Show all your work and explain all your reasoning. You may use any standard results, as long as you state clearly what results you are using. Exception: you may not use a result which is the same as the problem you are being asked to do. Each problem has a noted value, in total 40 points.

1. (10 points) Let \(f \) be a holomorphic function in the punctured unit disk \(D \setminus \{0\} \). Suppose
\[
|f(z)| \leq \frac{1}{\sqrt{|z|}}
\]
for all \(z \in D \setminus \{0\} \). Is the singularity of \(f \) at 0 removable, a pole, or essential? Justify your answer.

2. (10 points) Evaluate the integral
\[
\int_0^\infty \frac{x^2}{1+x^4} dx.
\]

3. (10 points) Let \(U \) be an open, convex subset in \(\mathbb{C} \). Suppose \(f \) is a holomorphic function in \(U \) such that \(\text{Re}(f'(z)) > 0 \) for all \(z \in U \). Prove that \(f \) is one-to-one.

4. (10 points) Let \(\omega \) be a meromorphic one-form on the Riemann sphere \(\mathbb{P}^1 \). Namely, \(\omega \) has local expressions \(\{g(z)dz\} \) that are compatible with change of coordinates on \(\mathbb{P}^1 \), where the \(g(z) \) are local meromorphic functions. Define the residue of \(\omega \) at \(p \in \mathbb{P}^1 \) to be
\[
\text{Res}_p(\omega) = \frac{1}{2\pi i} \int_\gamma \omega
\]
for a small loop \(\gamma \) going around \(p \) counterclockwise such that inside \(\gamma \) the only possible singularity of \(\omega \) is \(p \). Prove that \(\text{Res}_p(\omega) = 0 \) for all \(p \in \mathbb{P}^1 \) if and only if there exists a meromorphic function \(f \) on \(\mathbb{P}^1 \) such that \(\omega = df \).

\textit{Date: July 27, 2020.}