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Abstract

We study the informational content of factor structures in discrete triangular systems. Factor
structures have been employed in a variety of settings in cross sectional and panel data models,
and in this paper we formally quantify their identifying power in a bivariate system often
employed in the treatment effects literature. Our main findings are that imposing a factor
structure yields point identification of parameters of interest, such as the coefficient associated
with the endogenous regressor in the outcome equation, under weaker assumptions than usually
required in these systems. In particular, we show that an exclusion restriction, requiring an
explanatory variable in the outcome equation to be excluded from the treatment equation, is no
longer necessary for identification. Under such settings, we propose a rank estimator for both
the factor loading and the causal effect parameter that are root-n consistent and asymptotically
normal. The estimator’s finite sample properties are evaluated through a simulation study.
We also establish identification results in models with more general factor structures, that are
characterized by nonparametric functional forms and multiple idiosyncratic shocks.

Keywords: Factor Structures, Discrete Choice, Causal Effects.

1 Introduction

Factor models (or structures) see widespread and increasing use in various areas of econometrics.

This type of structure has been employed in a variety of settings in cross sectional, panel and time

series models, and have proven to be a flexible way to model the behavior of and relationship between

unobserved components of econometric models. The baseline idea behind factor models is to assume

that the dependence across the unobservables is generated by a low-dimensional set of mutually

independent random variables (or factors). The applied and theoretical research in econometrics

employing factor structures is extensive. In particular, these models are often used in the treatment
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comments. Zhang acknowledges the financial support from Singapore Ministry of Education Tier 2 grant under grant
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effect literature as a way to identify the joint distribution of potential outcomes from the marginals,

and then recover the distribution of treatment effects from this joint distribution.1 Factor models

have been used in a number of different contexts in applied microeconomics. Notably, factor models

have been used in the context of earnings dynamics (Abowd and Card 1989, Bonhomme and

Robin 2010), estimation of returns to schooling and work experiences (Ashworth, Hotz, Maurel,

and Ransom 2017), as well as cognitive and non-cognitive skill production technology (Cunha,

Heckman, and Schennach 2010), among others. All of these papers, with the notable exception of

Cunha, Heckman, and Schennach (2010), rely on linear factor models where the unobservables are

assumed to be given by the sum of a linear combination of mutually independent factors and an

idiosyncratic shock.

In this paper we bring together the literature on factor models with the literature on the

identification and estimation of triangular binary choice models (Chesher 2005, Vytlacil and Yildiz

2007, Shaikh and Vytlacil 2011, Han and Vytlacil 2017) by exploring the informational content

of factor structures in this class of models. Focusing on this class can be well motivated from

both an empirical and theoretical perspective. From the former, many treatment effect models

fit into this framework as treatment is typically a binary and endogenous variable in the system,

whose effect on outcomes is often a parameter the econometrician wishes to conduct inference

on. From a theoretical perspective, inference on this type of system can be complicated, if not

impossible without strong parametric assumptions, which may not be reflected in the observed

data. A semiparametric approach to these models, while desirable from a theoretical point of view

because of its generality, often fails to achieve identification of parameter, or at best only do so in

sparse regions of the data, thus making inference impractical in practice. In this context, imposing

a factor structure may be a useful “in-between” setting, which, at the very least, can be used to

gauge the sensitivity of the parametric approach to their stringent assumptions.

We impose a particular factor structure to the two unobservables in this system and explore

the informational content of this assumption. Specifically, we assume that the unobservables from

the treatment equation (V ) and the outcome equation (U) are related through the following factor

model:

U = γ0V + Π

where Π is an unobserved random variable assumed to be distributed independently of V .2 Our

main finding in this case is that there is indeed informational content of factor structures in the

sense that, in contrast to prior literature - notably Vytlacil and Yildiz (2007) - one no longer

requires an additional exclusion restriction nor the strong support conditions that are needed for

1See Abbring and Heckman (2007) for a extensive discussion of factor structures and prior studies using these

models in the context of treatment effect estimation.
2While this is our baseline specification, we also examine the informational content of more general factor structures

involving nonparametric relationships between unobservables or multiple idiosyncratic errors.
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identification in these models without the factor structure. Importantly, our identification results

are constructive and translate directly into a rank based estimator of the coefficient associated with

the binary endogenous variable.

The rest of the paper is organized as follows. In the next section we formally describe the

triangular system with our factor structure, and discuss our main identification results for the pa-

rameters of interest in this model. Section 3 then proposes the estimation procedure and establishes

its asymptotic properties. Section 4 explores identification in more complicated factor structure

models which involve nonparametric relationships between unobservables or multiple idiosyncratic

errors. Section 5 demonstrates the finite sample properties of the estimator proposed in this paper

through Monte Carlo simulations. Section 6 concludes. The Supplementary Material collects the

proofs of our results.

2 Triangular Binary Model with Factor Structure

In this section we consider the identification of the following factor structure model:

Y1 = 1{Z ′1λ0 + Z ′3β0 + α0Y2 − U > 0}. (2.1)

Turning to the model for the endogenous regressor, the binary endogenous variable Y2 is assumed

to be determined by the following reduced-form model:

Y2 = 1{Z ′δ0 − V > 0}, (2.2)

where Z ≡ (Z1, Z2) is the vector of “instruments” and (U, V ) is a pair of random shocks. The

subcomponent Z2, Z3 provides the exclusion restrictions in the model and is required to be non-

degenerate conditional on Z ′1λ0 + Z ′3β0. We assume that the error terms U and V are jointly

independent of (Z1, Z2, Z3). The endogeneity of Y2 in (2.1) arises when U and V are not indepen-

dent.

The above model, or minor variations of it, have often been considered in the recent literature.

See for example, Vytlacil and Yildiz (2007), Abrevaya, Hausman, and Khan (2010), Klein, Shan,

and Vella (2015), Vuong and Xu (2017), Khan and Nekipelov (2018) and references therein. A

key parameter of interest in our paper and in the rest of the literature is α0. From the outset it

is important to note that we provide conditions under which the parameters of interest are point-

identified. As such, our analysis complements alternative partial-identification approaches that

have been proposed for this type of triangular binary model. See, in particular, Chiburis (2010),

Shaikh and Vytlacil (2011), and Mourifié (2015). As discussed in the aforementioned papers,

this parameter is difficult, if not impossible to identify and estimate without imposing parametric
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restrictions on the unobserved variables in the model, (U, V ). Such parametric restrictions, such as

the often assumed bivariate normality assumption, are not robust to misspecification in the sense

that any estimator of α0 based on these conditions will be inconsistent if (U, V ) have a different

bivariate distribution.

The established difficulty of identifying α0 in semi parametric, i.e., “distribution free” models,

and the sensitivity of its identification to misspecification in parametric models is what motivates

the factor structure we add to the above model in this paper. Specifically, to allow for endogeneity

in the form of possible correlation between U, V , we augment the model and add the following

equation:

U = γ0V + Π (2.3)

where Π is an unobserved random variable, assumed to be distributed independently of (V,Z1, Z2, Z3),

and γ0 is an additional unknown scalar parameter. Importantly, this type of factor structure al-

ways holds when the residuals of both equations are jointly normally distributed. Furthermore, this

specification corresponds to the type of structure used in Independent Component Analysis (ICA),

where V and Π are two mutually independent factors. This method has found many applications in

various fields, including signal processing and image extraction; applications in economics include

e.g., Hyvärinen and Oja (2000), Moneta, Hoyer, and Coad (2013) and Gourieroux, Monfort, and

Renne (2017).

Our aim will be to first explore identification for the parameters (α0, δ0, γ0, β0, λ0) under stan-

dard nonparametric regularity conditions on (V,Π). It is interesting to note that our approach,

which consists in adding more structure to the fully semiparametric triangular binary system and

quantify the identifying power of the added structure is, in one sense, the reverse approach of gen-

eralizing the fully parametric model. Such an approach has been taken recently in Han and Vytlacil

(2017), who begin with a bivariate Probit model, and generalize it with the introduction of a class

of one parameter copulas, providing conditions such that identification can still be obtained.3

Our linear factor structure and the one-parameter copula model considered in Han and Vyt-

lacil (2017) are not nested by each other. Based on the factor structure, we can recover FΠ, the

distribution of Π, as a function of (FU , FV , γ0) by deconvolution. Then we can write the copula of

(U, V ) as

FU,V (F−1
U (u), F−1

V (v)) =

∫ F−1
V (v)

−∞
FΠ(F−1

U (u)− γ0w;FU , FV , γ0)fV (w)dw = C(u, v;FU , FV , γ0).

The copula depends not only on γ0 but also on two infinite dimensional parameter (FU , FV ).

Thus, unlike Han and Vytlacil (2017), the factor structure cannot be characterized by a one-

parameter copula. In addition, in order to achieve identification, Han and Vytlacil (2017) first

3See also recent work by Han and Lee (2018) who study semiparametric estimation and inference in the framework

considered by Han and Vytlacil (2017).
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nonparametrically identify the two marginals by assuming the existence of a full support regressor

that is common to both equations. In contrast, our approach does not rely on the existence of a

full support common regressor. Under the factor structure assumed in this paper, we bypass the

nonparametric identification of the marginals as a whole and directly consider the identification of

the structural parameters. It follows that our model cannot be nested by the one-parameter copula

model considered by Han and Vytlacil (2017). On the other hand, there exists one-parameter

copula models that cannot be decomposed into linear factor structures.4 This implies that our

model does not nest Han and Vytlacil (2017) either.

To simplify the exposition of our strategy, in this and the following sections we will focus

exclusively on the parameters α0, γ0 and denote the linear indices by X1 ≡ Z ′1λ0 + Z ′3β0 and

X ≡ Z ′δ0, where Z = (Z1, Z2). In particular, we treat δ0 as known. In practice, δ0 can be

identified and consistently estimated in a first step using a semi-parametric single index estimator

such as the one proposed by Klein and Spady (1993). In addition, at the end of this section, we

note that we can identify λ0 and β0 simultaneously with α0. Then (2.1) and (2.2) are simplified to

Y1 = 1{X1 + α0Y2 − U > 0} (2.4)

and

Y2 = 1{X − V > 0}. (2.5)

Our proof will be based on the Assumptions A1-A5 we state here:

A1 The parameter θ0 ≡ (α0, γ0) is an element of a compact subset of <2.

A2 The vector of unobserved variables, (U, V,Π) is continuously distributed with support onR3 and

independently distributed of the vector (Z1, Z2, Z3). Furthermore, we assume the unobserved

random variables Π, V are distributed independently of each other.

A3 X is continuously distributed with absolute continuous density w.r.t. Lebesgue measure. The

density is bounded and bounded away from zero on any compact subset of its support.

A4 For any constant c, P (X − X̃ = c|X1 + α0 − γ0X = X̃1 − γ0X̃) < 1, where (X̃, X̃1) are an

independent copy of (X,X1).

A5 Supp(X1 + α0 − γ0X) ∩ Supp(X1 − γ0X) 6= ∅.

Before turning to our main identification result, a couple of remarks are in order.

4For instance, suppose that (U, V ) has a Gaussian copula with correlation ρ, and that the marginal distributions

of U and V are uniform [0, 1]. It then follows that, denoting by Φ(.) the standard normal cdf.,
(
Φ−1(U),Φ−1(V )

)
is bivariate normal with correlation ρ, which in turn yields the following non-linear relationship between U and V :

U = Φ
(
ρΦ−1(V ) +W

)
, where W is normally distributed and independent from V .
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Remark 2.1. Assumption A2 is standard in this literature in both the unobservables U, V as well

as the independence between Π and V . References for the former (instruments independent of

unobservables), can be found in Abrevaya, Hausman, and Khan (2010), Vytlacil and Yildiz (2007),

Klein, Shan, and Vella (2015), Khan and Nekipelov (2018). For the latter (Π independent of V ),

see, e.g. Bai and Ng (2002) and Carneiro, Hansen, and Heckman (2003).

Remark 2.2. Assumption A3 requires the instrumental variable Z2 in the selection equation to be

continuously distributed, which is often required in models with discrete outcomes.

Remark 2.3. Assumption A4 requires some variation of X1. In particular, X1 cannot be a constant

but is allowed to be discrete.

Remark 2.4. A sufficient condition for Assumption A5 is that the length of support of X1 − γ0X

is less than or equal to α0, which is a form of parameter space constraint. It is analogous to that

imposed in Vytlacil and Yildiz (2007), but distinct in important ways. Specifically, the length of the

support of the instrument Z2, and thus X, now helps in the identification of α0. This is natural, as

a purpose of the instrument Z2 should benefit in the identification of the parameters of the outcome

equation similar to standard IV approaches for the linear model. Another aspect of Assumption A5

is it imposes no constraints directly on the variables in the outcome equation. Specifically, β0 can

be zero and X can be discrete, yet we still can attain identification. Therefore, the factor structure

replaces the need for a continuous exclusion variable in the outcome equation, distinguishing our

point identification result from those in Vytlacil and Yildiz (2007) and Vuong and Xu (2017).5

We now turn to Theorem 2.1 below, which concludes that under our stated conditions and our

factor structure we can attain point identification.

Theorem 2.1. Under Assumptions A1-A5, θ0 is point identified.

Let P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x) and ∂2P
ij(x1, x) denote the choice

probability and the the derivative of the ij-choice probability with respect to the second argument,

respectively. Then, both are identified from data. The proof of Theorem 2.1, which is reported

in Section A in the Supplementary Appendix, relies on the fact that, for two pairs of observations

(X1, X) and (X̃1, X̃),

∂2P
11(X1, X)/fV (X) + ∂2P

10(X̃1, X̃)/fV (X̃) = 0 ⇐⇒ X1 + α0 − γ0X − (X̃1 − γ0X̃) = 0, (2.6)

where fV (·) is the PDF of V , which can be identified over the support of X. (2.6) shows the

variation in X can be used to identify α0, even when X1 is discrete.

In addition, recall that X1 = Z ′1λ0 +Z ′3β0. Suppose X1, and thus, all the elements of Z1 and Z3

are discrete, then it is impossible to point identify λ0 and β0 by simply using the outcome equation.

5In Section F of the Supplementary Appendix we extend these arguments to the case where we do not attain point

identification. Specifically, we show that the factor structure enables sharper bounds for α0 than bivariate models

without factor structures.
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Further assume we can identify δ0, and thus, can treat X as an observable. Then, we can identify

the choice probability

P ij(z1, z3, x) = Prob(Y1 = i, Y2 = j|Z1 = z1, Z3 = z3, X = x)

and its derivative w.r.t. x, i.e., ∂2P
ij(z1, z3, x). Then, by the same argument, we can show that

∂2P
11(Z1, Z3, X)/fV (X) + ∂2P

10 (̃̃Z1, Z̃3, X̃)/fV (X̃) = 0

⇐⇒ Z ′1λ0 + Z ′3β0 + α0 − γ0X − (Z̃ ′1λ0 + Z̃ ′3β0 − γ0X̃) = 0.

Then, given sufficient variation in X, we can identify (λ0, β0) along with (α0, γ0) even when all

elements of Z1 and Z3 are discrete.6

An important takeaway from this result is that imposing our factor structure yields point-

identification under weaker support condition when compared to the existing literature, and does

not require the second exclusion restriction either. In particular, our results yield point-identification

of the parameters of interest even in situations where all of the regressors from the outcome equa-

tion are discrete. Interestingly, this indicates that, from the selection equation combined with the

factor structure that we impose here, we can overturn the non-identification result of Bierens and

Hartog (1988) which would apply to the outcome equation alone.

3 Estimation and Asymptotic Properties

The previous section established a point identification result. The identification result is construc-

tive in the sense that it motivates an estimator for for the parameters of interest which we describe

in detail here.

As we did in Section 2, to simplify exposition, in the following we focus exclusively on the

parameters α0, γ0. Recall the choice probabilities P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x)

and its second derivative ∂2P
ij(x1, x), which can be estimated as we describe below. Another

function needed for our identification result is the density function of the unobserved term V ,

denoted by fV (·). This is also unknown, but from the structure of our model can be recovered from

the derivative with respect to the instrument Z of E[Y2|Z], and hence is estimable from the data.

Note that the proof of Theorem 2.1 shows that the sign of the index evaluated at two different

regressor values, which we denote here by X and X̃ is determined by the choice probabilities via

∂2P
11(X1, X)/fV (X) + ∂2P

10(X̃1, X̃)/fV (X̃) ≥ 0 ⇐⇒ X1 + α− γX − (X̃1 − γX̃) ≥ 0.

6An alternative approach to identifying this parameter can be found in Lewbel (2000). In his approach a second

equation to model the endogenous variable is not needed, nor is the factor structure we impose. However, he imposes

a strong support condition on a variable like Z3 requiring that it exceeds the length of the unobservable U . As

explained in Khan and Tamer (2010), such an approach precludes even bounding α0 if the support condition on Z3

is not satisfied.
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This motivates us to use maximum rank correlation estimator proposed by Han (1987).

Implementation requires further details to pay attention to. The unknown choice probabilities,

their derivatives, and the density of V will be estimated using nonparametric methods, and for this

we adopt locally linear methods as they are particularly well suited for estimating derivatives of

functions.

With functions and their derivatives estimated in the first stage of our procedure, the second

stage plugs in these estimated values into an objective function to be optimized. Specifically, letting

θ̂ denote (α̂, γ̂), our estimator is of the form:

θ̂ = arg max
θ
Qn,2(θ) ≡

∑
i 6=j

ĝi,j(θ) (3.1)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃).

We note that this estimator falls into the class of those which optimize a nonsmooth U-process

involving components estimated nonparametrically in a preliminary stage.7 Examples of other

estimators in this class can be found in Khan (2001), Abrevaya, Hausman, and Khan (2010),

Jochmans (2013), Chen, Khan, and Tang (2016), and our approach to deriving the limiting dis-

tribution theory of our estimator will follow along the steps used in those papers. Our limiting

distribution theory for this estimator is based on the following regularity conditions:

RK1 θ0 lies in the interior of Θ, a compact subset of R2.

RK2 The index X is continuously distributed with support on the real line, and has a density

function which is twice continuously differentiable.

RK3 (Order of smoothness of probability functions and regressor density functions) The functions

P k,l,r(·) and fX1,X(·.·) (the density function of the random vector (X1, X)) are continuously

differentiable of order p2, where p2 > 5.

7An alternative estimation procedure could be based on the exact relationship in (2.6). Note the equality on the

left-hand side of (2.6) is a function of the data alone and not the unknown parameters. The right-hand side equality

can then be regarded as a moment condition to estimate the unknown parameters. We describe this estimator and

derive its asymptotic properties in the Online Supplement to the paper. While the two estimation approaches will

have similar asymptotic properties (root-n consistent, asymptotically normal), we prefer the rank estimator in (3.1)

which involves fewer tuning parameters. Furthermore rank type estimators in general are more robust to certain

types of misspecification, as pointed out in Khan and Tamer (2018).
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RK4 (First stage kernel function conditions) K(·), used to estimate the choice probabilities and

their derivatives is an even function, integrating to 1 and is of order p2 satisfying p2 > 5.

RK5 (Rate condition on first stage bandwidth sequence) The first stage bandwidth sequence Hn

used in the nonparametric estimator of the choice probability functions and their derivatives

satisfies
√
nHp2−1

n → 0 and n−1/4H−1
n → 0.

Based on these conditions, we have the following theorem, whose proof is in Section B of the

Supplementary Appendix which characterizes the rate of convergence and asymptotic distribution

of the proposed estimator:

Theorem 3.1. Under Assumptions RK1-RK5,

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (3.2)

where the forms of the Hessian term V and outer score term ∆ are described in detail in Section

B of the Supplementary Appendix.

4 More General Factor Structures

Up until now we have proposed identification and estimation results for a triangular system with

a particular factor structure. A disadvantage of this structure is that it is restrictive in two ways.

One is that it is a model with only one idiosyncratic shock (Π). The other is the linear in pa-

rameter relationship between the two unobserved components, which leaves open the possibility of

misspecification.

4.1 Nonparametric Factor Model

Consider the following relationship between unobserved components:

U = g0(V ) + Π̃ (4.1)

where Π̃ is an unobserved random variable assumed to be distributed independently of V and all

instruments. g0(·) is an unknown function assumed to satisfy standard smoothness conditions.

Again, the parameter of interest is α0, but now the unknown nuisance parameter in the factor

equation is infinite dimensional. Now our approach is to replace the vector X with a series of basis

functions of X, such as, for example orthonormal polynomials, in X. Those basis functions are

meant to serve as an approximation of g0(·). With that replacement, we carry exactly as before,

except now instead of estimating a kernel weighted linear regression model it will be a kernel
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weighted semi linear regression model as in, e.g., Robinson (1988). Section C in the Supplementary

Appendix provides details of how to construct such an estimator and outlines its large sample

properties.

4.2 Model with Two Idiosyncratic Shocks and a Bounded Common Factor

We express this model as:

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0},
(4.2)

where U = γ0W + η1, V = W + η2, and (W, η1, η2) are mutually independent. First we consider

the case γ0 = 1 and X1 is binary, because even in this context, for the baseline case with one

idiosyncratic shock, we can identify α0. But identification of α0 becomes more difficult in this

model, as established in the following theorem

Theorem 4.1. Suppose (4.2) holds, γ0 is known to be one, X1 is binary, and W has a bounded

support [−b,−a] such that 0.5 > b− a and 1− (b− a) > α0 > b− a, then α0 is not point identified.

This nonidentification result motivates imposing additional structure on W , and we consider

the following model

B1 U = γ0W + η1 and V = σ0W + η2.

B2 W is standard normally distributed.

B3 W , η1 and η2 are mutually independent.

B4 X has full support.

B5 Denote the density of V as fV , then fV does not have a Gaussian component in the sense that

fV ∈ G = {g is a density on < s.t. : g = g′ ∗ φσ for some density g′ implies that σ = 0},

where φσ is the density for a normal distribution with zero mean and σ2 variance.

Assumption B5 effectively assumes that the distribution of η2 has tail properties different from

those of a normal distribution. This type of assumption is made in the deconvolution literature as

it is necessary for identification of the target density when the error distribution is not completely

known- see, e.g., Butucea and Matias (2005).8 The importance of non-normality in factor models

goes back to Geary (1942) and Reiersol (1950), who have shown that factor loadings are identified

in a linear measurement error model if the factor is not Gaussian.
8In fact, based on the results in Butucea and Matias (2005), W can belong to a more general class of known

distributions. Furthermore, we note that if σ0 is known, then Assumption B5 is not necessary.
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Theorem 4.2. If Assumptions B1–B5 hold, then σ0, γ0 and α0 are identified.

Note that this identification result does not require any variation from X1, which is in spirit

close to the one-factor model in our paper and is different from the identification result in Vytlacil

and Yildiz (2007). We also note that this result does not contradict the counterexample in the

paper. In the counterexample, we only assume that we know the support of W is bounded. Here

we assume that the full density of W , and thus, the support of W is known.

5 Finite Sample Properties

In this section we explore the finite sample properties of the proposed estimation procedure via a

simulation study. We will also see how sensitive the performance of the proposed estimator is to the

factor structure assumption. As a base comparison, we also report results for the estimator proposed

in Vytlacil and Yildiz (2007) to see how sensitive it is to their second instrument restriction.

Our data are simulated from base models of the form

Y1 = 1{X1 + α0Y2 − U ≥ 0} (5.1)

Y2 = 1{X − V > 0} (5.2)

where X1 is binary with success probability 0.6, X has marginal distribution N (0, 1), X1 and X

are mutually independent, (X1, X) ⊥ (V,Π), U = γ0V + Π. (V,Π) are distributed independently of

each other, where V is distributed following a standard normal distribution, and Π is distributed

either standard normal, Laplace, or T (3). The parameters (α0, γ0) = (−0.25, 1.2) or (0.5, 1.2).

SinceX1 is discrete, Vytlacil and Yildiz (2007)’s identification condition does not hold. However,

the identification condition in this paper becomes

|α| ≤ length of the support of X,

which holds.

For each choice of sample size n = 100, 200, 400, 800, 1, 600, we simulate 280 samples and report

the bias, standard deviation (std), root mean squared error (RMSE), and median absolute deviation

(MAD) for both Vytlacil and Yildiz (2007)’s estimator (VY) and ours (KMZ). For implementation,

we use the second order local polynomial along with Gaussian kernels to nonparametrically estimate

the ∂2P
11(x1, x) and ∂2P

10(x1, x). The bandwidth we use is h1 = σxN
−1/7 where σx is the standard

deviation of X. fV (x) is nonparametrically estimated using local linear estimator with the tuning

parameter h2 = σxN
−1/6.
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As results from the table indicate, the finite sample performance of our estimator generally

agrees with the asymptotic theory. The RMSE for the estimator proposed here is decreasing as the

sample size increases, as one could expect given the consistency property of our estimator. Besides,

the decay rate of the RMSE and MAD is about
√

2 when n ≥ 400 as sample sizes doubles, in line

with the parametric rate of convergence of our estimator.

The Vytlacil and Yildiz (2007) estimator, which does not exploit the factor structure demon-

strates inconsistency for certain parameter values, as indicated by the bias and median bias not

shrinking with the sample size. In addition, the RMSE and MAD do not appear to decline at all,

which also suggests that Vytlacil and Yildiz (2007)’s estimator is inconsistent in these designs.9

Table 1: Normal V , α = 0.5
Π Normal Laplace T(3)

kmz vy kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.026 0.665 0.660 -0.246 0.658 0.500 0.032 0.634 0.560 -0.293 0.658 0.500 0.010 0.676 0.665 -0.225 0.662 0.500

200 0.004 0.591 0.475 -0.329 0.633 0.500 -0.015 0.568 0.400 -0.336 0.612 0.500 -0.003 0.616 0.495 -0.279 0.629 0.500

400 0.005 0.483 0.365 -0.341 0.573 0.500 0.030 0.459 0.310 -0.323 0.559 0.500 0.018 0.542 0.405 -0.314 0.589 0.500

800 0.065 0.456 0.300 -0.348 0.544 0.500 0.096 0.391 0.250 -0.357 0.511 0.500 0.046 0.462 0.295 -0.346 0.552 0.500

1,600 0.040 0.321 0.195 -0.413 0.503 0.500 0.017 0.294 0.190 -0.450 0.506 0.500 0.034 0.371 0.240 -0.368 0.506 0.500

Table 2: Normal V , α = −0.25
Π Normal Laplace T(3)

kmz vy kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.088 0.650 0.555 -0.466 0.710 0.750 0.092 0.614 0.530 -0.358 0.650 0.750 0.004 0.619 0.505 -0.430 0.681 0.750

200 -0.035 0.599 0.420 -0.446 0.681 0.750 0.012 0.552 0.385 -0.485 0.689 0.750 -0.008 0.583 0.425 -0.463 0.687 0.750

400 -0.016 0.467 0.325 -0.487 0.668 0.750 -0.010 0.388 0.200 -0.552 0.686 0.750 -0.003 0.496 0.340 -0.489 0.675 0.750

800 -0.028 0.324 0.165 -0.591 0.697 0.750 0.006 0.279 0.180 -0.599 0.701 0.750 0.032 0.399 0.230 -0.533 0.682 0.750

1,600 -0.006 0.244 0.150 -0.654 0.718 0.750 -0.028 0.204 0.130 -0.714 0.738 0.750 -0.021 0.279 0.190 -0.629 0.710 0.750

In the following, we also consider DGPs such that the one-factor model does not hold but the

identification assumption in Vytlacil and Yildiz (2007) does. In this case, our simulation results

show that while, as expected, the estimator VY is still valid, our estimator still performs reasonably

well. Interestingly, this offers suggestive evidence that our estimator is robust to some degree of

misspecification. As such, these results complement previous work highlighting the robustness of

rank type estimators to misspecification (Khan and Tamer 2018).

The outcome and selection equations are the same as (2.1) and (2.2), respectively. Then,

DGP 1 : (X1, X) is jointly standard normally distributed. Let (e1, e2) jointly Laplace distributed

9Because X1 is binary, the Vytlacil and Yildiz (2007) estimator can only take 3 possible values: 0, -1 or 1. In

particular, when α = 0.5, in most of the replications, the estimator takes values 0 or 1. When α = −0.25, in most of

the replications, the estimator takes value -1. In both of these cases, the MAD remains constant over the different

sample sizes.
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with mean zero and variance-covariance matrix Σ =

(
1 −0.5

−0.5 1

)
, e3 and e4 are uniformly

distributed on (0, 1), independent of each other, and independent of (e1, e2), V = e1 +e3−0.5,

U = e2 + e4 − 0.5, and α = −0.25.

DGP 2 : (X1, X) are the same as above, V = e1 + e2 − 0.5, and V = e1 + e3 − 0.5, where e1

is standard normally distributed, (e2, e3) are uniformly distributed on (0, 1), (e1, e2, e3) are

mutually independent, and α = −0.25.

DGP 3 : (X1, X) are the same as above, V = exp(e1+e2−0.5)−1
4 , U = exp(e1+e3−0.5)−1

4 , (e1, e2, e3) are

defined as above, and α = −0.5.

DGP 4 : (X1, X) are the same as above, V is Laplace distributed with mean zero and standard

derivation 0.5, U = V +V ′−0.5, where V ′ is uniform distributed on (0, 1) and is independent

of V , and α = −0.25.

For DGPs 1, 2, and 4, when computing ∂2P
11(x1, x) and ∂2P

10(x1, x), we use bandwidths h1 =

σx1N
−1/7 and h = σxN

−1/7 for variables X1 and X, respectively, where σx1 and σx are the standard

errors of X1 and X, respectively. To estimate the density fV (x), we use bandwidth h2 = σxN
−1/6.

For DGP 3, we use h1 = h2 = h = σx1N
−1/5. In all simulations, we use 280 replications.

Table 3: Alternative DGPs
DGP 1 DGP 2

kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.065 0.678 0.600 -0.055 0.666 0.535 -0.058 0.621 0.505 -0.05 0.621 0.470

200 -0.118 0.543 0.370 -0.080 0.497 0.320 -0.122 0.523 0.350 -0.097 0.495 0.350

400 -0.117 0.413 0.280 -0.071 0.378 0.245 -0.062 0.335 0.215 -0.033 0.316 0.220

800 -0.102 0.287 0.170 -0.062 0.243 0.160 -0.031 0.242 0.150 -0.008 0.215 0.150

1,600 -0.071 0.193 0.140 -0.035 0.155 0.100 -0.038 0.167 0.100 -0.031 0.158 0.100

DGP 3 DGP 4

100 -0.012 0.583 0.480 -0.015 0.565 0.430 -0.057 0.401 0.240 -0.066 0.422 0.240

200 -0.061 0.425 0.275 -0.068 0.399 0.270 -0.041 0.282 0.180 -0.049 0.263 0.145

400 -0.041 0.259 0.170 -0.042 0.237 0.155 -0.062 0.184 0.135 -0.047 0.186 0.120

800 -0.061 0.219 0.140 -0.047 0.182 0.120 -0.029 0.119 0.080 -0.034 0.115 0.070

1,600 -0.038 0.130 0.080 -0.035 0.119 0.080 -0.024 0.090 0.060 -0.022 0.086 0.070

In the first three DGPs, we see that VY’s estimator has better performance in terms of both bias

and MSE. On the other hand, although the models do not have a factor structure, our estimator

still performs reasonably well. In the last DGP, both VY’s and our estimator are consistent and

exhibit similar finite sample performance.
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6 Conclusions

In this paper we explored the identifying power of factor structures in discrete simultaneous sys-

tems. We found that for a binary-binary system the factor structure we considered did indeed add

informational content. Specifically, it enabled the relaxation of both the exclusion and support

conditions typically employed in the identification of these models. As we then demonstrated fac-

tor structures then enabled the regular identification of parameters of interest, and we proposed

a new rank based estimation procedure that converged at a parametric rate with a limiting nor-

mal distribution. Finite sample properties of the estimator were demonstrated through simulation

studies.

The work here opens areas for future research. The factor structure we assume could be imposed

in more general models. For example, nontriangular discrete systems have shown to be an effective

way to model entry games in the empirical industrial organization literature- see, for example Tamer

(2003). However, as shown in Khan and Nekipelov (2018), identification of structural parameters

in these models can be even more challenging than for the triangular model considered in this

paper. It would be useful to determine if factor structures on the unobservables could alleviate this

problem. We leave this open question to future work.
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Supplement to “Informational Content of Factor Structures in

Simultaneous Binary Response Models”

Abstract

This paper gathers the supplementary material to the original paper. Section A proves

Theorem 2.1. Section B establishes the asymptotic distribution for the rank estimator. Section

C describes an estimator for the case where we have a nonparametric factor structure. Sections

D and E prove Theorems 4.1 and 4.2, respectively. Section F discuss the identification power of

the factor structure. Section G contains the proof of the statement in Section F.

A Proof of Theorem 2.1

Proof: Note that

P 11(x1, x) =

∫ x

−∞
FΠ(x1 + α0 − γ0v)fV (v)dv

P 10(x̃1, x̃) =

∫ +∞

x̃
FΠ(x̃1 − γ0v)fV (v)dv.

Taking derivatives w.r.t. the second argument of the LHS function, we obtain

∂2P
11(x1, x)/fV (x) = FΠ(x1 + α0 − γ0x)

−∂2P
10(x̃1, x̃)/fV (x̃) = FΠ(x̃1 − γ0x̃).

By Assumption A5, we know that there exists pairs (x
(1)
1 , x(1)) and (x̃

(1)
1 , x̃(1)) in Supp(X1, X) such

that

x
(1)
1 + α0 − γ0x

(1) = x̃
(1)
1 − γ0x̃

(1).

These pairs can be identified from data by the fact that

∂2P
11(x

(1)
1 , x(1))/fV (x(1)) + ∂2P

10(x̃
(1)
1 , x̃(1))/fV (x̃(1)) = 0.

By Assumption A4, there exists at least another pair (x
(2)
1 , x(2)) and (x̃

(2)
1 , x̃(2)) in Supp(X1, X)

such that

x
(2)
1 + α0 − γ0x

(2) = x̃
(2)
1 − γ0x̃

(2), and x(2) − x̃(2) 6= x(1) − x̃(1).

So we have a two equation system

α0 − γ0(x(1) − x̃(1)) = x̃
(1)
1 − x

(1)
1

α0 − γ0(x(2) − x̃(2)) = x̃
(2)
1 − x

(2)
1 .

Since x(2) − x̃(2) 6= x(1) − x̃(1), the system of equations has a unique solution. This concludes the

proof.
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B Distribution Theory for the Rank Estimator

Recall we defined our two step rank estimator as follows: Letting θ̂ denote (α̂, γ̂), our estimator is

of the form:

θ̂ = arg max
θ
Q̂n,2(θ) ≡

∑
i 6=j

ĝi,j(θ)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃)

We note this estimator falls into the class of those which optimize a nonsmooth U-process.involving

components estimated nonparametrically in a preliminary stage. Example of other estimators in

this class can be found in Khan (2001), Abrevaya, Hausman, and Khan (2010), Jochmans (2013),

Chen, Khan, and Tang (2016), and our approach to deriving the limiting distribution theory of

our estimator will follow along the steps used in those papers. Our proof strategy will be based on

deriving a quadratic approximation for the objective function Qn,2(θ), in a way analogous to the

method introduced in Sherman (1994b). Following Sherman (1994b), we will derive the asymptotic

properties of θ̂ in three stages. We will first establish its consistency, then derive an intermediate

rate (4th root consistency), followed by establishing root-n consistency and asymptotic normality

of the estimator. Our result are based on the following regularity conditions:

RK1 θ0 lies in the interior of Θ, a compact subset of R2.

RK2 The index X is continuously distributed with support on the real line, and has a density

function which is twice continuously differentiable.

RK3 (Order of smoothness of probability functions and regressor density functions) The functions

P k,l,r(·) and fX1,X(·.·) (the density function of the random vector (X1, X)) are continuously

differentiable of order p2, where p2 > 5.

RK4 (First stage kernel function conditions) K(·), used to estimate the choice probabilities and

their derivatives is an even function, integrating to 1 and is of order p2 satisfying p2 > 5.
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RK5 (Rate condition on first stage bandwidth sequence) The first stage bandwidth sequence Hn

used in the nonparametric estimator of the choice probability functions and their derivatives

satisfies
√
nHp2−1

n → 0 and n−1/4H−1
n → 0.

We first show consistency of the rank estimator. To do so we first define the objective function

Qifn,2(θ), defined as

Qifn,2(θ) ≡
∑
i 6=j

gi,j(θ)

where

gi,j(θ) = [1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j , Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j , Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

Since gi,j is bounded by 1 ∀i, j, and our random sampling assumption, we have for each θ,

Qifn,2(θ)
p→ E[gi,j(θ)] ≡ Γ0(θ)

Furthermore, by Assumptions RK2, RK3 we can extend this result to converging uniformly over

θ ∈ Θ (see, e.g. Sherman (1994a), Sherman (1993).) Γ0(θ) is continuous in θ by Assumptions

RK2,RK3, and uniquely maximized at θ = θ0 by our identification result in Theorem 2.1. Along

with Assumption RK1, the infeasible estimator, defined as the maximizer of Qifn,2(θ) converges in

probability to θ0 by, for example Theorem 2.1 in Newey and McFadden (1994). To show consis-

tency of the feasible estimator, where we first estimate the choice probability functions and their

derivatives nonparametrically, we only now need to show the two objective functions converged to

each other uniformly in θ ∈ Θ. Consistency of the first stage estimators follows from Assumptions

RK3-RK5, see for example Henderson, Li, Parmeter, and Yao (2015). However, this does not

immediately imply convergence of the difference in feasible and infeasible objective functions since

the nonparametric estimators are inside indicator functions so the continuous mapping theorem

does immediately not apply. Nonetheless the desired result can still be attained in one of two ways.

One would be to replace indicator functions with smooth distribution functions in a fashion analo-

gous to Horowitz (1992). This would have the disadvantage of introducing tuning parameters, but

another approach would be to replace the indicator functions with their conditional expectations,

and note that the conditional expectations are smooth functions using Assumption RK2, RK3..

To see why, let m̂(xi) be a nonparametric estimator of a function m(xi), which is assumed to be

smooth. We evaluate the plim of

I[m̂(xi) > 0]− I[m(xi) > 0] = I[m̂(xi) > 0,m(xi) < 0]− I[m̂(xi) < 0,m(xi) > 0]

we show that the first term converges in probability to 0 as identical arguments can be used for the

second term. Let ε > 0 be given; P (I[m̂(xi) > 0,m(xi) < 0] > ε) ≤ E[I[m̂(xi) > 0,m(xi) < 0]/ε
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by Markov’s inequality. But the expectation in the numerator on the right hand side is

P (m̂(xi) > 0,m(xi) < 0) = P (m̂(xi) > 0,m(xi) ≤ −δn) + P (m̂(xi) > 0,m(xi) ∈ (−δn, 0))

where δn is a sequence of positive numbers converging to 0, at a slow rate, e.g.(log n−1). The first

term on the right hand side is bounded above by

P (|m̂(xi)−m(xi)| > δn) ≤ P (‖m̂(·)−m(·)‖ > δn)

where the notation ‖m̂(·) − m(·)‖ above denotes the sup norm over xi. The right hand side

probability above will be sufficiently small for n large enough by the rate of convergence of the

nonparametric estimator. The second term, P (m̂(xi) > 0,m(xi) ∈ (−δn, 0)), is bounded above by

P (m(xi) ∈ (−δn, 0)) which by the smoothness of m(xi) converges to 0, and hence can be made

arbitrarily small. �

To derive the rate of convergence and limiting distribution theory for the feasible estimator

where we first estimate choice probability functions and their derivatives nonparametrically, we

expand the nonparametric estimators around true functions that are inside the indicator function in

Qn2. Then we can follow the approach in Sherman (1994b). Having already established consistency

of the estimator, we will first establish root-n consistency and then asymptotic normality. For

root-n consistency we will apply Theorem 1 of Sherman (1994b) and so here we change notation

to deliberately stay as close as possible to his. We will actually apply this theorem twice, first

establishing a slower than root-n consistency result and then root-n consistency. Keeping our

notation deliberately as close as possible to Sherman(1994b), here replacing our second stage rank

objective function Q̂2,n(θ) with Ĝn(θ), our infeasible objective function Qifn,2(θ) with Gn(θ), and

denoting our limiting objective function, previously denoted by Γ0(θ), by G(θ). We have the

following theorem:

Theorem B.1. (From Theorem 1 in Sherman (1994b)).

If δn and εn are sequences of positive numbers converging to 0, and

1. θ̂ − θ0 = op(δn)

2. There exists a neighborhood of θ0 and a constant κ > 0 such that G(θ)− G(θ0) ≥ κ‖θ − θ0‖2

for all θ in this neighborhood.

3. Uniformly over Op(δn) neighborhoods of θ0

Ĝn(θ) = G(θ) +Op(‖θ − θ0‖/
√
n) + op(‖θ − θ0‖2) +Op(εn)

then θ̂ − θ0 = Op(max(ε1/2, n−1/2)).

Once we use this theorem to establish the rate of convergence of our rank estimator, we can

attain limiting distribution theory, which will follow from the following theorem:
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Theorem B.2. (From Theorem 2 in Sherman (1994b)). Suppose θ̂ is
√
n-consistent for θ0, an

interior point of Θ. Suppose also that uniformly over Op(n
−1/2) neighborhoods of θ0,

Ĝn(θ) =
1

2
(θ − θ0)′V (θ − θ0) +

1√
n

(θ − θ0)′Wn + op(1/n) (B.1)

where V is a negative definite matrix, and Wn converges in distribution to a N(0,∆) random vector.

Then

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (B.2)

We first turn attention to applying Theorem B.1 to derive the rate of convergence of our

estimator. Having already established consistency of our rank estimator, we turn attention to the

second condition in Theorem B.1. To show the second condition, we will first derive an expansion for

G(θ) around G(θ0). We denote that even though Gn(θ) is not differentiable in θ, G(θ) is sufficiently

smooth for Taylor expansions to apply as the expectation operator is a smoothing operator and

the smoothness conditions in Assumptions RK2, RK3. Taking a second order expansion of G(θ)

around G(θ0), we obtain

G(θ) = G(θ0) +∇βG(θ0)′(θ − θ0) +
1

2
(θ − θ0)′∇θθG(θ∗)(θ − θ0) (B.3)

where ∇θ and ∇θθ denote first and second derivative operators and θ∗ denotes an intermediate

value. We note that the first two terms of the right hand side of the above equation are 0, the first

by how we defined the objective function, and the second by our identification result in Theorem

2.1. Define

V ≡ ∇θθG(θ0) (B.4)

and V is positive definite by Assumption A3, so we have

(θ − θ0)′∇θθG(θ0)(θ − θ0) > 0 (B.5)

∇θθG(θ) is also continuous at θ = θ0 by Assumptions RK2 and RK3, so there exists a neighborhood

of θ0 such that for all θ in this neighborhood, we have

(θ − θ0)′∇θθG(θ)(θ − θ0) > 0 (B.6)

which suffices for the second condition to hold.

To show the third condition in Theorem B.1, we next establish the form of the remainder term
when we replace nonparametric estimators with the true functions they are estimating. Specifically
we wish to evaluate the difference between

[1{∂2P̂ 11(X1,i, Xi)/f̂V (Xi) + ∂2P̂
10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0} (B.7)

+ 1{∂2P̂ 11(X1,i, Xi)/f̂V (Xi) + ∂2P̂
10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0} (B.8)
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and

[1{∂2P 11(X1,i, Xi)/fV (Xi) + ∂2P
10(X1,j , Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0} (B.9)

+ 1{∂2P 11(X1,i, Xi)/fV (Xi) + ∂2P
10(X1,j , Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0} (B.10)

To establish a representation for this difference, we first simplify notation we write the expressions

as:

I[m̂1(xi) + m̂2(xj) ≥ 0]I[∆x′ijθ ≥ 0] (B.11)

+ I[m̂1(xi) + m̂2(xj) < 0]I[∆x′ijθ < 0] (B.12)

and

I[m1(xi) +m2(xj) ≥ 0]I[∆x′ijθ ≥ 0] (B.13)

+ I[m1(xi) +m2(xj) < 0]I[∆x′ijθ < 0] (B.14)

respectively, where here xi denotes the separate components of x1i, xi, and analogous for xj . We

first explore

(I[m̂1(xi) + m̂2(xj) ≥ 0]− I[m1(xi) +m2(xj) ≥ 0])I[∆x′ijθ ≥ 0]

for each i, j inside the double summation:

1

n(n− 1)

∑
i 6=j

(I[m̂1(xi) + m̂2(xj) ≥ 0]− I[m1(xi) +m2(xj) ≥ 0])I[∆x′ijθ ≥ 0] (B.15)

An immediate technical difficulty that arises with the above term is the presence of a nonpara-

metric estimator inside the indicator function above. A simple approach to deal with this would

be to replace the indicator function with a smoothed indicator function in a fashion analogous to

Horowitz (1992), under appropriate conditions on the kernel function and smoothing parameter.

Such an approach is not necessary as long as the nonparametric estimator m̂1(xi) is asymptotically

normal, and asymptotically centered at m1(xi), which will be the case with our proposed kernel

estimator of the probability function and its derivative. In either approach (smoothed indicator or

not) we can show that (B.15) can be represented as:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0) ((m̂1(xi)−m1(xi)) + (m̂2(xj)−m2(xj))) I[∆x′ijθ ≥ 0]+op(n
−1) (B.16)

where φ(0) denotes the standard normal pdf evaluated at 0, fmij (0) denotes the density function of

m1(xi) +m2(xj) evaluated at 0, and the op(n
−1) term is uniform in θ lying in op(1) neighborhoods

of θ0. Therefore, uniformly for θ in an op(1) neighborhood of θ0, this remainder term converges to

0 at the rate of convergence of the first stage nonparametric estimator, which under Assumptions
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RK3, RK4, RK5, is op(n
−1/4). Thus by repeated application of Theorem B.1, we can conclude that

the estimator is root-n consistent. To show that the estimator is also asymptotically normal, we

will first derive a linear representation for the term:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)(m̂1(xi)−m1(xi))I[∆x′ijθ ≥ 0] (B.17)

As this term is linear in the nonparametric estimator m̂1(xi), the desired linear representation

follows from arguments used in Khan (2001). One slight difference here compared to Khan (2001)

is that here our nonparametric estimators and estimands are each ratios of derivatives. Nonetheless,

after linearizing these ratios as done in, e.g. Newey and McFadden (1994). Specifically, we have

that B.17 can be expressed as:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)
1

m1den(xi)
(m̂1num(xi)−m1num(xi))I[∆x′ijθ ≥ 0] (B.18)

− 1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)
m1num(xi)

m1den(xi)2
(m̂1den(xi)−m1den(xi))I[∆x′ijθ ≥ 0] (B.19)

where m̂1num(xi) denotes the numerator {∂2P̂
11(X1,i, Xi)}, the estimator of m1num(xi) which de-

notes {∂2P
11(X1,i, Xi)}, and m̂1den(xi) denotes the denominator f̂V (Xi), the estimator of m1den(xi)

which denotes fV (Xi).

Plugging in the definitions of the kernel estimators of m̂1num(xi), and m̂1den(xi), results in a

third order process. Using arguments in Khan (2001) and Powell, Stock, and Stoker (1989) we can

express the third order U process as a second order U process plus an asymptotically negligible

remainder term. This is of the form:

1

n

n∑
i=1

φ(0)
`(xi)

m1den(xi)
(y1i −m1num(xi))E

[
I[fmij (0)∆x′ijθ ≥ 0]|xi

]
(B.20)

where `(xi) ≡
−f ′X(xi)

fX(xi)
. We note that the function E

[
fmij (0)I[∆x′ijθ ≥ 0]|xi

]
, which we denote

here by H(xi, θ) is a smooth function in θ. We will use this feature to expand H(xi, θ) around

H(xi, θ0). Analogous arguments can be used to attain a linear representation of (B.19), which is of

the form:

1

n

n∑
i=1

φ(0)
`2(x1i)m1num(xi)

m1den(xi)2
(y2i −m1den(xi))E

[
I[fmij (0)∆x′ijθ ≥ 0]|xi

]
(B.21)

where `2(x1i) ≡
−f ′X1

(x1i)

fX(x1i)
. Grouping (B.20) and (B.21) we have

1

n

n∑
i=1

φ(0)
1

m1den(xi)

{
`(xi)(y1i −m1num(xi))−

m1num(xi)

m1den(xi)
`2(x1i)(y2i −m1den(xi))

}
H(xi, θ)
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(B.22)

Note that by Assumptions RK2, RK3, H(xi, θ) is smooth in θ implying the expansion

H(xi, θ) = H(xi, θ0) +∇θH(xi, θ0)′(θ − θ0)

Thus we can express (B.22) as the which we note is a mean 0 sum

1

n

n∑
i=1

ψ1rnki(θ − θ0) (B.23)

where

ψ1rnki = φ(0)
1

m1den(xi)

{
`(xi)(y1i −m1num(xi))−

m1num(xi)

m1den(xi)
`2(x1i)(y2i −m1den(xi))

}
∇θH(xi, θ0)

(B.24)

We can use identical arguments to attain a linear representation for the U− process:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0) (m̂2(xj)−m2(xj)) I[∆x′ijθ ≥ 0] (B.25)

where m̂2(xj) is also a ratio of nonparametric estimators where here the numerator is m̂2n(xj) de-

noting {∂2P̂
10(X1,j , Xj)}, the estimator of m2n(x2) which denotes {∂2P

10(X1,j , Xj)}, and m̂2d(xj)

denotes the denominator f̂V (Xj), the estimator of m1den(xj) which denotes fV (Xj).

and by using identical arguments it too can be represented as a mean 0 sum denoted here by

1

n

n∑
i=1

ψ2rnki (B.26)

where ψ2rnki is defined as:

Finally after grouping the two terms and expandingH(xi, θ) aroundH(xi, θ0) we get that (B.16)

can be represented as:

1

n

n∑
i=1

(ψ1rnki + ψ2rnki)
′(θ − θ0) + op(n

−1) (B.27)

Combining our results, from Theorem B.2, we have that

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (B.28)

where

V = ∇θθG(θ0) (B.29)

and

∆ = E
[
(ψ1rnki + ψ2rnki)(ψ1rnki + ψ2rnki)

′] (B.30)
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C Nonparametric Factor Structure

Here we describe an estimator for the case where we have a nonparametric factor structure. Recall

for this model we had the following relationship between unobservable variables:

U = g0(V ) + Π̄ (C.31)

where we assumed that Π̄ ⊥ V .

Our goal in this more general setup is to identify and estimate both α0 and g0. Our identification

is based on the condition that

x1 + α0 − g0(x) = x̃1 − g0(x̃).

if and only if

∂2P
11(x

(1)
1 , x(1))/fV (x(1)) + ∂2P

10(x̃
(1)
1 , x̃(1))/fV (x̃(1)) = 0.

Using the same i, j pair notation as before, this gives gives us, in the nonparametric case,

X1i −X1j = α0 + (g0(Xi)− g0(Xj)) (C.32)

Note the above equation has a “semi parametric form”, loosely related to the model considered

in, for example, Robinson (1988). However, we point out crucial differences between what we

have above and the standard semi linear model. Here we are trying to identify the intercept α0

which is usually not identified in the semi linear model as it cannot be separately identified from

the nonparametric function. However, note above on the right hand side, we do not just have

a nonparametric function of Xi, Xj , but the difference of two identical and additively separable

functions g0(·). In fact it is this differencing of these functions which enables us to separately

identify α0. Furthermore, as will now see when turning to our estimator of α0, the structure of

the nonparametric component, specifically additive separability of two identical functions of Xi, Xj

respectively, can easily be incorporated into our approximation of each of them. From a theoretical

perspective separable functions have the advantage of effectively being a one dimensional problem,

as there are no interaction terms to have to deal with. It is well known that nonparametric

estimation of separable functions do not suffer from the “curse of dimensionality”. See, for example

Newey (1994).

To motivate our estimator of α0 in this nonparametric factor structure model, we consider

modifying methods used to estimate the semi linear model, which is usually expressed as

yi = x′iβ0 + g(zi) + εi
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where yi denotes the observed dependent variable, xi, zi are observed regressors, g(·) is an unknown

nuisance function, εi is an unobserved disturbance term, and β0 is the unknown regression coefficient

vector which is the parameter of interest. There is a very extensive literature in both econometrics

and statistics on estimation and inference methods for this model- see for example Powell (1994)

for some references.

One popular way to estimate this model is to use an expansion of basis functions, for example

polynomials or splines to approximate g(·), and from a random sample of n observations of (yi, xi, zi)

regress yi on xi, b(zi) where b(zi) denotes the set of basis functions used to approximate g(·). As

an illustrative example, assuming zi were scalar, if one were to use polynomials as basis functions,

one would estimate the approximate model,

yi = x′iβ0 + γ1zi + +γ2z
2
i + γ3z

3
i + ....γknz

kn
i + uin

where kn is a positive integer smaller than the sample size n, and γ1, γ2, ...γkn are additional

unknown parameters. This has been done by regressing yi on xi, zi, z
2
i , ...z

kn
i , and our estimated

coefficient of xi would be the estimator of β0. The validity of this approach has been shown in, for

example, Donald and Newey (1994). Now for our problem at hand, incorporating a nonparametric

factor structure, we propose a kernel weighted least squares estimator. The weights are as they

were before, assigning great weights to pairs of observations where the sum of derivatives of ratios

of choice probabilities are closer to 0.

The dependent variable is identical to as before, the set of n choose 2 pairs X1i−X1j . The regressors

now reflect the series approximation of g0(Xi)− g0(Xj):

g0(Xi)− g0(Xj) ≈ γ1(Xi −Xj) + γ2(X2
i −X2

j ) + γ3(X3
i −X3

j ) + ...γkn(Xkn
i −X

kn
j )

So now our estimator would be to regress X1i − X1j on 1, (Xi − Xj), (X
2
i − X2

j ), ...(Xkn
i − X

kn
j ),

using the same weights ω̂ij so the estimator of α0, denoted by α̂NP , would be the coefficient on 1.

Specifying the asymptotic properties of tis estimator would require additional regularity conditions,

notably the rate at which the sequence of integers kn increases with the sample size n.

We again only outline these regularity conditions here, and only to establish consistency. Since

the estimator and proof strategy is very similar to that for the closed form estimator in the online

supplement to this paper, here we only state the additional one needed for the nonparametric model

in this section.

Assumption BFC (Basis function conditions) The basis function approximation of the unknown

factor structure function satisfies the following conditions:

BFC.1 The number of basis functions, kn, satisfies kn →∞ and kn/n→ 0.

BFC.2 For every kn, the smallest eigenvalue of the matrix

E[PknP
′
kn ]
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is bounded away from 0 uniformly in kn, where

Pkn ≡ (1, (Xi −Xj), (Xi −Xj)
2, ...(Xi −Xj)

kn)′

Theorem C.1. Under Assumptions I,K, H, S, PS, FK, FH, BFC,

α̂NP
p→ α0 (C.33)

D Proof of Theorem 4.1

Our first result for this model illustrates how identification can become more difficult. In our first

result for this model, we show when −W has a bounded support, say [a, b], then α0 is not identified

if α0 > b− a. To establish this, consider an impostor α such that α < α0. In addition, we consider

the case where α0 − α + b < α0 + a and α + b < a + 1. Such α exists because of the fact that

1− (b− a) > α0 > b− a. Let ∆ = α0 − α and (W̃ , η̃1, η̃2) be mutually independent such that W̃ is

distributed as W −∆, η̃2 is distributed as η2 −∆, and

Fη̃1(e) =



Fη1(e) on e ≤ a,

Fη1(a) on η1 ∈ (a, a+ ∆],

Fη1(e−∆) on e ∈ (a+ ∆, b+ ∆],

α0+a−e
α0+a−b−∆Fη1(b) + e−b−∆

α0+a−b−∆Fη1(α0 + a) on e ∈ (b+ ∆, α0 + a],

Fη1(e) on e ∈ (α0 + a, α0 + b),

Fη1(α0 + b) + e−α0−b
a+1+∆−α0−b(Fη1(a+ 1)− Fη1(α0 + b)) on e ∈ (α0 + b, a+ 1 + ∆],

Fη1(e−∆) on e ∈ (a+ ∆ + 1, b+ ∆ + 1],

Fη1(b+ 1) + e−(b+∆+1)
a+α0−b−∆ (Fη1(a+ α0 + 1)− Fη1(b+ 1)) on e ∈ (b+ ∆ + 1, a+ α0 + 1],

Fη1(e) on e > a+ α0 + 1.

Then, because −w̃ = ∆− w ∈ [a+ ∆, b+ ∆] and x1 = 0, 1,

P (Y1 = 1, Y2 = 0|X = x,X1 = x1) =

∫
Fη1(x1 − w)(1− Fη2(x− w))fW (w)dw

=

∫
Fη̃1(x1 − w̃)(1− Fη̃2(x− w̃))fw̃(w̃)dw̃.

Similarly, because α−w̃ = α0−w ∈ [α0+a, α0+b] and for e ∈ (α0+a, α0+b]∪(1+α0+a, 1+α0+b],

Fη̃1(e) = Fη1(e), we have

P (Y1 = 1, Y2 = 1|X = x,X1 = x1) =

∫
Fη1(x1 + α0 − w)Fη2(x− w)fW (w)dw

=

∫
Fη1(x1 + α− (w + α− α0))Fη2(x− w)fW (w)dw

=

∫
Fη̃1(x1 + α− w̃)Fη̃2(x− w̃)fw̃(w̃)dw̃.

This implies α0 is not identified from the impostor α.
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E Proof of Theorem 4.2

We first show that both σ0 and the density of η2 are identified. Note X has full support. This

implies the density of V denoted as fV (·) is identified via

fV (v) = ∂vE(Y2|X = v).

In addition, we have

fV (·) = fW ∗ φσ0(·),

where ∗ denotes the convolution operator. Suppose fW (·) and σ0 are not identified so that there

exist f ′W (·) and σ′ such that

fV (·) = f ′W ∗ φσ′(·).

Without loss of generality, we assume σ′ ≥ σ0, otherwise, we can just relabel fW (·) and f ′W (·).
Then we have

fW (·) = f ′W ∗ φ(σ′2−σ2
0).

By Assumption B5, we have σ
′

= σ0, which implies fW (·) = f ′W (·).

In the following, we proceed given that fW (·) and σ0 are known. Recall Fη1(·) and fη2(·) as the

CDF and PDF of η1 and η2, respectively. Then,

P 11(x1, x) =P (Y1 = 1, Y2 = 1|X1 = x1, X = x) =

∫
Fη1(x1 + α0 − γ0w)Fη2(x− σ0w)fW (w)dw

and

P 10(x1, x) =P (Y1 = 1, Y2 = 0|X1 = x1, X = x) =

∫
Fη1(x1 − γ0w)(1− Fη2(x− σ0w))fW (w)dw.

Taking derivatives of P 11(x1, x) and P 10(x1, x) w.r.t. x, we have

∂xP
11(x1, x) =

∫
Fη1(x1 + α0 − γ0w)fη2(x− σ0w)fW (w)dw (E.34)

and

−∂xP 10(x1, x) =

∫
Fη1(x1 − γ0w)fη2(x− σ0w)fW (w)dw. (E.35)

Applying Fourier transform on both sides of (E.34) and (E.35), we have

F(∂xP
11(x1, ·)) = Fσ0(Fη1(x1 + α0 − γ0·)fW (·))F(fη2(·)) (E.36)
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and

F(−∂xP 10(x1, ·)) = Fσ0(Fη1(x1 − γ0·)fW (·))F(fη2(·)), (E.37)

where for a generic function g(w),

Fσ0(g(·))(t) =
1√
2π

∫
exp(−2πitσ0w)g(w)dw.

Then, by (E.36), we can identify Fη1(x1 + α0 − ·) by

Fη1(x1 + α0 − γ0·) = F−1
σ0

(
F(∂xP

11(x1, ·))
F(fη2(·))

)
(·)/fW (·).

Similarly, we can identify

Fη1(x1 − γ0·) = F−1
σ0

(
F(−∂xP 10(x1, ·))
F(fη2(·))

)
(·)/fW (·),

where for a generic function g(w),

F−1
σ0 (g(·))(t) =

σ0√
2π

∫
exp(2πitσ0w)g(w)dw.

By finding the two pairs ((x1, w), (x′1, w
′)) and ((x̃1, w̃), (x̃′1, w̃

′)) such that w − w′ 6= w̃ − w̃′,

Fη1(x1 + α0 − γ0w) = Fη1(x′1 − γ0w
′), and Fη1(x̃1 + α0 − γ0w̃) = Fη1(x̃′1 − γ0w̃

′)

we can identify both α0 and γ0 as the solution of the following linear system:

α0 + γ0(w′ − w) = x′1 − x1 α0 + γ0(w̃′ − w̃) = x̃′1 − x̃1.

F Partial Identification

In this section, we discuss the information content of factor structure. For illustration purpose, we

focus on the “condensed” model:

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0}.

Assumption 1.

1. (X1, X) ⊥ (U, V ).

2. (X1, X) are continuously distributed with absolute continuous joint density w.r.t. Lebesgue

measure. The support of (X1, X) is [a, b] × Supp(X), in which Supp(X), the support of X, is

compact.

3. V is continuously distributed over < and its density w.r.t. Lebesgue measure exist.
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Theorem F.1. Assumption 1 holds. (1) Then |α0| ≤ b− a is necessary and sufficient for α0 to be

identified. (2) When |α0| > b− a, the sharp identified set for α0 is

A∗ = {α : α > b− a if α0 > 0 and α < a− b if α0 < 0}.

Next, we assume, in addition to Assumption 1, the factor structure, i.e., (2.3) in Section 2. Recall

in Section 3, under the factor structure, our rank estimator can be written as an M-estimator

θ̂ = arg max
θ
Qn,2(θ) ≡

∑
i 6=j

ĝi,j(θ)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃).

The information content explored by the M-estimator can be summarized as follows:

A2(θ) = {(X1, X̃1, X, X̃),Φ(X1, X, X̃1, X̃; θ0) ≥ 0 > Φ(X1, X, X̃1, X̃; θ)

or Φ(X1, X, X̃1, X̃; θ0) < 0 ≤ Φ(X1, X, X̃1, X̃; θ)}.

Then we cannot distinguish, from the true parameter θ0, all impostors in

A2 = {θ : P (A2(θ)) = 0}.

In a simple example, if Supp(X1, X) = [a, b]× [c, d], then θ0 is identified if |α0| < b−a+ |γ0|(d− c).
Recall Theorem F.1, without imposing factor structure, the necessary and sufficient condition for

achieving identification is |α0| ≤ b−a. Therefore, the blue area in the Figure below is the additional

parts of parameter space that is identified with factor structure but not otherwise.
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α0

γ0

|α0| = b− a+ |γ0|(d− c)

|α0| = b− a

Figure 1: Identifying Power of Factor Structure

When we assume the factor structure, the parameter is still not identified if |α0| > b−a+|γ0|(d−
c). In this case, if we do not impose factor structure, by Theorem F.1(2), the sharp identified set

is {α : α > b − a} while with the factor structure, the identified set (not necessarily sharp) is

|α| > b − a + |γ|(d − c). This implies, when identification fails in both cases, the blue area is also

the extra identifying power on the identified set given by the factor structure.

G Proof of Theorem F.1

For the first result in the theorem, denote P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x).

Then

P 11(x1, x) =

∫ x

−∞
FU (x1 + α0|V = v)f(v)dv

P 10(x̃1, x) =

∫ +∞

x
FU (x̃1|V = v)f(v)dv.

(G.38)

Taking derivatives w.r.t. the second argument of the the LHS function, we have

∂2P
11(x1, x) = FU (x1 + α0|V = x)f(x)

∂2P
10(x̃1, x) = −FU (x̃1|V = x)f(x).

If |α0| ≤ b − a, then there exists pair (x1, x̃1) such that x1 + α0 = x̃1. This pair can be identified

by checking the equation below:

∂2P
11(x1, x)/f(x) + ∂2P

10(x̃1, x)/f(x) = 0.

This concludes the sufficient part.
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When α0 < a− b, for any α < α0, we can define

Ũ = U + α− α0 if U ≤ b+ α0

Ũ = U if U > b+ α0

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ b+ α0) + P (Ũ ≤ x1 + α,U > b+ α0|V = v)

= P (U ≤ x1 + α0|V = v)

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ b+ α0|V = v) + P (Ũ ≤ x1, U > b+ α0|V = v)

= P (U ≤ b+ α0, U ≤ x1 + α0 − α|V = v) + P (b+ α0 < U ≤ x1, |V = v)

= P (U ≤ b+ α0|V = v) + P (b+ α0 < U ≤ x1, |V = v)

= P (U ≤ x1|V = v).

Let GU,V and GŨ ,V be the joint distribution of (U, V ) and (Ũ , V ) respectively. Then the above

calculation with (G.38) imply that (α0, GU,V ) and (α,GŨ ,V ) are observationally equivalent.

When α0 > b− a, for any α > α0, we can define

Ũ = U + α− α0 if U > a+ α0

Ũ = U if U ≤ a+ α0

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ a+ α0) + P (Ũ ≤ x1 + α,U > a+ α0|V = v)

= P (U ≤ a+ α0|V = v) + P (a+ α0 < U ≤ x1 + α0|V = v)

= P (U ≤ x1 + α0|V = v).

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ a+ α0|V = v) + P (Ũ ≤ x1, U > a+ α0|V = v)

= P (U ≤ x1|V = v).

So again, (α0, GU,V ) and (α,GŨ ,V ) are observationally equivalent.

For the second result in the theorem, first note that, when |α0| > b− a, the sign of α0 is

identified by the data. We take α0 > b− a as an example. By the proof of Theorem F.1, we have

already shown that all α > α0 is in the identified set. Now we consider b−a+α0
2 ≤ α < α0.

Ũ = U + α− α0 if U > a+ α

Ũ = U if U ≤ a+ α
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Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ a+ α) + P (Ũ ≤ x1 + α,U > a+ α|V = v)

= P (U ≤ a+ α|V = v) + P (a+ α < U ≤ x1 + α0|V = v)

= P (U ≤ x1 + α0|V = v).

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ a+ α|V = v) + P (Ũ ≤ x1, U > a+ α|V = v)

= P (U ≤ x1|V = v) + P (U ≤ x1 + α0 − α,U > a+ α|V = v).

= P (U ≤ x1|V = v).

Here note that the last equality is because x1 +α0−α ≤ b+α0−α ≤ a+α if α ≥ b−a+α0
2 . Denote

α(1) = b−a+α0
2 . Then we have shown that there exists U (1)(α) which only depends on α such that

for any x1 ∈ [a, b], any v and any α0 > α ≥ α(1)

P (U (1)(α) ≤ x1 + α|V = v) = P (U ≤ x1 + α0|V = v)

P (U (1)(α) ≤ x1|V = v) = P (U ≤ x1|V = v).

In particular, there exists U (1)(α(1)) such that

P (U (1)(α(1)) ≤ x1 + α(1)|V = v) = P (U ≤ x1 + α0|V = v)

P (U (1)(α(1)) ≤ x1|V = v) = P (U ≤ x1|V = v).

Now repeating the above construction but replacing U with U (1) and α0 with α(1), we have for

any α(1) > α ≥ α(2) ≡ b−a+α(1)

2 , there exists U (2)(α) such that for any x1 ∈ [a, b], any v and any

α(1) > α ≥ α(2),

P (U (2)(α) ≤ x1 + α(2)|V = v) = P (U (1)(α(1)) ≤ x1 + α(1)|V = v) = P (U ≤ x1 + α0|V = v)

P (U (2)(α) ≤ x1|V = v) = P (U (1)(α(1)) ≤ x1|V = v) = P (U ≤ x1|V = v).

This concludes that any α such that α0 > α ≥ α(2) is in the identified set. In general, by repeating

the procedure k times, we have that any α such that

α0 > α ≥ α(k) = (1− 1

2k
)(b− a) +

α0

2k

is in the identified set. For any α > b−a, there exists some finite k such that α > (1− 1
2k

)(b−a)+ α0

2k
.

This concludes the result that α > b− a is in the identified set.

Finally, since if α > b−a, ∂2P
11(x1, x)+∂2P

10(x̃1, x) > 0 for all pairs of (x1, x) and (x̃1, x) while,

if α ≤ b−a, at least there exists one pair (x1, x) and (x̃1, x) such that ∂2P
11(x1, x)+∂2P

10(x̃1, x) ≤ 0.

This implies α ≤ b−a is not in the identified set. Therefore, the sharp identified set when α0 > b−a
is α > b− a.

When α0 < a− b, a symmetric argument implies that the identified set is α < a− b.
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Online Supplement to “Informational Content of Factor Structures in

Simultaneous Binary Response Models”: Distribution Theory for Closed

Form Estimator

H Distribution Theory for Closed Form Estimator

Many of the basic arguments follow those used in Chen and Khan (2008) and Chen, Khan, and

Tang (2016). Recall what the key identification condition that motivated the weighted least squares

estimator: For pairs of observations (x1, x) and (x̃1, x̃) in Supp(X1, X),

x1 + α0 − γ0x = x̃1 − γ0x̃.

if and only if

∂2P
11(x1, x)/fV (x) + ∂2P

10(x̃1, x̃)/fV (x̃) = 0.

where recall ∂2 denotes the partial derivative with respect to the second argument. Note that even

though the random variable V is unobserved, the density function fV (·) above can be recovered

from the data from the partial derivative of the choice probability in the treatment equation with

respect to the regressor in the treatment equation. Thus the above equation involves the sum of

two ratios of derivatives of choice probabilities.

Recall θ0 ≡ (α0, γ0). Our estimator of θ0 is based on pair of observations from the data set. We will

denote the random variables of interest with capital letters, for example Xi, X1i, and realizations

of them with lower letters, for example xi, x1i. To denote distinct random variables in the sample

when they form pairs, we will use the subscripts i, j.

Note from above, we can express the equation where the pairs receive positive weights (those whose

derivatives of choice probabilities summed up to 0) as

x1i − x1j = α0 + θ0(xi − xj) (H.1)

So this motivates regressing the scalar random variable x1i− x1j on the two by one random vector

xij ≡ (1, xi−xj). We can now see that if sufficient such pairs of observations, where the sum of the

ratio of derivative of probabilities could be found to equal 0, κ0 could be recovered as the unique

solution to the system of equations corresponding to the pairs, as long as the matrix involving

the terms xij satisfied a full rank condition. Such an approach is infeasible for two reasons. The

first reason is that the probability functions, their derivatives, and hence the ratio of derivatives

are unknown. The second reason is that even if these functions were known, if the probability

functions are not discrete valued, such “matches” will occur with probability zero.

The first problem can be remedied by replacing the true probability function values with their

nonparametric estimates. In the theory here we used a kernel estimator with kernel function
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K(·) and bandwidth Hn, whose properties are discussed below. The second problem can be dealt

with through the use of “kernel weights” as has been frequently employed in the semiparametric

literature.

Specifically, assuming that the ratio of derivatives of conditional probability functions were known,

we use the following weighting function for pairs of observations; to illustrate let P k,l,r, k =

0, 1, l = 0, 1 denotes the ratio of derivatives of choice probabilities. So, for example, P 1,1,r =

∂2P
11(X1, X)/fV (X) , where ∂2 denotes the partial derivative with respect to the second argu-

ment. Let p1r
i , p

0r
j denote the ith, jth realizations of P 1,1,r, P 1,0,r respectively; then

ωij =
1

hn
k

(
p1r
i + p0r

j

hn

)
(H.2)

In H.2 hn is a bandwidth sequence, which converges to zero as the sample sizes increases, ensuring

that in the limit, only pairs of observations with probability functions summing up to an arbitrarily

small number receive positive weight. k(·) is the kernel function, which is symmetric around 0,

and assumed to have compact support, integrate to 1, and satisfy certain smoothness conditions

discussed later on.

With the weighting matrix defined, a natural estimate of it, ω̂ij follows from replacing the true prob-

ability function values with their nonparametric, e.g. kernel, estimates. This suggests a weighted

least squares estimator of θ0 ≡ (α0, γ0), regressing x1i − x1j on xij , with weights ω̂ij .

Specifically, we propose the following two stage procedure. The first stage is the kernel estimator

of the ratio of derivatives of probability functions, and the second stage estimator is defined as:

θ̂ = (
∑
i 6=j

τiτjω̂ijxijx
′
ij)
−1(
∑
i 6=j
−τiτjω̂ijxij∆x1ij) (H.3)

where ∆x1ij ≡ x1i − x1j , xij ≡ (1, xi − xj) and τi ≡ τ(x1i, xi) is a trimming function to remove

observations where regressors take values near the boundary of its support.

We will outline the asymptotic properties of this estimator. Here we use similar arguments to this

used in Chen and Khan (2008) and keep our notation as close as possible to that used in that

paper. To simplify characterizing the asymptotic properties of this estimator and the regularity

conditions we impose, we first define the following functions of P k,l,r for k = l = 1, k = 1, l = 0 at

their ith and jth realized values, denoted by p1r
i , p

0r
j

1. f
(Pk,l,r

0
= f

Pk,l,r
0

(P k,l,r0i ), where f
Pk,l,r
0

(·) denotes the density function of P k,l,r0i .

2. µτi = E
[
τi|P k,l,r0i

]
3. µτxi = E

[
τiX̃i|P k,l,r0i

]
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4. µτxxi = E
[
τiX̃iX̃

′
i|P

k,l,r
0i

]
µ1(p1r

i , p
0r
j ) ≡ E[xijx

′
ij |p1r

i , p
0r
j ] where xi denotes the 2×1 vector (1, xi), µ0(p0r

j ) ≡ E[xj |p0r
j ], where

xj denotes the 2× 1 vector (1, xj), f1(·) denotes the density function of the random variable P 1,1,r,

f0(·) denotes the density function of the random variable P 1,0,r.

Our derivation of the asymptotic properties of this estimator are based on the following assump-

tions1:

Assumption I (Identification) The 2× 2 matrix:

M1 = E
[
µ1(p1r

i ,−p1r
i )′f0(−p1r

i )
]

has full rank.

Assumption K (Second stage kernel function) The kernel function k(·) used in the second stage

(to match the sum of ratios of derivatives to 0) is assumed to have the following properties:

K.1 k(·) is twice continuously differentiable, has compact support and integrates to 1.

K.2 k(·) is symmetric about 0.

K.3 k(·) is an eighth order kernel:∫
ulk(u)du = 0 for l = 1, 2, 3, 4, 5, 6, 7∫
u8k(u)du 6= 0

Assumption H (Second stage bandwidth sequence) The bandwidth sequence hn used in the sec-

ond stage is of the form:

hn = cn−δ

where c is some constant and δ ∈ ( 1
16 ,

1
12).

Assumption S (Order of Smoothness of Density and Conditional Expectation Functions)

S.1 The functions P k,l,r are eighth order continuously differentiable with derivatives that are

bounded on the support of τi.

S.2 The functions f
Pk,l,r
0

(·) (the density function of the random variable P k,l,r) and E[xi|P k,l,r =

·], where xi denotes the 2×1 vector (1, xi) have order of differentiability of 8, with eight

order partial derivatives that are bounded on the support of τi.

1For notational convenience here we suppress the presence of the trimming function.
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The final set of assumptions involve restrictions for the first stage kernel estimator of the ratio

of derivatives. This involves smoothness conditions on the choice probabilities P k,l,r0i , smoothness

and moment conditions on the kernel function, and rate conditions on the first stage bandwidth

sequence.

Assumption PS (Order of smoothness of probability functions and regressor density functions)

The functions P k,l,r(·) and fX1,X(·.·) (the density function of the random vector (X1, X)) are

continuously differentiable of order p2, where p2 > 5.

Assumption FK (First stage kernel function conditions) K(·), used to estimate the choice prob-

abilities and their derivatives is an even function, integrating to 1 and is of order p2 satisfying

p2 > 5.

Assumption FH (Rate condition on first stage bandwidth sequence) The first stage bandwidth

sequence Hn is of the form:

Hn = c2n
−γ/k

where c2 is some constant and γ satisfies:

γ ∈
(

2

p2

(
1

3
+ δ

)
,
1

3
− 2δ

)
where δ is regulated by Assumption H.

Theorem H.1. Let

ψi = ψ1i + ψ2i + ψ3i + ψ4i (H.4)

where ψji j = 1− 4 are each mean 0 random variables defined in equations H.15,H.19,H.22,H.24,

respectively, then under Assumptions I,K,H,S,PS,FK,FH,

√
n(θ̂ − θ0)⇒ N(0,M−1

1 V1M
−1
1 ) (H.5)

where

V1 = E[ψiψ
′
i] (H.6)

Proof: Let xij ≡ (1, (xi − xj)),∆x1ij ≡ x1i − x1j . Then we can express:

θ̂ − θ0 =

 1

n(n− 1)

∑
i 6=j

ŵijxijx
′
ij

−1

1

n(n− 1)

∑
i 6=j

ŵijxij(∆x1ij − x′ijθ0)
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We will first derive a plim for the denominator term and the a linear representation for the numera-

tor. For the denominator term here we aim to establish that the double sum 1
n(n−1)

∑
i 6=j ŵijxijx

′
ij

converges in probability to the 2 × 2 matrix M1. To do so, note by Assumption K.1 we can

expand ŵij around wij . The remainder term involves the difference between the nonparametri-

cally estimated derivative functions and the true derivative functions. By Assumptions K,H, S

this remainder term is uniformly (over the support of the trimming function τ(·)) op(1)- see e.g.

Henderson, Li, Parmeter, and Yao (2015). It thus suffices to establish the probability limit of
1

n(n−1)

∑
i 6=j wijxijx

′
ij . To do so we first wish to determine the functional form of its expectation.

For notational ease here we let p1r
i , p

0r
j denote ith and jth realized values of P 1,1,r, P 1,0,r respectively,

and p̂1r
i , p̂

0r
j denote their nonparametric estimators. Following the same arguments as in Chen and

Khan (2008), Chen, Khan, and Tang (2016), we can write the expectation of wijxijx
′
ij as∫

k((p1r
i + p0r

j )/hn)/hnµ1(p1r
i , p

0r
j ))f1(p1r

i )f0(p0r
j )dp1r

i dp
0r
j

where µ1(p1r
i , p

0r
j ) ≡ E[xijx

′
ij |p1r

i , p
0r
j ], f1(·) denotes the density function of the random variable

P 1,1,r, f0(·) denotes the density function of the random variable P 1,0,r. Changing variables u =

(p1r
i + p0r

j )/hn and taking limits as hn → 0, yields that the above integral is∫
µ1(p1r

i ,−p1r
i )f1(p1r

i )f0(−p1r
i )dp1r

i = E
[
µ1(p1r

i ,−p1r
i )f0(−p1r

i )
]

which is M1. We next turn attention to the numerator term. This term is of the form:

1

n(n− 1)

∑
i 6=j

ŵijxij(∆x1ij − x′ijθ0)

Again, we expand ŵij around wij . The lead term in this expansion is of the form:

1

n(n− 1)

∑
i 6=j

wijxij(∆x1ij − x′ijθ0)

Note that because p1r
i + p0r

j = 0 ⇒ ∆x1ij = x′ijθ0) from our identification result, it follows from

Assumptions K,H that the lead term is op(n
−1/2). The linear term in the expansion is of the form

1

n(n− 1)

∑
i 6=j

w′ij((p̂
1r
i − p1r

i ) + (p̂0r
j − p0r

j ))xij(∆x1ij − x′ijθ0) (H.7)

We will first focus on the term

1

n(n− 1)

∑
i 6=j

w′ij(p̂
1r
i − p1r

i )xij(∆x1ij − x′ijθ0) (H.8)

Recall p̂1r
i denotes a ratio of non parametrically estimated terms and p1r

i denotes the ratio of

derivatives. Denote these estimated and true ratios as f̂−1
vi p̂

1
i , f−1

vi p
1
i respectively. Linearizing this

ratio, the first term is of the form f−1
vi (p̂1

i − p1
i ). So we wish first to evaluate a representation for

1

n(n− 1)

∑
i 6=j

w′ijf
−1
vi (p̂1

i − p1
i )xij(∆x1ij − x′ijθ0) (H.9)
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Denoting a kernel estimator of the probability function of the outcome variable as a function of

~x = (x1, x), by p̂(~x) =
∑

j y1jKH(~xj−~x)∑
j KH(~xj−~x) where K(·) is our kernel function, H our bandwidth, and

KH(·) ≡ 1
HK( ·H ), our estimator of the derivative of the probability function is

p̂1(~x) =

∑
k y1kK

′
H(~xk − ~x) 1

H

∑
kKH(~xk − ~x)−

∑
kK

′
H(~xk − ~x) 1

H

∑
k y1kKH(~xk − ~x)

(
∑

kKH(~xk − ~x))2

We plug in the first of the two terms in the above numerator into H.9 yielding

1
n(n−1)(n−2)

∑
i 6=j 6=k w

′
ijf
−1
vi (y1kK

′
H(~xk − ~xi) 1

H − p
1
i )xij(∆x1ij − x′ijθ0)

1
n

∑
kKH(~xk − ~xi)

In the above expression, we replace the denominator term with its plim2 , which is f ~X(xi), which

gives the expression:

1

n(n− 1)(n− 2)

∑
i 6=j 6=k

(
y1kK

′
H(~xk − ~xi) 1

H

f ~X(~xi)
− p1

i

)
f−1
vi Γij (H.10)

where Γij = w′ijxij(∆x1ij − x′ijθ0). Evaluating a linear representation for the above third order U

statistic in H.10, we first evaluate the expectation of 1
f ~X

(~xi)
y1kK

′
H(~xk − ~xi) 1

H conditioning on ~xi.

This can be expressed after a change of variables as

1

f ~X(~xi)

∫
p(uH + ~xi)K

′(u)f ~X(uH + ~xi)du
1

H

Where here f ~X(·) denotes the density function of ~Xi. Next we can expand around uH = 0 inside

the integral. The lead term is 0 as K(·) vanishes at the boundary of its support. The linear term

is p1(~xi)f ~X(~xi) + p(~xi)f
′
~X

(~xi) using that
∫
uK ′(u)du = −1. Thus the conditional expectation of

the ratio
y1kK

′
H(~xk−~xi) 1

H
f ~X

(~xi)
is p1(~xi) + p(~xi)f

′
~X

(~xi)/f ~X(~xi). The first term, p1(~xi), cancels out with

p1(~xi) in H.10. Now, note the second term in H.8,
∑

kK
′
H(~xk−~x) 1

H

∑
k y1kKH(~xk−~x)

(
∑

kKH(~xk−~x))2
is by analogous

arguments f ′~X
(~xi)p(~xi)/f ~X(~xi) + op(n

−1/2). So combining these results one conclusion that can be

drawn is an average derivative type result (e.g. Powell, Stock, and Stoker (1989)):

1

n

n∑
i=1

p̂1(~xi)− p1(~xi) =
1

n

n∑
i=1

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p1(~xi)

}
+ op(n

−1/2) (H.11)

So plugging H.11 into H.10 yields:

1

n(n− 1)

∑
i 6=j

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p1(~xi)

}
f−1
vi Γij + op(n

−1/2)

2The resulting remainder term, involving the difference between the denominator term and its plim, can shown

to be asymptotically negligible, as shown in Chen, Khan, and Tang (2016)
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As an additional step we want a representation for Γij . By its definition,

1

n(n− 1)

∑
i 6=j

Γij =
1

n(n− 1)

∑
i 6=j

w′ijxij(∆x1ij−x′ijθ0) =
1

n(n− 1)

∑
i 6=j

1

h2
k′

(
p1r
i + p0r

j

h

)
ζ(~xi, ~xj)

(H.12)

where ζ(~xi, ~xj) ≡ xij(∆x1ij − x′ijθ0). To attain this representation, we evaluate the expectation of

the term inside the double summation. We express this as

1

h2

∫
k′

(
p1r
i + p0r

j

h

)
ζ̄(p1r

i , p
0r
j )f1(p1r

i )f0(p0r
j )dp1r

i dp
0r
j

where recall f1(·) denotes the density function of the random variable P 1,1,r, f0(·) denotes the den-

sity function of the random variable P 1,0,r, and here, ζ̄(p1r
i , p

0r
j ) ≡ E[ζ(~xi, ~xj)|p1r

i , p
0r
j ] To evaluate

the above integral we construct the change of variables u =
p1ri +pr0j

h and expand inside the integral.

Before expanding the integral is of the form

1

h

∫
k′(u)ζ̄(p1r

i , uh− p1r
i )f1(p1r

i )f0(uh− p1r
i )dudp1r

i

After expanding, the lead term is 0 because the function k(·) vanishes on the boundary of its

support. The next term is of the form:∫ (
ζ̄2(p1r

i ,−p1r
i )f1(p1r

i )f0(−p1r
i ) + ζ(p1r

i ,−p1r
i )f1(p1r

i )f ′0(−p1r
i )
)
k′(u)ududp1r

i

From our identification result the above integral simplifies to −E[ζ̄2(p1r
i ,−p1r

i )f0(−p1r
i )] which we

will denote by Ξ1. So plugging this result into H.8 we have the following result:

1

n(n− 1)

∑
i 6=j

f−1
vi (p̂1

i − p1
i )Γij =

1

n

n∑
i=1

Ξ1f
−1
vi

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p1(~xi)

}
+ op(n

−1/2) (H.13)

≡ 1

n

n∑
i=1

ψ1i + op(n
−1/2) (H.14)

where

ψ1i = Ξ1f
−1
vi

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p1(~xi)

}
(H.15)

We next turn attention to the second term in the linearization of the ratio. This is of the form :

1

n(n− 1)

∑
i 6=j

Γij
p1
i

f2
vi

(f̂vi − fvi) (H.16)
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The term f̂vi is our kernel estimator of the derivative of the probability function in the treatment

equation: f̂vi = ∂
∂Xi

E[Y2i|Xi]. So we can use analogous arguments to attain a linear representation

for this U -statistic in H.16 to conclude

1

n(n− 1)

∑
i 6=j

Γij
p1
i

f2
vi

(f̂vi − fvi) =
1

n

n∑
i=1

Ξ1f
−2
vi p

1
i

{
y2i
f ′X(xi)

fX(xi)
− fV (xi)

}
+ op(n

−1/2) (H.17)

≡ 1

n

n∑
i=1

ψ2i + op(n
−1/2) (H.18)

where

ψ2i = Ξ1f
−2
vi p

1
i

{
y2i
f ′X(xi)

fX(xi)
− fV (xi)

}
(H.19)

Next we can turn attention to the the second term in H.7,

1

n(n− 1)

∑
i 6=j

w′ij(p̂
0r
j − p0r

j )xij(∆x1ij − x′ijθ0) (H.20)

The term p̂0r
j − p0r involves the ratio of two derivatives. So we can proceed as before by linearizing

this ratio. This will yield the two expressions:

1

n

n∑
i=1

Ξ1f
−1
vi

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p0(~xi)

}
+ op(n

−1/2) ≡ 1

n

n∑
i=1

ψ3i + op(n
−1/2) (H.21)

where

ψ3i = Ξ1f
−1
vi

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p0(~xi)

}
(H.22)

and

1

n

n∑
i=1

Ξ1f
−2
vi p

0
i

{
y2i
f ′X(xi)

fX(xi)
− fV (xi)

}
+ op(n

−1/2) ≡ 1

n

n∑
i=1

ψ4i + op(n
−1/2) (H.23)

where

ψ4i = Ξ1f
−2
vi p

0
i

{
y2i
f ′X(xi)

fX(xi)
− fV (xi)

}
(H.24)

So collecting all results we can conclude that the estimator has the linear representation:

θ̂ − θ0 = M−1
1

1

n

n∑
i=1

ψi + op(n
−1/2) (H.25)

where ψi ≡ ψ1i + ψ2i + ψ3i + ψ4i.
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