Methods available in WIEN2k for the treatment of exchange and correlation effects

F. Tran

Institute of Materials Chemistry Vienna University of Technology, A-1060 Vienna, Austria

25th WIEN2k workshop, 12-16 June 2018 Boston College, Boston, USA

Outline of the talk

- Introduction
- Semilocal functionals:
 - GGA and MGGA
 - mBJ potential (for band gap)
 - GLLB-SC
 - Input file case.in0
- Methods for van der Waals systems:
 - DFT-D3
 - Nonlocal functionals
- On-site methods for strongly correlated d and f electrons:
 - ► DFT+U
 - On-site hybrid functionals
- Hybrid functionals

Total energy in Kohn-Sham DFT¹

- T_s : kinetic energy of the non-interacting electrons
- E_{ee} : repulsive electron-electron electrostatic Coulomb energy
- E_{en} : attractive electron-nucleus electrostatic Coulomb energy
- *E*_{nn} : repulsive nucleus-nucleus electrostatic Coulomb energy
- ► E_{xc} = E_x + E_c : exchange-correlation energy Approximations for E_{xc} have to be used in practice ⇒ The reliability of the results depends mainly on E_{xc}

¹W. Kohn and L. J. Sham, Phys. Rev. **140**, A1133 (1965)

Approximations for $E_{\rm xc}$ (Jacob's ladder¹)

 $E_{\mathrm{xc}} = \int \epsilon_{\mathrm{xc}} \left(\mathbf{r} \right) d^3 r$

The accuracy, but also the computational cost, increase when climbing up the ladder

¹J. P. Perdew *et al.*, J. Chem. Phys. **123**, 062201 (2005)

Kohn-Sham Schrödinger equations

Minimization of E_{tot} leads to

$$\left(-\frac{1}{2}\nabla^2 + v_{ee}(\mathbf{r}) + v_{en}(\mathbf{r}) + \hat{\mathbf{v}}_{xc}(\mathbf{r})\right)\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})$$

Two types of \hat{v}_{xc} :

- Multiplicative: $\hat{v}_{xc} = \delta E_{xc} / \delta \rho = v_{xc}$ (KS method)
 - ► LDA
 - GGA
- ► Non-multiplicative: $\hat{v}_{xc} = (1/\psi_i)\delta E_{xc}/\delta \psi_i^* = v_{xc,i}$ (generalized KS¹)
 - Hartree-Fock
 - ► LDA+U
 - Hybrid (mixing of GGA and Hartree-Fock)
 - MGGA
 - Self-interaction corrected (Perdew-Zunger)

¹A. Seidl *et al.*, Phys. Rev. B **53**, 3764 (1996)

Semilocal functionals: GGA

$$\epsilon_{\rm xc}^{\rm GGA}(
ho,
abla
ho) = \epsilon_{\rm x}^{
m LDA}(
ho) F_{
m xc}(r_{s},s)$$

where F_{xc} is the enhancement factor and

$$r_{s} = \frac{1}{\left(\frac{4}{3}\pi\rho\right)^{1/3}} \quad \text{(Wigner-Seitz radius)}$$
$$s = \frac{|\nabla\rho|}{2(3\pi^{2})^{1/3}\rho^{4/3}} \quad \text{(inhomogeneity parameter)}$$

There are two types of GGA:

- Semi-empirical: contain parameters fitted to accurate (i.e., experimental) data.
- Ab initio: All parameters were determined by using mathematical conditions obeyed by the exact functional.

Semilocal functionals: trends with GGA

Exchange enhancement factor $F_x(s) = \epsilon_x^{\text{GGA}} / \epsilon_x^{\text{LDA}}$

Construction of an universal GGA: A failure

Test of functionals on 44 solids¹

¹ F. Tran *et al.*, J. Chem. Phys. **144**, 204120 (2016)

Semilocal functionals: meta-GGA

$$\epsilon_{\rm xc}^{\rm MGGA}(\rho, \nabla \rho, t) = \epsilon_{\rm xc}^{\rm LDA}(\rho) F_{\rm xc}(r_{\rm s}, s, \alpha)$$

► $\alpha = \frac{t - t_{\rm W}}{t_{\rm TF}}$

- $\alpha = 1$ (region of constant electron density)
- $\alpha = 0$ (in one- and two-electron regions very close and very far from nuclei)
- $\alpha \gg 1$ (region between closed shell atoms)
- \implies MGGA functionals are more flexible

Example: SCAN¹ is

- as good as the best GGA for atomization energies of molecules
- as good as the best GGA for lattice constant of solids

¹J. Sun *et al.*, Phys. Rev. Lett. **115**, 036402 (2015)

Semilocal functionals: meta-GGA

$$F_{\rm x}(\boldsymbol{s}, \alpha) = \epsilon_{\rm x}^{\rm MGGA} / \epsilon_{\rm x}^{
m LDA}$$

Semilocal functionals: MGGA_MS2 and SCAN

Test of functionals on 44 solids¹

¹ F. Tran *et al.*, J. Chem. Phys. **144**, 204120 (2016)

Semilocal potential for band gap: modified Becke-Johnson

- Standard LDA and GGA functionals underestimate the band gap
- Hybrid and GW are much more accurate, but also much more expensive

Semilocal potential for band gap: modified Becke-Johnson

- Standard LDA and GGA functionals underestimate the band gap
- Hybrid and GW are much more accurate, but also much more expensive
- A cheap alternative is to use the modified Becke-Johnson (mBJ) potential:¹

$$v_{\mathrm{x}}^{\mathrm{mBJ}}(\mathbf{r}) = c v_{\mathrm{x}}^{\mathrm{BR}}(\mathbf{r}) + (3c-2) \frac{1}{\pi} \sqrt{\frac{5}{6}} \sqrt{\frac{t(\mathbf{r})}{\rho(\mathbf{r})}}$$

where v_x^{BR} is the Becke-Roussel potential, *t* is the kinetic-energy density and *c* is given by

$$\boldsymbol{c} = \alpha + \beta \left(\frac{1}{V_{\text{cell}}} \int_{\text{cell}} \frac{|\nabla \rho(\mathbf{r})|}{\rho(\mathbf{r})} d^3 \boldsymbol{r} \right)^{\boldsymbol{\rho}}$$

mBJ is a MGGA potential

¹ F. Tran and P. Blaha, Phys. Rev. Lett. **102**, 226401 (2009)

Band gaps with mBJ: Reach the GW accuracy

See also F. Tran and P. Blaha, J. Phys. Chem. A 121, 3318 (2017)

How to run a calculation with the mBJ potential?

- 1. init_lapw (choose LDA or PBE)
- 2. init_mbj_lapw (create/modify files)
 - 2.1 automatically done: case.in0 modified and case.inm_vresp created
 - 2.2 run(sp)_lapw -i 1 -NI (creates case.r2v and case.vrespsum)
 - 2.3 save_lapw
- 3. init_mbj_lapw and choose one of the parametrizations:
 - 0: Original mBJ values¹
 - 1: New parametrization²
 - 2: New parametrization for semiconductors²
 - Original BJ potential³

4. run(sp)_lapw ...

¹F. Tran and P. Blaha, Phys. Rev. Lett. **102**, 226401 (2009)

²D. Koller *et al.*, Phys. Rev. B **85**, 155109 (2012)

³A. D. Becke and E. R. Johnson, J. Chem. Phys. **124**, 221101 (2006)

GLLB-SC potential

GLLB-SC is a potential (no energy functional)¹:

$$v_{\text{xc},\sigma}^{\text{GLLB-SC}} = 2\varepsilon_{\text{x},\sigma}^{\text{PBEsol}} + K_{\text{x}}^{\text{LDA}} \sum_{i=1}^{N_{\sigma}} \sqrt{\epsilon_{\text{H}} - \epsilon_{i\sigma}} \frac{\left|\psi_{i\sigma}\right|^{2}}{\rho_{\sigma}} + v_{\text{c},\sigma}^{\text{PBEsol}}$$

Leads to an derivative discontinuity:

$$\Delta = \int \psi_{\rm L}^* \left[\sum_{i=1}^{N_{\sigma_{\rm L}}} K_{\rm x}^{\rm LDA} \left(\sqrt{\epsilon_{\rm L} - \epsilon_{i\sigma_{\rm L}}} - \sqrt{\epsilon_{\rm H} - \epsilon_{i\sigma_{\rm L}}} \right) \frac{\left| \psi_{i\sigma_{\rm L}} \right|^2}{\rho_{\sigma_{\rm L}}} \right] \psi_{\rm L} d^3 r$$

Comparison with experiment: $E_g = E_g^{KS} + \Delta$

- Much better than LDA/GGA for band gaps
- Not as good as mBJ for strongly correlated systems²
- Seems interesting for electric field gradient²
- See user's guide for usage

¹M. Kuisma *et al.*, Phys. Rev. B **82**, 115106 (2010)

¹ F. Tran, S. Ehsan, and P. Blaha, Phys. Rev. Materials 2, 023802 (2018)

Input file case.in0: keywords for the xc-functional

The functional is specified at the 1st line of case.in0. Three different ways:

- 1. Specify a global keyword for E_x , E_c , v_x , v_c :
 - ► TOT XC_**NAME**
- 2. Specify a keyword for E_x , E_c , v_x , v_c individually:
 - ► TOT EX_NAME1 EC_NAME2 VX_NAME3 VC_NAME4
- 3. Specify keywords to use functionals from LIBXC¹:
 - ► TOT XC_TYPE_X_NAME1 XC_TYPE_C_NAME2
 - ► TOT XC_*TYPE*_XC_*NAME*

where TYPE is the family name: LDA, GGA or MGGA

¹M. A. L. Marques *et al.*, Comput. Phys. Commun. **183**, 2272 (2012) http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

Input file case.in0: examples

PBE:

TOT XC_PBE

or

TOT EX_PBE EC_PBE VX_PBE VC_PBE

or

- TOT XC_GGA_X_PBE XC_GGA_C_PBE
- mBJ (with LDA for the xc-energy): TOT XC_MBJ
- MGGA_MS2: TOT XC_MGGA_MS 0.504 0.14601 4.0 κ.c.b

All available functionals are listed in tables of the user's guide and in \$WIENROOT/SRC_lapw0/xc_funcs.h for LIBXC (if installed)

Methods for van der Waals systems

Problem with semilocal and hybrid functionals:

 They do not include London dispersion interactions Results are very often qualitatively wrong for van der Waals systems

Two types of dispersion terms added to the DFT total energy:

Pairwise term (cheap)¹:

$$E_{\rm c,disp}^{\rm PW} = -\sum_{A < B} \sum_{n=6,8,10,\dots} f_n^{\rm damp}(R_{AB}) \frac{C_n^{AB}}{R_{AB}^n}$$

Nonlocal term (more expensive than semilocal)²:

$$E_{\mathrm{c,disp}}^{\mathrm{NL}} = \frac{1}{2} \int \int \rho(\mathbf{r}_1) \Phi(\mathbf{r}_1, \mathbf{r}_2) \rho(\mathbf{r}_2) d^3 r_1 d^3 r_2$$

¹S. Grimme, J. Comput. Chem. **25**, 1463 (2004)

²M. Dion *et al.*, Phys. Rev. Lett. **92**, 246401 (2004)

DFT-D3 pairwise method¹

- Features:
 - Cheap
 - C_n^{AB} depend on positions of the nuclei (via coordination number)
 - Energy and forces (minimization of internal parameters)
 - 3-body term available (more important for solids than molecules)
- Installation:
 - Not included in WIEN2k
 - Download and compile the DFTD3 package from https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/ copy the dftd3 executable in \$WIENROOT
- Usage:
 - Input file case.indftd3 (if not present a default one is copied automatically by x_lapw)
 - run(sp)_lapw -dftd3 ...
 - case.scfdftd3 is included in case.scf

¹S. Grimme *et al.*, J. Chem. Phys. **132**, 154104 (2010)

DFT-D3 method: input file case.indftd3

Default (and recommended) input file:

method	bj	damping function f_n^{damp}
func	default	the one in case.in0*
grad	yes	forces
pbc	yes	periodic boundary conditions
abc	yes	3-body term
cutoff	95	interaction cutoff
cnthr	40	coordination number cutoff
num	no	numerical gradient

*default will work for PBE, PBEsol, BLYP and TPSS. For other functionals, the functional name has to be specified (see dftd3.f of DFTD3 package)

DFT-D3 method: hexagonal BN¹

¹ F. Tran *et al.*, J. Chem. Phys. **144**, 204120 (2016)

Nonlocal vdW functionals

$$\boldsymbol{E}_{\mathrm{c,disp}}^{\mathrm{NL}} = \frac{1}{2} \int \int \rho(\mathbf{r}_1) \Phi(\mathbf{r}_1, \mathbf{r}_2) \rho(\mathbf{r}_2) d^3 r_1 d^3 r_2$$

Kernels Φ proposed in the literature:

- DRSLL¹ (vdW-DF1, optB88-vdW, vdW-DF-cx0, ...):
 - Derived from ACFDT
 - Contains no adjustable parameter
- LMKLL² (vdW-DF2, rev-vdW-DF2):
 - Z_{ab} in DRSLL multiplied by 2.222
- ▶ rVV10^{3,4}:
 - Different analytical form as DRSLL
 - Parameters: b = 6.3 and C = 0.0093
- rVV10L⁵:
 - ▶ Parameters: *b* = 10.0 and *C* = 0.0093

¹M. Dion *et al.*, Phys. Rev. Lett. **92**, 246401 (2004)

²K. Lee *et al.*, Phys. Rev. B **82**, 081101(R) (2010)

³O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. **133**, 244103 (2010)

⁴_R. Sabatini *et al.*, Phys. Rev. B **87**, 041108(R) (2013)

⁵H. Peng and J. P. Perdew, Phys. Rev. B **95**, 081105(R) (2017)

Nonlocal vdW functionals in WIEN2k¹

► Features:

- Use the fast FFT-based method of Román-Pérez and Soler²:
 - 1. ρ is smoothed close to the nuclei (density cutoff ρ_c) $\rightarrow \rho_s$. The smaller ρ_c is, the smoother ρ_s is.
 - 2. $\rho_{\rm s}$ is expanded in plane waves in the whole unit cell. $G_{\rm max}$ is the plane-wave cutoff of the expansion.
- Most vdW functionals from the literature are available (see user's guide)

Usage:

- Input file case.innlvdw (\$WIENROOT/SRC_templates)
- run(sp)_lapw -nlvdw ...
- case.scfnlvdw is included in case.scf

¹F. Tran *et al.*, Phys. Rev. B **96**, 054103 (2017)

²G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. **103**, 096102 (2009)

Nonlocal vdW functionals: the input file case.innlvdw

1	kernel type
-0.8491	parameters of the kernel
20	plane-wave expansion cutoff GMAX
0.3	density cutoff rhoc
Т	calculation of the potential (T or F)

line 1 : "1" for DRSLL and LMKLL or "2" for rVV10

line 2 : "-0.8491" for DRSLL, "-1.887" for LMKLL or "6.3 0.0093" for rVV10

line 3 : Use $G_{\text{max}} = 25$ or 30 in case of numerical noise

line 4 : Eventually repeat with larger ρ_c (e.g, 0.6)

line 5 : Potential is necessary only for forces. Save computational time if set to "F"

Problem with semilocal functionals:

- They give qualitatively wrong results for solids which contain localized 3d or 4f electrons
 - The band gap is too small (zero in FeO!)
 - The magnetic moment is too small (zero in YBa₂Cu₃O₆!)
 - Wrong electronic configuration

Problem with semilocal functionals:

- They give qualitatively wrong results for solids which contain localized 3d or 4f electrons
 - The band gap is too small (zero in FeO!)
 - The magnetic moment is too small (zero in YBa₂Cu₃O₆!)
 - Wrong electronic configuration

Why?

The strong on-site correlations are not correctly accounted for by semilocal functionals.

Problem with semilocal functionals:

- They give qualitatively wrong results for solids which contain localized 3d or 4f electrons
 - The band gap is too small (zero in FeO!)
 - The magnetic moment is too small (zero in YBa₂Cu₃O₆!)
 - Wrong electronic configuration

Why?

The strong on-site correlations are not correctly accounted for by semilocal functionals.

(Partial) solution to the problem:

- Combine semilocal functionals with Hartree-Fock theory:
 - ► DFT+U
 - Hybrid

Problem with semilocal functionals:

- They give qualitatively wrong results for solids which contain localized 3d or 4f electrons
 - The band gap is too small (zero in FeO!)
 - The magnetic moment is too small (zero in YBa₂Cu₃O₆!)
 - Wrong electronic configuration

Why?

The strong on-site correlations are not correctly accounted for by semilocal functionals.

(Partial) solution to the problem:

- Combine semilocal functionals with Hartree-Fock theory:
 - ► DFT+U
 - Hybrid

Even better:

 LDA+DMFT (DMFT codes using WIEN2k orbitals as input exist)

On-site DFT+U and hybrid methods in WIEN2k

- For solids, the hybrid functionals are computationally very expensive.
- In WIEN2k the on-site DFT+U¹ and on-site hybrid^{2,3} methods are available. These methods are approximations of the Hartree-Fock/hybrid methods
- ► Applied only inside atomic spheres of selected atoms and electrons of a given angular momentum *l*.

On-site methods \rightarrow As cheap as LDA/GGA.

¹V. I. Anisimov *et al.*, Phys. Rev. B **44**, 943 (1991)

²P. Novák *et al.*, Phys. Stat. Sol. (b) **243**, 563 (2006)

³F. Tran *et al.*, Phys. Rev. B **74**, 155108 (2006)

DFT+U and hybrid exchange-correlation functionals

The exchange-correlation functional is

$$E_{\rm xc}^{\rm DFT+U/hybrid} = E_{\rm xc}^{\rm DFT}[
ho] + E^{
m onsite}[n_{mm'}]$$

where $n_{mm'}$ is the density matrix of the correlated electrons

► For DFT+*U* both exchange and Coulomb are corrected:

$$E^{\text{onsite}} = \underbrace{E_x^{\text{HF}} + E_{\text{Coul}}}_{\text{correction}} - \underbrace{E_x^{\text{DFT}} - E_{\text{Coul}}^{\text{DFT}}}_{\text{double counting}}$$

There are several versions of the double-counting term

► For the hybrid methods only exchange is corrected:

$$E^{\text{onsite}} = \underbrace{\alpha E_{x}^{\text{HF}}}_{\text{corr.}} - \underbrace{\alpha E_{x}^{\text{LDA}}}_{\text{d. count.}}$$

where α is a parameter \in [0, 1]

How to run DFT+U and on-site hybrid calculations?

- 1. Create the input files:
 - case.inorb and case.indm for DFT+U
 - case.ineece for on-site hybrid functionals (case.indm created automatically):
- 2. Run the job (can only be run with runsp_lapw):
 - LDA+U: runsp_lapw -orb ...
 - Hybrid: runsp_lapw -eece ...

For a calculation without spin-polarization ($\rho_{\uparrow} = \rho_{\downarrow}$): runsp_c_lapw -orb/eece . . .

Input file case.inorb

LDA+U applied to the 4f electrons of atoms No. 2 and 4:

1 2 0	nmod, natorb, ipr
PRATT,1.0	mixmod, amix
2 1 3	iatom, nlorb, lorb
4 1 3	iatom, nlorb, lorb
1	nsic (LDA+U(SIC) used)
0.61 0.07	U J (Ry)
0.61 0.07	U J (Ry)

nsic=0 for the AMF method (less strongly correlated electrons) nsic=1 for the SIC method nsic=2 for the HMF method

Review article : E. R. Ylvisaker et al., Phys. Rev. B 79, 035103 (2009)

On-site hybrid functional PBE0 applied to the 4*f* electrons of atoms No. 2 and 4:

-12.0 2	emin, natorb
2 1 3	iatom, nlorb, lorb
4 1 3	iatom, nlorb, lorb
HYBR	HYBR/EECE
0.25	fraction of exact exchange

SCF cycle of DFT+U in WIEN2k

Hybrid functionals

- On-site hybrid functionals can be applied only to localized electrons
- Full hybrid functionals are necessary (but expensive) for solids with delocalized electrons (e.g., in *sp*-semiconductors)

Hybrid functionals

- On-site hybrid functionals can be applied only to localized electrons
- Full hybrid functionals are necessary (but expensive) for solids with delocalized electrons (e.g., in *sp*-semiconductors)

Two types of full hybrid functionals available in WIEN2k¹:

unscreened:

$$E_{\mathrm{xc}} = E_{\mathrm{xc}}^{\mathrm{DFT}} + \alpha \left(E_{\mathrm{x}}^{\mathrm{HF}} - E_{\mathrm{x}}^{\mathrm{DFT}}
ight)$$

• screened (short-range), $\frac{1}{|\mathbf{r}-\mathbf{r}'|} \rightarrow \frac{e^{-\lambda}|\mathbf{r}-\mathbf{r}'|}{|\mathbf{r}-\mathbf{r}'|}$:

$$\mathbf{E}_{xc} = \mathbf{E}_{xc}^{DFT} + \alpha \left(\mathbf{E}_{x}^{SR-HF} - \mathbf{E}_{x}^{SR-DFT}
ight)$$

screening leads to faster convergence with ${\bf k}\mbox{-}{\rm points}$ sampling

¹F. Tran and P. Blaha, Phys. Rev. B **83**, 235118 (2011)

Hybrid functionals: technical details

- 10-1000 times more expensive than LDA/GGA
- **k**-point and MPI parallelization
- Approximations to speed up the calculations:
 - Reduced k-mesh for the HF potential. Example: For a calculation with a 12 × 12 × 12 k-mesh, the reduced k-mesh for the HF potential can be:
 - $6\times6\times6,\,4\times4\times4,\,3\times3\times3,\,2\times2\times2$ or $1\times1\times1$
 - Non-self-consistent calculation of the band structure
- Underlying functionals for unscreened and screened hybrid:
 - LDA, PBE, WC, PBEsol, B3PW91, B3LYP
- Use run_bandplothf_lapw for band structure
- Can be combined with spin-orbit coupling

Hybrid functionals: input file case.inhf

Example for YS-PBE0 (similar to HSE06 from Heyd, Scuseria and Ernzerhof¹)

0.25	fraction α of HF exchange
T	screened (1, 15-PBEU) or unscreened (F, PBEU)
0.165	screening parameter λ
20	number of bands for the 2nd Hamiltonian
6	GMAX
3	lmax for the expansion of orbitals
3	lmax for the product of two orbitals
1d-3	radial integrals below this value neglected

¹A. V. Krukau *et al.*, J. Chem. Phys. **125**, 224106 (2006)

Hybrid functionals: input file case.inhf

Example for YS-PBE0 (similar to HSE06 from Heyd, Scuseria and Ernzerhof¹)

0.25 T	fraction α of HF exchange screened (T, YS-PBE0) or unscreened (F, PBE0)
0.165	screening parameter λ
20	number of bands for the 2nd Hamiltonian
6	GMAX
3	lmax for the expansion of orbitals
3	lmax for the product of two orbitals
1d-3	radial integrals below this value neglected

Important: The computational time will depend strongly on the number of bands, GMAX, Imax and the number of k-points

¹A. V. Krukau *et al.*, J. Chem. Phys. **125**, 224106 (2006)

How to run hybrid functionals?

1. init_lapw

- 2. Recommended: run(sp)_lapw for the semilocal functional
- 3. save_lapw
- 4. init_hf_lapw (this will create/modify input files)
 - 4.1 adjust case.inhf according to your needs
 - 4.2 reduced k-mesh for the HF potential? Yes or no
 - 4.3 specify the k-mesh
- 5. run(sp)_lapw -hf (-redklist) (-diaghf) ...

SCF cycle of hybrid functionals in WIEN2k

Nonmagnetic and ferromagnetic phases of cerium¹

(neV) () ₽ 400 PBE PBE 400 Total energy **Fotal energy** 200 200 100 NN NM 43 44 4.5 4.6 48 49 51 5.2 5.3 5.4 5.5 5.6 4.6 4.7 4.8 5.2 5.3 5.4 5.5 5 5. (neV) YS-PBEh (α_=0.08) (meV) 125 PBE+U (U=1.5 eV) 125 100 Total energy Total energy 50 50 25 4.4 4.5 4.6 4.7 4.8 4.9 4.3 5 5.1 5.2 5.3 5.4 5.5 5.6 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 (meV) () 600 500 1000 800 YS-PBEh (α =0.25) Total energy PBE+U (U=4.3 eV) 600 Total energy 300 400 200 200 100 5.1 5.2 5.3 5.4 5.5 5.6 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.5 4.6 4.7 4.8 4.9 5 5.1 Lattice constant (Å) 5.2 5.3 5.4 5.5 Lattice constant (Å)

Small U (1.5 eV) or α_x (0.08) leads to correct stability ordering

¹ F. Tran, F. Karsai, and P. Blaha, Phys. Rev. B 89, 155106 (2014)

Nonmagnetic and ferromagnetic phases of cerium¹

NM: small sensitivity on U/α_x

FM: large sensitivity on U/α_x

¹ F. Tran, F. Karsai, and P. Blaha, Phys. Rev. B **89**, 155106 (2014)

Before using a functional:

- read a few papers about the functional in order to know
 - for which properties or types of solids it is supposed to be reliable
 - if it is adapted to your problem
- figure out if you have enough computational ressources
 - hybrid functionals and GW require (substantially) more computational ressources (and patience)