Problem 1. Prove that an Artinian ring has finitely many maximal ideals.

Problem 2. Let \mathbb{F} be a finite field with $|\mathbb{F}| = q$. Consider the subgroup

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{F}^\times, \ b \in \mathbb{F} \right\} < \text{GL}_2(\mathbb{F}).$$

Show that for any prime p dividing $q - 1$, the number of Sylow p-subgroups of G is q.

Problem 3. Let R be a UFD and a, b be coprime elements in R. For all $i \geq 0$, compute $\text{Tor}^{R/(ab)}_i(R/(a), R/(b))$.

Problem 4. Let F be a field, and D be an integral domain containing F. Suppose D is finite dimensional as a vector space over F. For each $x \in D$, define the F-linear transformation $T_x : D \to D$ by $T_x(y) = xy$.

(a) Prove that D is a field.

(b) Suppose $p = \text{char}(F) > 0$ and $\alpha \in D$ is purely inseparable over F. This means that the minimal polynomial of α over F is $T^p e - r$ for some $r \in F$ and $e \geq 1$. Describe the Jordan canonical form of T_α over the algebraic closure of F.

Problem 5. Let K be a field of characteristic $p > 0$ and $F = K(t)$ where t is a variable. Let $f(x) = x^{2p} - tx^p + t \in F[x]$.

(a) Show that $f(x)$ is irreducible in $F[x]$.

(b) Let $E = F[s]$ where s is a root of the polynomial $(x^p - t) \in F[x]$. If L is the splitting field of $f(x)$ over E, show that $[L : E] \leq 2$.

(c) Show that $L = F[\alpha]$, where α is a root of $f(x)$.

Problem 6. Prove that a flat finitely-generated module over a Noetherian local ring is free.

Problem 7. Let p be a prime integer, and q be a power of p. Let \mathbb{F}_q be the finite field with q elements, and \mathbb{F}_{q^n} be the degree n extension of \mathbb{F}_q. Consider the map $N : \mathbb{F}_{q^n} \to \mathbb{F}_q$ defined by $N(x) = x^{1+q+\cdots+q^{n-1}}$.

(a) Prove that N is surjective. (Hint: Recall that $\mathbb{F}_{q^n}^*$ is a cyclic group of order $q^n - 1$.)

(b) Prove that $N^{-1}(1)$ spans \mathbb{F}_{q^n} as an \mathbb{F}_q-vector space.

Problem 8. Suppose k is a field. Let $R = k[s^4, s^3t, st^3, t^4] \subset k[s, t]$.

(1) Compute the Krull dimension of R.

(2) Prove that R is not Cohen-Macaulay. (Hint: Consider R/s^4R.)