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Abstract

Liver exchange has been practiced in small numbers, mainly to overcome blood-type incom-

patibility between patients and their living donors. A donor can donate either his smaller

left lobe or the larger right lobe, although the former option is safer. Despite its elevated

risk, right-lobe transplantation is often utilized due to size-compatibility requirement with

the patient. We model liver exchange as a market-design problem, focusing on logistically

simpler two-way exchanges. First, with two patient-donor sizes, we introduce an algorithm

when only the safer left-lobe transplantation is feasible. We then introduce an individually

rational, Pareto-efficient, and incentive-compatible mechanism that truthfully elicits the right-

lobe-donation willingness of donors, and finally extend these results to a general model with

any number of patient/donor sizes. The generalization requires new technical tools regarding

bilateral exchanges under partial-order-induced preferences. Through simulations we show

that not only liver exchange can increase the number of transplants by more than 30%, it can

also increase the share of the safer left-lobe transplants.
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1 Introduction

Following the kidney, the liver is the second most common organ for transplantation

worldwide. In the case of the US, more than 7000 of nearly 31000 organ transplants in 2015

were liver transplants. Transplantation is the only potential treatment for end-stage liver

disease, unlike end-stage kidney disease where there is the alternative (although inferior)

treatment of dialysis. As in the case of kidneys, transplants from deceased donors and

living donors are both possible (and widespread) for liver transplantation.1 Unlike kidney

transplantation, however, a living donor can donate only a part of his liver —henceforth

referred as a lobe— going through a liver resection operation called hepatectomy . Based on

the anatomy of the liver, the main options are donating either the smaller left lobe (normally

30–40% of the liver) with a left hepatectomy or the larger right lobe (normally 60–70% of the

liver) with a right hepatectomy . Following the transplantation, the remnant liver of a living

donor typically regenerates within a month. Assuming the donor and the patient are blood-

type compatible,2 which of these two options is preferred (or even feasible) depends on the

relative liver volumes of the patient and the donor. In order to provide adequate liver function

for the patient, at least 40% of the standard liver volume of the patient is required. The

metabolic demands of a larger patient will not be met by the smaller left lobe from a relatively

small donor. This phenomenon is known as small-for-size syndrome. The primary solution to

avoid this syndrome has been harvesting the larger right lobe of the liver for transplantation.

This procedure, however, involves considerably higher risks for the donor than harvesting

the smaller left lobe. While donor mortality is approximately 0.1% for left hepatectomy, it

is in the range of 0.4–0.5% for right hepatectomy (Lee, 2010). Furthermore, other significant

risks, referred to as donor morbidity , are also much higher under right hepatectomy than

left hepatectomy. Mishra et al. (2018) reports that the morbidity rates are 28% for right

hepatectomy and 7.5% for left hepatectomy. Hence one of the main challenges for living-

donor liver transplantation is that the much safer left-lobe transplantation is not a viable

option for a majority of patients with willing donors. As an implication, many patients with

potential donors cannot receive a transplant since either their donors hesitate to go through

the higher-risk right hepatectomy, or their doctors recommend against this procedure. The

high risks associated with the right-lobe liver transplantation also affect the public perception

of living-donor liver transplantation. The number of annual living-donor liver transplants in

the US peaked in 2001 with 524 transplants, increasing eight-fold in the period from 1996

1The attitude towards living-donor liver transplantation differs considerably between western countries
and Asian countries. In contrast to western countries, donations for liver transplantation in much of Asia
come from living donors. For example, in 2015, while only 359 of 7127 liver transplants were from living
donors in the US, 942 of 1398 liver transplants were from living donors in South Korea.

2Each individual is of one of the following four blood types: O, A, B, or AB. While a blood-type O donor
is blood-type compatible with any blood-type patient, a blood-type A donor is blood-type compatible with
patients of blood types A and AB, a blood-type B donor is blood-type compatible with patients of blood
types B and AB, and a blood-type AB donor is blood-type compatible with only patients of blood type AB.
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to 2001. The highly publicized death of a right-lobe liver donor in the US in 2002 not only

brought an end to this remarkable increase, but it also resulted in a 40–50% reduction from

its peak US peak since then.3

As the worldwide shortage of transplant organs keeps increasing annually, living-donor

exchanges emerged as an important source for these potentially life-saving resources, espe-

cially in the case of kidneys. In its most basic form, a living-donor organ exchange involves

two patients with willing donors who exchange donors either because direct donation is not

an option due to an immunological barrier or because one or both patients receive a more

favorable outcome through the exchange. The concept was originally proposed for kidneys

by Rapaport (1986), and it became widespread over the last 15 years with the introduction of

optimization and market-design techniques to kidney exchange (Roth, Sönmez, and Ünver,

2004, 2005, 2007). A vast majority of these exchanges are conducted between incompati-

ble kidney patient-donor pairs, where a donor cannot directly donate to his patient due to

immunological barriers.4 Liver exchanges between incompatible patient-donor pairs are also

conducted in modest numbers in several Asian countries, most notably in South Korea. Our

focus in this paper is the design of a liver-exchange mechanism that not only includes the in-

compatible pairs, but also a subset of compatible pairs whose only direct-donation option to

their patients is through the higher-risk right hepatectomy. Under an efficient and incentive-

compatible mechanism we introduce, these compatible pairs participate in exchange only if

they strictly benefit from doing so by reducing the risks to their donors through a left hepate-

ctomy. As such, our proposed mechanism not only increases the number of living-donor liver

transplants, but also increases the reliance on the lower-risk left-lobe liver transplantation in

the spirit of the central tenet of the hippocratic oath “first do no harm.”

While the practice of kidney exchange has flourished worldwide over the last fifteen years,

inclusion of compatible pairs in exchange pools has proved to be a challenge since benefits to

these pairs from joining kidney-exchange pools are either not present or weak. In contrast,

the benefits from joining liver-exchange pools can be considerable for a significant fraction

of compatible pairs, if it means their donors can have a left hepatectomy rather than a

right hepatectomy. And the welfare gains from their inclusion can be potentially very high.

Consider a large, blood-type A liver patient, who in the absence of exchange has to receive

a right liver lobe from his small, blood-type O donor. While this is a feasible medical

procedure, an alternative arrangement of an exchange of donors with a small, blood-type

O patient with a large, blood-type A donor will not only significantly reduce the risks to

his donor (by replacing the donor’s right hepatectomy with a left hepatectomy), but also

enable a second patient to receive a potentially life-saving liver transplant. The possibility

of offering a less risky procedure to such pairs provides an opportunity to increase the size

3See Grady (2002).
4For the case of kidney transplantation, these immunological barriers are blood-type incompatibility and

tissue-type incompatibility.
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of the liver-exchange pool in a way that includes the much-needed blood-type O donors.

In the above example, the large, blood-type A patient with the small, blood-type O donor

would only be willing to participate in exchange if the pair benefits from exchange through

an assurance that its donor goes through the much less risky procedure of left hepatectomy.

However, not all cases are this straightforward. Consider a blood-type A patient with a blood-

type B donor. Since it is blood-type incompatible to start with, not only can it benefit from

exchange through a left-lobe donation but also through the less-desired right-lobe donation if

the pair is willing to expose the donor to the higher mortality and morbidity risks of a right

hepatectomy. This possibility is the primary reason why one cannot directly adopt for liver

exchange the mechanisms and techniques developed for kidney exchange, unless the higher-

risk right hepatectomy is completely avoided. A liver-exchange mechanism has to determine

not only which pairs are to be matched with each other to exchange donors, but it shall

also determine which donors have to donate their right lobes rather than their left lobes. Of

course, some pairs may not be willing to expose their donors to the more risky procedure of

right hepatectomy, but a poorly designed exchange mechanism may also give them incentives

to hide their willingness to do so even if they are. As such, our focus is not only the design

of an efficient mechanism, but at the same time the design of an incentive-compatible liver

exchange mechanism where a pair never receives a less favorable outcome by revealing its

willingness to go through the less desired right hepatectomy.

For living-donor liver transplantation, size compatibility is a requirement in addition to

blood-type compatibility. A patient is size compatible with a donor if the volume of liver

tissue transplanted from the donor is at least 40% of the patient’s standard liver volume.

Based on this requirement, we define the size of a patient to be 40% of her standard liver

volume, and the size of a donor to be the volume of the left lobe of his liver. Hence,

assuming they are blood-type compatible, a patient can receive a left-lobe liver transplant

from a donor who is at least her own size and a right-lobe liver transplant from a smaller

donor. A patient-donor type is thus characterized by the blood types of the patient and

donor, along with their respective sizes. The key types in the design of an efficient and

incentive-compatible mechanism are those who can participate in exchange both through

left-lobe donation as well as through the less-preferred right-lobe donation. The challenge

is determining when the donors of a particular type shall be considered for a right-lobe

donation rather than a left-lobe donation. We refer to this process as a transformation of

a type. To assure incentive compatibility, a type should be transformed only after their

left-lobe-exchange possibilities are exhausted so that their announcement of whether they

are willing for their donors to go through a right hepatectomy does not affect whether or

not their donors go through the safer left hepatectomy. One simple approach might be first

considering all such pairs for left-lobe donation and then transforming them simultaneously

once their left-lobe-donation possibilities are exhausted. There are two problems with this

simple approach. First, it is possible that an exchange between two such pairs might be
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possible with the transformation of only one of these pairs, say pair 1. If so, transforming both

pairs and matching them for an exchange will result in a Pareto-inferior outcome. Second,

this possibility might encourage pair 1 to hide its willingness for a right-lobe donation of its

donor. Hence, key in design is determining the order in which pairs of these critical types

shall be transformed. We show that there is a well-defined ordering, which assures that the

resulting mechanism is not only Pareto efficient, but also incentive compatible. While we

show this result for an arbitrary number of potential sizes of patients and donors, making our

mechanism practically relevant, the intuition of the mechanism is more clear for the case of

two sizes. Hence we develop first a Pareto-efficient and incentive-compatible mechanism for

this simpler case, providing a geometric representation of our mechanism, and then extend

our analysis to an arbitrary number of sizes. We also illustrate the potential gains from

adopting our proposed mechanism on simulated pools based on South Korean population

and transplantation characteristics. We observe that, depending on the willingness of donors

to participate in right-lobe donation, 44% to 34% more transplants can occur due to liver

exchange than by direct donation.

1.1 Related Literature

Kidney exchange, as an application of market design, was initiated by Roth, Sönmez, and

Ünver (2004, 2005, 2007). Recent developments in market design for kidney exchanges include

studies on incentivizing compatible pairs to participate in exchange (Nicolò and Rodriguez-

Álvarez, 2017; Sönmez, Ünver, and Yenmez, 2018), using kidney exchange along with ABO-

blood-type-incompatible kidney transplants (Andersson and Kratz, 2017), and designing an

incentive-compatible participation scheme for transplant centers in kidney exchange (Agarwal

et al., 2018).

Unlike the growing literature on kidney exchange, there are only a handful papers on

liver exchange. These include Hwang et al. (2010) and Chan et al. (2010), both of which

demonstrate the proof of concept for liver exchange, and Mishra et al. (2018), which advocates

for organized liver exchange in the US. Dickerson and Sandholm (2014) advocates for trans-

organ exchange, where a donor associated with a kidney recipient donates a liver lobe and

a donor associated with a liver recipient donates a kidney, whereas Samstein et al. (2018)

explores some of the ethical concerns this practice might encounter, including unbalanced

donor risks. Ergin, Sönmez, and Ünver (2017) studies dual-donor organ exchange, where each

patient receives organs from two living donors. Dual-graft liver exchange, where each patient

participates in exchange with two left-lobe donating donors, is an application of this model.

Although dual-graft liver transplantation is practiced in a few countries, including South

Korea and China, overcoming size incompatibility through a right-lobe transplantation is far

more common throughout the world. And while the difference between the mortality and

morbidity risks of right lobe vs. left lobe donation is well established in the transplantation

literature, our main focus, the design implications of these two main liver transplantation
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technologies, is not considered in any of the papers on liver exchange.

In terms of modeling, there is a conceptual similarity between our liver-exchange model

and the “matching with contracts” model of Hatfield and Milgrom (2005), which extends

two-sided matching problems (Gale and Shapley, 1962) by allowing various contractual ar-

rangements between the two sides. While left-lobe donation and right-lobe donation can be

interpreted as two different contractual arrangements, unlike the matching with contracts

model, our model is one sided. Hence the cumulative offer mechanisms introduced for the

matching with contracts model by Hatfield and Milgrom (2005) and extended by Hatfield

and Kojima (2010) is not applicable in our framework.

More broadly, our paper contributes to a very diverse list of market-design applications,

including entry-level labor markets (Roth and Peranson, 1999), spectrum auctions (Milgrom,

2000), internet auctions (Edelman, Ostrovsky, and Schwarz, 2007; Varian, 2007), school

choice (Abdulkadiroğlu and Sönmez, 2003), course allocation (Sönmez and Ünver, 2010; Bud-

ish and Cantillon, 2012), affirmative action (Kojima, 2012; Hafalir, Yenmez, and Yildirim,

2013; Echenique and Yenmez, 2015), refugee matching (Moraga and Rapoport, 2014; Jones

and Teytelboym, 2017; Delacrétaz, Kominers, and Teytelboym, 2017), and assignment of

airport landing slots (Schummer and Vohra, 2013; Schummer and Abizada, 2017).

2 A Model of Dual Technology Liver Transplantation

There are two liver transplantation technologies: A donor can donate his left liver lobe or

his right liver lobe for a transplant.

2.1 Size Compatibility

The left lobe can be anywhere in the range from 30% to 40% of the donor’s liver volume,

and the right lobe makes up the rest. A patient requires a liver graft that is at least 40% of

her own liver volume. Based on this constraint, the size of an individual will have a different

meaning throughout the paper for a donor and a patient. Formally, the size of a donor is the

volume of his left liver lobe, whereas the size of a patient is the minimum required volume of

liver tissue for a transplant, i.e., 40% of the volume of her (dysfunctional) liver. Therefore,

for left-lobe transplantation, a donor is size compatible with a patient if his (left liver lobe)

size is at least as large as the patient’s (minimum volume of required liver tissue) size. With

a slight abuse of language, a donor who is size compatible with a patient will be referred

as a donor who is at least as large as the patient. Let S = {0, 1, . . . , S − 1} denote the

set of possible sizes, where S ≥ 1 is the number of possible sizes. Here the larger numbers

correspond to larger sizes.5

5Set S can be specific to each liver-exchange pool, allowing for a continuum of sizes generically as long as
each pool we analyze is finite.
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2.2 Blood-type Compatibility

The blood type of an individual is determined by the availability or the lack of two

antigens referred to as antigen A and antigen B. An individual of blood type O has neither

antigen, an individual of blood type A has only antigen A, an individual of blood type B has

only antigen B, and an individual of blood type AB has both antigens. A donor is blood-

type compatible with a patient if he does not have a blood antigen the patient lacks. That

means a blood-type O donor (having neither antigen) is blood-type compatible with patients

of all blood types, a blood-type A donor is blood-type compatible with patients of blood

types A and AB, a blood-type B donor is blood-type compatible with patients of blood types

B and AB, and a blood type AB donor is blood-type compatible with patients of only blood

type AB. Let B = {O,A,B,AB} denote the set of blood types.

2.3 Left-Lobe-Donation Relation & Its Equivalent Representation

We assume that the blood type and the size of each individual are observable physical

attributes, and we refer to B × S as the set of individual types. A donor can donate his

left lobe to a patient if and only if he is both blood-type compatible with and as large as

(or equivalently size compatible with) the patient. Let D denote the left-lobe-donation

partial order on B × S. Note that for any number of sizes S, the two partially ordered

sets (B × S,D) and ({0, 1}2 × {0, 1, . . . , S − 1},≥) are order isomorphic, where the order

isomorphism associates each individual type T ∈ B × S with the following vector X ∈
{0, 1}2 × {0, 1, . . . , S − 1}:

X1 = 0 ⇔ T has the A antigen

X2 = 0 ⇔ T has the B antigen

X3 = s ⇔ T is of size s

Let type T ∈ B ×S be associated with vector (X1, X2, X3) ∈ {0, 1}2×{0, 1, . . . , S − 1}, and

type T ′ ∈ B ×S be associated with vector (X ′1, X
′
2, X

′
3) ∈ {0, 1}2 × {0, 1, . . . , S − 1}. Due to

the above described order isomorphism, we have

T D T ′ ⇔ (X1, X2, X3) ≥ (X ′1, X
′
2, X

′
3)

For convenience, we will work with the equivalent representation T = {0, 1}2×{0, 1, . . . , S−1}
and ≥ of individual types: For any X, Y ∈ T , a donor of type Y can donate his left lobe to

a patient of type X if X ≤ Y . Observe that this is equivalent to the donor being both blood-

type compatible with and as large as the patient. All of our conclusions can be rephrased in

terms of blood types and sizes using the order isomorphism described above. For the case of

two sizes (S = 2), Figure 1 illustrates the left-lobe-donation partial order D on B × S, and

the standard partial order ≥ over the corners of the three-dimensional cube {0, 1}3.
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Figure 1: The Partially Ordered Sets (B × S,D) and ({0, 1}3,≥).

2.4 Right-Lobe Donation

The right liver lobe is considerably larger than the left liver lobe. Therefore the right-lobe-

transplantation technology, although involving higher risks for the donor, enables donors to

be able to donate to patients who are much larger then them. We will model this technology

though a function ρ(·), where ρ(s) denotes the maximum size of a patient who can receive a

right-liver-lobe transplant from a donor of size s. Formally, a right-lobe size function is a

function ρ : S → S such that:

1. ρ is non-decreasing, and

2. ρ(s) > s for all s ∈ S \ {S − 1}.

Let ρ(Y ) := Y1Y2ρ(Y3) for any type Y ∈ T .

A size s ∈ S donor can donate his right lobe to blood-type compatible patients who

are of size ρ(s) or smaller: Formally, for any X, Y ∈ T , a donor of type Y can donate his

right lobe to a patient of type X if X ≤ ρ(Y ). Since the right lobe is larger than the left

lobe, the right-lobe-donation technology increases the set of potential exchanges and direct

donations. However, because it involves higher risks for the donor, it is less preferred than

left-lobe donation. Therefore, for donors who can feasibly donate their left lobes to a patient,

we assume that right-lobe donation is not a viable option. Thus, we say that a patient of

type X and a donor of type Y are left-lobe compatible if they are blood-type compatible

and the donor is at least as large as the patient, i.e., X ≤ Y . A patient of type X and a

donor of type Y are right-lobe-only compatible if the donor can donate his right lobe to

the patient, but not his left lobe, i.e., X ≤ ρ(Y ) and X 6≤ Y .

Throughout the paper, we fix a right-lobe size function ρ.

3 Liver Exchange

As in kidney exchange, the number of living-donor liver transplants can be increased

through exchange of donors. Throughout the paper we assume that, in addition to direct
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transplants, only two-way exchanges are feasible.6

3.1 Liver-Exchange Pool

Each patient participates in liver exchange with one donor. A patient and her donor are

referred to as a pair.7 The observable characteristics of a pair are summarized by an ordered

pair of individual types X − Y ∈ T × T , where X denotes the type of the patient and Y

denotes the type of the donor; X − Y is called the pair type.

A liver-exchange pool is a tuple E = (I, τ) where

1. I = {1, 2, . . . , I} is a nonempty finite set of patient-donor pairs, and

2. τ : I → T × T is a function such that for every pair i ∈ I:

(a) τ(i) = τP (i)− τD(i).8

(b) τP (i) ∈ T is the type of the patient of the pair i.

(c) τD(i) ∈ T is the type of the donor of the pair i.

Throughout the paper, we fix a liver-exchange pool (I, τ).

3.2 Preferences & Willingness to Donate a Right Lobe

We interpret a patient-donor pair as a single agent in our model, and thus preferences refer

to preferences of the pair. Patients or donors do not have preferences of their own. Preferences

only depend on (1) whether the patient receives a transplant or not, (2) whenever the patient

receives a transplant from her own donor or through exchange, and (3) which liver lobe the

donor has to donate for his patient to receive a transplant. More specifically, we assume a

very simple preference structure with the following features:

1. A pair always prefers its donor to donate his left robe rather than his right lobe. This

feature precedes any other feature in preference formation.

2. A pair prefers a direct transplant to an exchange, provided that the donor donates the

same lobe. Together with feature 1, this means a pair prefers an exchange to a direct

transplant if and only if the donor donates his right lobe in the direct transplant and his

left lobe in the exchange.

3. A pair is indifferent between all exchanges where the donor donates the same lobe.

There is only one source of potential preference heterogeneity between two pairs of the same

type. Right-lobe donation involves significantly higher mortality and morbidity risks for the

donor. Hence, some donors may not be willing to donate their right lobes at all.9 We refer

to pairs with such donors as unwilling (u). Pairs whose donors are open to the possibility

6All liver exchanges reported in the literature as of March 2018 are between two patients and their donors.
7We use pronouns “she” for a patient, “he” for a donor, and “it” for a pair.
8We refer to a pair type as X − Y instead of (X,Y ) as a convention.
9If a donor is not willing to donate his safer left lobe, then he never volunteers as a donor.
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of right-lobe donation, on the other hand, are referred to as willing (w). Whether a pair is

willing or unwilling is its private information, and it uniquely determines its preferences. For

a willing pair i, the possible outcomes are ranked in the following order under its willing

preference relation Rw
i :

1. A direct transplant where the donor donates his left lobe.

2. Any exchange where the donor donates his left lobe.

3. A direct transplant where the donor donates his right lobe.

4. Any exchange where the donor donates his right lobe.

5. Patient receives no transplant.

For an unwilling pair i, in contrast, the possible outcomes are ranked in the following order

under its unwilling preference relation Ru
i :

1. A direct transplant where the donor donates his left lobe.

2. Any exchange where the donor donates his left lobe.

3. Patient receives no transplant.

4. A direct transplant where the donor donates his right lobe.

5. Any exchange where the donor donates his right lobe.

3.3 Outcome of the Problem: A Matching

Which direct transplants and exchanges are feasible or not depends on the willingness

profile. For a given willingness profile, let Jw ⊆ I denote the subset of willing pairs. Then,

the set of all feasible matches Ec[Jw] is given as: For all i, j ∈ I,10

{i, j} ∈ Ec[Jw] ⇐⇒
{
τP (i) ≤ ρ(τD(j)) if j ∈ Jw

τP (i) ≤ τD(j) if j 6∈ Jw

}
&

{
τP (j) ≤ ρ(τD(i)) if i ∈ Jw

τP (j) ≤ τD(i) if i 6∈ Jw

}

The compatibility graph is defined as Gc[Jw] = (I, Ec[Jw]).11

A matchingM ⊆ Ec[Jw] of the compatibility graph Gc[Jw] is such that for any e, e′ ∈M ,

e ∩ e′ 6= ∅ =⇒ e = e′, i.e., no pair participates in two distinct exchanges or direct

transplants. Let Mc[Jw] be the set of matchings given the compatibility graph Gc[Jw].

We denote the match of pair i ∈ I in matching M ∈ Mc[Jw] as M(i). If M(i) = i (i.e.,

{i} ∈ M), then the pair participates in a direct transplant. If M(i) = j for some j 6= i

(i.e., {i, j} ∈ M), then pairs i and j participate in a (two-way) exchange. If M(i) = ∅
(i.e., there is no e ∈M such that i ∈ e), then pair i remains unmatched.

Consider a match {i, j} (with possibly i = j) in a matching M . Since a donor only

10Observe that this definition allows for a loop {i, i} = {i} to be in Ec[Jw]. This depicts that the donor of
pair i can donate to the patient of the pair.

11Graph theoretical preliminaries are stated formally in Appendix D.1. Some of our current definitions are
restated for general graphs in this appendix, as well.
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donates a right lobe to a patient when his left lobe is too small for her, which lobe is donated

by either donor is uniquely determined by the match {i, j}. The same argument also holds

for the entire matching M . The following function is helpful to keep track of which lobe is

donated in any potential match. Define the transplant type function t : I × I → {l, r, ∅}
as follows: For any (i, j) ∈ I × I,

t(i, j) =


l if τP (j) ≤ τD(i)

r if τP (j) � τD(i) & τP (j) ≤ ρ(τD(i))

∅ otherwise

For any two pairs i and j, the transplant type function determines whether the donor of the

first pair i and the patient of the second pair j are left-lobe compatible (l), right-lobe-only

compatible (r), or incompatible (∅). Let t(i) = t(i, i) for all i ∈ I.

To summarize, each matching M is a collection of direct transplants and exchanges, and

together with the function t(·), it also uniquely specifies which liver lobe is donated by each

donor: For any {i} ∈ M , the pair i engages in a direct left-lobe transplant if t(i) = l and in

a direct right-lobe transplant if t(i) = r. Similarly, for any {i, j} ∈M ,

• the pairs i and j engage in a two-way exchange,

• the donor of i donates his left lobe if t(i, j) = l and his right lobe if t(i, j) = r, and

• the donor of j donates his left lobe if t(j, i) = l and his right lobe if t(j, i) = r.

The preferences introduced in Subsection 3.2 can be directly extended to the set of match-

ings. We will abuse notation and also let Ri denote the induced preference over all matchings

Mc[I] defined through:

MRiM
′ ⇐⇒ M(i)RiM

′(i).

Let Ri = {Rw
i , R

u
i } denote the set of possible preferences of pair i. For each Ri ∈ Ri, let Pi,

denote the asymmetric part of Ri. Finally, let R = R1× . . .×RI denote the set of preference

profiles.

3.4 Mechanisms and Axioms

Although the types of the participating pairs are observable, their preferences (or equiva-

lently their willingness for a right-lobe donation) are not. A (direct) mechanism determines a

matching as a function of the reported preference profile. Given R ∈ R and a pair i with type

X − Y , we will sometimes integrate its preference (or equivalently willingness) information

with its type, referring to its type as X − Y w if Ri = Rw
i and as X − Y u if Ri = Ru

i .

Since we fix an exchange pool (I, τ) throughout, we define a mechanism as a function

f : R →Mc[I].

A matching is individually rational if no pair i has an incentive to leave its match in

11



order to stay unmatched nor (if possible) to arrange for a direct transplantation. Formally,

a matching M ∈ Mc[I] is individually rational (IR) at a preference profile R ∈ R if

for every i ∈ I: M(i)Ri∅, and if t(i) 6= ∅ then M(i)Rii. A mechanism f is individually

rational (IR) if f(R) is individually rational at R for any R ∈ R.

We next give the definitions of Pareto efficiency and (dominant-strategy) incentive com-

patibility, which are both standard.

A matching M ∈Mc[I] is Pareto efficient (PE) at a preference profile R ∈ R if there

does not exist a matching M ′ ∈Mc[I] such that M ′RiM for all i ∈ I and M ′PiM for some

i ∈ I. A mechanism f is Pareto efficient (PE) if f(R) is Pareto efficient at R for any

R ∈ R.

A mechanism f is incentive compatible (IC) if for all i ∈ I, R−i ∈
∏

j 6=iRj and

Ri, R̂i ∈ Ri:

f(Ri, R−i)Rif(R̂i, R−i).

4 Preliminary Results

In order to ease the presentation of our mechanisms and main results, in this section we

present three preliminary results. Our first result characterizes the types of pairs which can

exchange donors in an individually rational matching.

Lemma 1 In any individually rational matching, a pair of type X−Y ∈ T ×T can participate

in an exchange

1. by donating a left lobe only if X 6≥ Y and Y 6≥ X, and

2. by donating a right lobe only if X 6≥ ρ(Y ) and ρ(Y ) 6≥ X.

We continue by presenting a lemma that partitions the set of pair types into seven cat-

egories. The categorization is organized in terms of whether, in an individually rational

matching, a pair can be matched, and, if so, how it can be matched: (a) via a direct left-lobe

donation, (b) via a direct right-lobe transplantation, (c) by taking part in an exchange by

donating a left lobe, or (d) by taking part in an exchange by donating a right lobe. For pairs

in some of these categories (0, I, and II), individual rationality along with the preference pro-

file completely pins down whether or not they are matched, and if so how. For pairs in the

remaining categories (III, IV, V, and VI), individual rationality together with the preference

profile merely rules out some of the possibilities.

Lemma 2 Fix a preference profile R ∈ R and a matching M ∈Mc[I]. The matching M is

individually rational at R if and only if for any pair of any type X − Y ∈ T × T :

0. If X > ρ(Y ), then the pair remains unmatched.

12



I. If X ≤ Y , then the pair directly donates a left lobe.

II. If Y < X ≤ ρ(Y ), then either the pair is willing and directly donates a right lobe, or it

is unwilling and remains unmatched.

III. If X 6≤ ρ(Y ), X 6≥ Y , & Y = ρ(Y ), then either the pair participates in an exchange by

donating a left lobe, or it remains unmatched.

IV. If X > Y , X 6≥ ρ(Y ), & X 6≤ ρ(Y ), then either the pair is willing and participates in an

exchange by donating a right lobe, or it remains unmatched.

V. If X 6≤ ρ(Y ), X 6≥ Y , & Y < ρ(Y ), then either the pair participates in an exchange by

donating a left lobe, or it is willing and participates in an exchange by donating a right

lobe, or it remains unmatched.

VI. If X < ρ(Y ), X 6≥ Y , & X 6≤ Y , then the pair participates in an exchange by donating a

left lobe, or it is willing and directly donates a right lobe, or it is unwilling and remains

unmatched.

From now on, we will refer to pair types in Lemma 2 as Category 0–VI types. Similarly, any

pair whose type lies in a given category will be referred to as a member of that category.

Note that the only pairs which could be part of an exchange by donating either the left

lobe or the right lobe are of Category V. This makes the handling of Category V pairs of

special importance. Much of the analytical challenges and innovations in our analysis relate

to this category.

The next lemma provides a characterization of incentive compatibility for individually

rational mechanisms. Specifically, an individually rational mechanism is incentive compatible

if and only if, for any pair, whether it participates in an exchange by donating a left lobe is

independent of its preferences.

Lemma 3 Let f be an individually rational mechanism. Then, f is incentive compatible if

and only if for all i ∈ I, and R−i ∈
∏

j 6=iRj, the following equivalence holds:

Under f(Rw
i , R−i), i participates in an exchange by donating the left lobe.

m

Under f(Ru
i , R−i), i participates in an exchange by donating the left lobe.

Note that by Lemma 2, in an individually rational matching, the only pairs that could be

part of an exchange by donating a left lobe are of Category III, V, and VI. As a result, an

individually rational mechanism is incentive compatible if for any Category III, V, or VI

pair i, whether i participates in an exchange by donating a left lobe is independent of i’s

willingness announcement.
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5 Analysis of a Simplified Model with Two Sizes

Throughout this section, we focus on a simplified model in which there are only two sizes

S = {0, 1}. While the analysis in Section 6 is more general with an arbitrary number of sizes,

much of the intuition can be conveyed in a simpler model that is lighter in both notation and

also graph theoretic preliminaries. The algorithms we introduce for this simplified model also

have very intuitive graphical representations that we lack for the general model. As such, we

believe this version of the model and its results are of independent interest. However, it is

possible to skip this section and proceed directly to the general analysis in Section 6, without

losing the continuity of the presentation.

5.1 Baseline Model: Two Sizes & Left-Lobe-Only Transplantation

We start our analysis of the two-size model for an even simpler baseline case, when only

the less risky left-lobe transplantation is feasible. This model serves as an introduction to our

more general model and is also of independent theoretical interest, as it is a symmetric version

of our model where all 3 dimensions of an individual type can have at most 2 different, binary

values: T = {0, 1}3. This symmetry turns out to simplify many of the graph theoretical

complications. As we already emphasized, the compatibility relationship is given as a lattice

on the 3-dimensional binary cube T = {0, 1}3. The order isomorphism between B × S and

T are depicted in Figure 1.

Throughout this subsection, we assume that the more risky right-lobe transplantation is

not feasible, and thus, the set of pairs that can participate in right-lobe donation is Jw = ∅.
Therefore, the compatibility graph we consider is Gc[∅] = (I, Ec[∅]).

Since right-lobe donation is ruled out, not only does incentive compatibility become re-

dundant, the notion of individual rationality is also simplified in this subsection. A matching

M ∈ Mc[∅] is individually rational if {i} ∈ Ec[∅] then {i} ∈ M . That is, in individually

rational left-lobe-only matchings, left-lobe-compatible pairs are matched only through direct

transplants. Hence exchange is possible only for pairs that are not left-lobe compatible.

If an individually rational matching inMc[∅] is Pareto inefficient, then there exists another

individually rational matching inMc[∅] that matches a strict superset of pairs with respect to

M . In the absence of right-lobe transplantation, the mathematical structure of the problem

becomes a special case of a maximum matching problem, and for these problems it is well

known that every individually rational and Pareto-efficient matching in Mc[∅] matches the

same number of pairs (see for example, matching matroid in Korte and Vygen, 2011). Thus,

as a corollary, we have an individually rational matching of Mc[∅] is maximum if and only

if it is Pareto efficient. For this reason (and only when right-lobe transplantation is ruled

out), we will sometimes refer to an individually rational and Pareto-efficient matching as a

maximum individually rational matching.
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Figure 2: Possible left-lobe-only (two-way) exchanges among pair types when S = 2.

Due to Lemma 1, the pair types that could participate in a left-lobe-only exchange in an

individually rational matching are X−Y ∈ T ×T such that X � Y and X � Y . All possible

exchanges are depicted in Figure 2. The edges of the graph in this figure are all individually

rational left-lobe-only exchanges between pair types with two individual sizes.

Our goal in this section is to construct an almost-greedy matching algorithm that finds

a maximum individually rational matching. A greedy algorithm prioritizes exchanges/direct

transplants, regardless of which pairs are in the exchange pool, and clears them in order of

prioritization, as long as such a direct transplant/exchange is feasible among the remaining

pairs.12 For general graphs, maximum individual matchings cannot always be constructed

greedily (see Edmonds, 1965). It turns out this is not the case for left-lobe-only liver exchange

with two sizes. This approach has the additional advantage that we can state the number

of transplants in a maximum individually rational matching as a simple additive formula of

the pool characteristics. Moreover, it turns out to be quite transparent.

We introduce two additional concepts to this end.

The value of a pair type X −Y ∈ T ×T is v(X −Y ) =
∑3

p=1(Yp−Xp). We refer to this

variable as a value since it gives the number of valuable donor characteristics net of patient’s,

and these can be interpreted as the net asset of a pair in finding a match in an exchange.

For example, a small patient with a large donor, or a patient who has the A antigen (i.e., a

blood-type A or AB patient) with a donor who lacks this antigen (i.e., a blood-type O or B

donor) are both bringing a net positive asset to an exchange. An exchange can be interpreted

as a trade of these three assets between the pairs. By Lemma 1, only pairs with a value of

-1, 0, or 1 can be part of an exchange.13

12The algorithm will be almost greedy, as in the last step we will additionally need the information regarding
the number of remaining pairs of certain types to execute it.

13More specifically, of the three characteristics, at least one of them shall have a net value of -1 and at
least one shall have a net value of 1. If the former fails, the pair is compatible, and if the latter fails, the pair
has no feature of value to offer for an exchange. The sum of the net values of these two characteristics is 0,
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Figure 3: Exchanges carried out in Steps 1,2,3

To have a feasible exchange of types U −V & X −Y , we need V ≥ X and Y ≥ U . Thus,

as a necessary condition for a feasible exchange, the sum of values of the two pairs needs

to be at least zero. And when it is exactly zero, each of the three features is fully utilized

in the exchange. That means no small patient receives a transplant from a large donor, no

patient who has antigen A receives a transplant from a donor who lacks antigen A, or no

patient who has antigen B receives a transplant from a donor who lacks antigen B. Thus,

any total value excess of zero can be interpreted as the waste of the exchange. Formally, the

waste of an exchange of pair types U − V & X − Y is v(U − V ) + v(X − Y ). As seen in

Figure 2, all possible exchanges are of waste 0, 1, or 2. We refer to an exchange with a waste

of k ∈ {0, 1, 2} as an exchange of k-waste.

Through these variables, value and waste, we reduce the six dimensions of the type of a

pair and twelve dimensions in an exchange, respectively, to two single-dimensional summary

variables. Thus, in theory, we are losing some important information regarding the pair

types and exchanges that could be valuable in determining maximum individually rational

matchings. However, it turns out that the waste of each exchange is all we need to determine

a maximum individually rational matching: We can order the wastes of exchanges from the

smallest to the largest and clear them in order.

Thus, the main innovation of the algorithm introduced below is the use of the wastes of

exchanges as sufficient information to prioritize among them.

The two-size left-lobe-only sequential matching algorithm:

Step 0a. Fix a priority order over all pairs.

Step 0b. Clear direct transplants: All compatible pairs (i.e., pairs with types

X − Y such that X ≤ Y ) participate in direct transplants.

and the third one is flexible with possible values of -1, 0, or 1.
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Step 1. Clear 0-waste exchanges: For each X − Y ∈ T × T , match the highest-

priority pair of type X − Y with the highest-priority pair of its reciprocal type

Y − X. Proceed in a similar way, matching the next highest-priority pairs of

types X − Y and Y −X with each other, and so on, until one of the two types

is exhausted.

Step 2. Clear 1-waste exchanges: For each of the three value 1 types X − Y ∈
{100− 011, 010− 101, 001− 110}, match the highest-priority pair of type X − Y
with the highest-priority pair of its value 0 neighbor. Proceed in a similar way,

matching the next highest-priority pair of type X − Y with the next highest-

priority pair of its value 0 neighbor, and so on, until either type X − Y or their

0 value neighbors are exhausted.

Step 3. Clear 2-waste exchanges: Match the maximum number of pairs of value

1 types 100−011, 010−101, and 001−110 among each other, following the given

priority order.14

Figure 3 graphically illustrates the exchanges that are maximized at each step of the

sequential matching algorithm. The next theorem states the optimality of this algorithm.

It is straightforward to compute the maximum number of transplants as a simple formula

through the algorithm.

Theorem 1 The two-size left-lobe-only sequential matching algorithm maximizes the number

of exchanges and the number of transplants in any individually rational matching.

Prioritizing 0-waste exchanges over 1-waste exchanges and 1-waste exchanges over 2-waste

exchanges is intuitively very plausible. Recall that each patient and each donor are a collec-

tion of three features: their size and the presence of antigens A and B. In a 0-waste exchange,

no patient receives a transplant with any feature that is more valuable than the transplant

she needs. For example, no small patient receives a transplant from a large donor, or no

patient who has antigen A receives a transplant from a donor who lacks this antigen. Hence,

14The maximum matching is found following the given priority order in this case as follows: Let type set
{X1 − Y1, X2 − Y2, X3 − Y3} = {100− 011, 010− 101, 001− 110} be such that n∗(X1 − Y1) ≥ n∗(X2 − Y2) ≥
n∗(X3 − Y3) where n∗(Xk − Yk) is the number of pairs of type Xk − Yk remaining at the beginning of Step
3 for each Xk − Yk. Two cases are possible: Case (1) n∗(X1 − Y1) > n∗(X2 − Y2) + n∗(X3 − Y3): Then the
algorithm matches all pairs of types X2−Y2 and X3−Y3 exclusively with those of type X1−Y1 according to
the priority order such that n∗(X1−Y1)−

(
n∗(X2−Y2) +n∗(X3−Y3)

)
lowest-priority pairs of type X1−Y1

remain unmatched. Case (2) n∗(X1−Y1) ≤ n∗(X2−Y2)+n∗(X3−Y3): Then all remaining pairs of these three
types are matched if their total number is even, and the lowest-priority one among them remains unmatched
if their total number is odd. A way to implement the matching in this case is that, after determining which
pairs will be matched, (a) match type Xk−Yk pairs for any k with the pairs of the other two types such that
an equal number of the other two type pairs are yet to be matched, and then (b) match the remaining two
groups with each other.

17



no valuable feature is unutilized in a 0-waste exchange. In contrast, one valuable feature

is unutilized in a 1-waste exchange and two valuable features are unutilized in a 2-waste

exchange.

5.2 Two Sizes & Left-Lobe or Right-Lobe Transplantation

We are ready to proceed with our analysis maintaining the assumption of two sizes, but

including both transplantation technologies. This version of the model is no longer a special

case of the maximum matching problem, and thus, it is in need of a novel analysis.

5.2.1 Transformation of Willing Pairs

With the introduction of right-lobe transplantation, a small donor can donate his right

lobe to a large patient (i.e., ρ(0) = 1). A large donor, on the other hand, is in no need to

donate his right lobe, whether he donates to a large patient or a small patient. Whenever

matched, he donates his left lobe. Hence, without loss of generality, we can assume that all

pairs with large donors are unwilling.

Observe that when a type X1X2X3 − Y1Y20w pair donates a right lobe, it mimics a pair

of the type X1X2X3 − Y1Y21: The only difference between these two types is the size of the

donors, with a small donor for the former and a large donor for the latter. But with only two

individual sizes, a small donor is able to donate to any size patient (as if he were a large donor)

provided that he is willing to donate his right lobe. And once he donates a right lobe, he

becomes indistinguishable from a large donor. Thus we treat a type X1X2X3−Y1Y20w pair as

if it were of type X1X2X3−Y1Y21 once its left-lobe-donation opportunities are exhausted, and

refer to this operation as a transformation. A transformed pair of type X1X2X3− Y1Y20w
is only considered for right-lobe donation, and, for description purposes, the pair is treated

as if it were of type X1X2X3 − Y1Y21. When such a transformation is carried out, the type

X1X2X3−Y1Y21 includes both original pairs of type X1X2X3−Y1Y21 and transformed pairs

of type X1X2X3 − Y1Y20w, and it is referred to as an auxiliary type.

With the addition of right-lobe donation to left-lobe donation as a feasible technology, the

set of possible exchanges expands. The expanded set of exchanges are depicted in Figure 4.

As in Figure 2, each solid line in Figure 4 represents a left-lobe-only exchange. In addition,

any pair of a type X1X2X3−Y1Y20w can mimic a pair of type X1X2X3−Y1Y21 by donating

a right lobe, and through the resulting transformation, it can participate in any exchange

the latter pair qualifies for. Transformations of Category IV and Category V willing pairs,

as defined in Lemma 2, can result in new exchanges in this way, and they are represented by

a dashed line ending with an arrow in Figure 4. Category IV willing pairs have no left-lobe-

exchange option, while Category V willing pairs do. The flexibility to take part in exchange

both through a left-lobe donation and a right-lobe donation renders the treatment of Category

V willing pairs of particular importance, and it means the timing of their transformations
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Figure 4: Possible (two-way) exchanges with left- and right-lobe transplants among pair types
when S = 2

have efficiency and incentive-compatibility implications.

There are additional transformations that do not lead to any new exchange, and hence,

they are not depicted on Figure 4. These are transformations of Category II and Category VI

willing pairs, and they render a pair to be right-lobe-only compatible. Category VI willing

pairs can participate in exchange by donating a left lobe, whereas Category II willing pairs

cannot. Hence, for Category II willing pairs, the only transplantation option is a direct

right-lobe transplantation (as indicated in Lemma 2).

5.2.2 The Two-Size Left&Right-Lobe Sequential Matching Algorithm

As our main contribution of this section, we introduce an individually rational, Pareto-

efficient, and incentive-compatible mechanism. Our starting point is the baseline left-lobe-

only algorithm presented in Section 5.1.

In the absence of right-lobe donation, the intuitive idea of clearing 0-waste exchanges,

1-waste exchanges, and 2-waste exchanges in sequence results in a Pareto-efficient outcome.

While the inclusion of the right-lobe-donation technology considerably complicates the anal-

ysis, a number of key observations are instrumental to formulate a natural modification of the

baseline algorithm presented in Section 5.1. Rather than presenting the entire algorithm in

an uninterrupted way, we introduce its steps one step at a time, emphasizing how each step

relates and differs from the corresponding step of the baseline algorithm. As we introduce

each step, we make a number of observations, leading our way to a natural next step.

While pairs of four categories (Categories II, IV, V, and VI) are potentially affected by

the adoption of the right-lobe-transplantation technology, the key incremental innovation in

our modified algorithm pertains to the timing of the transformations of Category V willing

pairs. There are four Category V types, each denoted with a different color in this section

19



to visually emphasize their role in the modified algorithm: 010− 100, 100− 010, 011− 100,

101− 010.

We are ready to proceed with the introduction of the modified algorithm:

Step 0a. Fix a priority order over all pairs, and a preference (or equivalently

willingness) profile R.

In addition to each compatible pair (i.e., pairs of Category I) that immediately receives a

direct left-lobe transplantation under the modified algorithm, each willing pair of Category

II immediately receives a direct right-lobe transplantation. Pairs of Category II lack any

exchange possibility, and a direct right-lobe transplantation is their only transplantation

option. As such, willing pairs of Category II are to be directly matched right away.

Step 0b. Match each Category I pair by a direct left-lobe transplant.

Step 0c. Match each Category II willing pair by a direct right-lobe transplant.

Another category that completely relies on right-lobe donation for a transplant is Category

IV. And just as for the members of Category II, its members have a single means of trans-

plantation. For Category II, that single means was a direct right-lobe transplantation. For

Category IV, it is an exchange through a right-lobe donation. Since willing pairs of Category

IV have no means of transplantation through left-lobe donation, they are to be transformed

right away.

Step 1a. Transform each Category IV willing pair, constructing a modified pool.

Since some pairs are already transformed, a type in the rest of the algorithm refers to the

associated auxiliary type that includes both the original pairs of the type as well as the

transformed pairs. We are ready to clear 0-waste exchanges.

Step 1b. Clear 0-waste exchanges in the modified pool: For each X−Y ∈ T ×T ,

match the highest-priority pair of (auxiliary) type X−Y with the highest-priority

pair of its reciprocal (auxiliary) type Y −X. Proceed in a similar way, matching

the next highest-priority pairs of types X − Y and Y −X with each other, and

so on, until one of the two types is exhausted.

So far the modifications to the algorithm have been straightforward. The next few mod-

ifications, however, rely on a number of critical observations on Category V types.

First observe that, any remaining pair of Category V may have left-lobe-donation pos-

sibilities, although not through exchanges of 0-waste. Therefore, by incentive compatibility,
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Figure 5: Transformations in Step 1(a), followed by cleared exchanges in Step 1(b)

no pair of Category V can be transformed just yet. But since all available 0-waste exchanges

are already cleared in Step 1b, at least some of the 1-waste exchanges are to be cleared.

Next observe that, once some Category V pairs are transformed, new potential exchanges

may form, including some 0-waste exchanges. Since 0-waste exchanges are associated with

higher welfare, not all 1-waste exchanges shall be cleared right away. A given 1-waste ex-

change is a candidate at this stage only if it is blocking a transformation that could generate

new 0-waste exchanges.

Third, while transformation of willing pairs of Category V type 010−100 may potentially

lead to new left-lobe-donation possibilities for pairs of Category V type 101− 010, left-lobe-

donation possibilities for pairs of type 010− 100 are completely exhausted, even if all other

Category V pairs are transformed. Similarly, while transformation of willing pairs of Category

V type 100 − 010 may potentially lead to new left-lobe-donation possibilities for pairs of

Category V type 011 − 100, left-lobe-donation possibilities for pairs of type 100 − 010 are

exhausted regardless of which pairs of Category V are transformed. Therefore, it is sensible

to transform willing pairs of Category V types 010 − 100 and 100 − 010 before the willing

pairs of Category V types 101− 010 and 011− 100.

Finally, observe that, since the two Category V types 010 − 100 and 100 − 010 are

reciprocal, at least one of these two types is exhausted at the end of Step 1b. Together with

our third observation, this observation suggests that the willing pairs of the surviving type

between 010− 100 and 100− 010 will be the first Category V type to be transformed.

Without loss of generality, let us assume that pairs of type 100 − 010 are exhausted. In

that case, the target type to be transformed is 010− 100. Since pairs of this type still have

remaining left-lobe-donation possibilities, they cannot be transformed just yet. But their

only remaining left-lobe donations involve 1-waste exchanges with the type 100 − 011. So

these exchanges are to be cleared next. Moreover, once willing pairs of type 010 − 100 are

21



101-110

110-101

101-011011-101

011-110

110-011

101-010w011-100w

110-001

010-101

001-110

100-011

010-001100-001

001-010

010-100u

001-100

010-100w 100-010

011-100u 101-010u

depleted

(a) Step 2a

101-110

110-101

101-011011-101

011-110

110-011

101-010w011-100w

110-001

010-101

001-110

100-011

010-001100-001

001-010

010-100u

001-100

010-100w 100-010

011-100u 101-010u

depleted

(b) Step 2b

101-110

110-101

101-011011-101

011-110

110-011

101-010w011-100w

110-001

010-101

001-110

100-011

010-001100-001

001-010

010-100u

001-100

100-010

011-100u 101-010u

depleted

(c) Step 2c

101-110

110-101

101-011011-101

011-110

110-011

110-001

010-101

001-110

100-011

010-001100-001

001-010

010-100u

001-100

100-010

011-100u 101-010u

depleted

(d) Step 2d

Figure 6: Transformations followed by cleared exchanges in Step 2

transformed to type 010 − 101, a new set of 0-waste exchanges becomes available between

pairs of auxiliary type 010− 101 and type 101− 010. Hence, next two steps have emerged:

Step 2a. Assume without loss of generality, pairs of type 100 − 010 are ex-

hausted.15 Following the given priority order, clear 1-waste exchanges between

the remaining pairs of type 010− 100 and pairs of type 100− 011.

Step 2b. Transform any remaining pairs of type 010 − 100w to auxiliary type

010− 101, obtaining an exchange pool modified for a second time.

Clear 0-waste exchanges in the new pool: Match the highest-priority pair of

(auxiliary) type 010 − 101 with the highest-priority pair of its reciprocal type

15Otherwise, all remaining steps are symmetrically defined below, swapping 1st and 2nd binary digits for
both patient and donor in all relevant auxiliary types.

22



101− 010. Proceed in a similar way, matching the next highest-priority pairs of

types 010 − 101 and 101 − 010 with each other, and so on, until one of the two

types is exhausted.

At this point, left-lobe-donation possibilities are exhausted for pairs of type 101 − 010. In

addition, since new left-lobe-donation possibilities for pairs of type 011 − 100 depend on

transformations of pairs of type 100 − 010w, and because the latter type are exhausted by

assumption at the end of Step 1b, left-lobe-donation possibilities are exhausted for pairs of

type 011 − 100 as well. Thus, willing pairs of types 101 − 010 and 011 − 100 are to be

transformed to auxiliary types 101−011 and 011−101, respectively. These transformations,

in turn, result in a new set of 0-waste exchanges between auxiliary types 101 − 011 and

011− 101. Hence our next step has also emerged:

Step 2c. Transform any remaining pairs of types 011− 100w and 101− 010w, to

auxiliary types 011− 101 and 101− 011, respectively, obtaining a new exchange

pool modified for a third (and the last) time.

Clear 0-waste exchanges in the new pool: Match the highest-priority pair of

(auxiliary) type 101−011 with the highest-priority pair of its reciprocal (auxiliary)

type 011−101. Proceed in a similar way, matching the next highest-priority pairs

of types 101− 011 and 011− 101 with each other, and so on, until one of the two

types is exhausted.

Having transformed all willing pairs of Category V, all potential 0-waste exchanges are ex-

hausted. Thus, we are ready to clear 1-waste exchanges, followed by 2-waste exchanges.

Step 2d. Clear the remaining 1-waste exchanges: For each of the three value 1

types X − Y ∈ {100− 011, 010− 101, 001− 110}, match the highest-priority pair

of type X −Y with the highest-priority pair of its value 0 neighbor. Proceed in a

similar way, matching the next highest-priority pair of type X − Y with the next

highest-priority pair of its value 0 neighbor, and so on, until either type X − Y
or its 0 value neighbors are exhausted.

Step 3. Clear 2-waste exchanges in the new pool: Match the maximum number

of 100− 011, 010− 101, and 001− 110 auxiliary types with each other, following

the given priority order.

As in our baseline algorithm, all exchanges are exhausted by the end of Step 3. However,

different than the baseline algorithm, one last set of possible transplants remain. Recall that

pairs of Category VI can not only take part in exchange through left-lobe donation but also
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Figure 7: Cleared exchanges in Step 3

receive direct right-lobe transplantation. Since they all prefer left-lobe donation to right-

lobe donation, willing pairs of Category VI have not been transformed until all exchanges

are exhausted. Since their left-lobe-donation possibilities are exhausted, willing pairs of

Category VI are to be matched by direct right-lobe transplants at the termination of the

modified algorithm.

Step 4. Match each remaining Category VI willing pair by a direct right-lobe

transplant.

Steps 1a-b, 2a-d, 3 of the modified algorithm are depicted in Figures 5, 6, and 7, respec-

tively, for the case when pairs of Category V type 100− 010 are exhausted in Step 1.

We are ready to present the main result of this section:

Theorem 2 The two-size left&right-lobe sequential matching mechanism is individually ra-

tional, Pareto efficient, and incentive compatible.

5.2.3 An Impossibility for Two Sizes & Left-Lobe or Right-Lobe Transplantation

Although the left&right-lobe sequential matching mechanism is Pareto efficient, it may

not maximize the number of transplants. The example below shows that one has to sacrifice

incentive compatibility in order to maximize the number of transplants or even the number

of left-lobe transplants.

Example 1 Consider an exchange pool with I = {i1, i2, i3, i4} and

τ(i1) = 101− 011, τ(i2) = 100− 011,

τ(i3) = 011− 100, τ(i4) = 011− 100.
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Suppose i3 and i4 are both willing.

Any left-lobe-donation- or total-transplant-maximizing matching (two of which can be ob-

tained by swapping i3 and i4 with each other) generates two exchanges. Consider these two

matchings:

M =
{
{i1, i3}, {i2, i4}

}
M ′ =

{
{i1, i4}, {i2, i3}

}
.

Observe that t(i3, i1) = t(i4, i1) = r while t(i3, i2) = t(i4, i2) = l. Any (probabilistic) mech-

anism that chooses a matching with the maximum number of transplants or the maximum

number of left-lobe transplants chooses at least one of these two matchings in its support.

Without loss of generality, suppose M is that matching. Then i3 has an incentive to an-

nounce its type as unwilling by revealing R′i3 = Ru
i3

, as the mechanism will choose M ′, which

is the unique left-lobe-donation- and total-transplant-maximizing matching in this case, with

probability 1. Hence, there is no incentive-compatible mechanism that maximizes the total

number of transplants or left-lobe transplants.

Example 1 also serves as a proof for the following impossibility result:

Proposition 1 There is no incentive-compatible mechanism that maximizes the number of

transplants or the number of left-lobe transplants.

6 An Efficient & IC Mechanism for the General Model

We are ready to analyze the general model, dropping the restriction of two individual

sizes. Thus, S = {0, 1, ..., S} with S ≥ 2 for the rest of the paper. The symmetry of the

simplified model on the binary representation of each characteristic, the concepts of value and

waste, and the interpretation of exchange as a trade of the three characteristics paved our way

to a very natural algorithm when there are only two individual sizes. While each exchange

still involves a trade of the three characteristics under the general model, the full symmetry

of the simplified model is lost, and the concepts of value or waste are less natural in this

more general context. With only two sizes, each pair can have a “deficit” or “excess” of each

characteristic without any cardinality consideration. And pairs that have two characteristics

with an excess are more valuable for trade, as reflected in their roles under our algorithms

presented in Section 5. If excess or deficit instead had a cardinal measure in our simplified

model, the roles of these pairs would have been less clear, because they could have a “large”

deficit in the third characteristic. The challenge of the general model with multiple sizes

is that pairs can have different levels of excess or deficit in their size characteristics. This

complication makes comparisons of pair values or exchange wastes less natural in this context.

As such, we abandon these concepts for the general model. Certain features of our simplified

model, however, such as the critical role of Category V pairs and their hierarchy for the

timing of their transformations, still persist under the general model. We build on these

features to design a mechanism with the desired properties.
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There are two main technical challenges for this more ambitious design. First, whether an

efficient matching can be obtained through a straightforward sequential algorithm is an open

problem for the general model, even if transplantation is restricted to left-lobe only. Thus,

we introduce a non-sequential (i.e., non-greedy) algorithm. Second, unlike the simplified

model where a natural transformation sequence for Category V pairs emerges, it is not

immediately clear how these pairs are to be transformed to maintain efficiency and incentive

compatibility. Fortunately, it is possible to overcome both challenges by extending the tools

we introduced for the simplified model and supplementing them with standard techniques

from combinatorial optimization.

The first challenge is well analyzed in the combinatorial optimization literature. In a

general graph (not necessarily the compatibility graph of a liver-exchange pool), one has to

recursively expand the set of simultaneously matchable pairs to find an efficient matching

(e.g., as in the cardinality matching algorithm of Edmonds, 1965). In the absence of the

right-lobe transplantation, incentive compatibility would be redundant and efficient liver

exchange would be a special case of the maximal matching problem. As a starting point of

our general algorithm, we follow this approach. We next define matchability formally.

Suppose pairs in Jw ⊆ I are willing to participate in both left- and right-lobe donation.

We say that a subset of pairs J ⊆ I is matchable in compatibility graph Gc[Jw] if there

exists a matching M ∈ Mc[Jw] such that M(j) 6= ∅ for all j ∈ J .16 Whether a subset of

pairs is matchable or not can be checked in polynomial time.17

6.1 The Precedence Digraph

We next develop the tools that will help us to overcome the second challenge and pave our

way to design a Pareto-efficient and incentive-compatible mechanism for the general model.

The timing and the sequence of Category V transformations play key roles in assuring

Pareto efficiency and incentive compatibility of the mechanism we introduced for the simpli-

fied model. Incentive compatibility is assured simply by transforming each Category V pair

only after their left-lobe-donation possibilities are exhausted. We adopt a similar strategy

for the general model. Assuring Pareto efficiency for the simplified model, in contrast, relies

on a deeper observation on a hierarchy between Category V types, in terms of the timing of

their transformations. The key to our design for the general model is the observation that

similar hierarchies also exist for the general model.

Consider two pairs, one each from Category V types X − Y and U − V . Suppose that

while the two pairs cannot form a left-lobe-only exchange, they can form an exchange where

the donor of type Y donates his right lobe to the patient of type U , and the donor of type V

16Our definition of matchability differs from the standard definition in graph theory, which requires the
subgraph induced by J to have a perfect matching. See, for instance, Schrijver (2003, Vol I, p59).

17We explain a polynomial-time method for checking matchability in Appendix D.2.3.
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Figure 2: Precedence Digraph on Category V Types with Two Sizes (S = 2)

each Category V pair only after their left-lobe exchange possibilities were exhausted,

subject to the IC restriction that the algorithm decides whether or not the pair takes part

in an exchange by donating left lobe, without using the pair’s willingness announcement.

A related challenge was the specification of the sequence in which we transform

Category V types. As an example, consider two Category V pair types X � Y and

U � V such that the two pairs cannot form a left-lobe only exchange, but can form an

exchange where Y donates her right lobe to U and V donates her left-lobe to X. In such

a case, we would like to transform the X � Y pair types before the U � V pair types,

because after transforming the X � Y pair types, the left lobe exchange possibilities of

the U � V pair types may increase. This motivates the following definition.

Definition 15 Define a directed graph on the set of Category V pair types, that we will

call the precedence digraph, where for any Category V pair types X � Y and U � V :

X � Y �! U � V () X  V, U 6 Y & U  ⇢(Y ).

If X � Y �! U � V , we will also say that X � Y precedes U � V . For any Category

V pairs i and j, we will also write i �! j and say that i precedes j if ⌧(i) �! ⌧(j).

In the above definition, X�Y precedes U�V , if V can donate her left-lobe to X, and

Y cannot donate her left-lobe but can donate her right lobe to U . In this case the two

pair types X �Y and U �V cannot form a left-lobe only exchange, but can participate

in an exchange after transforming the X �Y pair type. Figure 2 depicts the precedence

digraph over Category V pairs in the case of two sizes (S = {0, 1}, ⇢(0) = ⇢(1) = 1).

Figure 3 depicts the precedence digraph over Category V pairs in the case of three sizes

(S = {0, 1, 2}, ⇢(0) = 1, ⇢(1) = ⇢(2) = 2).

In defining our mechanism more generally, we would like to transform Category V

pair types in a sequence such that for any Category V pair types X � Y and U � V :

X �Y �! U �V implies that X �Y pair types are transformed before the U �V pair

types. We next argue that it is indeed possible to find such a transformation order.

10

Figure 8: Precedence digraph on Category V types with two sizes (S = 2)
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Figure 3: Precedence Digraph on Category V Types with Three Sizes (S = 3)

Note that the precedence digraphs in Figure 2 and Figure 3 are acyclic. It turns

out that this observation is not specific to these two examples. As shown in the next

Lemma, the precedence digraph for any liver exchange pool is acyclic. By Lemma 1 in

Section 1, this implies that the precedence digraph has a topological ordering, which

will be the desired transformation sequence of Category V pair types.

Lemma 4 The precedence digraph on Category V pair types is acyclic.

4 The Algorithm

In this section we will describe an algorithm that will define an individually rational,

Pareto e�cient, and incentive compatible mechanism.

In the rest of the section, fix a liver-exchange pool (I, ⌧), a right-lobe-size function

⇢, a preference profile R 2 R, and an arbitrary linear order over I that we will interpret

as the priority ranking of the pairs. Let IV denote the set of Category V pairs. By

Lemma 4, the precedence digraph on IV is acylic. By Lemma 1, we can fix a topological

ordering of the precedence digraph on Category V pairs. Let IV = {i1, . . . , iK} be an

enumeration of Category V pairs with respect to the topological ordering.

The algorithm is separated into four main steps in four subsections. The second one

is the key step.

11

Figure 9: Precedence digraph on Category V types with three sizes (S = 3)

donates his left lobe to the patient of type X. In such a case, it is plausible to transform the

pair of type X−Y before the pair of type U −V , because the left-lobe-exchange possibilities

of the pair of type U−V may expand after transforming the type X−Y pair. This motivates

the following definition.

Define a directed graph on the set of Category V types, that we call the precedence

digraph, where for any two Category V types X − Y and U − V :

X − Y −→ U − V ⇐⇒ X ≤ V, U 6≤ Y & U ≤ ρ(Y ).

If X −Y −→ U −V , we will also say that X −Y precedes U −V . For any two Category V

pairs i and j, we will also write i −→ j whenever τ(i) −→ τ(j), and say that i precedes j.

In the above definition, type X −Y precedes type U −V if a donor of type V can donate

his left lobe to a patient of type X, whereas a donor of type Y can donate his right lobe but

not his left lobe to a patient of type U . In this case, two pairs fail to form a left-lobe-only

exchange, but they can form an exchange following a transformation of the type X − Y

pair. Figure 8 depicts the precedence digraph over Category V types in the case of two sizes

(S = {0, 1}, ρ(0) = ρ(1) = 1). Figure 9 depicts the precedence digraph over Category V

types in the case of three sizes (S = {0, 1, 2}, ρ(0) = 1, ρ(1) = ρ(2) = 2).

In defining our mechanism more generally, we would like to transform pairs of Category

V in a sequence such that for any two Category V types X − Y and U − V , where X − Y
precedes U − V , each pair of type X − Y is transformed before each pair of type U − V . It

is indeed possible to find such a transformation order. Note that the precedence digraphs in
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Figure 8 and Figure 9 are acyclic. This observation is not specific to these two examples. As

stated by the next lemma, the precedence digraph for any liver-exchange pool is acyclic.

Lemma 4 The precedence digraph on Category V types is acyclic.

Together with Lemma 8 in Appendix D.1, Lemma 4 implies that the precedence digraph

is consistent with a linear order, which can then be used to construct a linear order, called

topological order, over all pairs of Category V. Our general mechanism uses the topological

order to determine the transformation sequence of Category V pairs.

6.2 The Left&Right-Lobe Priority Algorithm for the General Model

We are ready to present an iterative algorithm, which can be used to find the outcome of

our mechanism. An expanded equivalent definition, used in the proof of our main result in

this section, is given in Appendix D.2.

Step 0: Fix a priority order over all pairs, a topological order of Category V

pairs induced by the precedence digraph, and a preference profile R.

Match each Category I pair by a direct left-lobe transplant.

Match each willing Category II pair by a direct right-lobe transplant.

Leave unwilling Category II and IV pairs and all Category 0 pairs unmatched.

Step 1: Let I0 be the set of pairs not handled in Step 0. Transform willing

Category IV pairs, the set of which we denote as IIV w, and obtain a new auxiliary

pool. Thus, G0 := (I0, Ec[IIV w]) is our initial compatibility graph.18 Let J0 := ∅
and J̃0 := ∅. Step 1’s substeps proceed inductively.

Step 1.(k): Let i be the k’th highest-priority Category V pair under

the topological order. If Jk−1 ∪ {i} is matchable in Gk−1, then let

Jk := Jk−1 ∪ {i}, J̃k := J̃k−1. Otherwise let Jk := Jk−1, and

• if i is not willing: let J̃k := J̃k−1.

• if i is willing: let J̃k := J̃k−1 ∪ {i}.
Define Gk := (I0, Ec[IIV w∪J̃k]), i.e., the graph obtained by transform-

ing all willing Category IV pairs along with willing Category V pairs

in J̃k. Proceed with Step 1.(k+1).

Step 1 ends at substep K, where K is the number of Category V pairs. Set JK of

Category V pairs is matchable in GK , where each pair in JK donates a left lobe,

while J̃K is the set of all willing Category V pairs that are transformed.

18This means, at this point only pairs in the set IIV w are available for a right-lobe transplant.
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Step 2: By this point, we are committed to match pairs in JK , but not the

others. Inductively, we continue with the remaining pairs I0 \ JK . Let J ∗0 := ∅.

Step 2.(n): Let i be the n’th highest-priority pair in I0 \ JK according

to the priority order over I. If JK ∪ J ∗n−1 ∪ {i} is matchable in GK ,

then let J ∗n := J ∗n−1 ∪ {i}. Otherwise, J ∗n := J ∗n−1. Proceed with Step

2.(n+1).

When Step 2 ends at substep N = |I0 \ JK |, the set of pairs JK ∪ J ∗N is a

matchable set in GK .

Step 3: Match each willing Category VI pair in I0 \ (JK ∪ J ∗N) by a direct

right-lobe transplant.

Together with the direct transplants determined in Steps 0 and 3, the algorithm

determines JK ∪J ∗N as the set of pairs to participate in exchange, where pairs in

IIV w ∪ J̃K participate via right-lobe donation and the rest via left-lobe donation.

Each pair is indifferent between any such matching, and the mechanism picks any

one of them as its outcome.19

The starting point of the above-described algorithm is the priority matching mechanism

analyzed in Roth, Sönmez, and Ünver (2005). In the absence of right-lobe donation, the two

mechanisms are identical. And in the absence of Category V pairs, modifying this mechanism

to allow for right-lobe donation is straightforward: In addition to pairs of Category V, pairs of

Categories II, IV, and VI potentially benefit from right-lobe donation. For pairs of Category

II, there are no left-lobe-donation possibilities, and hence willing pairs of this category are

to directly receive a right-lobe transplant. For pairs of Category IV, an exchange through

right-lobe donation is the only possibility for a transplant, and therefore, willing pairs of this

category are to be transformed right away for a possible exchange. For each willing pair

of Category VI, on the other hand, a direct right-lobe transplant is a last course of action

in case it fails to be part of an exchange donating a left lobe. Dealing with Category V

pairs, in contrast, is more delicate. That is because these pairs can be part of an exchange

donating either a left lobe or a right lobe, and while each Category V pair prefers the

former, the exchange options for other pairs might expand if they do the latter. Thanks to

the topological order among Category V pairs induced by the precedence digraph, we are

able to integrate these pairs into the general mechanics of the priority mechanism without

compromising its Pareto efficiency and incentive compatibility. Since these pairs influence

the underlying compatibility graph, they are to be handled before the other pairs (in Step

1). Following the topological order for the transformation of these pairs assures that no

new left-lobe-donation possibilities emerge for any Category V pair at a later step of the

algorithm once they are exhausted; this in turn assures that these pairs do not engage in

19We explain a polynomial-time method for how to find such a matching in Appendix D.2.3.
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less-preferred exchanges due to a premature transformation. Once which Category V pairs

are to be matched and which are to be transformed is determined at the end of Step 1, our

mechanism adopts at Step 2 the standard priority mechanism dynamics given for a fixed

compatibility graph. There is one additional trivial step at the conclusion of the algorithm,

to directly right-lobe transform the remaining willing Category VI pairs.

We are ready to present our last result.

Theorem 3 The general left&right-lobe priority mechanism is individually rational, Pareto

efficient, and incentive compatible.

7 Simulations

In this section, we report the results of computer simulations using South Korean aggre-

gate statistics to determine the potential gains of liver exchange over direct transplantation

alone.

Calibration Statistics for Simulations from South Korean Population

Live-Donation Recipients Live Donors Height (cm)

Female 1492 (34.55%) 1149 (26.61%) Mean: 157.40 Std Dev: 5.99
Male 2826 (64.45%) 3169 (73.39%) Mean: 170.70 Std Dev: 6.40
Total 4318 (100.0%) 4318 (100.0%)

Blood-Type Distribution

O A B AB Total
37% 33% 21% 9% 100%

Table 1: Calibration statistics from South Korea for liver-exchange simulations. Blood-type distri-
bution is obtained from http://bloodtypes.jigsy.com/East_Asia-bloodtypes on 04/10/2016.
Mean and standard deviation for South Korean adult height distribution are obtained from the
Korean Agency for Technology and Standards (KATS) website http://sizekorea.kats.go.kr on
04/10/2016. The transplant data is obtained from the Korean Network for Organ Sharing (KONOS)
2014 Annual Report, retrieved from http://www.konos.go.kr/konosis/index.jsp on 04/10/2016
and contains the years 2010–2014.

Table 1 summarizes the calibration parameters used in our simulations. Each patient

is assumed to be paired with a donor. Blood type, gender, and height characteristics for

patients and their donors are determined independently and randomly.20

20We use the following weight determination formula as a function of height (also see Ergin, Sönmez, and
Ünver, 2017): w = a hb, where w is weight in kilograms, h is height in meters, and constants a and b are
set as a = 26.58, b = 1.92 for males and a = 32.79, b = 1.45 for females (Diverse Populations Collaborative
Group, 2005). The body surface area (BSA in m2) of an individual is determined through the Mostellar

formula given in Um et al. (2015) as BSA =
√
h w
6 , and the liver volume (lv in ml) of Korean adults is

determined through the estimated formula in Um et al. (2015) as lv = 893.485 BSA− 439.169. Each patient
and donor have a height drawn independently from the truncated normal distribution using the mean and
std. dev. reported in this table with the support [mean - 3 std. dev., mean + 3 std. dev.]. We assume that
the left lobe of each donor is 35% of all his liver, as this is reported as the mean of the left-lobe volume in
Korea (Um et al., 2015).
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A donor and patient are deemed left-lobe compatible if they are blood-type compatible

and the donor’s left lobe volume is at least 40% of the total liver volume of the patient. A

donor and patient are deemed right-lobe-only compatible if they are not left-lobe compatible,

they are blood-type compatible, and the donor’s right-lobe volume is at least 40% of the total

liver volume of the patient.

We generate I = 50, 100, and 250 patient-donor pairs in three sets of simulations. Since

we do not have empirical statistics on the willingness of donors for right-lobe donation, we

consider 6 scenarios for each population size in which on average 0, 20, 40, 60, 80, and 100%

of all pairs are willing. For each given willingness rate, we randomly determine each pair’s

willingness. We consider two treatments:

• No exchange: Only left-lobe-compatible and right-lobe-only-compatible, willing pairs

participate in direct transplants.

• Proposed Mechanism: An outcome of our general left&right-lobe priority mechanism is

determined for arbitrary topological and priority orders.

The results of the simulations are given in Table 2. About 12.5% of all pairs are left-lobe

compatible and their patients receive a direct left-lobe transplant. Up to 45.5% of all pairs

become right-lobe-only compatible as a linear, increasing function of the willingness rate (see

the no exchange treatment in the table). Therefore, in the absence of liver exchange, 12.5% to

58.0% of patients with living donors receive a direct transplant as a linear, increasing function

of the willingness rate. Our mechanism, on the other hand, matches from 18% to 77.75% of

all pairs, in a seemingly concave, increasing function of the willingness rate for I = 100 (see

exchange treatment in the table). Thus, the increase in the number of transplants due to

exchange is in the range of 44% to 34%, higher for the lower values of the willingness rate.

Our proposed mechanism not only increases the number of living-donor liver transplants,

but also increases the reliance on the lower-risk left-lobe liver transplantation in the spirit

of the central tenet of the hippocratic oath “first do no harm.” For example, when all pairs

are willing, the share of left-lobe transplants increases from 21.5% to 31.1%. In general for

any willingness rate, the rate of increase in left-lobe transplants is higher than the rate of

increase in right-lobe transplants.

8 Conclusion

We introduced a liver-exchange model where the donor of each pair can donate either the

smaller and safer-to-donate left liver lobe or the larger and riskier-to-donate right liver lobe.

While liver exchange is inspired by the increasingly widespread kidney exchange, analytically

it is a more challenging problem due to its dual-donation possibility. On the one hand, right-

lobe donation expands the set of feasible exchanges, increasing the number of patients who

can receive a transplant. On the other hand, it is a considerably higher-risk procedure for

the donor, thereby possibly discouraging some of the donors from this option. And since
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No exchange Proposed Mechanism
Population

& w Left Right Left Right Left Right
Cat. V Rate Lobe Lobe Total Lobe Lobe Lobe Lobe Total
Pairs Direct Direct Direct Direct Exchange Exchange

0 6.204 0 6.204 6.204 0 1.918 0 8.122
(2.280) (2.831)

0.2 6.204 4.529 10.733 6.204 4.218 2.670 1.822 14.914
50 (2.912) (3.598)

0.4 6.204 9.081 15.285 6.204 8.201 3.286 3.532 21.223
& (3.330) (3.961)

0.6 6.204 13.665 19.869 6.204 11.948 3.816 5.028 26.996
10.044 (3.491) (3.930)

(2.824) 0.8 6.204 18.301 24.505 6.204 15.636 4.336 6.404 32.580
(3.581) (3.840)

1 6.204 22.870 29.074 6.204 19.126 4.767 7.521 37.618
(3.507) (3.581)

0 12.497 0 12.497 12.497 0 5.498 0 17.995
(3.367) (4.526)

0.2 12.497 9.097 21.594 12.497 8.372 7.031 4.425 32.325
100 (4.255) (5.540)

0.4 12.497 18.196 30.693 12.497 16.126 8.303 8.303 45.229
& (4.605) (5.681)

0.6 12.497 27.277 39.774 12.497 23.267 9.543 11.611 56.918
20.003 (4.814) (5.570)

(4.026) 0.8 12.497 36.402 48.899 12.497 30.127 10.693 14.447 67.764
(5.032) (5.350)

1 12.497 45.561 58.058 12.497 36.703 11.691 16.869 77.760
(5.062) (5.226)

0 31.031 0 31.031 31.031 0 19.652 0 50.683
(5.236) (7.681)

0.2 31.031 22.895 53.926 31.031 20.523 23.315 13.141 88.010
250 (6.572) (9.000)

0.4 31.031 45.500 76.531 31.031 39.045 26.512 23.792 120.38
& (7.263) (8.967)

0.6 31.031 68.387 99.418 31.031 56.391 29.478 32.736 149.636
49.628 (7.639) (8.543)

(6.314) 0.8 31.031 91.294 122.325 31.031 72.679 32.249 40.423 176.382
(7.777) (8.322)

1 31.031 114.084 145.115 31.031 88.376 34.656 46.546 200.609
(7.744) (7.805)

Table 2: Simulation results for population sizes I = 50, 100, 250 and willingness (w) rates 0, 0.2,
0.4, 0.6, 0.8, 1. Standard deviations of the populations for the total number of transplants are
reported below the averages in parentheses for 1000 simulations. Numbers of Category V pairs are
given below I in the first column.

some donors will be willing to donate their left lobes but not their right lobes, the liver-

exchange problem harbors a novel incentive compatibility consideration that is not present

in kidney exchange. Exploiting the acyclicity of a certain directed graph among pairs which

can participate in exchange both through left-lobe donation and right-lobe donation, we

introduced a novel exchange mechanism that is Pareto efficient and incentive compatible.

The welfare gains from adopting our mechanism are considerable, and depending on the

ratio of donors who are willing to donate a right lobe, it increases the number of living-donor

liver transplants by 34–44%.

Recently Mishra et al. (2018) advocated for organized liver exchange in the US, empha-

sizing the choice of a matching algorithm as one of the most difficult issues to be resolved.

We believe our proposed mechanism is a viable solution for this important problem.
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Appendix A Proofs of Lemmas in Section 3.4

Proof of Lemma 1: Suppose a pair i ∈ I of type X − Y participates in an exchange with

a pair j ∈ I \ {i} of type U − V in an individually rational matching M ∈ Mc[I]. Then

X 6≤ Y , as otherwise, i would have received a direct left-lobe transplant. For the proof of

the first claim, suppose t(i, j) = l. Suppose, to the contrary of the claim, X > Y . Two cases

are possible, t(j, i) = l or t(j, i) = r.

• Case 1. t(j, i) = l: Then U − V has to satisfy V ≥ X > Y ≥ U . But then, j has to

participate in a direct transplant in M since t(j) = l. A contradiction.

• Case 2. t(j, i) = r: Then U − V has to satisfy ρ(V ) ≥ X > Y ≥ U . But then j has to

participate in a direct transplant in M as t(j) = r or t(j) = l, a contradiction again.

Thus, X 6≥ Y should also hold. The second claim, i.e., the case when t(i, j) = r, is proven

using ρ(Y ) instead of Y in the above proof for the first claim. �

Proof of Lemma 2: Let R ∈ R be a willingness profile and M ∈Mc[I] be an individually

rational matching under R. All types X − Y ∈ T × T fall into one of the following seven

mutually exclusive categories:

0. X > ρ(Y ): This also implies X > Y . Thus, a type X − Y pair cannot participate in

exchange in M by a donating a left or right lobe by Lemma 1.

I. X ≤ Y : A type X − Y pair is left-lobe compatible, and in M , it receives a direct left-

lobe transplant. On the other hand, in none of the remaining cases is a direct left-lobe

transplant possible for an X − Y pair.

II. Y < X ≤ ρ(Y ): A type X − Y pair can receive a direct right-lobe transplant in M .

Moreover, as X ≥ Y , it cannot participate in an exchange in M by donating a left lobe

by Lemma 1. Thus, it can only remain unmatched in M if it is unwilling.

III. X 6≤ ρ(Y ), X 6≥ Y , & Y = ρ(Y ): Since also X 6≤ ρ(Y ), the pair cannot participate

in a direct left-lobe or right-lobe transplant. Since Y = ρ(Y ), in all exchanges it can

participate by donating a right lobe, it can also participate by donating a left lobe. By

Lemma 1, it can participate in an exchange in M by donating a left lobe, or it remains

unmatched.

IV. X > Y , X 6≥ ρ(Y ), & X 6≤ ρ(Y ): By Lemma 1, a type X − Y pair cannot participate

in an exchange in M by donating a left lobe. On the other hand, again by Lemma 1, it

can participate in an exchange in M to donate a right lobe. So this is its only exchange

option in M if it is willing, or it remains unmatched in M .

V. X 6≤ ρ(Y ), X 6≥ Y , & Y < ρ(Y ): By Lemma 1, a type X − Y pair can participate in

exchange by donating a left lobe. On the other hand, by Lemma 1, it can participate

in an exchange in M by donating a right lobe as well, if it is willing. Thus, it has two

exchange options in M . It can also remain unmatched in M .

33



VI. X < ρ(Y ), X 6≥ Y , & X 6≤ Y : In M , it can participate in a direct right-lobe transplant

if it is willing. As an exchange needs to be individually rational, it will never participate

in an exchange to donate a right lobe. We also have X 6≥ Y . Therefore, by Lemma 1,

it can participate in an exchange in M by donating a left lobe. In M , it will only be

unmatched if it is unwilling.

Conversely, suppose M is a matching consisting entirely of the types of transplants depicted

in I–VI above. Then, by definition, M is individually rational, concluding the proof. �

Proof of Lemma 3: Throughout the proof, let f be an individually rational mechanism.

We start by proving that if f is incentive compatible, then the equivalence holds. Let

i ∈ I and R−i ∈
∏

j 6=iRj. To see the “⇐” direction, suppose for a contradiction that i

participates in an exchange by donating a left lobe at f(Ru
i , R−i), but not at f(Rw

i , R−i). By

individual rationality, the pair i is not left-lobe compatible (i.e., not Category I); otherwise,

it would directly donate a left lobe at f(Ru
i , R−i). Therefore, i cannot directly donate a

left lobe also at f(Rw
i , R−i). The only feasible match possibilities of i at f(Rw

i , R−i) are: i

directly donates its donor’s right lobe; i takes part in an exchange by donating a right lobe;

or i is unmatched. By the definition of preferences, at Rw
i , i strictly prefers being part of

an exchange by donating a left lobe to all the three match possibilities at f(Rw
i , R−i), i.e.:

f(Ru
i , R−i)P

w
i f(Rw

i , R−i), contradicting the incentive compatibility of f . The proof of the

“⇒” direction is symmetric by switching the roles of Ru
i and Rw

i .

Now assume that the equivalence holds. We will show that this implies incentive com-

patibility of f . Take any i ∈ I and R−i ∈
∏

j 6=iRj. If i is left-lobe compatible (i.e., Category

I), then individual rationality implies that i directly donates a left lobe at f(Ru
i , R−i) and

f(Rw
i , R−i). Therefore, whether i is willing or unwilling, i is indifferent between f(Ru

i , R−i)

and f(Rw
i , R−i), implying the incentive compatibility condition for i. Suppose next that i is

not left-lobe compatible. By the equivalence, there are two cases to consider:

Case 1: In both f(Ru
i , R−i) and f(Rw

i , R−i), the pair i is part of an exchange by donating

a left lobe. Therefore, whether i is willing or unwilling, i is indifferent between f(Ru
i , R−i)

and f(Rw
i , R−i), implying the incentive-compatibility condition for i holds.

Case 2: In neither f(Ru
i , R−i) nor f(Rw

i , R−i), the pair i is part of an exchange by donat-

ing a left lobe. By individual rationality, this implies that i is unmatched at f(Ru
i , R−i).

Thus, f(Ru
i , R−i)R

u
i f(Rw

i , R−i), by the specification of preference Ru
i . At f(Rw

i , R−i), the

only individually rational match possibilities of i are: i directly donates a right lobe; i takes

part in an exchange by donating a right lobe; or i is unmatched, which is the worst of these

three options under Rw
i . Therefore, we also have f(Rw

i , R−i)R
w
i f(Ru

i , R−i) by the individual

rationality of f , as desired. �
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Appendix B Proof of Theorem 1

Fix an exchange pool. In the rest of the paper, given an exchange pool, let n(X − Y )

be the number of X − Y pairs for any X − Y ∈ T × T . A maximum individually rational

matching M0 exists by finiteness of the problem.

Step 0: In all individually rational matchings all compatible pairs participate in direct

transplants.

Step 1: Suppose that M0 does not maximize the exchanges between 100−011 and 011−100

types. That is, the number of 100− 011 and 011− 100 types matched in M0 is strictly less

than min{n(100 − 011), n(011 − 100)}. Let ∆ > 0 be the difference. Since 011 − 100 types

can only be matched to 100− 011 types, at least ∆ many 011− 100 types are unmatched in

M0 and at least ∆ many 100− 011 types are matched to other types. We can define a new

matching M ′
0 by unmatching ∆ many of those 100− 011 types and rematching them to the

unmatched 011 − 100’s. Then, M ′
0 continues to be maximum and maximizes the exchanges

between 100− 011 and 011− 100 types.

Suppose that M ′
0 does not maximize the exchanges between 010 − 100 and 100 − 010

types. Then, the number of 010 − 100 and 100 − 010 types matched in M ′
0 is strictly less

than min{n(010− 100), n(100− 010)}. Let ∆ > 0 be the difference. From Figure 2 and the

optimality of M ′
0, at least ∆ many 010− 100 types are matched to 100− 011 types, and at

least ∆ many 100−010 types are matched to 010−101 types. We can define a new matching

M ′′
0 by undoing these matches, rematching those 010−100 and 100−010 types to each other,

and rematching those 100− 011 and 010− 101 types to each other. Then, M ′′
0 continues to

be maximum and also maximizes the exchanges between 010− 100 and 100− 010 types.

By applying the above arguments to the other exchanges in Figure 3(a), we obtain a

maximum matching M1 that maximizes the exchanges in Step 1 of the matching algorithm.

Step 2: Fix the matches maximized in Step 1, and consider any submatching M∗ among

remaining types that maximizes the exchanges between the remaining 100 − 011 types and

the remaining types in T = {010− 100, 001− 100, 011− 101, 011− 100}. Let k and m denote

the number of exchanges between 100 − 011 types and types in T at the submatching M∗

and at the matching M1, respectively. Since the submatching M∗ maximizes these exchanges

after Step 1, k ≥ m. At the matching M1, unmatch the m matches between 100 − 011

types and types in T , and unmatch an additional k −m many 100 − 011 types matched to

010−101 or 001−110 types. Then, rematch those k 100−011 types with types in T as in the

submatching M∗. The new matching M ′
1 obtained in this way, is maximum and maximizes

the exchanges between the remaining 100− 011 types and the remaining types in T .

By applying the above argument to the other exchanges in Figure 3(b), we obtain a

maximum matching M2 that sequentially maximizes the exchanges in Steps 1 and 2 of the

matching algorithm.
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Step 3: Take any matching M that agrees with M2 in the matches created in the first two

steps. Since the only remaining exchanges after Steps 1 and 2 of the algorithm are those

in Figure 3(c), the matching M is maximum if and only if it maximizes the exchanges in

Figure 3(c) given the matches in the first two steps.

Appendix C Proof of Theorem 2

We prove Theorem 2 through three lemmas.

In the following proofs, by a neighbor of a type X − Y (or neighbor of a pair i), we mean

a type whose pairs can participate in an individually rational exchange with an X − Y pair

(or i).

Lemma 5 The two-size left&right-lobe sequential matching mechanism is individually ratio-

nal.

Proof of Lemma 5: Let M be the outcome of the mechanism for a given willingness

profile R and priority order. First, observe that no unwilling pair donates a right lobe in M .

Category 0 pairs cannot be matched in any individually rational matching (by Lemma 2) and

are not matched in M , either. All Category I pairs receive direct left-lobe transplants in M

in Step 0. Category II and VI pairs cannot participate in individually rational direct left-lobe

donation (by Lemma 2). All willing Category II pairs and Category VI pairs that cannot

be matched in feasible exchanges by donating a left lobe receive direct right-lobe transplants

in M . Category III, V, and VI pairs cannot get individually rational direct transplants (by

Lemma 2). Matching M does not match them in direct transplants, either. Given these indi-

vidually rational direct transplants in M , the algorithm conducts only individually rational

exchanges by construction, and thus, M is individually rational. �

Lemma 6 The two-size left&right-lobe sequential matching mechanism is Pareto efficient.

Proof of Lemma 6: Let R ∈ R be a willingness profile, and let a priority order be fixed.

Let M be the outcome of the mechanism and M ′ ∈ Mc[I] be a Pareto-efficient matching

such that for all i ∈ I, M ′RiM , i.e., M ′ weakly Pareto dominates M . We will show that all

pairs are indifferent between M and M ′.

Our proof strategy will be sequentially constructing a set of matchings M0 := M ′, M1b,

M2a, M2b, M2c, and M2d such that Ms agrees with M for all pairs matched in steps up to

and in Step s of the algorithm, and all pairs are indifferent between M ′ = M0 and Ms.

Since M ′ and M are both individually rational (the individual rationality of M is implied

by Lemma 5, and thus, the individual rationality of M ′ is implied by the fact that M ′ weakly
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Pareto dominates M), all Category I pairs have to receive direct left-lobe donation, and all

willing Category II pairs have to receive direct right-lobe donation in both matchings by

Lemma 2. Thus, pairs matched in Step 0 of the algorithm are indifferent between M0 = M ′

and M .

Without loss of generality assume that n(010 − 100) ≥ n(100 − 010) in the rest of this

proof.

Construction of M1b: We construct M1b as follows, by changing the matches of pairs

matched in Step 1b. Recall that 0-waste exchanges are conducted in this step. These are

either (a) value -1 & value +1 exchanges or (b) value 0 & value 0 exchanges. Suppose we

clear them in this order in Step 1b, value -1 & value +1 first and value 0 & value 0 next.

(a) Value -1 & value +1 exchanges are cleared: Consider an exchange between pair i with

τ(i) = 101− 010 and pair j with τ(j) = 010− 101 chosen by M but not by M0 = M ′.

Since i is matched to donate a left lobe in M , it is also matched to donate a left lobe in

M ′, as M ′ weakly Pareto dominates M . So is j.

Let M ′(i) = h and M ′(j) = ` for some pairs h and `. Either (i) τ(h) = 010 − 101, or

(ii) τ(h) = 010 − 100, and h is willing and matched to donate a right lobe to i in M ′

(see Figure 4, 010 − 101 is the only auxiliary neighbor of 101 − 010). Thus, pair j and

pair h are either of the same type or pair h can be transformed to pair j’s type. Since

M ′(j) = `, pairs h and ` can also be matched with each other.

Define

M ′′ :=
[
M ′ \

{
{i, h}, {j, `}

}]
∪
{
{i, j}, {h, `}

}
.

For pair h, M ′′ Rh M
′. To see this: If τ(h) = τ(j) = 010 − 101 then h is matched to

donate a left lobe in both M ′′ and M ′. If τ(h) = 010−100, then h is willing and matched

to donate a right lobe in M ′.

For pair `, M ′′ R` M
′. To see this: If ` donates a left lobe in M ′ to j, which is of type

010−101, then it can donate feasibly a left lobe to h = M ′′(`) as well, as τ(h) = 010−101,

or τ(h) = 010− 100 and h is willing.

Now all pairs weakly prefer M ′′ to M0 = M ′. Since M ′ is Pareto efficient, then they

should be Pareto indifferent.

We use a similar construction to obtain a new matching from M ′′ (instead of M ′) for any

other value -1 & value +1 exchange cleared in Step 1 and not chosen in M ′ (i.e., those

exchanges of auxiliary types 110 − 001 & 001 − 110 and 011 − 100 & 100 − 011), and

iteratively continue.21 Suppose M ′
1b is the outcome of this (a) part. Now, all pairs are

indifferent between M ′
1b and M ′ = M0, and all value -1 & value 1 exchanges in M also

exist in M ′
1b.

(b) Value 0 & value 0 exchanges are cleared: Consider an exchange between pair i with

21The only difference in the argument is that an auxiliary 110− 001 type can only be matched with a pair
of its reciprocal type in M ′.
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τ(i) = 010 − 100 and pair j with τ(j) = 100 − 010 chosen by M but not M ′
1b. As

M ′ weakly Pareto dominates M , both i and j are matched, and they both donate left

lobes in M ′ as well. Suppose M ′(i) = h and M ′(j) = ` for some pairs h and `. Then

τ(h) = 100 − 011 or τ(h) = 100 − 010, and τ(`) = 010 − 100 or τ(`) = 010 − 101 (see

Figure 4). Observe that patients of h and ` are left-lobe compatible with each other’s

donors. Therefore, we can form a matching

M ′′′ :=
[
M ′

1b \
{
{i, h}, {j, `}

}]
∪
{
{i, j}, {h, `}

}
such that all pairs are indifferent between M ′′′ and M ′

1b (and hence, M ′ by Part (a)).

We use a similar construction to obtain a new matching from M ′′′ (instead of M ′
1b) for

any other value 0 & value 0 exchange cleared in Step 1 (i.e., exchanges involving pairs

of types 001 − 100, 001 − 010, 011 − 101, 011 − 110, and 101 − 110) and not picked in

M ′, and iteratively continue. Suppose M1b is the outcome of this step. Now, all pairs are

indifferent between M1b and M ′ = M0, and all Step 1b exchanges in M also exist in M1b.

Construction of M2a: The remaining highest-priority type 010 − 100 pairs are matched

with the remaining highest-priority type 100− 011 pairs in M in Step 2a.

Take the highest-priority pair i of type 010−100 such that M(i) = j for some pair j with

τ(j) = 100 − 011 and M1b(i) 6= j if such a pair exists. Now M1b(i) = h and M1b(j) = ` for

some pairs h and ` such that i and j donate left lobes because M1b weakly Pareto dominates

M . Since pair i is still available in Step 2, all pairs of i’s reciprocal type 100 − 010 should

have been exhausted in Step 1b. Because M1b and M coincide for all pairs matched in Step

1 by construction of M1b, no type 100 − 010 pairs could be matched with i in M1b. Thus,

the only possible type for h is 100 − 011 (h is not of type 100 − 010w, because such pairs

are exhausted in Step 1; see Figure 6(a)), i.e., the same type of j. Thus the following is a

feasible matching:

M ′′ :=
[
M1b \

{
{i, h}, {j, `}

}]
∪
{
{i, j}, {h, `}

}
such that all pairs are indifferent between M ′′ and M1b (and thus, M0 = M ′), and M ′′ agrees

with M for all pairs matched before i and j in the algorithm and also for pairs i and j.

We repeat the above procedure for all such remaining i, starting with M ′′ instead of M1b.

Let M2a be the final outcome of this procedure.

Construction of M2b: In Step 2b, if willing type 010−100 pairs are left they are transformed

to donate a right lobe and matched with type 101−010 pairs. Suppose that some willing pair

i with τ(i) = 010−100 is matched to donate its right lobe to some pair j with τ(j) = 101−010

in Step 2b of the algorithm so that M(i) = j but M2a(i) = h 6= j (see Figure 6(b)). Moreover,

let i be the highest-priority pair with this property. By construction of M1b and M2a, all

pairs, with which i can form an exchange by donating its donor’s left lobe, are matched
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with other pairs in M2a. Thus, i has to be matched to donate a right lobe in M2a, by the

construction of M1b and M2a and that M2b weakly Pareto dominates M . Hence, τ(h) is a

type that can be matched with 010− 101.

Suppose M2a(j) = ` for some pair `. Since j is matched to donate a left lobe in M ,

it should also be matched to donate a left lobe in M2a, which weakly Pareto dominates

M . Thus, the only options for `’s type are 010 − 101 or 010 − 100w, since pair of type

τ(j) = 101− 010 can donate a left lobe in an exchange with a pair of only one of these types

(see Figure 4). Hence, pairs h and ` can be matched with each other. We construct

M ′′ :=
[
M2a \

{
{i, h}, {j, `}

}]
∪
{
{i, j}, {h, `}

}
as a feasible matching such that all pairs are indifferent between M2a (and thus, M ′) and

M ′′, and M ′′ agrees with M for all pairs matched before i and j in the algorithm and also

for pairs i and j.

We repeat the above procedure for all such remaining i, starting with M ′′ instead of M2a.

Let M2b be the final outcome of this procedure.

Construction of M2c: Observe that pairs of both types 101− 011 and 011− 101 could not

have remained in the pool simultaneously until Step 2c of the algorithm (as such pairs would

have been matched in Step 1b with each other). Thus, either 101 − 011 or 011 − 101 type

pairs (or both) have been depleted in Step 1.

Take the highest-priority pair i matched in Step 2c such that j = M(i) 6= M2b(i) = h

for some pairs j and h. Let M2b(j) = ` for some pair `. Such a pair ` exists as M2b weakly

Pareto dominates M and j is matched in M .

Without loss of generality, let i be of auxiliary type 011− 101 and j be of auxiliary type

101−011 such that at least one is matched to donate a right lobe. Because i and j remained

unmatched until Step 2c and because we showed that all pairs matched in Steps 0, 1, 2a, and

2b have the same matches in both M and M2b, we have the following cases:

1. i can be of two types:

(a) 011−101: Since i is not matched until Step 2c, all pairs of its neighbor 101−011 are

matched in Step 1b in M . In particular, these pairs are matches different from i in

M2b. Hence, h has to belong to one of the two remaining neighbors of i, 101− 010w

or 100− 011.

(b) 011− 100w: Since i is not matched until Step 2c, all pairs of its neighbors 100− 011

and 100 − 010w are matched in Step 1b in M . In particular, these pairs are not

matched with i in M2b. Thus, h has to belong to one of the two remaining neighbors

of i, 101− 010w or 101− 011.

2. j can be of two types:
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(a) 101−011: Since j is not matched until Step 2c, all pairs of its neighbor 011−101 are

matched in Step 1b in M . In particular, these pairs are matched in matches different

from j in M2b. Hence, ` has to belong to one of the three remaining neighbors of j,

011− 100w, 010− 100w, or 010− 101.

(b) 101− 010w: Since j is not matched until Step 2c, all pairs of its neighbor 010− 101

are matched in Step 1b, and those of 010 − 100w are matched in Steps 1b and 2b

in M . In particular, these neighboring-type pairs with j are not matched with j in

M2b. Thus, ` has to belong to type 011− 101 or type 011− 100w, the only remaining

neighbors of j.

Now, regarding i and j together, 3 of the above possible 4 combinations can occur at the

same time: 1(a) and 2(b), 1(b) and 2(a), or 1(b) and 2(b). Thus, in all cases {h, `} is a

feasible exchange such that either h and ` each improve or remain indifferent with respect to

M2b. Since M2b is Pareto efficient,

M ′′ :=
[
M3 \

{
{i, h}, {j, `}

}]
∪
{
{i, j}, {h, `}

}
leaves every pair indifferent with respect to M2b (and thus, M ′). Moreover, M ′′ agrees with

M for all pairs matched before i and j in the algorithm and also for pairs i and j. We repeat

the above procedure for all such remaining i starting with M ′′ instead of M2b. Let M2c be

the final outcome of this procedure.

Construction of M2d: Take pair i of one of the auxiliary types 100 − 011, 010 − 101, or

001 − 110 such that M(i) = j 6= h = M2c(i) and i is the highest-priority pairs among such

pairs. Let M2c(j) = `. Such a pair ` exists, as M2c weakly Pareto dominates M and j is

matched in M . Observe that by construction of M1b, M2a, M2b, and M2c, all pairs matched

in steps before Step 2d in the algorithm have the same matches in M2c and M . Three cases

are possible (See Figure 6(d)):

1. τ(i) = 100 − 011: Then j belongs to one of the following types: 011 − 101/011 − 100w

(i.e., originally of type 011 − 101 or transformed to 011 − 101 and originally of type

011− 100w), 011− 110, and 001− 100. If j belongs to 011− 101/011− 100w, then pairs

of types 101− 010w and 101− 011, which are the other two neighbors with j besides i’s

type, are exhausted in Steps 1b, 2b, and 2c. If j is of type 011− 110 or 001− 100, then

the other auxiliary neighbor with j besides i’s type, which are 110− 011 and 100− 001,

are exhausted in Step 1b. Thus, τ(`) = τ(i).

2. τ(i) = 010 − 100 and i is willing, or τ(i) = 010 − 101: Then j belongs to one of the

types (i) 001− 010, (ii) 101− 110, or (iii) 101− 010w/101− 011. In each of these cases,

observe, in Figure 6(d), that pairs of all neighbors of j have been exhausted in (i) Step

1b, (ii) Step 1b, or (iii) Steps 1b, 2b, and 2c, respectively, except those of auxiliary type

010− 101. Thus, `’s and i’s auxiliary types have to be the same.

3. τ(i) = 001−110: Then j belongs to one of the four auxiliary types, 110−011, 110−101,
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100 − 001, and 010 − 001. Thus, all of j’s potential matches except those with pairs of

type 001− 110 have been exhausted in Step 1b. Thus, τ(`) = τ(i).

In each case, {h, `} is a feasible exchange, and

M ′′ :=
[
M2c \

{
{i, h}, {j, `}

}]
∪
{
{i, j}, {h, `}

}
leaves every pair indifferent with respect to M2c (and thus, M ′). Moreover, M ′′ agrees with

M for all pairs matched before i and j in the algorithm and also for pairs i and j. We repeat

the above procedure for all such remaining pairs starting with M ′′ instead of M2c. Let M2d

be the final outcome of this procedure.

We are ready to finish the proof of the theorem. By the algorithm, if a pair i of auxiliary

type X − Y ∈ V1 = {100 − 011, 010 − 101, 001 − 110} (i.e., the set of value +1 auxiliary

types) was not matched in Steps 1b, 2a, 2b, 2c, and 2d, then no pairs of its neighbors except

the ones belong to the auxiliary types in V1 \ {X − Y } have remained available until Step 3.

Thus, to create a Pareto-efficient matching among the pairs remaining in this step, we need

to maximize the number of exchanges among them. As the algorithm exactly does this and

M2d weakly Pareto dominates M while all the matches prior to Step 3 are identical between

M2d and M , M2d should be Pareto indifferent to M for the pairs matched until and in Step

3. Since in Step 4, unmatched and willing Category VI pairs are matched to have direct

right-lobe transplants, M is Pareto efficient. �

Lemma 7 The two-size left&right-lobe sequential matching mechanism is incentive compat-

ible.

Proof of Lemma 7: Let R ∈ R be a willingness profile, and let a priority order be fixed.

First observe the following: In each step of the algorithm, we clear exchanges involving

a given (auxiliary) type according to the exogenously fixed priority order. Moreover, for

each pair, the lobe it will donate is uniquely defined once we clear them in an exchange or

a direct transplant. Thus, a pair’s willingness type revelation does not affect whether it will

be matched by donating a left lobe in a step given that it is available at that step in the

algorithm after all required transformations are done in that step. We refer to this argument

as (*) in the proof below.

We consider the incentives faced by each pair with respect to their categories:

Category 0 pairs have no possibility of being matched by Lemma 2. Each Category I pair

is matched in Step 0a by left-lobe donation in a direct transplant. Thus, pairs of these three

types are indifferent between being and not being truthful about their willingness types.

Each Category II pair can only be matched through a direct right-lobe transplant by

Lemma 2. Since we match the willing Category II pairs in Step 0c of the algorithm in
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direct right-lobe transplants, it is a strictly dominant strategy for each Category II pair to

be truthful about its willingness type.

Each Category III pair is either matched in an exchange by donating a left lobe or left

unmatched by Lemma 2. By Argument (*), it is indifferent between being and not being

truthful about its willingness type.

Each Category IV pair can only be matched through an exchange and only by donating

its right lobe by Lemma 2. Since we transform the willing Category IV pairs in Step 1a and

make them available for exchange through a right-lobe donation, no Category IV pair will

be worse off by being truthful about its willingness type.

Each Category V pair can only be matched through an exchange and, in particular, by

donating a left lobe or, if it is willing, by donating a right lobe by Lemma 2. We explore the

4 Category V types, 100 − 010, 010 − 100, 011 − 100, and 101 − 010 individually. Without

loss of generality, assume that n(010− 100) ≥ n(100− 010).

• Each type 100−010 pair is matched in an exchange with a type 010−100 pair in Step 1b

by donating a left lobe regardless of its willingness type as n(010− 100) ≥ n(100− 010)

(see Figure 5).

• A type 010− 100 pair can donate a left lobe only to a type 100− 011 or 100− 010 pair

in an exchange. Type 010 − 100 pairs are matched in Step 1b and Step 2a with these

two types, respectively. By Argument (*), a type 100 − 010 pair is matched in Step 1b

or 2a while reporting willing if and only if it is matched in Step 1b or 2a while reporting

unwilling. The remaining type 010−100w pairs are transformed for a right-lobe donation

in Step 2b only after all of their left-lobe-donation possibilities are exhausted (see Figures

5 and 6). Thus, type 010 − 100 pairs that are still unmatched at the beginning of Step

2b are weakly better off being truthful about their willingness type.

• A type 011− 100 pair can donate a left lobe only to a type 100− 011 or 100− 010w pair

in an exchange. In Step 1b, 011− 100 pairs are matched with 100− 011 type pairs. On

the other hand, all type 100−010 pairs are exhausted in Step 1b; therefore, none of them

are transformed and matched with 011− 100 pairs. By Argument (*), a type 011− 100

pair is matched in Step 1b while reporting willing if and only if it is matched in Step 1b

while reporting unwilling. The remaining type 011− 100w pairs are transformed in Step

2c, only after their all left-lobe-donation possibilities are exhausted (see Figures 5 and

6). Thus, type 011− 100 pairs that are still unmatched at the beginning of Step 2c are

weakly better off being truthful about their willingness type.

• A type 101 − 010 pair can donate a left lobe only to a type 010 − 101 or 010 − 100w

pair in an exchange. By Argument (*), a type 101 − 010 pair is matched in Step 1b or

2b while reporting willing if and only if it is matched in Step 1b or 2b while reporting

unwilling. The remaining type 101 − 010w pairs are transformed in Step 2c, only after

their left-lobe-donation possibilities are exhausted (see Figures 5 and 6). Thus, type
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101 − 010 pairs that are still unmatched at the beginning of Step 2c are weakly better

off being truthful about their willingness type.

Each Category VI pair can only be matched in an individually rational exchange by do-

nating a left lobe or, if it is willing, it can be matched in a direct right-lobe transplant by

Lemma 2. Category VI type pairs are only transformed after all exchanges are cleared in the

algorithm in Step 4. Therefore, they are best off by being truthful as well. �
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Intended for Online-Only Publication

Appendix D Proofs of Results in Section 6

D.1 Mathematical Preliminaries

In this section, we will state some definitions and a result from graph theory that will be

used in subsequent proofs.

A tuple G = (V , E) is a graph if V is a nonempty set and E ⊆
{
{x, y} : x, y ∈ V

}
. The

elements of V are called vertices. The elements of E are called edges.

Note that in the definition of a graph, we are allowing for loops, i.e., edges {x, y} such

that x = y.22

A matching in a graph G = (V , E) is a subset M ⊆ E of pairwise disjoint edges, i.e.,

e, e′ ∈M such that e∩ e′ 6= ∅ =⇒ e = e′. Given a matching M in G, we will abuse notation

and also define the function M : V → V ∪ {∅} by:

M(x) =

{
y if there exists y ∈ V such that {x, y} ∈M
∅ otherwise

for all x ∈ V . We call M(x) the match of x in M . We will say that a subset W ⊆ V is

matchable in G, if there is a matching M in G such that M(x) 6= ∅ for all x ∈ W .

In a graph, the vertices corresponding to each edge e = {x, y} are unordered. We will

also need the notion of a directed graph where the order of the vertices does matter.

A tuple G = (V , E) is a directed graph (digraph) if V is a nonempty set and E ⊆
{(x, y) ∈ V × V : x 6= y}. When the digraph is understood, we will also use x→ y to denote

(x, y) ∈ E.

Note that as opposed to our definition of a compatibility graph, in the definition of a

digraph, we are ruling out loops, i.e., directed edges (x, y) such that x = y.23

Given a digraph G = (V , E), a topological order on G is a linear order L on V such

that: x→ y implies xLy, for all x, y ∈ V .

22In some texts, a simple undirected graph with loops is what we call a graph here. See for example Korte
and Vygen (2011, p13-14).

23In some texts, a simple directed graph without loops is what we call a digraph here. See again Korte and
Vygen (2011, p13-14).
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A digraph G = (V , E) is acyclic if there does not exist an integer n ≥ 2 and v1, . . . , vn ∈ V
such that: v1 → v2 → . . .→ vn → v1.

The following lemma is a standard result in graph theory.24

Lemma 8 Given a digraph G = (V , E), there exists a topological order on G if and only if

G is acyclic.

We continue with the proof of Lemma 4 in Subection 6.1.

Proof of Lemma 4: Suppose for a contradiction that the precedence digraph has a cycle:

X0 − Y 0 −→ X1 − Y 1 −→ . . . −→ Xn−1 − Y n−1 −→ X0 − Y 0

where n ≥ 2.

Note that for each k ∈ {0, 1, . . . , n− 1}:

Xk − Y k −→ X mod n(k+1) − Y mod n(k+1) −→ X mod n(k+2) − Y mod n(k+2)

implies thatXk
3 ≤ Y

mod n(k+1)
3 . It also implies that Y

mod n(k+1)
3 < X

mod n(k+2)
3 since Y mod n(k+1) 6≥

Xmod n(k+2) and ρ(Y mod n(k+1)) ≥ Xmod n(k+2). Therefore, Xk
3 < X

mod n(k+2)
3 . That is, a pa-

tient along the cycle has a smaller size than the patient two steps ahead in the cycle. This

can be used to obtain a contradiction in two separate cases:

Case 1 “n is even”: X0
3 < X2

3 < . . . < Xn−2
3 < X0

3 .

Case 2 “n is odd”: X0
3 < X2

3 < . . . < Xn−1
3 < X1

3 < X3
3 < . . . < Xn−2

3 < X0
3 . �

D.2 Expanded Description of the Mechanism

We will now give an expanded description of the algorithm for the general sizes that will

define an individually rational, Pareto-efficient, and incentive-compatible mechanism. While

giving the definition, we will prove certain results and provide some discussion, which will

explain why we chose these particular steps in this order.

In the rest of the section, fix a liver-exchange pool (I, τ), a right-lobe size function ρ,

a preference profile R ∈ R, and an arbitrary linear order over I that we will interpret as

the priority ranking of the pairs. Let IV ⊆ I denote the set of Category V pairs. Extend

the precedence digraph on the types of Category V pairs to the pairs themselves as follows:

Suppose (τV , εV ) is the precedence digraph of the existing Category V types in the pool.

Construct a digraph (IV , EV ) such that for any two types X−Y, U−V ∈ τV and for any two

24For example, see Proposition 2.9 in Korte and Vygen (2011, p20).
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pairs i, j ∈ IV such that τ(i) = X−Y and τ(j) = U−V : (i, j) ∈ EV ⇐⇒ (X−Y, U−V ) ∈
εV . We refer to (IV , EV ) as the precedence digraph on IV . By Lemma 4, the precedence

digraph on IV is also acylic. By Lemma 8, we can fix a topological order of the precedence

digraph on IV . Let IV = {i1, . . . , iK} be an enumeration of Category V pairs with respect

to the topological order.

The algorithm is separated into four main steps in four subsections. The second one is

the key step. The succinct version of the algorithm presented in Section 6 and the algorithm

below are equivalent.

D.2.1 Step 0

One of our objectives is to ensure that the outcome of the algorithm is individually ratio-

nal. As an implication, we can immediately conclude, using Lemma 2, that some categories

of pairs have to be unmatched and some have to be involved in direct donation, indepen-

dently of the rest of the liver-exchange pool. In Step 0 of the algorithm, we determine these

matches:

1. Leave all Category 0 pairs unmatched.

2. Let all Category I pairs directly donate a left lobe.

3. For any Category II pair i

(a) If i is unwilling, leave i unmatched.

(b) If i is willing, let i directly donate a right lobe.

4. Leave all unwilling Category IV pairs unmatched.

LetM0 be the matching inGc[I] that corresponds to the above direct donations. Formally:

M0 =
{
{i} : i ∈ I is Category I

}
∪
{
{i} : i ∈ I is Category II and Ri = Rw

i

}
.

D.2.2 Step 1

Let I0 denote the set of pairs whose match (possibly ∅) is not determined in Step 0. That

is, I0 consists of all Category III pairs, all willing Category IV pairs, all Category V pairs,

and all Category VI pairs. Suppose IIV w ⊆ I is the set of willing Category IV pairs.

In this part of the algorithm, we will define a sequence of graphs G0 = (I0, E0), G1 =

(I0, E1),. . ., GK = (I0, EK) on I0, where the edge sets are nondecreasing: E0 ⊆ E1 ⊆ . . . ⊆
EK . We will also define two nondecreasing sequences of subsets ∅ = J0 ⊆ J1 ⊆ . . . ⊆ JK

and ∅ = J̃0 ⊆ J̃1 ⊆ . . . ⊆ J̃K of Category V pairs.

The initial graph G0 has edges that represent exchanges in which all participating Cat-

egory III, V, and VI pairs donate a left lobe, and all (willing) Category IV pairs donate a
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right lobe. Formally,

E0 := Ec[IIV w] =

{i, j} ∈ Ec[I] :

i, j ∈ I0, i 6= j

t(i, j) = r ⇒ i ∈ IIV w

t(j, i) = r ⇒ j ∈ IIV w

.


We will construct a maximal subset JK of IV matchable in GK , the final graph of this

step. We will commit to every pair in JK that it will participate in an exchange by donating

a left lobe, without specifying until later (the end of Step 2) which pair it enters the exchange

with. The maximality of JK means that, in addition to pairs in JK , we cannot match any pair

i ∈ IV \ JK via an exchange where i donates a left lobe. Therefore, given our commitment

to pairs in JK , the only match possibility for the willing Category V pairs in IV \ JK is

when they donate a right lobe. We let J̃K ⊆ IV \ JK be such willing Category V pairs. We

iteratively transform each of these pairs to include the exchanges where it can donate a right

lobe to the compatibility graph. We proceed inductively for this construction:

We next explain the algorithm for Step 1. Below, k runs though 1, . . . , K.

Step 1.k: Is Jk−1 ∪ {ik} matchable in Gk−1?

YES Let Jk := Jk−1 ∪ {ik} and J̃k := J̃k−1

NO Let Jk := Jk−1 and J̃k :=

{
J̃k−1 ∪ {ik} if Rik = Rw

ik

J̃k−1 otherwise.

Define the graph Gk = (I0, Ek) by:

Ek := Ec[IIV w ∪ J̃k] =

{i, j} ∈ Ec[I] :

i, j ∈ I0, i 6= j

t(i, j) = r ⇒ i ∈ IIV w ∪ J̃k

t(j, i) = r ⇒ j ∈ IIV w ∪ J̃k


If k < K, go to Step 1.(k + 1). If k = K, Step 1 of the algorithm is over.

Note that the sets Jk, J̃k, Ek, defined inductively by the above algorithm, are indeed

nondecreasing in k as stated earlier in the section.

D.2.3 Step 2

In this step, we will determine a maximal subset of I0 that contains JK and is matchable

in GK . Let N denote the number of pairs in I0 \ JK . Enumerate those pairs with respect

to the priority order as {i∗1, . . . , i∗N}. We will define an increasing sequence of subsets of this

set J ∗0 ⊆ J ∗1 ⊂ . . .J ∗N . Let J ∗0 := ∅. Below, n runs through 1, . . . , N .

Step 2.n: Is JK ∪ J ∗n−1 ∪ {i∗n} matchable in GK?
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YES Let J ∗n := J ∗n−1 ∪ {i∗n}
NO Let J ∗n := J ∗n−1

If n < N , go to Step 2.(n+ 1). If n = N , Step 2 of the algorithm is over.

The algorithm above returns a set J ∗N , with the property that JK ∪J ∗N is a maximal subset

of I0 that contains JK and is matchable in GK .

Let M2 be any matching in GK such that M2(i) 6= ∅ for all i ∈ JK ∪ J ∗N . The following

lemma summarizes how different pairs in I are matched in such an M2:

Lemma 9 Suppose that

M2 is a matching in GK s.t. ∀i ∈ JK ∪ J ∗N : M2(i) 6= ∅. (1)

Then, in M2, the pairs in I0 are matched as follows:

1. ∀i ∈ JK: i takes part in an exchange, donating a left lobe.

2. ∀i ∈ J ∗N , one of the following holds:

(a) i is a Category III pair and takes part in an exchange, donating a left lobe.

(b) i is a willing Category IV pair and takes part in an exchange, donating a right lobe.

(c) i ∈ J̃K and takes part in an exchange, donating a right lobe.

(d) i is a Category VI pair and takes part in an exchange, donating a left lobe.

3. ∀i ∈ I0 \ (JK ∪ J ∗N): i remains unmatched.

There could be multiple matchings that satisfy Condition (1), but as implied by Lemma 9,

all of them match pairs in I0 in the same way. An implication is that every pair i is indifferent

among all matchings that satisfy Condition (1). Thus, we can select any matching M2 that

satisfies Condition (1).

One method to find such a matching M2 and also to check matchability of a set of pairs

J ⊆ I0 on a graph G = (I0, E), as we do in each Step 1.k and Step 2.n, in polynomial time is

as follows: We do not have any direct transplants (i.e., loops) on any graph G that we consider

in substeps of Steps 1 or 2 in the algorithm. Thus, we can use the (polynomial-time) edge-

weighted matching algorithm of Edmonds (1965) to find an optimal edge-weighted matching

with the following edge weights. We assign each pair i ∈ I0 a priority number π(i) > 0 such

that if j ∈ J and i ∈ I0 \ J , then π(j) > π(i). For each {i, j} ∈ E, we define the edge

weight Π({i, j}) = π(i)+π(j). Then a matching of G that is the outcome of Edmonds’ edge-

weighted matching algorithm for edge weights Π solves the integer-programming problem

maxM∈M
∑
{i,j}∈M Π({i, j}) = maxM∈M

∑
i:M(i)6=∅ π(i), where M denotes the set of match-

ings in the compatibility graph G.25 Since all pairs in J have higher priority numbers than

25The equality follows from Okumura (2014).

50



the pairs in I0 \ J , by Proposition 2 in Roth, Sönmez, and Ünver (2005), this matching

maximizes the number of pairs matched in J . Thus, all pairs in J are matched in this

matching if and only if J is matchable in G. In the final substep of Step 2, Substep 2.N , by

setting J := JK ∪J ∗N and G := GK , we can use the outcome of this above procedure as M2.

Another implication of Lemma 9 is that in such an M2, all Category V pairs in JK take

part in exchanges donating a left lobe, some Category V pairs in J̃K take part in exchanges

donating a right lobe, and all other Category V pairs are unmatched.

D.2.4 Step 3

In this step, we let any Category VI pair that we left unmatched in previous steps directly

donate a right lobe to themselves. Let M3 be a matching in Gc[I] that corresponds to these

direct donations. Formally:

M3 =
{
{i} : i ∈ I0 \ J ∗N , i is Category VI, and Ri = Rw

i

}
.

The algorithm is over at the end of this step, returning the matching:

M = M0 ∪M2 ∪M3

Given a priority order over pairs, and a topological order over pairs induced by the

precedence digraph over Category V types, we define the general left&right-lobe priority

mechanism f l&r : R →Mc[I] by: For any preference profile R ∈ R, f l&r(R) is a matching

computed by the algorithm in Section D.2.

D.3 Proofs

D.3.1 Proof of Lemma 9

We start by proving a lemma that we will use in proving Lemma 9.

Lemma 10 Let j ∈ IV \ JK. Then, there is no matching M in GK such that t(i,M(i)) = l

for all i ∈ JK ∪ {j}.

Proof: Take any j ∈ IV \ JK . Since j is Category V, j = ik for some k ∈ {1, . . . , K}. Since

j /∈ JK , by Step 1 of the algorithm, Jk−1 ∪ {j} is not matchable in Gk−1.

Suppose for a contradiction that there exists a matching M in GK such that t(i,M(i)) = l

for all i ∈ JK ∪ {j}. Define a (smaller) matching M ′ in GK by:

M ′ :=
{
{i,M(i)} : i ∈ Jk−1 ∪ {j}

}
.
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Note that M ′ is not a matching in Gk−1, otherwise Jk−1 ∪ {j} would be matchable in Gk−1,

contradicting the previous paragraph. Therefore, there exists i ∈ Jk−1 ∪ {j} such that:

{i,M(i)} ∈ EK \ Ek−1.

Since t(i,M(i)) = l, this is only possible if t(M(i), i) = r and M(i) ∈ J̃K \ J̃k−1.

Note that i ∈ Jk−1∪{j} and M(i) ∈ J̃K \ J̃k−1 imply that i = il and M(i) = im for some

l,m ∈ {1, . . . , K} such that l ≤ k ≤ m.

Note that t(i,M(i)) = l and t(M(i), i) = r imply that M(i)→ i in the precedence digraph

over Category V pairs. Then, M(i) = im must be ranked higher than i = il with respect to

the topological order, i.e., m < l, a contradiction. �

In the following, fix a matching M2 that satisfies Condition (1) in Lemma 9. We prove

Lemma 9 in five parts.

Proof of Parts 1 and 2(d) in Lemma 9: By definition of EK , all edges in GK = (I0, EK)

correspond to exchanges where the only pairs that might donate a right lobe are those in J̃K

and those that are (willing) Category IV. Since M2 is a matching in GK , and since JK and

J̃K are disjoint, all pairs in JK must be matched through exchanges where they donate a left

lobe. Similarly, all matched Category VI pairs must be matched through exchanges where

they donate a left lobe. �

Proof of Parts 2(a) and 2(c) in Lemma 9: To see part 2(a), suppose i is a Category

III pair. Since i ∈ J ∗N , and i can only be matched through an exchange donating a left

lobe in the algorithm (as Category III pairs are never transformed and do not receive direct

transplants), t(i,M2(i)) = l.

To see part 2(c), let j ∈ J ∗N ∩ J̃K . Since j ∈ J̃K , we have that j ∈ IV \ JK . By Part 1 of

Lemma 9, M2 is a matching in GK such that t(i,M2(i)) = l for all i ∈ JK . So by Lemma 10,

t(j,M2(j)) 6= l. Since j ∈ J ∗N , j is matched in M2, so j must be part of an exchange by

donating a right lobe. �

Proof of Part 2(b) in Lemma 9: Suppose for a contradiction that i is a willing Category

IV pair, and that in M2, i takes part in an exchange with some pair j by donating a left

lobe. Let X − Y = τ(i) and U − V = τ(j). Since i is Category IV, X > Y . Since j ∈ I0, it

is enough to consider two cases:

Case 1 “j is a Category III pair or a (willing) Category IV pair or a Category V pair”: Since

i and j take part in an exchange where i donates a left lobe, and j donates a left or right

lobe, we have ρ(V ) ≥ X > Y ≥ U . This contradicts ρ(V ) 6≥ U since j is Category III, IV,
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or V.

Case 2 “j is a Category VI pair”: Since i and j take part in an exchange where both i and

j donate left lobes, we have V ≥ X > Y ≥ U . This contradicts V 6≥ U since j is Category

VI. �

Proof of “Part 2 ⇒ 2(a), 2(b), 2(c) or 2(d)” in Lemma 9: It is enough to show

that there is no j ∈ J ∗N such that j is Category V and j /∈ J̃K . Suppose for a contradiction

that there exists such a j. Then, j ∈ IV \ JK . By Part 1 of Lemma 9, M2 is a matching

in GK such that t(i,M2(i)) = l for all i ∈ JK . So by Lemma 10, t(j,M2(j)) 6= l. Since

j ∈ J ∗N , j is matched in M2, so j must be part of an exchange by donating a right lobe, i.e.:

t(j,M(j)) = r. Since {j,M(j)} ∈ EK and j ∈ IV \ J̃K , this contradicts the definition of EK .

�

Proof of Part 3 in Lemma 9: Take any i ∈ I0 \ (JK ∪ J ∗N). Since i ∈ I0 \ JK ,

there exists n ∈ {1, . . . , N} such that i = i∗n. Since i = i∗n /∈ J ∗N , at Step 2.n of the al-

gorithm, JK ∪ J ∗n−1 ∪ {i∗n} was not matchable in GK . Since J ∗n−1 ⊆ J ∗N , this also implies

that JK∪J ∗N∪{i∗n} is not matchable in GK . Therefore, M2 must leave i = i∗n unmatched. �

D.3.2 Proof of Theorem 3

Given a priority order over all pairs, a topological order of the precedence digraph of

Category V pairs, and a willingness profile, the Pareto indifference of all pairs in all possible

outcomes of f l&r follows from Lemma 9. We will prove the other three properties of f l&r in

three separate lemmas.

Lemma 11 The general left&right-lobe priority mechanism is individually rational.

Proof: Take any willingness profile R ∈ R and let M = f l&r(R). By Lemma 2, the

individual rationality condition is satisfied for all pairs whose match is determined in Step 0

of the algorithm, i.e., Category 0, I, and II pairs and unwilling Category IV pairs.

Next, take any Category III, willing Category IV, or Category V pair i such that M(i) 6= ∅.
Note that i must be matched in Step 2 of the algorithm, so M(i)Ri∅ by parts 1, 2(a), 2(b),

and 2(c) of Lemma 9. This is enough to conclude that the individual rationality condition is

satisfied for all Category III, IV, and V pairs, since they cannot directly donate.

Finally, consider any Category VI pair i. Note that i is either matched in Step 2 by being

part of an exchange donating a left lobe (by part 2(d) of Lemma 9), or is willing and directly

donates a right lobe in Step 3, or is unwilling and left unmatched in Step 3. Therefore, the

individual rationality condition is also satisfied for i. �
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Lemma 12 The general left&right-lobe priority mechanism is Pareto efficient.

Proof: Take any willingness profile R ∈ R and let M = f l&r(R). Let Jw be the set of pairs

i such that Ri = Rw
i , i.e., the set of willing pairs. Let M ′ be a matching in Gc[Jw] such that

M ′RiM for all i ∈ I. To conclude that f l&r is Pareto efficient, it is enough to show that all

pairs are indifferent between M and M ′. Below, we will prove this indifference separately for

pairs in I \I0, JK , J ∗N , and I0 \(JK∪J ∗N). Note first that since all pairs weakly prefer M ′ to

M , and M is individually rational at R (by Lemma 11), the matching M ′ is also individually

rational at R.

Claim 1. Pairs in I \ I0 are indifferent between M and M ′.

Proof: By individual rationality of M ′ and Lemma 2, M ′ matches Category 0, I, and II pairs

and unwilling Category IV pairs in exactly the same way as M , as determined in Step 0 of

the algorithm. �

Claim 2. Pairs in JK are indifferent between M and M ′.

Proof: Take any pair i ∈ JK . By part 1 of Lemma 9, in M , i takes part in an exchange

donating a left lobe. Since M ′RiM , and direct donation is not possible for Category V pairs,

i must also take part in an exchange donating a left lobe in M ′. �

Let M ′′ be the edges in M ′ corresponding to the exchanges among pairs in I0, i.e.:

M ′′ =
{
{i, j} ∈M ′ : i, j ∈ I0 and i 6= j

}
.

Since Category VI pairs are the only pairs in I0 that can directly donate, we have:

M ′′(i) =

{
∅ if i is Category VI and M ′(i) = i,

M ′(i) otherwise

for all i ∈ I0. Note that since M ′′ ⊆M ′, M ′′ is also a matching in Gc[Jw].

Claim 3. M ′′ is a matching in GK .

Proof: To see that M ′′ ⊆ EK , take any {i, j} ∈ M ′′. Then, i 6= j by definition of M ′′; and

{i, j} ∈ Ec[Jw], since M ′′ is a matching in Gc[Jw]. To show that {i, j} ∈ EK , by Lemma 9

we need to show that for the two cases such that {k, `} = {i, j}, if t(k, `) = r then either k

is Category IV or h ∈ J̃K . Suppose that t(i, j) = r, i.e., in M ′′, i is part of an exchange by

donating a right lobe. Then, i /∈ JK because, as argued in Claim 2, the pairs in JK take part

in exchanges donating a left lobe in M ′, so also in M ′′. Also i /∈ IV \ (JK ∪ J̃K), because by

Step 1 of the algorithm any pair in IV \ (JK ∪ J̃K) is unwilling, so individual rationality of

M ′ implies that in M ′, hence in M ′′, it cannot be part of an exchange donating a right lobe.

Finally, note that i is not Category VI since by individual rationality of M ′ and Lemma 2,
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in M ′, hence in M ′′, Category VI pairs cannot be part of an exchange donating a right lobe.

Therefore, i is a (willing) Category IV pair or belongs to J̃K . We proved that

t(i, j) = r ⇒ i is Category IV or i ∈ J̃K .

The proof of the other implication:

t(j, i) = r ⇒ j is Category IV or j ∈ J̃K

is exactly symmetric, hence omitted. So {i, j} ∈ EK . �

Claim 4. Pairs in J ∗N are indifferent between M and M ′.

Proof: We will prove the Claim separately for Category III, IV, V, and VI pairs:

• Claim 4.III : Take any Category III pair j ∈ J ∗N . By part 2 of Lemma 9, j is taking part

in an exchange donating a left lobe in M . By individual rationality of M ′ and Lemma 2, j

is unmatched or takes part in an exchange donating a left lobe in M ′. Therefore, M ′RjM

implies that j is part of an exchange donating a left lobe also in M ′.

• Claim 4.IV : Take any Category IV pair j ∈ J ∗N . By part 2 of Lemma 9, j is a willing

Category IV pair taking part in an exchange donating a right lobe in M . By individual

rationality of M ′ and Lemma 2, j is unmatched or takes part in an exchange donating

a right lobe in M ′. Therefore, M ′RjM implies that j is part of an exchange donating a

right lobe also in M ′.

• Claim 4.V : Take any Category V pair j ∈ J ∗N . By part 2 of Lemma 9, j ∈ J̃K ∩ J ∗N
and j is part of an exchange donating a right lobe in M . As argued in Claim 2, the

pairs in JK take part in exchanges donating a left lobe in M ′, hence also in M ′′. By

Claim 3, M ′′ is a matching in GK , so by Lemma 10 and j ∈ IV \ JK , j is not part of

an exchange donating a left lobe in M ′′, hence also in M ′. Being Category V, j cannot

directly donate, so M ′RjM implies that j is part of an exchange donating a right lobe

also in M ′.

• Claim 4.VI : Take any Category VI pair j ∈ J ∗N . By part 2 of Lemma 9, j is part of an

exchange donating a left lobe in M . Being Category VI, j cannot directly donate a left

lobe, so M ′RjM implies that j is part of an exchange donating a left lobe also in M ′. �

The argument of Claim 4 also establishes that M ′′ is a matching in GK such that M ′′(i) 6=
∅ for all i ∈ JK ∪ J ∗N . So by Lemma 9, M ′′(i) = ∅ for all i ∈ I0 \ (JK ∪ J ∗N).

Claim 5. Pairs in I0 \ (JK ∪ J ∗N) are indifferent between M and M ′.

Proof: Take any i ∈ I0 \ (JK ∪ J ∗N). If i is not Category VI, then i cannot directly donate

so M ′′(i) = ∅ implies M ′(i) = ∅. Note that i is also unmatched in M , since i is not matched

in Step 2 (by Lemma 9) nor Step 3 of the algorithm (since i is not Category VI). Therefore,

such pairs are indifferent between M and M ′. Next suppose that i is Category VI. Then,
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if i is unwilling, M ′′(i) = ∅ and individual rationality of M ′ imply that M ′(i) = ∅. Note

that i is also unmatched in M , since i is not matched in Step 2 (by Lemma 9) or Step 3

of the algorithm (since i is not willing). Therefore, such pairs are also indifferent between

M and M ′. Finally, suppose that i is a willing Category VI pair. Then, M ′′(i) = ∅ and

individual rationality of M ′ imply that M ′(i) = i, i.e., i directly donates a right lobe. Note

that i also directly donates a right lobe in M , since i is not matched in Step 2 (by Lemma 9),

but is matched in Step 3 of the algorithm (since i is willing). Therefore, such pairs are also

indifferent between M and M ′. � �

Lemma 13 The general left&right-lobe priority mechanism is incentive compatible.

Proof: Note that all exchanges are determined at Step 2 of the algorithm. By Lemma 9,

only Category III, V, and VI pairs may be part of an exchange by donating a left lobe. We

will show that for any Category III, V, or VI pair i and R−i ∈
∏

j 6=iRj (which we will refer

to Condition (**) below in the proof):

Under f(Rw
i , R−i), i participates in an exchange by donating a left lobe

m

Under f(Ru
i , R−i), i participates in an exchange by donating a left lobe,

which will prove that f l&r is incentive compatible by Lemmas 3 and 11. In the rest of the

proof, denote the objects defined by the algorithm under the willingness profile (Rw
i , R−i)

by using the superscript w, and those defined by the algorithm under the willingness profile

(Ru
i , R−i) by using the superscript u.

First consider the case where i is Category III. Pair i is never transformed in the algo-

rithm regardless of its willingness announcement. Thus, the algorithm runs exactly the same

manner regardless of its willingness announcement, implying J u
K ∪ J ∗uN = J w

K ∪ J ∗wN , and

thus, Condition (**) above trivially holds for i.

Next consider the case where i is Category V. Then i = ik for some k ∈ {1, . . . , K}.
Up to the end of Step 1.(k − 1), both versions of the algorithm run in exactly the same

way, since they do not depend on the willingness announcement of i = ik. This implies that

J w
k−1 = J u

k−1 and Gw
k−1 = Gu

k−1. Then,

t(i,Mw
2 (i)) = l ⇔ i ∈ J w

K ⇔ J w
k−1 ∪ {ik} is matchable in Gw

k−1

⇔ J u
k−1 ∪ {ik} is matchable in Gu

k−1 ⇔ i ∈ J u
K ⇔ t(i,Mu

2 (i)) = l

where the first and last equivalences above follow from Lemma 9 and i being Category V;

the second and fourth equivalences follow from the definition of Step 1.k of the algorithm
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and i = ik; and the middle equivalence follows from J w
k−1 = J u

k−1 and Gw
k−1 = Gu

k−1.

Finally consider the case where i is Category VI. Since the algorithm is independent of the

willingness announcenment of Category VI pairs until the end of Step 2, we have J ∗wN = J ∗uN .

Then,

t(i,Mw
2 (i)) = l ⇔ i ∈ J ∗wN ⇔ i ∈ J ∗uN ⇔ t(i,Mu

2 (i)) = l

where the the first and last equivalences above follow from Lemma 9 and i being Category

VI; and the middle equivalence follows from J ∗wN = J ∗uN . �
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