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Abstract

This paper considers estimation and inference about tail features when the obser-

vations beyond some threshold are censored. We first show that ignoring such tail

censoring could lead to substantial bias and size distortion, even if the censored proba-

bility is tiny. Second, we propose a new maximum likelihood estimator (MLE) based on

the Pareto tail approximation and derive its asymptotic properties. Third, we provide

a small sample modification to the MLE by resorting to Extreme Value theory. The

MLE with this modification delivers excellent small sample performance, as shown by

Monte Carlo simulations. We illustrate its empirical relevance by estimating (i) the

tail index and the extreme quantiles of the US individual earnings with the Current

Population Survey dataset and (ii) the tail index of the distribution of macroeconomic

disasters and the coeffi cient of risk aversion using the dataset collected by Barro and

Ursúa (2008). Our new empirical findings are substantially different from the existing

literature.
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1 Introduction

Tail risk and extreme events are important research topics in economics and finance. In

many applications, the features of interest are tail properties such as tail index and extreme

quantiles. Existing literature has extensively studied the case with fully observed datasets. In

comparison, this article explores the case with tail censoring. We argue that it is important to

take into account the censoring if the research interest is in the tail, even when the censoring

fraction is small. We provide a new method to construct estimators and confidence intervals

for tail features.

Suppose one has a random sample from some underlying distribution F , where the obser-

vations larger than some threshold T are replaced with T or simply unobserved. In principle,

tail features cannot be even identified if they entirely depend on the right tail part of F that

is beyond T . However, we can back out the tail-related features by extrapolation under two

assumptions. They are that (i) the tail of F can be well approximated by some suitably

chosen parametric distribution, and (ii) T is suffi ciently large so that only a small fraction

of samples are censored. The first assumption has been thoroughly studied in the statistic

literature and is satisfied by many commonly used distributions. The second assumption is

also satisfied in many interesting empirical applications, which motivate this article.

Our first motivating example is the Current Population Survey (CPS) dataset, which

has been the primary data source used for investigating the distributions of individual earn-

ings and household income in the US. Featured studies using CPS data include Armour,

Burkhauser, and Larrimore (2013) and Eika, Mogstad, and Zafar (2019), among many oth-

ers. In CPS, the individual earnings larger than some threshold T are typically censored

(also called topcoded) and replaced with T for confidential reasons.1 In 2019, the censoring

threshold is 310000 USD, leading to an approximately 0.58% censoring fraction in the full

sample of individuals between 18 and 70 years old. This quantity is also substantially differ-

ent across the subsamples defined by race and gender but remains small, as seen in Table 1.

Using this dataset, we aim to estimate and construct confidence intervals for the tail index

that measures the tail heaviness of the income distribution and the extreme quantiles.

1The topcoding has constantly been changing. Description of the topcoding mechanism is available at
https://cps.ipums.org/cps/topcodes_tables.
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Table 1: Fractions and Numbers of Censored Observations in the 2019 CPS Dataset

n cen% cen# n cen% cen#

full sample 115424 0.582 672

race\gender male female

all 55553 0.884 491 59871 0.302 181

white 43371 0.966 419 45424 0.310 141

Asian 3676 1.360 50 4099 0.537 22

Hispanic 44420 1.002 445 48192 0.322 155

black 6144 0.195 12 7827 0.115 9

Note: Entries are the sample sizes (n), the fractions in percentage (cen%) and the numbers (cen#) of

censored observations in individual earnings from the March CPS variable ERN_VAL. Data are available

at https://usa.ipums.org/usa/.

In our second application, we examine the size distribution of macroeconomic disasters,

which is investigated by Barro and Ursúa (2008) and Barro and Jin (2011). In particular,

Barro and Jin (2011) define a macroeconomic disaster if the annual Gross Domestic Product

(GDP) (or consumption) declines by more than 10%. The authors collect the data in 36

countries from 1870 to 2005 and construct a sample of approximately 5000 observations.

However, data are missing for four countries during WWII due to government collapse or

fighting wars. These observations correspond to the end-of-world case, and hence Barro and

Jin (2011) concern that they are the largest observations but censored. In this situation, the

tail censoring fraction is about 0.1%, and the parameter of interest is the tail index and the

coeffi cient of risk aversion. Note that the censoring threshold T is unknown here.

One would think that a tiny censoring fraction makes nearly no effect if we ignore it.

This is true if the object of interest lies in the mid-sample, such as the median. However,

such ignorance could lead to substantial bias and size distortion if some tail features are of

interest. To examine this, we conduct an extensive Monte Carlo study and find that even

the 0.1% tail censoring could lead to poor finite sample performance in some commonly used

methods, including, for example, the classical Hill (1975)’s estimator.

To accommodate the censoring, existing studies typically rely on some parametric as-

sumption of the whole distribution (e.g., Aban, Meerschaert, and Panorska (2006), Jenkins,

Burkhauser, Feng, and Larrimore (2010), and Burkhauser, Feng, Jenkins, and Larrimore

(2010)). Then, tail features can be expressed as functions of the unknown parameters and
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estimated by the maximum likelihood estimator (MLE). However, the parametric assump-

tion on the whole distribution may lead to a substantial misspecification error when the

object of interest is in the tail. This is because tail features such as very large quantiles are

typically on a large scale, and hence small misspecification can be considerably amplified.

For example, the standard normal distribution and the Student-t distribution with 20 de-

grees of freedom share almost the same shape in the mid-sample but exhibit substantially

different extreme quantiles. Such misspecification is documented by Brzezinski (2013) in a

large-scale simulation study.

Instead of modeling the whole underlying distribution F , we focus on the tail part only

and approximate it with the generalized Pareto distribution (GPD). Such a Pareto-tail ap-

proximation holds for many commonly used distributions, including, for example, Student-t,

F, Beta, and Gaussian distributions. See Chapter 1 of de Haan and Ferreira (2007) for an

overview. Given this approximation, we first pick some tail cutoff u, such as some large em-

pirical quantile, and treat the observations larger than u (but still less than T ) as stemming

from the censored Pareto tail. Let k denote the number of these effective tail observations.

Then, we can fit them into the classical Tobit model and conduct the MLE of the unknown

parameters. Under some mild regularity conditions, we show that the MLE is consistent and

asymptotically normal as k diverges, enabling the construction of confidence intervals. Then

we can estimate extreme quantiles by expressing them as functions of the Pareto parameters.

This is formally studied in Section 2.

The proposed maximum likelihood method can be quite good in finite samples for some

applications, but it is also easy to find examples where the asymptotic distributions provide

poor approximations. A fundamental limitation of our MLE and many other existing ap-

proaches in studying tail features is that they require restrictive conditions for the choice of k

(and equivalently u). See, for example, Smith (1987), Chapters 3 and 4 in de Haan and Fer-

reira (2007), Beirlant, Alves, and Gomes (2016), and Beirlant, Alves, and Reynkens (2017).

On the one hand, k has to be suffi ciently large to support enough observations stemming

from the approximately Pareto tail for the consistency and the asymptotic Gaussianity. On

the other hand, k has to be suffi ciently small relative to the whole sample size n so that

the tail Pareto approximation incurs a negligible bias. Such a delicate balance is technically

reflected in the conditions that k → ∞ and k/n → 0. As such, for some combinations

of n and F , it is hard to find the k that leads to satisfactory inference. This situation is

close in spirit to the bias-variance trade-off in choosing the bandwidth in the standard kernel

regressions.
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To alleviate the above issue, we propose a small sample modification of the MLE when

k is only moderate, say 100. In particular, we follow Müller and Wang (2017) to consider

k as a fixed number and study the fixed-k asymptotic embedding by resorting to Extreme

Value (EV) theory. Instead of treating the tail observations as independent copies from the

GPD, EV theory treats them as dependent random variables with a joint EV distribution.

Such dependence is negligible when k is large but plays an important role when k is only

moderate. Using the EV approximation, we propose new confidence intervals for the tail

index and extreme quantiles, which have excellent coverage probabilities. This is studied in

detail in Section 3.

In summary, the method that we propose is a hybrid approach. We suggest using the

MLE for estimation and inference when k (and n) is large enough and switching to the fixed-

k intervals otherwise. We choose the switching cutoff to be k ≷ 250 based on our Monte

Carlo experiments in Section 4.

Returning to the CPS application, n is large enough in the full sample to support a

large k, and hence the MLE is expected to perform well. However, in the Asian male

subsample, n is only 3676. Then choosing k as a small fraction, say 5%, of n, leads to only

180 tail observations and triggers the switching. By using the new approach, we make several

interesting empirical findings. First, the tail index is substantially different across genders

and races, while the existing literature commonly focuses on the full sample and finds the tail

index to be approximately 0.5. See Toda and Wang (2019) and references therein. Second,

extreme quantiles also considerably vary across genders and races. In particular, the 99.9%

quantile of all males can be twice larger than that of the black male group. Third, the tail

features are also substantially different across ages. The middle-aged groups exhibit heavier

tails and larger extreme quantiles than the groups below 30 or above 60 years old.

In the macroeconomic disaster application, we use the new method to construct confi-

dence intervals for the tail index and the coeffi cient of risk aversion. We find substantially

different results from those in Barro and Jin (2011). In particular, we obtain a significantly

heavier tail in the disaster distribution. This further results in a smaller coeffi cient of rela-

tive risk aversion, approximately 0.75 instead of 3. Our Monte Carlo simulation statistically

justifies such a vast difference.

The rest of the paper is organized as follows. Section 2 develops the MLE, and Section

3 provides the small sample modification. Section 4 reports Monte Carlo simulations, and

Section 5 applies the new approach to the CPS and the macroeconomic disaster examples.

Section 6 concludes with some remarks. All proofs and computational details are collected
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in the Appendix.

2 The Maximum Likelihood Estimator

Consider a random sample {Yi}ni=1 generated from some cumulative distribution function

(CDF) F . Due to censoring, the econometrician observes the pair (Y 0
i , Di)

ᵀ such that

Y 0
i = DiT + (1−Di)Yi (1)

Di = 1 [Yi > T ] ,

where T denotes some constant censoring threshold and 1 [·] the indicator function. Without
loss of generality, we focus on the right tail. Define m =

∑n

i=1
Di as the number of censored

observations. We assume the density of Yi, denoted as f(·), is continuous and positive so
that P (Yi = T ) = 0.

The model (1) has spawned a vast literature about estimation and inference about the

mid-sample features, such as median, non-extreme quantiles, and regression coeffi cients. See,

for example, Powell (1986), Portnoy (2003), and Hong and Tamer (2003). These mid-sample

features are typically estimated at the root-n rate. In contrast, the tail features are estimated

at a much slower rate since only the largest observations are informative about the right tail.

Define

Fu (y) =
F (u+ y)− F (u)

1− F (u)

as the conditional CDF given that Yi is larger than some pre-specified tail cutoff u. We aim

to approximate Fu (y) by the generalized Pareto distribution, which is given by

G (y; ξ, σ) =

{
1−

(
1 + ξy

σ

)−1/ξ
ξ 6= 0

1− exp (−y/σ) ξ = 0
(2)

with y ∈ R+ if ξ ≥ 0 and y ∈ (0,−σ/ξ) otherwise. Denote y0 as the right end-point of the

support of Yi. It is well established in the statistic literature (e.g., Balkema and de Haan

(1974) and Pickands (1975)) that the GPD is a good approximation of F in the tail, in the

sense that

lim
u→y0

sup
0<y<y0−u

|Fu (y)−G (y; ξ, σ)| = 0 (3)

for some scale σ implicitly depending on u, if and only if F is in the domain of attraction
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of one of the three limit laws. The parameter ξ is referred to as the tail index, which is

uniquely determined by F and characterizes its tail heaviness. See Chapter 1 of de Haan

and Ferreira (2007) for an overview.

The tail approximation (3) is a mild assumption as it is satisfied by many commonly used

distributions. In particular, the positive ξ case covers distributions with a Pareto-type tail

such as Pareto, Student-t, and F distributions.2 The case with ξ = 0 covers the distributions

with finite moments of any order. Leading examples are normal and log-normal distributions.

The situation with a negative ξ includes the distributions with a finite right end-point. For

expositional simplicity, we focus our discussion on the case with ξ > 0, which covers the

empirical applications with heavy tails.

In practice, we usually choose u as some large order statistic of Yi, say the 95% empirical

quantile. We let T = Tn and u = un depend on the sample size n and assume Tn > un

(otherwise there is no observation). Also, denote k as the number of the observations between

un and Tn and {Y(1) ≥ Y(2) ≥, . . . ,≥ Y(n)} the order statistics3 by descending sorting. Then
effectively the available observations are the censored largest m+ k order statisticsTn, . . . , Tn︸ ︷︷ ︸

m

, Y(m+1), . . . , Y(m+k)

ᵀ

, (4)

where the largest m order statistics, {Y(1), . . . , Y(m)} are censored. Using (3), we can write
the conditional log-likelihood of the tail observations as

Ln (ξ, σ) =
m+k∑
i=1

{
Di log (1− Fu (Tn − un)) + (1−Di) log

f
(
Y(i) − un

)
1− F (un)

}

≈
m+k∑
i=1

{
Di log (1−G (Tn − un)) + (1−Di) log g

(
Y(i) − un; ξ, σ

)}
=

m+k∑
i=1

{
−Di

ξ
log

(
1 +

ξ (Tn − un)

σ

)
− (1−Di) log σ

− (1−Di)

(
1 +

1

ξ

)
log

(
1 +

ξ
(
Y(i) − un

)
σ

)}
,

2In the standard Pareto distribution with the CDF P(Y > y) ∝ y−α, the tail index ξ equals 1/α. We
focus on ξ instead of α for notational ease.

3This is different from the conventional notation for order statistics, that is, {Yn:n ≥ Yn:n−1 ≥, . . . ,≥
Yn:1}. We think this alternative is more intuitive in our setup, especially in Section 3.
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where g (y; ξ, σ) = ∂G (y; ξ, σ) /∂y. Then the MLE of ξ and σ are constructed as(
ξ̂, σ̂
)ᵀ

= arg max
(0,∞)2

Ln (ξ, σ) . (5)

To derive the asymptotic properties of the MLE, we make the following assumptions. To

simplify notations, we write α = 1/ξ when convenient and define L (y) = yα(1− F (y)).

Condition 1 (Y 0
i , Di)

ᵀ is independently and identically generated from (1).

Condition 2 F (·) is continuously differentiable with 0 < f(·) < f̄ for some constant f̄ <∞
and satisfies L (y) = C(1 + δy−β + o

(
y−β
)
) for some constants β > 0, C 6= 0 and δ ∈ R.

Condition 3 Tn →∞ and Tn/un → κ ∈ (1,∞) .

Condition 4 k →∞ and k = o
(
n2β/(α+2β)

)
.

Condition 1 assumes a random sample generated with censoring. Condition 2 is imposed

by Hall (1982), which states that the Pareto tail approximation involves a second-order bias

of the order y−β. This is imposed to avoid technical complexity and can be relaxed with

other weaker conditions (cf. Goldie and Smith (1987)). Consider the Student-t distribution

with zero mean, unit variance, and v degrees of freedom, for example. The CDF is given by

1− Ft(v)(y) = Cy−v(1 + δy−2 +O(y−4)) as y →∞.

Then Condition 2 holds with ξ = 1/v and β = 2.

Condition 3 assumes the censoring threshold is larger than the tail cutoff. Specifically,

the censoring is asymptotically negligible if κ = ∞, and leads to no tail observation if
κ = 1. Condition 4 specifies the choice of the tail cutoff and equivalently the number of

tail observations k. This asymptotic framework has been commonly used in the literature

about extreme value theory. In particular, our Condition 4 corresponds to the condition on

r in Theorem 1 in Hall (1982) and Condition (3.2) in Smith (1987). In addition, different

versions of this condition are extensively studied and used in Chapters 3 and 4 in de Haan

and Ferreira (2007). The very last assumption that k = o
(
n2β/(α+2β)

)
satisfies k/n → 0

and is imposed for expositional simplicity. We can relax it into kn−2β/(α+2β) → µ for some

µ ∈ R. Doing so leads to a non-zero mean in the asymptotic normal distribution, which
further depends on µ, β, and δ. These nuisance parameters are hardly estimable in practice,
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and hence researchers typically choose a suffi ciently small k to retain the asymptotic zero

mean. This is similar in spirit to the undersmoothing in standard kernel regressions.

In practice, it makes no difference, at least asymptotically, between treating Tn as con-

stant and the number of censored observations m as stochastic and the opposite treatment.

To see this, our Condition 2 is suffi cient for the SR2 condition in Smith (1987) with his

φ(un) = u−βn . Our Condition 3 assumes that un and Tn are of the same order of magnitude

as n→∞, and hence m/k still converges to some positive constant in probability. Then it
suffi ces to consider the no censoring case and establish the asymptotic equivalence between

thinking un or k as constant and the other is random. The argument is given by Smith

(1987), pp.1180-1181.

Under Conditions 1-4, the following proposition establishes the asymptotic normality of

the MLE.

Proposition 1 Suppose Conditions 1-4 hold. Then

k1/2

(
ξ̂ − ξ
σ̂
σ
− 1

)
d→ N

(
0,M−1

)
,

where the elements of M are given by

M11 =
2

(1 + ξ) (1 + 2ξ)
+

κ−2−1/ξ

(1 + ξ)(1 + 2ξ)ξ2 ×{
−1− ξ + κ(2 + 4ξ)− κ2(1 + ξ)(1 + 2ξ)

}
M22 =

1

(1 + 2ξ)
− κ−2−1/ξ

(1 + 2ξ)

M12 =
1

(1 + ξ) (1 + 2ξ)
+

κ−2−1/ξ

(1 + ξ) (1 + 2ξ)ξ2 ×{
− (1 + ξ)2 + (1− 2κ) (1 + ξ) (1 + 2ξ) + κ (2 + ξ) (1 + 2ξ)

}
.

The tail censoring complicates the asymptotic variance substantially as compared with

the no censoring case (cf. Smith (1987)). In particular, when the censoring is asymptotically

negligible (κ =∞), the information matrix reduces to

M =

[
2

(1+ξ)(1+2ξ)
1

(1+ξ)(1+2ξ)
1

(1+ξ)(1+2ξ)
1

(1+2ξ)

]
.

Given the MLE of ξ and σ, we can further estimate the extreme quantile Q (1− p) ≡
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inf{y : 1 − p ≤ F (y)}. We set p = pn → 0 to capture the extremeness. The estimator can

be constructed by inverting (2), that is,

Q̂ (1− pn) = un +
σ̂

ξ̂

(
dξ̂n − 1

)
,

where dn = (m+ k) / (pnn). To derive a non-trivial asymptotic result, we let d0 ≡
limn→∞ dn > 0 so that the target quantile is of the same or larger magnitude of un (other-

wise it can be estimated by the corresponding empirical quantile). The following proposition

derives the asymptotic distribution of Q̂ (1− pn).

Proposition 2 Suppose Conditions 1-4 hold. If d0 > 0, then

k1/2 Q̂ (1− pn)−Q (1− pn)

σqξ (dn)

d→ N (0,Σ)

where qξ (t) = ξ−1tξ log t and

Σ =

(
1,

dξ0 − 1

ξqξ (d0)

)
M−1

(
1,

dξ0 − 1

ξqξ (d0)

)ᵀ
+ qξ (d0)−2 .

Proposition 2 establishes the asymptotic normality of the extreme quantile estimator.

Then the confidence intervals for ξ and Q (1− pn) can be constructed by plugging in the

estimators for the asymptotic variance.

3 Small Sample Modification under the Fixed-k As-

ymptotics

The results in Section 2 suggest that the asymptotic normal approximation can be used for

inference about the tail features as k goes to ∞. In practice, however, the choice of the tail
sample size k is widely accepted as a challenging question even without censoring. This is

because a good selection of k has to balance the tail approximation bias and the variance

delicately. Ultimately, the underlying distribution has to be reasonably close to the Pareto

distribution in the tail to guarantee a satisfactory finite sample performance.

The asymptotic approximation can be quite accurate for some cases, but it is also easy to

find examples where the limiting normal distribution provides a poor approximation. Con-

10



sider the example that F is a mixture of the standard normal distribution with probability

0.8 and some Pareto distribution with probability 0.2. Such a mixture structure implies

that only the very few largest observations are informative about the true tail. In this case,

choosing a large k means including too many contaminating observations from the mid-

sample, while choosing a small k invalidates the asymptotic Gaussianity. In principle, there

is no such a procedure that consistently justifies whether a given k is appropriate when F

is entirely unknown. See Theorem 5.1 in Müller and Wang (2017) for a discussion on the

non-censored case.

Therefore, in this article, we do not focus on the choice of k but instead treat it as given.

In some cases, k is determined by some economic theory or empirical guidance. For example,

in the macroeconomic disaster application, the economic definition of disasters for more than

10% of GDP decline yields the choice of k. In other cases, we may employ some data-driven

algorithms that balance the Pareto approximation bias and the variance. See, for example,

Hall (1982), Drees (2001), and Clauset, Shalizi, and Newman (2009).

When k and n/k are both suffi ciently large, we would expect the MLE in (5) based

on the increasing-k asymptotics to work well. Nevertheless, k is only moderate in some

situations, including our macroeconomic disaster application and the Asian male subsample

in CPS. This causes a small sample issue that the asymptotic Gaussianity is questionable.

To find a better alternative, we resort to the asymptotic embedding that requires n diverges,

but k remains a fixed constant. Under this fixed-k asymptotic framework, the consistent

estimation of the tail index and the extreme quantiles are out of the question since the tail

sample size is fixed. Fortunately, inference about these tail features is still implementable,

as we discuss in this section.

We first study the tail index ξ. EV theory (the Fisher—Tippett—Gnedenko theorem)

suggests that when the underlying distribution is within the maximum domain of attraction

(e.g., Chapter 1 of de Haan and Ferreira (2007)), the sample maximum is asymptotically

distributed as the EV distribution, which is parametric and entirely characterized by ξ.

Specifically, our Condition 2 is suffi cient for the maximum domain of attraction assumption.

Then, EV theory implies that there exist sequences of constants an and bn such that, up to

some location and scale normalization,

Y(1) − bn
an

d→ X1, (6)
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where the CDF of X1 is given by

Vξ(x) =

{
1− exp

(
− (1 + ξx/σ)−1/ξ

)
ξ 6= 0

1− exp (− exp (−x/σ)) ξ = 0.
(7)

We can subsume σ into an so that σ is always 1 in (7). In additional to the sample maximum,

EV theory also extends to the first m+ k order statistics such that if (6) holds, then for any

fixed m and k, (
Y(1) − bn

an
, ...,

Y(m+k) − bn
an

)ᵀ
d→ (X1, ..., Xm+k)

ᵀ . (8)

The joint density of (X1, . . . , Xm+k)
ᵀ is given by Vξ(xm+k)

∏m+k
i=1 vξ(xi)/Vξ(xi) on xm+k ≤

xm+k−1 ≤ . . . ≤ x1, where vξ(x) = dVξ(x)/dx.

Since the first m elements are censored, the effective tail observations asymptotically

reduce to

X = (Xm+1, ..., Xm+k)
ᵀ ,

whose density is derived in the following proposition.

Proposition 3 Suppose Conditions 1 and 2 hold. Then for any fixed positive integers m
and k, there exist sequences of constants an and bn such that(

Y(m+1), . . . , Y(m+k)

)ᵀ − bnιk
an

d→ X,

where ιk denotes the k × 1 vector of ones, and the joint density of X is given by

fX|ξ (xm+1, ..., xm+k) =
1

m!
(− log Vξ (xm+1))m Vξ (xm+k)

m+k∏
i=m+1

vξ (xi) /Vξ (xi) (9)

=
1

m!
exp

 −m
ξ

log (1 + ξxm+1)− (1 + ξxm+k)
−1/ξ

−
(

1 + 1
ξ

)∑k

i=1
log (1 + ξxm+i)

 .

It is clear that the elements of X are dependent as captured by the term

(− log Vξ (xm+1))m Vξ (xm+k), which is negligible if k is large but plays a vital role when

k is only moderate. This is the fundamental difference between the increasing-k and the

fixed-k asymptotic embeddings, which are respectively used by the MLE and its small sam-

ple modification. From now on, we use bold letters to denote vectors.
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If the constants an and bn were known, the vector

Y =
(
Y(m+1), . . . , Y(m+k)

)ᵀ
is then approximately distributed as X, and the limiting problem is reduced to the small

sample parametric one: constructing a confidence interval based on one draw X whose

density fX|ξ is known up to ξ. However, an and bn respectively correspond to the scale σ and

the tail location u. Therefore, they ultimately depend on F and are challenging to estimate.

Consider the standard Pareto distribution, for example. The Pareto exponent α is simply

1/ξ. Then the fact that an = nξ implies that a small estimation bias in ξ could be amplified

by the n-power and lead to a poor inference.

To avoid the knowledge (and estimation) of an and bn, we consider the following self-

normalized statistics:

Y∗ =
Y − Y(m+k)ιk
Y(m+1) − Y(m+k)

(10)

=

(
1,
Y(m+2) − Y(m+k)

Y(m+1) − Y(m+k)

, ...,
Y(m+k−1) − Y(m+k)

Y(m+1) − Y(m+k)

, 0

)ᵀ
.

It is easy to establish that Y∗ is maximal invariant with respect to the group of location and

scale transformations (cf. Chapter 6 of Lehmann and Romano (2005)). In words, the statistic

constructed as a function of Y∗ remains unchanged if data are shifted and multiplied by any

non-zero constant. This invariance is also intuitive since the tail shape should preserve no

matter how data are linearly transformed.

The continuous mapping theorem and Proposition 3 yield that

Y∗
d→ X∗ =

(
1,
Xm+2 −Xm+k

Xm+1 −Xm+k

, ...,
Xm+k−1 −Xm+k

Xm+1 −Xm+k

, 0

)ᵀ
, (11)

which is again invariant to location and scale transformation. By change of variables, the

density of X∗ is given by

fX∗|ξ (x∗) =
Γ (k +m)

m!

∫ ∞
0

sk−2 exp

(
−m
ξ

log (1 + ξs)

)
e (x∗, s) ds, (12)

where e (x∗, s) = exp
(
−(1 + 1/ξ)

∑k
i=1 log(1 + ξx∗i s)

)
and x∗i denotes the ith component of

x∗. See Appendix A.1 for more details.
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The density (12) can be used to conduct inference about ξ. In particular, consider the

hypothesis testing problem

H0 : ξ = ξ0 against H1 : ξ ∈ Ξ\{ξ0},

where Ξ denotes the parameter space of ξ. We set Ξ = (0, 1) in the Monte Carlo simulations

to cover the distributions with an unbounded support and a finite mean, which can be easily

extended. Since the alternative hypothesis is composite, we follow Andrews and Ploberger

(1994) and Elliott, Müller, and Watson (2015) to consider the weighted average alternative∫
Ξ

fX∗|ξ (x∗) dW (ξ),

where the weighting measure W reflects the importance a researcher attaches to different

alternative values of ξ. In practice, we set W (·) to be the CDF of the standard uniform
distribution for simplicity.

Given the density of X∗, we construct the likelihood-ratio test as

ϕ (x∗) = 1

[∫
Ξ
fX∗|ξ (x∗) dW (ξ)

fX∗|ξ0 (x∗)
> cv (ξ0, k,m)

]
, (13)

where cv (ξ0, k,m) denotes the critical value that depends on the significance level, the null

value ξ0, the tail sample size k, and the number of the censored observations m. The critical

value is obtained by simulation, and the test is implemented by replacing X∗ with Y∗ in

finite samples. The continuous mapping theorem and Proposition 3 yield that E [ϕ (Y∗)]→
E [ϕ (X∗)], which equals the nominal level under the null hypothesis. The confidence interval

is constructed by inverting the test. Note that this method does not require the knowledge

of the censoring threshold T , which applies to cases such as the macroeconomic disaster.

Following Müller and Wang (2017), we can also construct the confidence intervals of the

extreme quantiles under the fixed-k asymptotics. To this end, we focus on the Q(1 − pn)

quantile with pn = O(n−1), which captures the fact that the object of interest is of the

same order of magnitude as the sample maximum. In particular, we consider pn = h/n

for some fixed h > 0. Then EV theory implies that (Q (1− h/n)− bn) /an converges to

the e−h quantile of X1, denoted q(ξ, h) =
(
h−ξ − 1

)
/ξ. Again, the research problem would

become inference about q(ξ, h) based on the k × 1 vector of observations X if an and bn
were known. Without loss of generality, we construct a confidence set S(Y) ⊂ R such that
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P (Q (1− pn) ∈ S(Y)) ≥ 1− lv, at least as n→∞, where lv denotes the significance level.

To eliminate an and bn, we use the self-normalized vector Y∗ as in (12). Besides, we also

impose location and scale equivariance on our confidence interval S. Specifically, we impose

that for any constants a > 0 and b, our interval S satisfies that S(aY + b) = aS(Y) + b,

where aS(Y)+ b = {y : (y− b)/a ∈ S(Y)}. Under this equivariance constraint, we can write

P(Q (1− pn) ∈ S(Y)) = P
(
Q (1− pn)− bn

an
∈ S

(
Y − bnιk

an

))
= P

(
Q (1− pn)− Y(m+k)

Y(m+1) − Y(m+k)

∈ S (Y∗)

)
→ Pξ

(
q(ξ, h)−Xm+k

Xm+1 −Xm+k

∈ S(X∗)

)
,

where the notation Pξ (and Eξ below) indicates that the randomness is entirely characterized
by ξ asymptotically. The asymptotic problem then is the construction of a location and scale

equivariant S that satisfies

Pξ
(
q(ξ, h)−Xm+k

Xm+1 −Xm+k

∈ S(X∗)

)
≥ 1− lv for all ξ ∈ Ξ (14)

since any S that satisfies Proposition 3 and the equivariance constraint also satisfies

lim inf
n→∞

P(Q (1− pn) ∈ S(Y)) ≥ 1− lv.

This problem involves a single observation X ∈ Rk from a parametric distribution indexed

only by the scalar parameter ξ ∈ Ξ.

In principle, there could still be many solutions that satisfy the asymptotic size constraint.

To obtain the optimal one, we consider the weighted average expected length criterion∫
Eξ[lgth(S(X))]dW (ξ), (15)

where W again denotes some weighting measure on Ξ, and lgth(A) =
∫
1[y ∈ A]dy for any

Borel set A ⊂ R.
To solve the program of minimizing (15) subject to (14) among all equivariant set esti-

mators S, we introduce

Y ∗(ξ) =
q(ξ, h)−Xm+k

Xm+1 −Xm+k

,
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and write Eξ[lgth(S(X))] = Eξ[(Xm+1 −Xm+k) lgth(S(X∗))] = Eξ[κξ(X∗) lgth(S(X∗))] with

κξ(X
∗) = Eξ[Xm+1 −Xm+k|X∗]. Thus, our problem becomes

minS(·)
∫

Ξ
Eξ[κξ(X∗) lgth(S(X∗))]dW (ξ)

s.t. Pξ (Y ∗(ξ) ∈ S(X∗)) ≥ 1− lv for all ξ ∈ Ξ.
(16)

There are two advantages to translate the asymptotic problem into (16). First, (16) does

not require the knowledge of the censoring threshold T but only the number of censored

observationsm. Second, (16) only involves S evaluated atX∗ and henceY∗ in practice. This

means the knowledge of an and bn is asymptotically unnecessary as long as n is suffi ciently

larger than m + k. Note that any solution to (16) also provides the form of S, that is,

S(X) = (Xm+1 −Xm+k)S(X∗) + Xm+k. So once S(·) is determined, the confidence interval
can be constructed in practice by plugging in

(Y(m+1) − Y(m+k))S(Y∗) + Y(m+k).

Tomake further progress in solving (16), we write the problem in the following Lagrangian

form:

min
S(·)

∫
Ξ

Eξ[κξ(X∗) lgth(S(X∗))]dW (ξ) +

∫
Ξ

Pξ (Y ∗(ξ) ∈ S(X∗)) dΛ(ξ),

where the non-negative measure Λ denotes the Lagrangian weights that guarantee the as-

ymptotic size constraint. By writing the expectations above as integrals over the densities

fX∗|ξ of X∗ and fY ∗(ξ),X∗|ξ of (Y ∗(ξ),X∗), the solution of the above problem is given by

S(x∗) =

{
y :

∫
Ξ

κξ(x
∗)fX∗|ξ(x

∗)dW (ξ) <

∫
Ξ

fY ∗(ξ),X∗|ξ(y,x
∗)dΛ(ξ)

}
. (17)

The integrals can be numerically calculated by Gaussian quadrature, and then the only

remaining challenge is to find some suitable Lagrangian weights Λ. We solve this challenge

by the numerical approach developed in Elliott, Müller, and Watson (2015). The MATLAB

program and the weights Λ are available at the author’s website. Note that Λ only needs

to be computed once by the author instead of empirical researchers. Then the most time-

consuming part in solving the program (16) is the numerical integration, which costs only a

few seconds in a modern PC. Further details are provided in Appendix A.1.
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4 Monte Carlo Simulations

This section examines the finite sample performance of the proposed method and compares

it with several popular existing methods. We generate random samples from four commonly

used distributions: the generalized Pareto distribution with ξ = 0.5 and σ = 1 (GPD),

the absolute value of the Student-t distribution with 2 degrees of freedom (|t(2)|), the F
distribution with parameters 4 and 4 (F(4,4)), and the double Pareto-lognormal distribution

(dPlN), that is,

Y = exp (c1 + c2Z1 + ξZ2 − c3Z3) ,

where Z1, Z2, Z3 are independent and Z1 ∼ N(0, 1), and Z2, Z3 ∼ Exp(1). For parameter

values, we set c1 = 0, c2 = 0.5, ξ = 0.5, and c3 = 1, which are typical values for income

data as documented in Toda (2012). In particular, the dPlN distribution is the product of

independent double Pareto and lognormal variables. It has been documented to fit well to

size distributions of economic variables including income (Reed (2003)), city size (Giesen,

Zimmermann, and Suedekum (2010)), and consumption (Toda (2017)). In all four DGP’s,

the true value of the tail index is 0.5. Regarding the tail censoring, we set the censoring

threshold T as the 99% and 99.9% quantiles of the underlying distributions, implying that

the censored probability (cen_p) is either 1% or 0.1%.

We first consider some widely used estimators in empirical studies. Due to space limita-

tions, we only report the results of Hill (1975)’s estimator and the bias-corrected estimator

proposed by Gabaix and Ibragimov (2011) (denoted GI). The confidence intervals are based

on their asymptotic normality and the plug-in estimators of their asymptotic variances. The

sample size n is 1000, 2000, and 5000, and k is set as [0.05n] for both methods, where [A]

denotes the closest integer of A. All results are based on 1000 simulations.

Table 2 depicts the mean biases and the coverage probabilities of these two methods.

Several key findings can be summarized as follows. First, both the Hill and the GI estima-

tors suffer from severe biases, and the confidence intervals based on them exhibit substantial

undercoverage. This holds even if the censoring probability is only 0.1%. Second, ignoring

the upper tail censoring tends to underestimate the tail index, which implies a misleadingly

thin tail. This is seen in Section 5.2 when we study the macroeconomic disasters. Finally,

unreported results show that other methods reviewed in Chapter 3 of de Haan and Fer-

reira (2007) also suffer from substantial undercoverage. Therefore, it is crucial to take the

censoring into account, even if the censoring probability is tiny.
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Table 2: Small Sample Properties of Estimation and Inference about Tail Index, Igorning

Tail Censoring

cen_p 1% 0.1%

Bias Cov Bias Cov

n=1000 Hill GI Hill GI Hill GI Hill GI

GPD -0.18 -0.24 0.03 0.00 -0.04 -0.07 0.88 0.89

t(2) -0.16 -0.23 0.10 0.00 -0.02 -0.06 0.93 0.93

F(4,4) -0.12 -0.20 0.39 0.05 0.03 -0.03 0.98 0.98

dPlN -0.17 -0.24 0.05 0.00 -0.04 -0.04 0.89 0.90

n=2000 Hill GI Hill GI Hill GI Hill GI

GPD -0.18 -0.24 0.00 0.00 -0.04 -0.07 0.85 0.81

t(2) -0.16 -0.23 0.00 0.00 -0.02 -0.06 0.93 0.86

F(4,4) -0.12 -0.20 0.12 0.00 0.03 -0.03 0.97 0.97

dPlN -0.17 -0.24 0.00 0.00 -0.04 -0.04 0.88 0.82

n=5000 Hill GI Hill GI Hill GI Hill GI

GPD -0.18 -0.24 0.00 0.00 -0.04 -0.08 0.73 0.45

t(2) -0.16 -0.23 0.00 0.00 -0.02 -0.07 0.90 0.63

F(4,4) -0.12 -0.20 0.00 0.00 0.03 -0.03 0.93 0.95

dPlN -0.17 -0.24 0.00 0.00 -0.03 -0.08 0.77 0.47

Note: Entries are the biases and coverage probabilities (Cov) of the 95% confidence intervals based on

Hill’s estimator (Hill) and Gabaix and Ibragimov (2010)’s estimator (GI). Data are generated from the

Pareto(0.5), the absolute value of Student-t(2), the F(4,4), and the dPIN distributions with the censored

probability (cen_p) being 1% or 0.01%. The results are based on 1000 simulations.

Now we implement the new method proposed in Sections 2 and 3. Table 3 depicts

the coverage and length of the 95% maximum likelihood confidence intervals (denoted ml)

based on Proposition 1 and those of the fixed-k intervals (denoted fk) by inverting (13).

Several interesting findings can be made as follows. First, the maximum likelihood confidence

intervals are substantially longer than the fixed-k ones when the sample size is not large.

Besides, the coverage probability is smaller than the nominal level when the censoring is at

the 99.9% quantile. This is because the asymptotic normality cannot perform well when

k is not large. Second, in comparison, the fixed-k ones always deliver the nominal size

with shorter length, especially when the sample size is not large. Finally, when n reaches
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5000 (and k reaches 250), the maximum likelihood intervals are comparable with the fixed-k

ones. Hence a simple rule-of-thumb choice of the switching cutoff is k ≶ 250, provided n is

suffi ciently large.

Table 3: Small Sample Properties of Inference about Tail Index

cen_p 1% 0.1%

Cov Lgth Cov Lgth

n=1000 ml fk ml fk ml fk ml fk

GPD 0.98 0.93 1.39 0.73 0.91 0.95 0.88 0.70

t(2) 0.98 0.94 1.40 0.73 0.90 0.95 0.87 0.70

F(4,4) 0.99 0.93 1.39 0.73 0.90 0.95 0.87 0.70

dPlN 0.99 0.93 1.30 0.73 0.90 0.94 0.87 0.70

n=2000 ml fk ml fk ml fk ml fk

GPD 0.96 0.94 0.99 0.69 0.93 0.94 0.63 0.58

t(2) 0.96 0.93 0.99 0.69 0.92 0.93 0.62 0.58

F(4,4) 0.96 0.94 0.99 0.69 0.93 0.94 0.63 0.58

dPlN 0.96 0.94 0.99 0.69 0.92 0.93 0.62 0.58

n=5000 ml fk ml fk ml fk ml fk

GPD 0.97 0.94 0.63 0.54 0.95 0.94 0.40 0.39

t(2) 0.96 0.94 0.62 0.54 0.93 0.92 0.40 0.38

F(4,4) 0.97 0.95 0.63 0.54 0.94 0.93 0.40 0.38

dPlN 0.96 0.93 0.62 0.54 0.94 0.94 0.40 0.38

Note: Entries are the coverage probabilities (Cov) and the averaged length (Lgth) of the maximum likelihood

intervals (ml) and the fixed-k intervals (fk) for the tail index. Data are generated from the Pareto(0.5), the

absolute value of Student-t(2), the F(4,4), and the dPIN distributions with the censored probability (cen_p)

being 1% or 0.01%. The results are based on 1000 simulations. The level of significance is 5%.

Tables 4 depicts the coverage probabilities and lengths of the confidence intervals of the

99% quantile, using either the maximum likelihood method as in Proposition 2 or the fixed-

k method (17). Both methods deliver satisfactory size and length properties, although the

maximum likelihood intervals suffer from slight undercoverage. However, as we target the

more extreme 99.9% quantile as in Table 5, such undercoverage is substantial when k is less

than 250. In contrast, the fixed-k ones always perform excellently. These results reinforce

our switching cutoff at k = 250.
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Table 4: Small Sample Properties of Inference about the 0.99 Quantile

cen_p 1% 0.1%

Cov Lgth Cov Lgth

n=1000 ml fk ml fk ml fk ml fk

GPD 0.95 0.94 6.71 7.09 0.91 0.96 4.83 5.79

t(2) 0.95 0.94 6.73 7.13 0.91 0.94 4.87 5.89

F(4,4) 0.94 0.94 11.67 12.17 0.91 0.95 8.32 9.91

dPlN 0.95 0.94 4.92 5.25 0.91 0.95 3.54 4.37

n=2000 ml fk ml fk ml fk ml fk

GPD 0.96 0.94 4.60 4.86 0.92 0.96 3.38 3.88

t(2) 0.96 0.94 4.60 4.76 0.93 0.96 3.43 3.89

F(4,4) 0.96 0.95 8.04 8.09 0.92 0.95 5.85 6.72

dPlN 0.96 0.94 3.44 3.50 0.93 0.96 2.52 2.90

n=5000 ml fk ml fk ml fk ml fk

GPD 0.97 0.96 2.85 2.93 0.93 0.94 2.12 2.38

t(2) 0.97 0.95 2.84 2.91 0.94 0.96 2.15 2.40

F(4,4) 0.97 0.95 4.93 5.05 0.93 0.94 3.68 4.10

dPlN 0.97 0.95 2.08 2.12 0.93 0.96 1.57 1.77

Note: Entries are the coverage probabilities (Cov) and the averaged length (Lgth) of the maximum likelihood

intervals (ml) and the fixed-k intervals (fk) for the 99% quantiles. Data are generated from the Pareto(0.5),

the absolute value of Student-t(2), the F(4,4), and the dPIN distributions with the censored probability

(cen_p) being 1% or 0.01%. The results are based on 1000 simulations. The level of significance is 5%.
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Table 5: Small Sample Properties of Inference about the 0.999 Quantile

cen_p 1% 0.1%

Cov Lgth Cov Lgth

n=1000 ml fk ml fk ml fk ml fk

GPD 0.86 0.92 128.9 102.6 0.83 0.95 61.68 75.08

t(2) 0.85 0.93 123.0 103.1 0.83 0.94 60.87 72.62

F(4,4) 0.85 0.91 226.8 178.1 0.83 0.95 106.3 130.8

dPlN 0.85 0.93 93.16 78.21 0.82 0.95 45.16 55.13

n=2000 ml fk ml fk ml fk ml fk

GPD 0.89 0.92 79.20 72.25 0.87 0.94 39.71 44.91

t(2) 0.88 0.94 75.60 71.65 0.88 0.95 39.32 45.96

F(4,4) 0.89 0.92 136.6 126.5 0.88 0.93 69.35 80.28

dPlN 0.88 0.92 56.17 51.48 0.87 0.93 28.99 32.38

n=5000 ml fk ml fk ml fk ml fk

GPD 0.94 0.95 43.06 40.41 0.92 0.94 23.96 24.15

t(2) 0.92 0.95 40.75 39.25 0.92 0.93 23.39 24.15

F(4,4) 0.92 0.95 73.55 70.90 0.91 0.94 41.11 41.62

dPlN 0.92 0.92 30.65 28.32 0.91 0.93 17.31 18.13

Note: Entries are the coverage probabilities (Cov) and the averaged length (Lgth) of the maximum likelihood

intervals (ml) and the fixed-k intervals (fk) for the 99.9% quantiles. Data are generated from the Pareto(0.5),

the absolute value of Student-t(2), the F(4,4), and the dPIN distributions with the censored probability

(cen_p) being 1% or 0.01%. The results are based on 1000 simulations. The level of significance is 5%.

5 Empirical Applications

Many applications in economics and finance involve estimation and inference of tail features

with censored data. In this section, we apply the proposed method to the two datasets

we discussed earlier in this paper. Our empirical analysis highlights the potential of our

approach.
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5.1 US Individual Earnings

Our first application is about the tail features of the individual earnings distribution. Fol-

lowing the convention, we use the variable ERN_VAL in the March CPS dataset and drop

the individuals that are younger than 18 or older than 70 years old. This yields 115,424

observations in the 2019 sample. The censoring threshold is 310000 USD, which leads to

a 0.58% censoring fraction in the full sample and various censoring fractions in different

subsamples. The first several columns in Table 6 present the sample sizes (n) and the num-

bers (cen#) and the fractions (cen%) of the censored observations, respectively. We use the

previously introduced method to construct the 95% confidence intervals of the tail index

and the 99% and 99.9% quantiles. Specifically, we follow the simulation study to use the

maximum likelihood confidence intervals developed in Section 2 when k is larger than 250

and switch to the fixed-k confidence intervals (17) otherwise. The last six columns in Table

6 present the results with k = [0.05n]. The results based on other choices are similar and

reported in Appendix A.3.

Several interesting findings can be summarized as follows. First, in Panel A, the tail

index is around 0.5 in the full sample, as commonly found in the existing literature. But

it is substantially different across subsamples. Second, the tail also exhibits substantial

heterogeneity across genders. In particular, the male sample has significantly higher quantiles

than the female at both the 99% and 99.9% levels. Third, this difference also exists across

races. In particular, the 99.9% quantile of all males is at least twice larger than that of the

black males. All such heterogeneity provides new evidence for potential racial and gender

discrimination. Finally, Panel B depicts the heterogeneity across ages, with substantially

heavier tails showing up in the middle-aged groups.
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Table 6: Empirical Results in 2019 March CPS Data

Panel A: 95% confidence intervals in race-and-gender-based subsamples

race-gender n cen# cen% tail index Q(0.99) Q(0.999)

full sample 115424 672 0.58 (0.41 0.52) (24.24 25.32) (62.63 75.61)

all males 55553 491 0.88 (0.35 0.53) (28.64 30.68) (67.71 92.58)

all females 59871 181 0.30 (0.42 0.55) (18.02 19.03) (46.34 58.01)

white males 43371 419 0.97 (0.88 1.00) (29.83 33.56) (145.2 279.0)

white females 45424 141 0.31 (0.42 0.57) (18.09 19.28) (46.56 60.66)

Asian males 3676 50 1.36 (0.00 0.45) (30.73 37.20) (48.03 86.76)

Asian females 4099 22 0.54 (0.35 0.94) (20.77 27.16) (45.12 145.0)

Hispanic males 44420 445 1.00 (0.71 0.95) (31.10 34.75) (119.3 214.0)

Hispanic females 48192 155 0.32 (0.47 0.62) (18.70 19.90) (50.17 66.13)

black males 6144 12 0.20 (0.22 0.58) (15.92 18.22) (28.73 49.39)

black females 7827 9 0.16 (0.16 0.44) (13.90 15.64) (25.25 37.18)

Panel B: 95% confidence intervals in age-based subsamples

age n cen# cen% tail index Q(0.99) Q(0.999)

18-30 27829 35 0.13 (0.33 0.49) (12.69 13.60) (28.16 36.16)

30-40 25213 158 0.63 (0.28 0.50) (24.12 26.36) (52.24 75.73)

40-50 23419 213 0.91 (0.83 1.00) (28.89 33.82) (119.7 297.2)

50-60 21767 196 0.90 (0.52 0.83) (28.19 32.21) (78.05 154.2)

60-65 17196 70 0.41 (0.17 0.41) (20.95 23.13) (41.86 59.31)

Note: Entries are the sample size (n), the number of censored observations (cen#), the censored fraction

in percentage points (cen%), 95% confidence intervals of the tail index and those of the 99% and 99.9%

quantiles measured in 104 USD. The results are based on the variable ERN_VAL in the CPS dataset and

equivalently the variable inclongj from the IPUMS dataset. Data are available at https://cps.ipums.org/cps.

5.2 Macroeconomic Disasters

This section studies the size distribution of macroeconomic disasters, which is an impor-

tant research topic in macroeconomics. Barro and Ursúa (2008) and Barro and Jin (2011)

construct and analyze the dataset that consists of annual GDP (and consumption) growth

rates in 36 countries from 1870 to 2005. The authors sort these observations and define a

macroeconomic disaster if the GDP declines by more than 10%. This leads to k = 157 tail
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observations. Then the authors fit these data to the (double) Pareto distribution to estimate

the Pareto exponent, which is the reciprocal of the tail index, and back out the coeffi cient

of the relative risk aversion by a theoretical model (eq.2 in Barro and Jin (2011)).

However, the largest disasters tend to be missing because some governments collapsed or

were fighting wars (p.1581 in Barro and Jin (2011)). Ignoring these missing data in the upper

tail could lead to substantial bias, as we show in the Monte Carlo simulations. We revisit

this problem by applying our fixed-k method since k is only moderate. Specifically, the most

recent data missing happens in four countries, which are Greece, Malaysia, the Philippines,

and Singapore during WWII. Therefore, we set m = 4 and apply the fixed-k method to

construct the 95% confidence intervals for the tail index ξ and those for the coeffi cient of

relative risk aversion by solving eq.2 in Barro and Jin (2011). For comparison, we also

construct the intervals based on Hill (1975)’s estimator and the bias-reduced estimator (GI)

proposed by Gabaix and Ibragimov (2011). Table 7 presents the result.

As shown in the table, the fixed-k intervals contain substantially larger values of the tail

index than the other two methods that ignore the tail censoring. This is coherent with our

simulation results in Table 2. By taking the reciprocal, the Pareto exponent is estimated to

be approximately 7 in Barro and Jin (2011) but less than 1 by the new method. Therefore,

taking the tail censoring into account leads to a substantially heavier tail in the disaster size.

Accordingly, the coeffi cient of risk aversion is found to be around 0.75, which is significantly

lower than 3 in Barro and Jin (2011). These results undermine their conclusion that "the

(Hill) estimate of the upper-tail exponent is likely to have only a small upward bias due to

missing extreme observations, which have to be few in number."

Table 7: Empirical Results in Macroeconomic Disasters

Method Hill GI New

Tail Index

95% CIs (0.12 0.17) (0.16 0.26) (0.57 1.00)

Coeffi cient of Risk Aversion

95% CIs (3.73 5.10) (2.44 3.88) (0.58 1.04)

Note: Entries are 95% confidence intervals (CIs) of the tail index of the disaster size distribution and

the coeffi cient of risk aversion, based on the Hill estimator (Hill), the bias-reduced estimator proposed

by Gabaix and Ibragimov (2011) (GI), and the fixed-k method by inverting (13). Data are available at

https://scholar.harvard.edu/barro/data_sets.
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6 Concluding Remarks

This paper develops a new approach to estimate and conduct inference about tail features

for censored data. The method can be viewed as a hybrid approach that uses the maximum

likelihood estimation when the tail sample size is large and switches to a small sample

modification otherwise. As shown in Monte Carlo simulations, the new method has excellent

small sample performance.

This new approach is empirically relevant in broad areas studying tail features (e.g., tail

index and extreme quantiles). We illustrate this with the March CPS data and the macro-

economic disaster data and find considerably different results from the existing literature.

There are theoretical extensions and empirical applications of our method, which we

suppress in the current paper due to space limitations. We list a few here. First, our

method naturally applies to the no censoring case by setting κ =∞ in the MLE and m = 0

in the fixed-k method. Besides, we can follow Müller and Wang (2019) to construct the

(quantile) unbiased estimation of the tail features, which could perform better in terms of

mean absolute deviation and mean squared error, especially when k is not large.

Second, many other tail features can be learned by our new method as long as they can

be expressed as functions of the tail index. For example, the conditional tail expectation is

another important risk measure in finance, which is defined as the expectation conditional on

being larger than some high quantile, that is, E [Yi|Yi > Q(1− p)]. By reparametrizing p =

h/n for some h > 0 and using EV theory, we can obtain that that (E [Yi|Yi > Q(1− h/n)]−
bn)/an → h−ξ/(ξ(1−ξ))−1/ξ, which again entirely depends on ξ and h (p.1336 in Müller and

Wang (2019)). Then we can construct the fixed-k intervals for this quantity in an analogous

fashion to (16).

Finally, our method also allows from weak dependent data if some additional regularity

condition is satisfied. In particular, EV theory holds under weak dependence, such as α-

mixing, as long as the largest order statistics do not show up in a cluster. This is referred to

as the non-cluster condition. See, for example, Leadbetter (1983), O’Brien (1987), Mikosch

and Stărică (2000), Chernozhukov (2005), and Chernozhukov and Fernández-Val (2011).

25



Appendix

A.1 Computational Details

The estimators defined in Section 3 require evaluation of some expectations. Define Γ (·) as
the Gamma function and Γ (a, x) =

∫∞
x
ta−1e−tdt as the incomplete Gamma function. Also

define e (x∗, s) = exp
(
−(1 + 1/ξ)

∑k
i=1 log(1 + ξx∗i s)

)
. Change of variables and integration

by parts yield that

Eξ [Xm+1 −Xm+k|X∗ = x∗] fX∗|ξ (x∗)

=
Γ (k +m− ξ)

m!

∫ +∞

0

sk−1 exp

(
−m
ξ

log (1 + ξs)− (1 +
1

ξ
)

k∑
i=1

log(1 + ξx∗i s)

)
ds.

and

fY ∗(ξ),X∗|ξ(y,x
∗)

=
1

m!

∫ +∞

0

1

[
s+

x∗i
y

(q(ξ)− s) > 0 for all i and x∗i > x∗j if i < j

] ∣∣∣∣∣
(
q(ξ, h)− s

y

)k−1
1

y

∣∣∣∣∣
× exp

 −m
ξ

log
(

1 + ξx+ 1
y
ξ(q(ξ, h)− x)

)
− (1 + ξs)−1/ξ

−(1 + 1
ξ
)
∑k

i=1 log
(

1 + ξs+
x∗i
y
ξ(q(ξ)− s)

)  ds,

where q(ξ, h) =
(
h−ξ − 1

)
/ξ. We evaluate these by numerical quadrature.

To determine the Lagrange multipliers Λ, we use the algorithm developed by Elliott,

Müller, and Watson (2015). In particular, we restrict Λ(·) to be point masses with the
support on the discretized Ξ, that is, ΞD = {1/50, 2/50, ..., 1} and determine the 50 point
masses by fixed-point iterations based on Monte Carlo estimates of the coverage probabilities.

To do this, we simulate the coverage probabilities with 20000 i.i.d. draws from a proposal

with ξ uniformly drawn from ΞD, and iteratively increase or decrease the point masses on

ΞD as a function of whether the coverage given that value of ξ is larger or smaller than the

nominal level 0.05. Stop this iteration until the differences between the coverages for all

values of ξ and 0.05 are lower than a pre-specified tolerance ε = 0.001. This tolerance can

be arbitrarily small at the cost of longer computation time and larger numbers of simulation

draws.

For any given k, h, and m, the Lagrange multipliers only need to be determined once.
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The tables of the Lagrange multipliers and the corresponding MATLAB code are provided

on our website: https://sites.google.com/site/yulongwanghome/.

A.2 Proof

To prove Proposition 1, we first establish two intermediate results, Lemmas 1 and 2.

Throughout the proof, we suppress the subscript n in Tn and un for notational simplicity.

Lemma 1 Suppose the conditional CDF Fu is exactly the GPD (2). Denote the log-likelihood
as

li (ξ, σ) = Di log (1−G (Tu; ξ, σ)) + (1−Di) log g (Yi; ξ, σ) ,

where Tu = T − u. Then the elements of the Fisher-information matrix are given by

M11 ≡ EGPD
[
−∂

2li (ξ, σ)

∂ξ2

]
=

2

(1 + ξ) (1 + 2ξ)
+

z−2−1/ξ

(1 + ξ)(1 + 2ξ)ξ2 ×{
−1− ξ + z(2 + 4ξ)− z2(1 + ξ)(1 + 2ξ)

}
M22 ≡ EGPD

[
−∂

2li (ξ, σ)

∂σ2

]
=

1

(1 + 2ξ)σ2
− z−2−1/ξ

(1 + 2ξ)σ2

M12 ≡ EGPD
[
−∂

2li (ξ, σ)

∂σ∂ξ

]
=

1

(1 + ξ) (1 + 2ξ)σ
+

z−2−1/ξ

(1 + ξ) (1 + 2ξ)ξ2σ
×{

− (1 + ξ)2 + (1− 2z) (1 + ξ) (1 + 2ξ) + z (2 + ξ) (1 + 2ξ)
}

where z = 1 + ξTu/σ.

The notation EGPD indicates that the expectation is taken with respect to the exact

GPD in this lemma only.

Proof of Lemma 1 Denote

−li (ξ, σ) = −Di log (1−G (Tu; ξ, σ))− (1−Di) log g (Yi; ξ, σ) (18)

=
Di

ξ
log

(
1 +

ξTu
σ

)
+ (1−Di)

(
1 +

1

ξ

)
log

(
1 +

ξYi
σ

)
+ (1−Di) log σ.

Then by substituting z = 1 + ξTu/σ and some elementary calculation, we have

−∂li (ξ, σ)

∂ξ
= Di

{
− 1

ξ2 log z +
1

ξ2

(
1− z−1

)}
27



+ (1−Di)

{
− 1

ξ2 log

(
1 +

ξ

σ
Yi

)
+

1

ξ

(
1 +

1

ξ

)(
1−

(
1 +

ξ

σ
Yi

)−1
)}

,

−∂li (ξ, σ)

∂σ
= −Di

{
1

ξσ

(
1− z−1

)}
+ (1−Di)

{
− 1

ξσ
+

1

σ

(
1 +

1

ξ

)(
1 +

ξ

σ
Yi

)−1
}
,

−∂
2li (ξ, σ)

∂ξ2

= Di

{
2

ξ3 log z − T 2
u

σ2ξ
z−2 − 2Tu

σξ2 z
−1

}
+ (1−Di)

{
2

ξ3 log

(
1 +

ξYi
σ

)
− 3 + ξ

ξ3 +
2 (2 + ξ)

ξ3

(
1 +

ξ

σ
Yi

)−1

− 1 + ξ

ξ3

(
1 +

ξYi
σ

)−2
}
,

−∂
2li (ξ, σ)

∂σ2
= Di

{
−T

2
uξ

σ4
z−2 +

2Tu
σ3

z−1

}
+(1−Di)

{
1

ξσ2
− 1

σ2

(
1 +

1

ξ

)(
1 +

ξYi
σ

)−2
}

= Di

{
1

σ2ξ

(
1− z−2

)}
+ (1−Di)

{
1

ξσ2
− 1

σ2

(
1 +

1

ξ

)(
1 +

ξYi
σ

)−2
}
,

and

−∂
2li (ξ, σ)

∂σ∂ξ

= Di

{
T 2
u

σ3

(
1 +

Tuξ

σ

)−2
}

+ (1−Di)

{
1

σξ2 −
2 + ξ

σξ2

(
1 +

Yiξ

σ

)−1

+
(1 + ξ)

σξ2

(
1 +

Yiξ

σ

)−2
}

= Di

{
1

σξ2

(
1− 2z−1 + z−2

)}
+ (1−Di)

{
1

σξ2 −
2 + ξ

σξ2

(
1 +

Yiξ

σ

)−1

+
(1 + ξ)

σξ2

(
1 +

Yiξ

σ

)−2
}
.

Using the definition of GPD (2), we have that

EGPD [Di|Yi > u] = z−1/ξ (19)
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EGPD

[(
1 +

ξYi
σ

)−r
1 [Yi ≤ T ]

∣∣∣∣∣Yi > u

]
=

1− z−r−1/ξ

1 + rξ
for any r > 0 (20)

EGPD
[

log

(
1 +

ξYi
σ

)
1 [Yi ≤ T ]

∣∣∣∣Yi > u

]
= ξ − z−1/ξ (ξ + log z) . (21)

Then using (19)-(21) to obtain that

EGPD
[
−∂

2li (ξ, σ)

∂ξ2

∣∣∣∣Yi > u

]
= z−1/ξ

{
2

ξ3 log z − 3

ξ3 +
4

ξ3 z
−1 − 1

ξ3 z
−2

}
+

2

ξ3

(
ξ − z−1/ξ (ξ + log z)

)
− 3 + ξ

ξ3 (1− z−1/ξ)

+
2 (2 + ξ)

ξ3

1− z−1−1/ξ

1 + ξ
− 1 + ξ

ξ3

1− z−2−1/ξ

1 + 2ξ

=
2

(1 + ξ) (1 + 2ξ)
+

z−2−1/ξ

(1 + ξ)(1 + 2ξ)ξ2 ×{
−1− ξ + z(2 + 4ξ)− z2(1 + ξ)(1 + 2ξ)

}
,

EGPD
[
−∂

2li (ξ, σ)

∂σ2

∣∣∣∣Yi > u

]
= z−1/ξ

{
1

σ2ξ

(
1− z−2

)}
+ EGPD

[
(1−Di)

{
1

ξσ2
− 1

σ2

(
1 +

1

ξ

)(
1 +

ξYi
σ

)−2
}]

=
1

(1 + 2ξ)σ2
− z−2−1/ξ

(1 + 2ξ)σ2
,

and

EGPD
[
−∂

2li (ξ, σ)

∂σ∂ξ

∣∣∣∣] = z−1/ξ

{
1

σξ2

(
1− 2z−1 + z−2

)}
+
(
1− z−1/ξ

) 1

σξ2 −
2 + ξ

σξ2

1− z−1−1/ξ

1 + ξ
+

(1 + ξ)

σξ2

1− z−2−1/ξ

1 + 2ξ

=
1

(1 + ξ) (1 + 2ξ)σ
+

z−2−1/ξ

(1 + ξ) (1 + 2ξ)ξ2σ
×{

− (1 + ξ)2 + (1− 2z) (1 + ξ) (1 + 2ξ) + z (2 + ξ) (1 + 2ξ)
}
.
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This completes the proof. �

Lemma 2 Suppose Condition 2 holds. Then for any positive-valued integrable function h (·)
on (1,∞) and any c ∈ (1,∞), there exists some function φ(u)→ 0 as u→∞ such that∫ c

1

h (t)
L (tu)

L (u)
dt =

∫ c

1

h (t) dt+ φ (u)

∫ c

1

h (t) k (t) dt+ o (φ (u)) .

Proof of Lemma 2 The assumption on L (·) is suffi cient for the SR2 assumption in Goldie
and Smith (1987) and Smith (1987). Therefore, we have

L (tu) /L (u) = 1 + k (t)φ (u) + o (φ (u)) ,

where k (t) = C
∫ t

1
u−β−1du for some constant C and φ (u) = u−β (pp.1179-1181 in Smith

(1987)). Then it suffi ces to show that

h (t) {L (tu) /L (u)− 1}
φ (u)

is uniformly dominated by some integrable function of t as u→∞. This is done by noting
that ∣∣∣∣h (t) {L (tu) /L (u)− 1}

φ (u)

∣∣∣∣ ≤ C
∣∣h (t)

(
1− t−β

)∣∣
≤ C |h (t)|

for t > 1. �

Proof of Proposition 1 Denote Sk (ξ, σ) as the 2 × 1 vector with components

− (∂/∂ξ)
∑k

i=1
li (ξ, σ) and −σ (∂/∂σ)

∑k

i=1
li (ξ, σ), where

li(ξ, σ) = Di log (1−G (Tu; ξ, σ)) + (1−Di) log g (Yi; ξ, σ)

with Tu = T − u. Also denote

Mk (ξ, σ) = k−1

 −∑k

i=1

∂l2i (ξ,σ)

∂ξ2
−σ
∑k

i=1

∂l2i (ξ,σ)

∂ξ∂σ

−σ
∑k

i=1

∂l2i (ξ,σ)

∂ξ∂σ
−σ2

∑k

i=1

∂2li(ξ,σ)
∂σ2

 .
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Then the intermediate value theorem yields that

k1/2

(
ξ̂ − ξ
σ̂/σ − 1

)
= Mk

(
ξ̇, σ̇
)−1 (

k−1/2Sk (ξ, σ) + op (1)
)

for some intermediate values ξ̇ and σ̇. We next show that (i) k−1/2Sk(ξ, σ) converges to the

normal random variable by using Lyapunov Central Limit Theorem (CLT) and (ii)Mk(ξ̃, σ̃)

uniformly converges to M over (ξ̃, σ̃) in a shrinking neighborhood centered at (ξ, σ).

To show (i), we use Lemma 2 and integration by parts to obtain that, for any r > 0

E

[(
1 +

Yi
u

)−r
1 [Yi ≤ T ]

∣∣∣∣∣Yi > u

]
(22)

= −
∫ T−u

0

(
1 +

y

u

)−r
d (1− Fu (y))

= −
(

1 +
y

u

)−r
(1− Fu (y))

∣∣∣∣T−u
0

− r
∫ T−u

0

(1− Fu (y))
(

1 +
y

u

)−r−1

u−1dy

= 1−
(

1 +
T − u
u

)−r
(1− Fu (T − u))

−r
∫ T−u

u
+1

1

t−r−1−αL (ut)

L (u)
dt

= 1− (T/u)−r−α +
r

r + α

(
(T/u)−r−α − 1

)
+O (φ (u))

=
α

r + α

(
1− (T/u)−r−α

)
+O (φ (u))

and

E
[

log

(
1 +

Yi
u

)
1 [Yi ≤ T ]

∣∣∣∣Yi > u

]
(23)

= −
∫ T−u

0

log
(

1 +
y

u

)
d (1− Fu (y))

= − log
(

1 +
y

u

)
(1− Fu (y))

∣∣∣T−u
0

+

∫ T−u

0

(1− Fu (y))
(

1 +
y

u

)−1

u−1dy

= − log

(
1 +

T − u
u

)
(1− Fu (T − u)) +

∫ T−u
u

+1

1

L (ut)

L (u)
t−1−αdt

= − (log(T/u)) (T/u)−α +
1

α

(
1− (T/u)−α

)
+O (φ (u)) ,
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where recall φ (u) = u−β. Use the change of variable σ = u/α and recall α = 1/ξ. Then by

Lemma 1, we have z = 1 + T−u
σ
ξ = T/u and

E
[
−∂li (ξ, σ)

∂ξ

∣∣∣∣Yi > u

]
= E [Di|Yi > u]

{
− 1

ξ2 log z +
1

ξ2

(
1− z−1

)}
+E

[{
− 1

ξ2 log

(
1 +

ξ

σ
Yi

)
+

1

ξ

(
1 +

1

ξ

)(
1−

(
1 +

ξ

σ
Yi

)−1
)}

1 [Yi ≤ T ]

∣∣∣∣∣Yi > u

]

= (1− Fu (T − u))

{
− 1

ξ2 log(T/u) +
1

ξ2

(
1− (T/u)−1

)}
− 1

ξ2E
[

log

(
1 +

Yi
u

)
1 [Yi ≤ T ]

∣∣∣∣Yi > u

]
+E

[
1

ξ

(
1 +

1

ξ

)(
1−

(
1 +

Yi
u

)−1
)
1 [Yi ≤ T ]

∣∣∣∣∣Yi > u

]

= (T/u)−α
{
−α2 log(T/u) + α2

(
1− (T/u)−1

)}
− α2

(
− (log(T/u)) (T/u)−α +

1

α

(
1− (T/u)−α

))
+α (1 + α)

(
1− (T/u)−α

)
− α2

(
1− (T/u)−1−α)+O (φ (u))

= O (φ (u)) .

Similarly by Condition 3 and repetitively using (22) and (23), we have that

E
[
−σ∂li (ξ, σ)

∂σ

∣∣∣∣Yi > u

]
= O (φ (u))

E

[(
∂li (ξ, σ)

∂ξ

)2
∣∣∣∣∣Yi > u

]
= M11 +O (φ (u)) + o(1)

E

[
σ2

(
∂li (ξ, σ)

∂σ2

)2
∣∣∣∣∣Yi > u

]
= M22 +O (φ (u)) + o(1)

E
[
σ
∂li (ξ, σ)

∂σ

∂li (ξ, σ)

∂ξ

∣∣∣∣Yi > u

]
= M12 +O (φ (u)) + o(1),

and the third moments conditional on Yi > u of ∂li (ξ, σ) /∂ξ and σ∂li (ξ, σ) /∂σ are also

bounded as u→∞. Then by Lyapunov CLT, we have k−1/2Sk (ξ, σ)
d→ N (0,M).

Now it remains to show that Mk(ξ̃, σ̃) uniformly converges to M in the neighborhood

that {(σ̃, ξ̃) : |σ̃/σ − 1| ≤ εk and |ξ̃ − ξ| ≤ εk} for some εk = o(1) satisfying k1/2εk → ∞.
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To this end, it suffi ces to show that E[|∂3li(ξ̃, σ̃)/∂ξ3||Yi > u], E[|σ∂3li(ξ̃, σ̃)/∂ξ2∂σ||Yi > u],

E[|σ3∂3li(ξ̃, σ̃)/∂σ3||Yi > u], and E[σ2|∂3li(ξ̃, σ̃)/∂σ2∂ξ||Yi > u] are all uniformly bounded

over this neighborhood. This is done by straightforward calculations as we show in Lemma

3. For brevity, we present the proof for E[|∂3li(ξ̃, σ̃)/∂ξ3||Yi > u] only since the argument

for the other terms are similar (cf. pp.1178-1180 in Smith (1987)). �

Lemma 3 E[|∂3li(ξ̃, σ̃)/∂ξ3||Yi > u] is uniformly bounded over {(σ̃, ξ̃) : |σ̃/σ − 1| ≤ εk and

|ξ̃ − ξ| ≤ εk} for any εk → 0 as k →∞.

Proof of Lemma 3 Substituting (18) to obtain that

∂3li

(
ξ̃, σ̃
)

∂ξ3

= Di


2T 3u
σ̃3ξ̃

(
1 + Tuξ̃

σ̃

)−3

+ 3T 2u

σ̃2ξ̃
2

(
1 + Tuξ̃

σ̃

)−2

+6Tu

σ̃ξ̃
3

(
1 + Tuξ̃

σ̃

)−1

− 6

ξ̃
4 log

(
1 + Tuξ̃

σ̃

)


+(1−Di)


11

ξ̃
4 + 2

ξ̃
3 − 2

ξ̃
4

(
1 + ξ̃

σ̃
Yi

)−3

+
(

9

ξ̃
4 + 6

ξ̃
3

)(
1 + ξ̃

σ̃
Yi

)−2

−
(

18

ξ̃
4 + 6

ξ̃
3

)(
1 + ξ̃

σ̃
Yi

)−1

− 6

ξ̃
4 log

(
1 + ξ̃Yi

σ̃

)


≡ B1n(ξ̃, σ̃) +B2n(ξ̃, σ̃).

Since Tu = T −u = O(σ) and E [Di|Yi > u] < 1, the expectation of B1n is then uniformly

bounded over {(σ̃, ξ̃) : |σ̃/σ − 1| ≤ εk and |ξ̃ − ξ| ≤ εk}. To bound B2n, it suffi ces to show

that for any ξ̃ and σ̃ in the set {(σ̃, ξ̃) : |σ̃/σ − 1| ≤ εk and |ξ̃ − ξ| ≤ εk} and for any r > 0,

E

[(
1 +

ξ̃

σ̃
Yi

)−r
1 [Yi ≤ T ]

∣∣∣∣∣Yi > u

]
<∞ and (24)

E

[
log

(
1 +

ξ̃Yi
σ̃

)
1 [Yi ≤ T ]

∣∣∣∣∣Yi > u

]
<∞, (25)

which are similar to (22) and (23), respectively. In particular, denote v = (ξσ̃) /(ξ̃σ) so that

|v − 1| ≤ ε for some constant ε → 0. Then using the change of variable σ = u/α = uξ, we
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have

E

[(
1 +

ξ̃

σ̃
Yi

)−r
1 [Yi ≤ T ]

∣∣∣∣∣Yi > u

]

= E

[(
1 +

Yi
vu

)−r
1 [Yi ≤ T ]

∣∣∣∣∣Yi > u

]

= −
∫ T−u

0

(
1 +

y

vu

)−r
d (1− Fu (y))

= −
(

1 +
y

vu

)−r
(1− Fu (y))

∣∣∣∣T−u
0

− vr
∫ T−u

0

(1− Fu (y))
(

1 +
y

vu

)−r−1

u−1dy

= 1−
(

1 +
T − u
vu

)−r
(1− Fu (T − u))

−vr
∫ T−u

u
+1

1

(
1 +

t− 1

v

)−r−1

t−α
L (ut)

L (u)
dt.

Condition 3 and Lemma 2 yield that the above item is bounded. A very similar argument

applies to (25), which completes the proof. �

Proof of Proposition 2 The proof follows analogously from Theorem 4.3.1 and Remark

4.3.7 in de Haan and Ferreira (2007). We now provide the details. Recall dn = (m+ k) /(npn)

and write u = Q̂ (1− pndn), which is Y(m+k). Then we decompose Q̂ (1− pn)−Q(1− pn) as

√
k
Q̂ (1− pn)−Q(1− pn)

σqξ(dn)
= C1n + C2n + C3n − C4n,

where

C1n =
√
k
Q̂ (1− pndn)−Q(1− pndn)

σ

1

qξ(dn)

C2n =
σ̂

σ

{ √
k

qξ(dn)

(
d−ξ̂n − 1

ξ̂
− d−ξn − 1

ξ

)}

C3n =
√
k

(
σ̂

σ
− 1

)
d−ξn − 1

ξqξ(dn)

C4n =

√
k

qξ(dn)

(
Q(1− pn)−Q(1− pndn)

σ
− d−ξn − 1

ξ

)
.
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We next derive the limits of Cjn for j = 1, 2, 3, 4. To this end, we define U (t) = Q(1− 1/t)

and denote U ′(t) = ∂U(t)/∂t. We introduce the second-order tail approximation that

lim
t→∞

U(ty)−U(t)
a(t)

− yξ−1
ξ

A(t)
= H(y) (26)

as in Theorem 2.3.12 in de Haan and Ferreira (2007). Condition 2 implies that a(t) =

tU ′(t) = 1/ (tf(Q(1− 1/t))), A(t) ∝ t−β/α, and H(y) = −yξ(y−β − 1)/β.

For C1n, substitute t = 1/ (pndn) and use Theorem 2.4.1 in de Haan and Ferreira (2007)

to obtain that
√
k

(
Q̂ (1− pndn)−Q(1− pndn)

)
an(1/(pndn))

d→ N (0, 1) .

Then by Theorem 1.1.6 in de Haan and Ferreira (2007), we have that σ is asymptotically

equivalent to a(1/(pndn)) as n→∞, which further implies that C1n
d→ N (0, qξ(d0)−2).

For C2n, the same argument as part II on pp.136-137 in de Haan and Ferreira (2007)

yields that C2n = k1/2
(
ξ̂ − ξ

)
+ op(1). For C3n, by Proposition 1, we have that

C3n = k1/2

(
σ̂

σ
− 1

)(
d−ξ0 − 1

ξqξ(d0)

)
+ op(1),

where recall d0 = limn→∞ dn > 0. Note that given u = Y(m+k), the excesses {Y(m+i) −
Y(m+k)}k−1

i=1 are asymptotically independent from Y(m+k) (cf. p.1185 in Drees, Ferreira, and

de Haan (2004)), and therefore C1n is asymptotically independent from C2n and C3n (see

also pp.1180-1181 in Smith (1987)).

Finally, (26) and Condition 4 yield that
√
kA(n/(k +m)) = o(1) and hence

C4n =
√
kA(n/(k +m))

d−ξn − 1

ξqξ(dn)

(
U(1/pn)−U(1/(pndn))

a(n/(m+k))
ξ

d−ξn −1
− 1
)

A(n/(k +m))

= o(1).

The proof is complete by combining Cjn for j = 1, 2, 3, 4. �
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Proof of Proposition 3 We prove this by induction. By standard EVT, for any fixed

positive integer I,

fX1,...,XI |ξ(x1, . . . , xI) = Vξ (xI)
I∏
i=1

vξ (xi) /Vξ (xi) . (27)

Consider m = 1 first. For any fixed positive integer k, (27) with I = k + 1 implies that

fXm+1,...,Xm+k|ξ(xm+1, . . . , xm+k) = fX2,...,Xk+1|ξ(x2, . . . , xk+1)

=

(∫ ∞
x2

vξ (x1)

Vξ (x1)
dx1

)
Vξ (xk+1)

k+1∏
i=2

vξ (xi) /Vξ (xi)

= − log Vξ (x2)Vξ (xk+1)
k+1∏
i=2

vξ (xi) /Vξ (xi) ,

which satisfies (9).

Now assume (9) holds for some fixed positive integer m ≥ 1. This implies that for any k,

fXm+2,...,Xm+1+k|ξ(xm+2, . . . , xm+k+1)

=

∫ ∞
xm+2

fXm+1,...,Xm+k+1(xm+1, . . . , xm+k+1)dxm+1

=

(∫ ∞
xm+2

1

m!
(− log Vξ (xm+1))m

vξ(xm+1)

Vξ(xm+1)
dxm+1

)
Vξ (xm+k+1)

m+k+1∏
i=m+2

vξ (xi) /Vξ (xi)

=

(∫ 0

logGξ(xm+2)

(−v)m dv

)
1

m!
Vξ (xm+k+1)

m+k+1∏
i=m+2

vξ (xi) /Vξ (xi)

=
1

(m+ 1)!
(− log Vξ (xm+2))m+1 Vξ (xm+k+1)

m+k+1∏
i=m+2

vξ (xi) /Vξ (xi) ,

which means that (9) holds for m+ 1. This completes the proof. �

A.3 Additional Empirical Results in CPS Data

Tables 8 and 9 depict the results based on k = [0.04n] and [0.06n], respectively.
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Table 8: Empirical Results Using 2019 March CPS Data

Panel A: 95% confidence intervals with race-based subsample

n cen# cen% tail index Q(0.99) Q(0.999)

Full Sample 115424 672 0.58 (0.37 0.49) (24.26 25.32) (59.88 73.00)

Male 55553 491 0.88 (0.39 0.62) (28.76 30.97) (71.86 106.3)

Female 59871 181 0.30 (0.30 0.44) (18.31 19.33) (42.46 52.03)

Male White 43371 419 0.97 (0.09 0.34) (29.57 31.84) (54.54 75.61)

Female White 45424 141 0.31 (0.29 0.45) (18.40 19.59) (42.36 53.68)

Male Asian 3676 50 1.36 (0.00 0.55) (30.73 37.77) (48.30 109.6)

Female Asian 4099 22 0.54 (0.13 0.76) (21.27 26.66) (42.89 104.5)

Male Hispanic 44420 445 1.00 (0.11 0.36) (29.98 32.27) (55.56 77.78)

Female Hispanic 48192 155 0.32 (0.38 0.55) (18.83 19.99) (45.77 59.36)

Male Black 6144 12 0.20 (0.16 0.53) (16.06 18.55) (29.70 47.84)

Female Black 7827 9 0.16 (0.12 0.44) (13.94 15.72) (25.08 36.81)

Panel B: 95% confidence intervals with age-based subsample

Age n cen# cen% tail index Q(0.99) Q(0.999)

18-30 27829 35 0.13 (0.34 0.53) (12.63 13.54) (28.42 37.19)

30-40 25213 158 0.63 (0.24 0.51) (24.15 26.40) (50.57 75.56)

40-50 23419 213 0.91 (0.00 0.32) (28.67 31.48) (48.07 71.41)

50-60 21767 196 0.90 (0.63 1.00) (28.30 32.89) (86.35 218.9)

60-65 17196 70 0.41 (0.43 0.76) (20.29 22.63) (49.71 88.34)

Note: Entries are the sample size (n), the number of censored observations (cen#), the

censored fraction in percentage points (cen%), 95% confidence intervals of the tail index

and those of the 99% and 99.9% quantiles measured in 104 USD. The results are based on

k = [0.04n] and the variable ERN_VAL in the CPS dataset (and equivalently the variable

inclongj from the IPUMS dataset). Data are available at https://cps.ipums.org/cps.
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Table 9: Empirical Results Using 2019 March CPS Data

Panel A: 95% confidence intervals in race-based subsamples

n cen# cen% tail index Q(0.99) Q(0.999)

Full Sample 115424 672 0.58 (0.31 0.40) (24.33 25.34) (56.01 65.09)

Male 55553 491 0.88 (0.30 0.45) (28.59 30.52) (63.88 82.90)

Female 59871 181 0.30 (0.43 0.54) (18.03 19.05) (46.57 57.68)

Male White 43371 419 0.97 (0.32 0.50) (29.55 31.96) (67.36 93.12)

Female White 45424 141 0.31 (0.43 0.57) (18.09 19.30) (47.07 60.62)

Male Asian 3676 50 1.36 (0.00 0.51) (30.59 38.09) (48.25 102.7)

Female Asian 4099 22 0.54 (0.16 0.61) (21.27 26.54) (41.85 87.70)

Male Hispanic 44420 445 1.00 (0.43 0.61) (30.25 32.94) (78.16 113.6)

Female Hispanic 48192 155 0.32 (0.38 0.51) (18.85 20.01) (45.79 57.46)

Male Black 6144 12 0.20 (0.19 0.50) (16.05 18.31) (28.61 46.11)

Female Black 7827 9 0.16 (0.20 0.47) (13.83 15.56) (25.73 38.47)

Panel B: 95% confidence intervals in age-based subsamples

Age n cen# cen% tail index Q(0.99) Q(0.999)

18-30 27829 35 0.13 (0.30 0.44) (12.78 13.68) (27.65 34.78)

30-40 25213 158 0.63 (0.57 0.79) (23.95 26.70) (71.84 118.8)

40-50 23419 213 0.91 (0.27 0.50) (28.59 31.63) (59.61 90.30)

50-60 21767 196 0.90 (0.35 0.59) (28.12 31.56) (65.11 105.7)

60-65 17196 70 0.41 (0.40 0.64) (20.54 22.99) (50.78 80.72)

Note: Entries are the sample size (n), the number of censored observations (cen#), the

censored fraction in percentage points (cen%), 95% confidence intervals of the tail index

and those of the 99% and 99.9% quantiles measured in 104 USD. The results are based on

k = [0.06n] and the variable ERN_VAL in the CPS dataset (and equivalently the variable

inclongj from the IPUMS dataset). Data are available at https://cps.ipums.org/cps.
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