^2 \Delta_i}{2m_e} + \sum_l \frac{-e^2}{4\pi \varepsilon_0} \frac{1}{|r_i - R_l|} + \int d^3r \frac{e^2}{4\pi \varepsilon_0} \frac{1}{|r_i - r|} \rho(r) + V_{xc}^{\text{LDA}}(\rho(r_i)) \right]
\]

Coulomb potential:
- nuclei
- all electrons
- including self-interaction

Quantum mechanics:
- exchange
- correlation
- (partly) cancel self-interaction
Quantum mechanics

Time-independent (without relativistic effects)

Schrödinger equation

Born–Oppenheimer approximation

density functional theory

wavefunction methods

J. Perdew’s “Jacob’s Ladder” into DFT heaven

- DFT heaven
- ...
- ACDFT-RPA (unoccupied orbitals)
- hybrid-DFT (occupied orbitals)
- meta-GGA (kinetic energy density τ)
- GGA ($\nabla \rho$)
- LDA (ρ)

exchange + correlation

correlation

- ...
- CISDT
- CISD
- configuration interaction

- ...
- CCSDT
- CCSD(T)
- CCSD
- coupled cluster

- ...
- MP3
- MP2
- Møller–Plesset perturbation theory

Hartree–Fock method

exchange only (exact)
Jacob’s ladder: The grand challenge:

- Find a functional which leads to “DFT heaven”: predictive power with chemical accuracy
- J. Perdew’s “Jacob’s ladder” into DFT heaven:
 - DFT heaven
 - unoccupied orbitals (ACFDT-RPA)
 - occupied orbitals (hybrid-DFT)
 - meta-GGAs (kinetic energy density τ)
 - GGA ($\nabla \rho$)
 - LDA (ρ)
 - Hartree
DFT versus the Schrödinger Equation

We have moved our problem from here...

Properties of the system

Hard problem to solve

"Easy" problem to solve

Schrödinger view

Formally equivalent

DFT view

All many-body effects are included in the effective potential via the Exchange-Correlation functional, $E_{xc}[n(r)]$.

$$v_{\text{eff}}(r) = v(r) + \int \frac{n(r')}{|r-r'|} dr' + \frac{\delta E_{xc}[n(r)]}{\delta n(r)}$$
Hohenberg-Kohn theorem: (exact)

The total energy of an interacting inhomogeneous electron gas in the presence of an external potential $V_{\text{ext}}(\mathbf{r})$ is a functional of the density ρ.

$$E = \int V_{\text{ext}}(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} + F[\rho]$$

Kohn-Sham: (still exact!)

$$E = T_o[\rho] + \int V_{\text{ext}} \rho(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \int \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} d\mathbf{r} d\mathbf{r}' + E_{xc}[\rho]$$

In KS the many body problem of interacting electrons and nuclei is mapped to a one-electron reference system that leads to the same density as the real system.
• Every observable quantity of a quantum system can be calculated from the density of the system ALONE (Hohenberg, Kohn, 1964).

• The density of particles interacting with each other can be calculated as the density of an auxiliary system of non-interacting particles (Kohn, Sham, 1965).
Kohn-Sham equations

\[E = T_0[\rho] + \int V_{\text{ext}} \rho(\vec{r}) d\vec{r} + \frac{1}{2} \int \frac{\rho(\vec{r}) \rho(\vec{r}')}{|\vec{r}' - \vec{r}|} d\vec{r} d\vec{r}' + E_{xc}[\rho] \]

1-electron equations (Kohn Sham)

\[\{-\frac{1}{2} \nabla^2 + V_{\text{ext}}(\vec{r}) + V_C(\rho(\vec{r})) + V_{xc}(\rho(\vec{r}))\} \Phi_i(\vec{r}) = \varepsilon_i \Phi_i(\vec{r}) \]

- \[\int \frac{\rho(\vec{r})}{|\vec{r}' - \vec{r}|} d\vec{r} \]
- \[\frac{\partial E_{xc}(\rho)}{\partial \rho} \]
- \[\rho(\vec{r}) = \sum_{\varepsilon_i \leq E_F} |\Phi_i|^2 \]

\[E_{xc}^{\text{LDA}} \propto \int \rho(r) \varepsilon_{xc}^{\text{hom.}}[\rho(r)] dr \]
\[E_{xc}^{\text{GGA}} \propto \int \rho(r) F[\rho(r), \nabla \rho(r)] dr \]

LDA \quad \text{treats both,}
\quad \text{exchange and correlation effects,}
\quad \text{but approximately}

GGA

New (better ?) functionals are still an active field of research
Exchange and correlation

- We divide the density of the N-1 electron system into the total density \(n(r) \) and an exchange-correlation hole:

Properties of the exchange-correlation hole:
- Locality
- Pauli principle
- the hole contains ONE electron
- The hole must be negative

- The exchange hole affects electrons with the same spin and accounts for the Pauli principle
- In contrast, the correlation-hole accounts for the Coulomb repulsion of electrons with the opposite spin. It is short range and leads to a small redistribution of charge. The correlation hole contains NO charge:
Walter Kohn

With 80 years

- 1923 born in Vienna
- 1938 had to leave Vienna
- 1946 Univ. Toronto (master, Math)
- 1948 Harvard (PhD, Schwinger)
- Carnegie Mellon, Pittsburgh (Luttinger), Bell Labs, Copenhagen, Washington (Seattle), Paris, Imperial College (London), ETH Zürich, Univ. California, San Diego
- 1979 Founding director Santa Barbara, California
- 1964 Hohenberg Kohn
- 1965 Kohn Sham
- 1998 Nobel prize: Chemistry
- 2016, he died on April 19
“Self-consistent Equations including Exchange and Correlation Effects”

Literal quote from Kohn and Sham’s paper: “... We do not expect an accurate description of chemical binding.”
Walter Kohn

- 1923 he was born in Vienna (March 9, 1923)
- 1938 had to leave Vienna
- (England, Canada, Toronto, Havard)
- 1948 PhD Havard (with J. Schwinger)
- Active in many places: Pennsylvania, Michigan, Washington, Paris, Imperial College (London) ETH (Zürich),…
- 1960-79 Univ. of California, San Diego
- 1984 Founding director Inst. for Theoret. Physics, Santa Barbara, California
- 1964 **Hohenberg Kohn**
- 1965 **Kohn Sham**
- 1998 **Nobel prize: Chemistry**

- 2016, he died on April 19, Santa Barbara
Walter was born in Vienna on 9 March 1923 into a Jewish family. As a child, he attended the renowned Academic Gymnasium, where he liked Latin the most, but had little interest in physics or mathematics. The situation changed drastically in 1938 when Austria joined Nazi Germany—*the Anschluss*—and Walter was forced to leave this gymnasium, but he was able to enroll in the Jewish Chajes Gymnasium. There were two teachers—especially Emil Nohel, a former assistant of Einstein—who initiated his ambition for physics and mathematics. In 1939, the Kohn parents sent their 16-year-old son to Great Britain with one of the last children’s transport rescue missions (*Kindertransporte*). Walter never saw his parents again, as they were killed in Auschwitz. In 1940, when there was a risk of a UK invasion by Germany, he and other men who held German passports were considered to be “enemy aliens” and put in detention camps: first on the Isle of Man, and then Walter was shipped to Canada, where he worked in a woodcutter camp.
DFT ground state of iron

- LSDA
 - NM
 - fcc
 - in contrast to experiment

- GGA
 - FM
 - bcc
 - Correct lattice constant

Experiment
- FM
- bcc
DFT thanks to Claudia Ambrosch (previously in Graz)

GGA follows LDA
CoO AFM-II total energy, DOS

- CoO
 - in NaCl structure
 - antiferromagnetic: AF II
 - insulator
 - t_{2g} splits into a_{1g} and e_g'
 - GGA almost splits the bands
CoO why is GGA better than LSDA

\[\Delta V_{xc}^{\uparrow} = V_{xc}^{GGA} - V_{xc}^{LSDA} \]

- Central Co atom distinguishes between \uparrow and \downarrow.
- Angular correlation.

- **between** \uparrow Co

- **and** \downarrow Co
FeF₂: GGA works surprisingly well

FeF₂: GGA splits t₂g into a₁g and e⁺

Fe-EFG in FeF₂:
LSDA: 6.2
GGA: 16.8
exp: 16.5

agree
Accuracy of DFT for transition metals

Lattice parameters (Å)

<table>
<thead>
<tr>
<th></th>
<th>Exp.</th>
<th>LDA</th>
<th>PBE</th>
<th>WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>2.51</td>
<td>2.42</td>
<td>2.49</td>
<td>2.45</td>
</tr>
<tr>
<td>Ni</td>
<td>3.52</td>
<td>3.42</td>
<td>3.52</td>
<td>3.47</td>
</tr>
<tr>
<td>Cu</td>
<td>3.61</td>
<td>3.52</td>
<td>3.63</td>
<td>3.57</td>
</tr>
<tr>
<td>Ru</td>
<td>2.71</td>
<td>2.69</td>
<td>2.71</td>
<td>2.73</td>
</tr>
<tr>
<td>Rh</td>
<td>3.80</td>
<td>3.76</td>
<td>3.83</td>
<td>3.80</td>
</tr>
<tr>
<td>Pd</td>
<td>3.88</td>
<td>3.85</td>
<td>3.95</td>
<td>3.89</td>
</tr>
<tr>
<td>Ag</td>
<td>4.07</td>
<td>4.01</td>
<td>4.15</td>
<td>4.07</td>
</tr>
<tr>
<td>Ir</td>
<td>3.84</td>
<td>3.84</td>
<td>3.90</td>
<td>3.86</td>
</tr>
<tr>
<td>Pt</td>
<td>3.92</td>
<td>3.92</td>
<td>4.00</td>
<td>3.96</td>
</tr>
<tr>
<td>Au</td>
<td>4.08</td>
<td>4.07</td>
<td>4.18</td>
<td>4.11</td>
</tr>
</tbody>
</table>

- **3d elements:**
 - PBE superior, LDA much too small

- **4d elements:**
 - LDA too small, PBE too large
 - **New functional** Wu-Cohen (WC)

- **5d elements:**
 - LDA superior, PBE too large
Testing of DFT functionals:

- error of theoretical lattice parameters for a large variety of solids (Li-Th)

<table>
<thead>
<tr>
<th>Method</th>
<th>me (Å)</th>
<th>mae (Å)</th>
<th>mre (%)</th>
<th>mare (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>-0.058</td>
<td>0.058</td>
<td>-1.32</td>
<td>1.32</td>
</tr>
<tr>
<td>SO-GGA</td>
<td>-0.014</td>
<td>0.029</td>
<td>-0.37</td>
<td>0.68</td>
</tr>
<tr>
<td>PBEsol</td>
<td>-0.005</td>
<td>0.029</td>
<td>-0.17</td>
<td>0.67</td>
</tr>
<tr>
<td>WC</td>
<td>0.000</td>
<td>0.031</td>
<td>-0.03</td>
<td>0.68</td>
</tr>
<tr>
<td>AM05</td>
<td>0.005</td>
<td>0.035</td>
<td>0.01</td>
<td>0.77</td>
</tr>
<tr>
<td>PBE</td>
<td>0.051</td>
<td>0.055</td>
<td>1.05</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Can LDA be improved?

- **better GGAs and meta-GGAs** ($\rho, \nabla \rho, \tau$):
 - *usually improvement, but often too small.*

- **LDA+U**: for correlated 3d/4f electrons, treat strong Coulomb repulsion via Hubbard U parameter (cheap, “empirical U” ?)

- **Exact exchange**: imbalance between exact X and approximate C
 - *hybrid-DFT (mixing of HF + GGA; “mixing factor” ?)*
 - *exact exchange + RPA correlation (extremely expensive)*

- **GW**: gaps in semiconductors, expensive!

- **Quantum Monte-Carlo**: very expensive

- **DMFT**: for strongly correlated (metallic) d (f) -systems (expensive)
Treatment of exchange and correlation

Approximations for E_{xc}

- **LDA:** $E_{xc}^{LDA} = \int f(\rho(\mathbf{r})) d^3 r$

- **GGA:** $E_{xc}^{GGA} = \int f(\rho(\mathbf{r}), |\nabla \rho(\mathbf{r})|) d^3 r$

- **MGGA:** $E_{xc}^{MGGA} = \int f(\rho(\mathbf{r}), |\nabla \rho(\mathbf{r})|, \nabla^2 \rho(\mathbf{r}), t(\mathbf{r})) d^3 r$

- **LDA+U:** $E_{xc}^{LDA+U} = E_{xc}^{LDA} + E_{ee} - E_{dc}$

- **GGA+U:** $E_{xc}^{GGA+U} = E_{xc}^{GGA} + E_{ee} - E_{dc}$

- **Hybrid:** $E_{xc}^{\text{hybrid}} = E_{xc}^{\text{DFT}} + \alpha (E_{x}^{HF} - E_{x}^{\text{DFT}})$

where

$$E_{x}^{HF} = -\frac{1}{2} \sum_{\sigma} \sum_{n,k,n',k'} W_k W_{k'} \int \int \frac{\psi_{nk}^\sigma(\mathbf{r}) \psi_{n'k'}^{\sigma^*}(\mathbf{r}') \psi_{nk}^{\sigma}(\mathbf{r}) \psi_{n'k'}^{\sigma^*}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 r d^3 r'$$
Hybrid functional: only for (correlated) electrons

- Only for certain atoms
- and electrons of a given angular momentum ℓ

\[
E_{xc}^{\text{hybrid}} = E_{xc}^{\text{DFT}}[\rho^\sigma] + \alpha \left(E_x^{\text{HF}}[n_{m_i m_j}^\sigma] - E_x^{\text{DFT}}[\rho_{\ell}^\sigma] \right)
\]

\[
E_x^{\text{HF}}[n_{m_i m_j}^\sigma] = -\frac{1}{2} \sum_{\sigma} \sum_{m_1, m_2, m_3, m_4} n_{m_1 m_2}^\sigma n_{m_3 m_4}^\sigma \langle m_1 m_3 | v_{ee} | m_4 m_2 \rangle
\]

\[
\langle m_1 m_2 | v_{ee} | m_3 m_4 \rangle = \sum_{k=0}^{2\ell} a_k F_k
\]

The Slater integrals F_k are calculated according to P. Novák et al., phys.stat.sol (b) 245, 563 (2006)
Concepts when solving Schrödinger's-equation in solids

- **Form of potential**
 - (non-)selfconsistent
 - "Muffin-tin" MT
 - atomic sphere approximation (ASA)
 - **Full potential : FP**
 - pseudopotential (PP)

- **Relativistic treatment of the electrons**
 - non relativistic
 - semi-relativistic
 - fully-relativistic

- **Exchange and correlation potential**
 - Hartree-Fock (+correlations)
 - **Density functional theory (DFT)**
 - Local density approximation (LDA)
 - Generalized gradient approximation (GGA)
 - Beyond LDA: e.g. LDA+U

- **Schrödinger – equation (Kohn-Sham equation)**

\[
\left[-\frac{1}{2} \nabla^2 + V(r) \right] \varphi^k_i = \varepsilon^k_i \varphi^k_i
\]

- **Representation of solid**
 - non periodic (cluster)
 - periodic (unit cell)

- **Treatment of spin**
 - Non-spinpolarized
 - **Spin polarized** (with certain magnetic order)

- **Basis functions**
 - plane waves : PW
 - **augmented plane waves : APW**
 - atomic orbitals. e.g. Slater (STO), Gaussians (GTO), LMTO, numerical basis
Structure: \(a, b, c, \alpha, \beta, \gamma, R_\alpha, \ldots\)

unit cell atomic positions

Structure optimization

iteration \(i\)

DFT Kohn-Sham

\[V(\rho) = V_C + V_{xc} \] Poisson, DFT

\[E^{i+1} - E^i < \varepsilon \]

yes

no

Minimize \(E\), force \(\rightarrow 0\)

properties

\[k \in \text{IBZ} \] (irred. Brillouin zone)

Kohn Sham

\[[-\nabla^2 + V(\rho)] \psi_k = E_k \psi_k \]

\[\psi_k = \sum_{n_k} C_{kn} \Phi_{kn} \]

Variational method

\[\frac{\delta <E>}{\delta C_{kn}} = 0 \]

Generalized eigenvalue problem

\[HC = ESC \]

\[\rho = \sum_{E_k \leq E_F} \psi_k^* \psi_k \]
Solving Kohn-Sham’s equation:

- Ψ cannot be found analytically
- complete “numerical” solution is possible but inefficient
- Ansatz:
 - linear combination of some “basis functions”
 - different methods use different basis sets!
 - the “best” wave function is found using the variational principle:
 \[
 \Psi_k = \sum_{K_n} c_{k_n} \Phi_{k_n}
 \]
 \[
 \left[-\frac{1}{2} \nabla^2 + V(r) \right] \Psi_i^k = \varepsilon_i^k \Psi_i^k
 \]
 - this leads to the famous “Secular equations”, i.e. a set of linear equations which in matrix representation is called “generalized eigenvalue problem”
 \[
 H \ C = E \ S \ C
 \]
 H, S : hamilton and overlap matrix; C: eigenvectors, E: eigenvalues
Basis Sets for Solids

- plane waves
 - pseudo potentials
 - PAW (projector augmented wave) by P.E. Blöchl

- space partitioning (augmentation) methods
 - LMTO (linear muffin tin orbitals)
 - ASA approx., linearized numerical radial function
 + Hankel- and Bessel function expansions
 - full-potential LMTO
 - ASW (augmented spherical wave)
 - similar to LMTO
 - KKR (Korringa, Kohn, Rostocker method)
 - solution of multiple scattering problem, Greens function formalism
 - equivalent to APW
 - (L)APW (linearized augmented plane waves)

- LCAO methods
 - Gaussians, Slater, or numerical orbitals, often with PP option)
- plane waves form a “complete” basis set, however, they “never” converge due to the rapid oscillations of the atomic wave functions χ close to the nuclei

- let’s get rid of all core electrons and these oscillations by replacing the strong ion-electron potential by a much weaker (and physically dubious) pseudopotential

- Hellmann’s 1935 combined approximation method
“real” potentials vs. pseudopotentials

• “real” potentials contain the Coulomb singularity \(-Z/r\)
• the wave function has a cusp and many wiggles,
• chemical bonding depends mainly on the overlap of the wave functions between neighboring atoms (in the region between the nuclei) →

→ exact form of \(V\) only needed beyond \(r_{core}\)
APW based schemes

- **APW (J.C. Slater 1937)**
 - Non-linear eigenvalue problem
 - Computationally very demanding

- **LAPW (O.K. Anderssen 1975)**
 - Generalized eigenvalue problem
 - Full-potential

- **Local orbitals (D.J. Singh 1991)**
 - treatment of semi-core states (avoids ghostbands)

 - Efficiency of APW + convenience of LAPW
 - Basis for

Review articles

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
</table>
APW Augmented Plane Wave method

The unit cell is partitioned into:
- atomic spheres
- Interstitial region

Basisset:

PW: $e^{i(\vec{k} + \vec{K} \cdot \vec{r})}$

Atomic partial waves

$$\sum_{l,m} A_{lm}^K u_l(r', \epsilon) Y_{lm}(\hat{r}')$$

"exact" solutions, but energy dependent

$u_l(r, \epsilon)$ are the numerical solutions of the radial Schrödinger equation in a spherical potential for energy ϵ.

A_{lm}^K coefficients for matching the PWs Plane Waves $Y_{lm}(r)$: spherical harmonics.
Atomic partial waves
\[\sum_{l m} a^K_l u_l (r', \varepsilon) Y_{l m} (\hat{r}') \]

Energy dependent basis functions lead to a Non-linear eigenvalue problem

Numerical search for those energies, for which the det|H-ES| vanishes. Computationally very demanding. “Exact” solution for given MT potential!
Linearization of energy dependence

LAPW suggested by O.K. Andersen,

\[\Phi_{\kappa_n} = \sum_{\ell m} \left[A_{\ell m}(k_n) u_{\ell}(E_\ell, r) + B_{\ell m}(k_n) \dot{u}_{\ell}(E_\ell, r) \right] Y_{\ell m}(\hat{r}) \]

expand \(u_\ell \) at fixed energy \(E_\ell \) and add \(\dot{u}_\ell = \partial u_\ell / \partial \varepsilon \)

\(A_{\ell m}^{k}, B_{\ell m}^{k} \): join PWs in value and slope

→ General eigenvalue problem (diagonalization)

→ additional constraint requires more PWs than APW
shape approximations to “real” potentials

- Atomic sphere approximation (ASA)
 - *overlapping* spheres “fill” all volume
 - *potential* spherically symmetric

- “muffin-tin” approximation (MTA)
 - *non-overlapping* spheres with spherically symmetric potential +
 - *interstitial region* with $V=\text{const.}$

- “full”-potential
 - *no shape approximations to* V
The potential (and charge density) can be of general form (no shape approximation):

\[
V(r) = \begin{cases}
\sum_{LM} V_{LM}(r) Y_{LM}(\hat{r}) & r < R_c \\
\sum_K V_K e^{i\mathbf{K} \cdot \hat{r}} & r \in I
\end{cases}
\]

Inside each atomic sphere a local coordinate system is used (defining LM).
Core, semi-core and valence states

For example: \(\text{Ti} \)

- **Valences states**
 - *High* in energy
 - *Delocalized* wavefunctions

- **Semi-core states**
 - *Medium* energy
 - *Principal QN* one less than valence (e.g. in Ti 3p and 4p)
 - *not completely confined inside sphere* (charge leakage)

- **Core states**
 - *Low* in energy
 - *Reside inside sphere*

\[1 \text{ Ry} = 13.605 \text{ eV} \]
Local orbitals (LO)

\[\Phi_{LO} = \left[A_{\ell m} u_\ell^{E_1} + B_{\ell m} \hat{u}_\ell^{E_1} + C_{\ell m} u_\ell^{E_2} \right] Y_{\ell m}(\hat{r}) \]

- LOs
 - are confined to an atomic sphere
 - have zero value and slope at \(R \)
 - Can treat two principal QN \(n \) for each azimuthal QN \(\lambda \) (e.g. 3p and 4p)
 - Corresponding states are strictly orthogonal
 - (e.g. semi-core and valence)
 - Tail of semi-core states can be represented by plane waves
 - Only slightly increases the basis set (matrix size)

An alternative combination of schemes

E. Sjöstedt, L. Nordström, D.J. Singh,
An alternative way of linearizing the augmented plane wave method,

• Use APW, but at fixed E_i (superior PW convergence)
• Linearize with additional local orbitals (lo)
 (add a few extra basis functions)

$$\Phi_{k_n} = \sum_{lm} A_{lm}(k_n) u_l(E_1, r) Y_{lm}(\hat{r})$$

$$\Phi_{lo} = [A_{\ell m} u_\ell^{E_1} + B_{\ell m} u_\ell^{E_1}] Y_{\ell m}(\hat{r})$$

optimal solution: mixed basis
• use APW+lo for states, which are difficult to converge:
 (f or d- states, atoms with small spheres)
• use LAPW+LO for all other atoms and angular momenta
Improved convergence of APW+lo

Representative Convergence:

- e.g. force (F_y) on oxygen in SES vs. # plane waves:
 - in LAPW changes sign and converges slowly
 - in APW+lo better convergence
 - to same value as in LAPW

SES (sodium electro solodalite)

K. Schwarz, P. Blaha, G. K. H. Madsen,
Summary: Linearization LAPW vs. APW

- Atomic partial waves
 - LAPW
 \[\Phi_{k_n} = \sum_{\ell m} \left[A_{\ell m}(k_n) u_{\ell \ell}(E_{\ell}, r) + B_{\ell m}(k_n) \tilde{u}_{\ell \ell}(E_{\ell}, r) \right] Y_{\ell m}(\hat{r}) \]
 - APW+lo
 \[\Phi_{k_n} = \sum_{l m} A_{l m}(k_n) u_l(E_l, r) Y_{lm}(\hat{r}) \]
 plus another type of local orbital (lo)

- Plane Waves (PWs)
 \[e^{i(\vec{k} + \vec{k}_n).\vec{r}} \]

- match at sphere boundary
 - LAPW
 value and slope \(A_{lm}(k_n), B_{lm}(k_n) \)
 - APW
 value \(A_{lm}(k_n) \)
Method implemented in WIEN2k

- Use APW, but at fixed E_i (superior PW convergence)
- Linearize with additional l_0 (add a few basis functions)

optimal solution: mixed basis

- use APW+l_0 for states which are difficult to converge: (f- or d- states, atoms with small spheres)
- use LAPW+LO for all other atoms and angular momenta

A summary is given in

An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties

Peter Blaha
Karlheinz Schwarz
Georg Madsen
Dieter Kvasnicka
Joachim Luitz

November 2001
Vienna, AUSTRIA
Vienna University of Technology

http://www.wien2k.at
International users

about 3000 licenses worldwide

America: ARG, BZ, CDN, MX, USA (MIT, NIST, Berkeley, Princeton, Harvard, Argonne NL, Los Alamos NL, Oak Ridge NL, Penn State, Purdue, Georgia Tech, Lehigh, John Hopkins, Chicago, Stony Brook, SUNY, UC St.Barbara, UCLA)

far east: AUS, China, India, JPN, Korea, Pakistan, Singapore, Taiwan (Beijing, Tokyo, Osaka, Kyoto, Sendai, Tsukuba, Hong Kong)

75 industries (Canon, Eastman, Exxon, Fuji, Hitachi, IBM, Idemitsu Petrochem., Kansai, Komatsu, Konica-Minolta, A.D.Little, Mitsubishi, Mitsui Mining, Motorola, NEC, Nippon Steel, Norsk Hydro, Osram, Panasonic, Samsung, Seiko Epson, Siemens, Sony, Sumitomo, TDK, Toyota).

mailinglist: 10,000 emails/6 years
The first publication of the WIEN code

FULL-POTENTIAL, LINEARIZED AUGMENTED PLANE WAVE PROGRAMS FOR CRYSTALLINE SYSTEMS

P. BLAHA, K. SCHWARZ, and P. SORANTIN

Institut für Technische Elektrochemie, Technische Universität Wien, A-1060 WIEN, Austria

and

S.B. TRICKEY

Quantum Theory Project, Depts. of Physics and of Chemistry, University of Florida, Gainesville, FL 32611, USA

PROGRAM SUMMARY

Title of program: WIEN

Computer Physics Communications 59 (1990) 399–415
In the Heart of EUROPE
Development of WIEN2k

- Authors of WIEN2k

 P. Blaha, K. Schwarz, D. Kvasnicka, G. Madsen and J. Luitz

- Other contributions to WIEN2k

 - C. Ambrosch-Draxl (Free Univ. Berlin) optics
 - E. Assmann (Vienna) Wannier functions
 - F. Karsai (Vienna) parallelization
 - R. Laskowski (Singapore), non-collinear magnetism, NMR chemical shifts, BSE
 - L. Marks (Northwestern, US), various optimizations, new mixer
 - P. Novák and J. Kunes (Prague), LDA+U, SO
 - B. Olejnik (Vienna), non-linear optics,
 - C. Persson (Uppsala), irreducible representations
 - V. Petricek (Prague) 230 space groups
 - O. Rubel (McMaster Univ. Hamiton, ON) Berry phases
 - M. Scheffler (Fritz Haber Inst., Berlin), forces
 - D.J. Singh (NRL, Washington D.C., Oak Ridge), local orbitals (LO), APW+lo
 - E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo
 - J. Sofo (Penn State, USA) and J. Fuhr (Barriloche), Bader analysis
 - F. Tran (Vienna) Hartree Fock, DFT functionals
 - B. Yanchitsky and A. Timoshevskii (Kiev), space group

- and many others ….
A series of **WIEN workshops** were held

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Year</th>
<th>Month</th>
<th>Workshop Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Vienna</td>
<td>April</td>
<td>1995</td>
<td>Wien95</td>
</tr>
<tr>
<td>2nd</td>
<td>Vienna</td>
<td>April</td>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Vienna</td>
<td>April</td>
<td>1997</td>
<td>Wien97</td>
</tr>
<tr>
<td>4th</td>
<td>Trieste, Italy</td>
<td>June</td>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td>Vienna</td>
<td>April</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>Vienna</td>
<td>April</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>Vienna</td>
<td>Sept.</td>
<td>2001</td>
<td>Wien2k</td>
</tr>
<tr>
<td>8th</td>
<td>Esfahan, Iran</td>
<td>April</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td>Penn State, USA</td>
<td>July</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>10th</td>
<td>Vienna</td>
<td>April</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>11th</td>
<td>Penn State, USA</td>
<td>July</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>12th</td>
<td>Kyoto, Japan</td>
<td>May</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>13th</td>
<td>IPAM, Los Angeles, USA</td>
<td>Nov. 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14th</td>
<td>Vienna</td>
<td>April</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>15th</td>
<td>Penn State, USA</td>
<td>June</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>16th</td>
<td>Singapore</td>
<td>July</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>17th</td>
<td>Vienna</td>
<td>March</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>18th</td>
<td>Penn State, USA</td>
<td>June</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>19th</td>
<td>Nantes, France</td>
<td>July</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>20th</td>
<td>Penn State, USA</td>
<td>Sept.</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>21th</td>
<td>Tokyo, Japan</td>
<td>Aug.</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>22th</td>
<td>Warsaw, Poland</td>
<td>Oct.</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>23rd</td>
<td>Mcmaster, Canada</td>
<td>Aug.</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>24th</td>
<td>Singapore</td>
<td>July</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>26th</td>
<td>Boston, USA</td>
<td>June</td>
<td>2017</td>
<td></td>
</tr>
</tbody>
</table>

WIEN2k licenses

- **3000 licenses**
(L)APW methods

APW + local orbital method
(linearized) augmented plane wave method

Total wave function

\[\Psi_k = \sum_{K_n} C_{kn} \phi_{kn} \]

Variational method:

\[<E> = \frac{<\Psi | H | \Psi>}{<\Psi | \Psi>} \quad \delta <E> = 0 \]

upper bound

minimum

Generalized eigenvalue problem:

\[H \quad C = E \quad S \quad C \]

Diagonalization of (real or complex) matrices of size 10,000 to 50,000 (up to 50 Gb memory)
Structure: $a, b, c, \alpha, \beta, \gamma, R_\alpha, \ldots$

unit cell atomic positions

Structure optimization

iteration i

DFT Kohn-Sham

$V(\rho) = V_C + V_{xc}$ Poisson, DFT

$E^{i+1} - E^i < \varepsilon$

no

yes

$E^{\text{tot}}, \text{force}$

Minimize E, force $\rightarrow 0$

properties

$k \in \text{IBZ}$ (irred. Brillouin zone)

Kohn Sham

$[-\nabla^2 + V(\rho)] \psi_k = E_k \psi_k$

$\psi_k = \sum_{k_n} C_{k_n} \Phi_{k_n}$

Variational method

$\frac{\delta <E>}{\delta C_{k_n}} = 0$

Generalized eigenvalue problem

$HC = ESC$

$\rho = \sum_{E_k \leq E_F} \psi_k^* \psi_k$
The Brillouin zone (BZ)

- Irreducible BZ (IBZ)
 - The irreducible wedge
 - Region, from which the whole BZ can be obtained by applying all symmetry operations

- Bilbao Crystallographic Server:
 - www.cryst.ehu.es/cryst/
 - The IBZ of all space groups can be obtained from this server
 - using the option KVEC and specifying the space group (e.g. No.225 for the fcc structure leading to bcc in reciprocal space, No.229)
Self-consistent field (SCF) calculations

- In order to solve $H\Psi = E\Psi$ we need to know the potential $V(r)$
- for $V(r)$ we need the electron density $\rho(r)$
- the density $\rho(r)$ can be obtained from $\Psi(r)^*\Psi(r)$
- ?? $\Psi(r)$ is unknown before $H\Psi = E\Psi$ is solved ??

SCF cycles

Start with $\rho_{in}(r)$

Compute $\rho(r) = \sum_{\varepsilon_i \leq E_F} |\Phi_i(r)|^2$

Solve $\left\{ -\frac{1}{2} \nabla^2 + V_{\text{eff}}(r) \right\} \Phi_i(r) = \varepsilon_i \Phi_i(r)$

Do the mixing of $\rho(r)$

Calculate $V_{\text{eff}}(r) = f[\rho(r)]$
SCF – Self Consistent Field

\[
\left(-\frac{\hbar^2}{2m} \nabla^2 + \nu_{\text{eff}}(\vec{r}) \right) \Phi_i(\vec{r}) = \varepsilon_i \Phi_i(\vec{r})
\]

calculate \(\nu_{\text{eff}}(\vec{r}) = F(\rho_{in}) \)

SCF Cycle

\[\rho(\vec{r})_{out} = \sum_{\text{occupied}} |\Phi_i|^2 \]

mix \(\rho_{in,old} \) and \(\rho_{out} \)
get new \(\rho_{in} \)

start with \(\rho_{in} \)

“guess” initial density \(\rho_{in} \)

obtain converged result \(\rho_{out} \)

complication: cannot be solved analytically
Effects of SCF

Band structure of fcc Cu
Program structure of WIEN2k

- **init_lapw**
 - initialization
 - symmetry detection (F, I, C-centering, inversion)
 - input generation with recommended defaults
 - quality (and computing time) depends on k-mesh and R.Kmax (determines #PW)

- **run_lapw**
 - scf-cycle
 - optional with SO and/or LDA+U
 - different convergence criteria (energy, charge, forces)

- **save_lapw tic_gga_100k_rk7_vol0**
 - cp case.struct and clmsum files,
 - mv case.scf file
 - rm case.broyd* files
Flow Chart of WIEN2k (SCF)

1. **Input** $\rho_{n-1}(r)$
 - **lapw0**: Calculates $V(r)$
 - **lapw1**: Sets up H and S and solves the generalized eigenvalue problem
 - **lapw2**: Computes the valence charge density

2. **Lcore**
3. **Mixer**

4. **Converged?**
 - **No**
 - **Yes**

Done!

WIEN2k: P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz
Workflow of a WIEN2k calculation

- individual FORTRAN programs linked by shell-scripts
- the output of one program is input for the next
- lapw1/2 can run in parallel on many processors

SCF cycle

* fraction of total computation time
Advantage/disadvantage of WIEN2k

+ robust all-electron full-potential method (new effective mixer)
+ unbiased basisset, one convergence parameter (LDA-limit)
+ all elements of periodic table (comparable in CPU time), metals
+ LDA, GGA, meta-GGA, LDA+U, spin-orbit
+ many properties and tools (supercells, symmetry)
+ w2web (for novice users)

? speed + memory requirements
 + very efficient basis for large spheres (2 bohr) (Fe: 12Ry, O: 9Ry)
 - less efficient for small spheres (1 bohr) (O: 25 Ry)
 - large cells, many atoms (n^3, but new iterative diagonalization)
 - full H, S matrix stored \rightarrow large memory required
 + effective dual parallelization (k-points, mpi-fine-grain)
 + many k-points do not require more memory

- no stress tensor
- no linear response
w2web GUI (graphical user interface)

- Structure generator
 - spacegroup selection
 - import cif file
- step by step initialization
 - symmetry detection
 - automatic input generation
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - DOS
 - Electron density
 - X-ray spectra
 - Optics
Spacegroup P\(_{4_2}/\text{mnm}\)

Structure given by:
- spacegroup
- lattice parameter
- positions of atoms (basis)

Rutile TiO\(_2\):
P\(_{4_2}/\text{mnm}\) (136)
a=8.68, c=5.59 bohr
Ti: (0,0,0)

O: (0.304,0.304,0)
Wyckoff position: x, x, 0
Quantum mechanics at work

thanks to Erich Wimmer
TiC electron density

- NaCl structure (100) plane
- Valence electrons only
- plot in 2 dimensions
- Shows
 - charge distribution
 - covalent bonding
 - between the Ti-3d and C-2p electrons
 - e_g/t_{2g} symmetry
TiC, three valence states at Δ

Energy bands

Ti-4s

Ti-3d

C-2p

C-2s

Δ_1 4.23mRyd

Δ_2 6.20mRyd

Δ_5 6.36mRyd

C_p-Ti_d σ

Ti_d-Ti_d σ

C_p-Ti_d π

P.Blaaha, K.Schwarz,
Int.J. Quantum Chem. 23, 1535 (1983)
TiC, energy bands

spaghetti

irred. rep.

character bands

Normalized wave function (charges)

\[1 = q_{out} + \sum_t \sum_{\ell} q_{t\ell} \]

unit cell, interstitial, atom \(t \), \(\ell = s, p, d, \ldots \)

TiC, bonding and antibonding states

Bonding and antibonding state at Δ_1

antibonding

C_p-$Ti_d\sigma$

bonding

C_p-$Ti_d\sigma$
TiC, TiN, TiO

Rigid band model: limitations

Electron density ρ: decomposition

$$1 = q_{out} + \sum_{t} \sum_{\ell} q_{t\ell}$$

unit cell interstitial atom t $\ell = s, p, d, \ldots$

TiC, TiN, TiO

Experimental difference electron density

Atomic form factors for Ti and C

Paired reflections

\[s = |\mathbf{S}| \sim \sin \frac{\theta}{\lambda} \]

\[\begin{array}{ccc|c}
 h & k & l & F(g) \\
 10 & 2 & 2 & 108 \\
 6 & 6 & 6 & 108 \\
\end{array} \]

\[F(\mathbf{S}) = F(\mathbf{S}) \] spherical, symm. density

\[F(|\mathbf{S}|_1) + F(|\mathbf{S}|_2) \] non-spherical

with \(|\mathbf{S}|_1 = |\mathbf{S}|_2| \]
Reproducibility in density functional theory calculations of solids
Kurt Lejaeghere et al.
Science 351, (2016);
DOI: 10.1126/science.aad3000
Reproducibility in density functional theory calculations of solids
Kurt Lejaeghere et al.
Science 351, (2016);
DOI: 10.1126/science.aad3000

from 45 institutions
The most accurate code

AE: all electron

Fig. 4. \(\Delta \) values for comparisons between the most important DFT methods considered (in millielectron volts per atom). Shown are comparisons of all-electron (AE), PAW, ultrasoft (USPP), and norm-conserving pseudopotential (NCPP) results with all-electron results (methods are listed in alphabetical order in each category). The labels for each method stand for code, code/version (AE), or potential set/code (PAW, USPP, and NCPP) and are explained in full in tables S3 to S42. The color coding illustrates the range from small (green) to large (red) \(\Delta \) values. The mixed potential set SSSP was added to the ultrasoft category, in agreement with its prevalent potential type. Both the code settings and the DFT-predicted EOS parameters behind these numbers are included in tables S3 to S42, and fig. S1 provides a full \(\Delta \) matrix for all methods mentioned in this article.
Fig. 1. Historical evolution of the predicted equilibrium lattice parameter for silicon. All data points represent calculations within the DFT-PBE framework. Values from literature (data points before 2016) (15, 16, 18, 56–62, 63–65) are compared with (i) predictions from the different codes used in this study (2016 data points, magnified in the inset; open circles indicate data produced by older methods or calculations with lower numerical settings) and (ii) the experimental value, extrapolated to 0 K and corrected for zero-point effects (red line) (26). The concepts of precision and accuracy are illustrated graphically.
Vienna, city of music and the Wien2k code
Walter Kohn

- **1997** DFT Conference in Vienna
 - *Walter Kohn Main speaker*

- **1998** Nobel Prize for Chemistry

- **2001** invited lecturer
 - *My 60th birthday*

Ecole Normale Supérieur

Walter Kohn’s 80

International Conference on Applied Density Functional Theory
January 14-17, 2001
Vienna/Austria

dedicated to Karlheinz Schwarz on occasion of his 60th birthday
Honorary Chairman: Walter Kohn

16.1.2001

Walter Kohn
Peter & G. Lande, Skypick
WIEN2k

- World of
- Interacting
- Electrons and Nuclei

due to walter kohn
WIEN2k 入門

WIEN-code は 1980 年ごろから、グループの指導者である Karlheinz Schwarz によって書き始められ、1990 年に最初の copyrighted version の WIEN が発表された。その後 UNIX version となり、WIEN93、WIEN95、WIEN97 を経て、Fortran90 対応の WIEN2k へと改良・拡張されてきた*1。基礎となるシュレーディンガー方程式はコーン・シャム方程式であり、バンド計算法は主として FLAPW 法、ポテンシャルは LSDA、GGA などである。最新の WIEN2k では、APW+lo も取り入れられており、ポテンシャルとしては電子相関が強いときに必要であると云われている補正 +U も扱えるようになっている。また、並列計算機を使えば、極めて複雑な結晶も計算の対象とすることができる。