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Abstract

Kaneko and Wooders (1986) showed under general conditions that an
atomless NTU game with finite types of players has a core allocation when
coalitions have a finite number of players. In this paper, we provide a di-
rect proof of the above result using Kakutani’s fixed point theorem when
the sizes of coalitions are not only finite but also bounded above. This
condition simplifies the presentation of the model and the existence proof.
Most importantly, we can drop the comprehensiveness assumption, allow-
ing for a much wider applicability of the result for matching problems, as
well as for hedonic coalition formation problems. Additionally, without
comprehensiveness, f-core allocations might not possess equal-treatment
in payoffs for the same type. We also note that the nonemptiness of the
core of NTU games by Scarf (1971) can be derived from our result as a
corollary.

1 Introduction

In their influential paper, Kaneko and Wooders (1986) proved that the core
of NTU games with a continuum of players of finite types is nonempty when
the cardinality of admissible coalitions is finite under very general conditions. 1

With their per capita boundedness condition (see Wooders 1983, and Kaneko and
Wooders 1986) or small coalition effectiveness condition (see Wooders 2008),
their general proofs allow for unbounded size coalitions as long as they are finite.
However, Kaneko and Wooders (1986) utilizes an ϵ-core existence result of a
large replica game inWooders (1983), and takes a limit to get their nonemptiness
result in an atomless game: both papers’ proofs are involved and quite lengthy.

*We thank Nizar Allouch, Marcelo Fernandez, Shingo Ishiguro, Mamoru Kaneko, Debraj
Ray, Chen-Yu Pan, Myrna Wooders, and M. Utku Unver for their comments, encouragements,
and suggestions.

�Boston College
�Bahçeşehir University
1One of the most recent developments in the finite core (the f-core) literature is found in

Allouch and Wooders (2017).
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In this paper, imposing a uniform upper bound in coalition sizes, we provide a
direct proof of nonemptiness of the core using Kakutani’s fixed point theorem
so that their important theorem is easily accessible to more application-oriented
researchers.

Moreover, this direct proof allows us to drop the comprehensiveness assump-
tion entirely for nonemptiness of the f-core. This generalization broadens the
applicability of our nonemptiness result of the f-core to a significantly wider
class of problems such as matching problems in large markets: for example,
couples or more generally, preferences over colleagues in one-to-many matching
problems, hedonic games, and network formation problems when the size of each
component’s diameter is bounded above by a finite number.2 Interestingly, in
these cases, the equal treatment (in payoffs) property for players of the same
type can be violated in every f-core allocation.

Our results are applicable to the models in the literature of matchings with
atomless players such as Legros and Newman (1996), Konishi (2013), Gersbach,
and Haller, and Konishi (2015), and Chade and Eeckhout (2020) as well as to
atomless versions of the standard matching and hedonic problems such as Alkan
(1986), Dutta and Masso (1997), Konishi, Quint, and Wako (2001), Banerjee,
Konishi, and Sonmez (2001), and Bogomolnaia and Jackson (2002). We also
discuss applications of our results to Scarf’s (1971) nonemptiness result for the
core of NTU games. We can also relate our results with the ones in Konishi,
Pan, and Simeonov (2023) that analyze a team competition problem in a large
market in the presence of moral hazard, showing the existence of a free-entry
equilibrium of a team formation game.

The rest of the paper is organized as follows. Section 2 introduces a simplified
version of the Kaneko-Wooders model and assumptions. Section 3 presents an
atomless player version of a popular roommate example in a one-sided matching
problem, and discusses how the f-core looks like in this example. Section 4
proves our main theorems. Theorem 1 shows that with the comprehensiveness
condition, the equal-treatment f-core is nonempty. In contrast, our main result,
Theorem 2, proves the nonemptiness of f-core without comprehensiveness, but
there can be player types who are treated unequally in an f-core allocation.

2 The Model

There is a set of player types T , each of which has a continuum of atomless
players of measure ν̄t > 0 for each t ∈ T . Each coalition type γ is described
by its membership profile, (mγ

t )t∈T , where m
γ
t ∈ Z+ is the number of type t

players in coalition γ. Let the set of all admissible coalition types be Γ.
Let T γ = {t ∈ T : mγ

t > 0}. For each coalition type γ ∈ Γ, a fea-
sible payoff allocation for types in T γ is uγ = (ut)t∈Tγ , and the collection
of all feasible payoff vectors for coalition type γ is denoted by V γ ⊂ RTγ

.3

2See Jackson (2008).
3For simplicity of presentation, we focus on equal treatment allocation of the same types

in the same coalition. Regarding this property, see Example 2.
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Our NTU model G is summarized by a list G = (T,Γ, (ν̄t)t∈T , (V
γ)γ∈Γ). Let

Γt ≡ {γ ∈ Γ : mγ
t′ = 0 ∀t′ ̸= t}, which is the set of coalition types that consists

of only type t players. For γ ∈ Γt, let uγt be the smallest upper bound such that
uγt ≥ ut for all ut ∈ V γ . For each t ∈ T , let ut ≡ maxγ∈Γt uγt , this is the payoff
guaranteed for type t player in a core allocation (individual rationality). With-
out loss of generality, for all γ ∈ Γ, we translate V γ so that the individually
rational payoff for type t is positive: i.e. ut > 0 for all t ∈ T .

(A1) T is a finite set

(A2) V γ − RTγ

+ = V γ for all γ ∈ Γ (Comprehensiveness)

(A3) V γ ∩ RTγ

+ is compact

(A4) Measure Consistency

(A5) There is K ∈ Z++ such that for all γ ∈ Γ, 0 <
∑

t∈T m
γ
t ≤ K holds.

Assumptions (A1)-(A4) are employed in Kaneko and Wooders (1986). For
the last technical condition (A4), see Kaneko and Wooders (1986)4.

Our only simplification assumption of this paper is (A5): Kaneko and Wood-
ers (1986) assume a weaker assumption, per capita boundedness. Note that (A1)
and (A5) together imply that Γ is a finite set. We also introduce a slightly
stronger version of (A2), which corresponds to strong monotonicity in money.

(A2’) There is b > 0 such that for all uγ ∈ V γ , all t ∈ T γ , all c ∈ (0, uγt ),
(uγt − c, (uγt′ + bc)t′ ̸=t) ∈ V γ (Strong Comprehensiveness).

This strengthened assumption (A2’) plays a key role in achieving the equal-
treatment property of the f-core: under (A2’), every f-core allocation treats the
same type players equally in terms of their payoffs.

A feasible assignment for G is a list ((νγt )t∈T,γ∈Γ) such that (a)
νγ
t

mγ
t
=

νγ

t′
mγ

t′
for all t, t′ ∈ T and γ ∈ Γ, and (b)

∑
γ∈Γ ν

γ
t = ν̄t for all t ∈ T . A

feasible allocation for G is a list ((νγt )t∈T,γ∈Γ, (u
γ
t )t∈Tγ ,γ∈Γ ) such that (i) list

((νγt )t∈T,γ∈Γ) is a feasible assignment, and (ii) (uγt )t∈Tγ ∈ V γ for all γ ∈ Γ. Let
T γ ≡ {t ∈ T : mγ

t > 0}. An f-core allocation for G is a feasible allocation for

G such that there is no pair (γ̃, (ũγ̃t )t∈T γ̃ ) such that (i)
(
ũγ̃t

)
t∈T γ̃

∈ V γ̃ , and

(ii) for all t ∈ T γ̃ , ũγ̃t > uγt holds for some γ with νγt > 0. The f-core for G is
a collection of all f-core allocations. An equal-treatment f-core allocation
for G is a pair of a feasible assignment and payoff vector ((νγt )t∈T,γ∈Γ, (u

∗
t )t∈T )

such that (1) (u∗t )t∈Tγ ∈ V γ for all γ ∈ Γ such that νγt > 0 for all t ∈ T γ ,
and (2) there is no γ ∈ Γ and (u′t)t∈Tγ ∈ V γ such that u′t > u∗t for all t ∈ T γ .

4Condition (A4) is a technical but economically sensible condition (see the discussion in
Kaneko and Wooders, 1986, pp. 108-109). It requires that measures of measurable sets are
preserved in one to one mappings, which allows for intuitive handlings of matchings in an
infinite world.
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The equal-treatment f-core for G is a collection of all equal-treatment f-
core allocations. Clearly, an equal-treatment f-core allocation for G is an f-core
allocation for G as well.

The results of this paper are as follows:

Theorem 1. The equal-treatment f-core is nonempty under (A1), (A2), (A3),
(A4), and (A5).

Theorem 2. The f-core is nonempty under (A1), (A3), (A4), and (A5).

Theorem 3. The f-core and the equal-treatment f-core are equivalent under
(A1), (A2’), (A3), (A4), and (A5).

The differences between these theorems come from the assumptions around
(A2), “Comprehensiveness.” Although the main theorem is Theorem 2, the
same type players might get different payoffs in every f-core allocation. In
the following section, we present two simple educational examples, providing
detailed analyses.

3 Examples

Here, we present two examples to illustrate our results before we present formal
proofs. First, consider a continuum version of a roommate example in a hedonic
game (Banerjee et al. 2001).

Example 1. Let T = {1, 2, 3} and K = 2. There are only 6 feasible coalitions,
and players’ payoff vector in each coalition is determined uniquely (hedonic
game): (u1, u2) = (3, 2) for coalition {1, 2}; (u2, u3) = (3, 2) for coalition {2, 3};
(u3, u1) = (3, 2) for coalition {3, 1}; ut = 1 for single-person coalition {t} for all
t = 1, 2, 3. Coalition {1, 2, 3} is infeasible. If there are only three atomic players,
it is clear that there is no core allocation. Consider an allocation (partition
structure) {{1, 2}, {3}}. In this case, players get (u1, u2, u3) = (3, 2, 1). Clearly,
players 2 and 3 deviate from it, generating {{1}, {2, 3}} with (u′1, u

′
2, u

′
3) =

(1, 3, 2). Since players are symmetric, there is no core allocation in this atomic
model.

Here, we will consider an atomless model. Let ν̄t = 1 for all t = 1, 2, 3.
There are only one- or two-person coalitions. We first assume (A2) compre-
hensiveness (or free disposal of payoffs). Let’s take comprehensive covers of the
original payoffs. We have V̄ {1,2} =

{
(u1, u2) ∈ R2 : u1 ≤ 3, u2 ≤ 2

}
, V̄ {2,3} ={

(u2, u3) ∈ R2 : u2 ≤ 3, u3 ≤ 2
}
, V̄ {3,1} =

{
(u3, u1) ∈ R2 : u3 ≤ 3, u1 ≤ 2

}
, and

V̄ {t} = {ut ∈ R : ut ≤ ut} for all t = 1, 2, 3. Denote the weak Pareto frontier
of V̄ {t,t+1} by ∂V̄ {t,t+1} (see Figure 1). Here, we claim that there is a unique
equal-treatment f-core allocation of the game with comprehensive-covers (The-

orem 1): ν
{1,2}
1 = ν

{1,2}
2 = ν

{2,3}
2 = ν

{2,3}
3 = ν

{3,1}
3 = ν

{3,1}
1 = 1

2 and u∗t = 2
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for all t = 1, 2, 3. There are coalitions {1, 2}, {2, 3}, and {3, 1} with mea-
sure 1

2 each, and each coalition offers (weakly suboptimal) payoff (2, 2) for its
members. Note that there is no strictly improving coalitional deviation. It is
because coalition {1, 2} improves type 1 player’s payoff from 2 to 3, while type 2
player’s payoff is unchanged. In our setting, there is no means to transfer utility
across players in the same coalition (unlike (A2’)), and thus there is no possible
deviations from weakly Pareto-inferior allocation. Symmetrically, there is no
possibility for any coalitional deviation to improve all players in the coalition.
This equal-treatment f-core allocation is shown in Figure 1.

2

2

3

A

B

C

Points A,B,C: equal-treatment 
                    f-core allocation 

A'

B'C'

Points A',B',C': f-core allocation
            (non-equal treatment) 

0

Figure 1: The f-core allocations from Example 1 with and without comprehensiveness.

Now, suppose that (A2) is dropped. Then, the above payoff vector is no
longer feasible: (u1, u2) = (2, 2) /∈ V {1,2} = {(3, 2)}. Thus, there is no equal
treatment f-core allocation. However, there is a weakly Pareto-improving payoff
vector in the original hedonic game: (u1, u2) = (3, 2) ∈ V {1,2}. Since pay-
off vector (u∗1, u

∗
2, u

∗
3) = (2, 2, 2) cannot be blocked by any finite coalitions,

(u1, u2) = (3, 2) cannot be blocked either. Thus, we have an f-core of the orig-

inal hedonic game: ν
{1,2}
1 = ν

{1,2}
2 = ν

{2,3}
2 = ν

{2,3}
3 = ν

{3,1}
3 = ν

{3,1}
1 = 1

2 ,

(u
{1,2}
1 , u

{1,2}
2 ) = (3, 2), (u

{2,3}
2 , u

{2,3}
3 ) = (3, 2), and (u

{3,1}
3 , u

{3,1}
1 ) = (3, 2). In

this allocation, also shown in Figure 1, one half of each type players are getting
less payoff than the other half. Despite of this apparent unequal treatment,
there is no way for the worse-off players to form a strictly improving coalitional
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deviation. Consider players of type 1 in coalition type {3, 1}. They are getting
payoff 2, and they would rather get payoff 3 by forming a coalition {1, 2}. How-
ever, it is not possible, since type 2 players who do not belong to coalition type

{1, 2} are in coalition type {2, 3}, getting u{2,3}2 = 3. They are not attracted
by a coalitional deviation offering them only payoff 2. This is how we obtain
Theorem 2.

Our example has been assuming symmetry among the three types of players.
What if the types of players do not have equal population? We finish our
discussions on Example 1 by considering the following two situations:

1. (Small population difference) Let ν̄1 = 0.8, ν̄2 = 1, and ν̄3 = 1.2. If
the population differences are limited, then the f-core allocation requires
that there is no single player. Suppose that a positive measure of type 3
are single. Then, if there is a positive measure of type 2 players who do
not get the maximum payoff 3, then there will be coalitional deviations
{2, 3}. This implies that all type 2 players belong to coalition type {2, 3}.
This in turn implies that type 1 players can be matched with type 3
players, but there is not enough measure of type 3 players. However, if
there is a positive measure of single type 1 players, type 3 players will
dump type 2 players and deviate with these type 1 players. In order to
avoid the existence of single players, the unique f-core allocation must be:

ν
{1,2}
1 = ν

{1,2}
2 = 0.3, ν

{2,3}
2 = ν

{2,3}
3 = 0.7, and ν

{3,1}
3 = ν

{3,1}
1 = 0.5.

Somewhat interestingly, type 2 has the largest fraction (70%) of players of
getting higher payoff 3. Type 1 is the shortest side in terms of population,
but the smallest fraction (37.5%) of players are getting the higher payoff
in this case.

2. (Large population difference) Let ν̄1 = 1, ν̄2 = 2, and ν̄3 = 4. The f-core

allocation is: ν
{2,3}
2 = ν

{2,3}
3 = 2, ν

{3,1}
3 = ν

{3,1}
1 = 1, and ν

{3}
3 = 1. In

this case type 2, who prefer to be paired with the most populous type 3 get
to obtain their maximum payoff. This is on account that type 2 players
would never want to match with type 1 given the overabundance of type
3’s. Also note that in contrast to the example above, here type 3 players
can remain single in an f-core allocation. Indeed, they get to participate
in every type of coalition that is feasible for their type, which also results
in a large variance of their payoffs. □

Without (A2’), there may be an f-core allocation that does not satisfy equal-
treatment even within the same coalition type. The following example illustrates
this point.

Example 2. Consider a two-type game with T = {1, 2}, K = 2, ν̄1 = 1, ν̄2 = 1,
and three firm types: Ṽ {1} = {u1 ∈ R : u1 ≤ 1}, Ṽ {2} = {u2 ∈ R : u2 ≤ 1},
Ṽ {1,2} = {(u1, u2) ∈ R2 : (u1, u2) ≤ (3, 2) or (u1, u2) ≤ (2, 3)}. In this game,
any allocation that assigns the two types of players to one of the two efficient
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points (i) (u1, u2) = (3, 2) and (ii) (u1, u2) = (2, 3) is an f-core allocation. In
this case, (A2) is satisfied, but (A2’) is violated. If (A2’) is satisfied, a type 2
player in (i) can approach to a type 1 player in (ii) offering a payoff u′1 ∈ (2, 3).
Then, by (A2’), this type 2 player can obtain a payoff higher than 2.□

4 Proofs of the Theorems

The main theorem of this paper is Theorem 2, but we utilize Theorem 1 in order
to prove it. We will illustrate how the proof of Theorem 1 is constructed by us-
ing Example 1. Starting with the original hedonic game, we take comprehensive
covers of the original payoff vectors: V̄ {1,2} =

{
(u1, u2) ∈ R2 : u1 ≤ 3, u2 ≤ 2

}
,

V̄ {2,3} =
{
(u2, u3) ∈ R2 : u2 ≤ 3, u3 ≤ 2

}
, V̄ {3,1} =

{
(u3, u1) ∈ R2 : u3 ≤ 3, u1 ≤ 2

}
,

and V̄ {t} = {ut ∈ R : ut ≤ 1} for all t = 1, 2, 3. For each two person coalition, we
now take the weak Pareto efficient set ∂V̄ {t,t+1} =

{
(ut, ut+1) ∈ R2 : ut ∈ [0, 3], ut+1 = 2

}
∪{

(ut, ut+1) ∈ R2 : ut = 3, ut+1 ∈ [0, 2]
}
for all t = 1, 2, 3. Let Γt ≡ {{t, t− 1} , {t, t+ 1} , {t}}

be the set of coalitions that type t can join. In this example ν̄t = 1 holds, and
∆Γt

denotes a population distribution simplex of type t. We construct a fixed
point mapping that assigns (i) type t’s total population to the highest payoff
(possibly multiple) coalitions for each type t among all possible coalitions, and

(ii) in each coalition {t, t+ 1}, if ν{t,t+1}
t ̸= ν

{t,t+1}
t+1 then the higher population

type is assigned a zero payoff (if balanced, any payoff vector from ∂V̄ {t,t+1}).
Since each type t’s individually rational payoff is ut = 1 > 0, if there is an
over-populated type in a coalition, such an allocation cannot be a fixed point.
Thus, in a fixed point, the population of each type is balanced in each coalition,
and every type of player chooses the highest payoff coalition. Each unpopulated
coalition type has a weak-Pareto efficient allocation that is not chosen by any
type, which implies that such a coalition type cannot be used for a blocking
coalition. Thus, the fixed point allocation achieves an equal-treatment f-core al-
location. Theorem 1 is proved by the above argument with a formal treatment.
(See Figures 2 and 3.)

Theorem 1. The equal-treatment f-core is nonempty under (A1), (A2), (A3),
(A4), and (A5).

Proof of Theorem 1. First note that the individually rational payoff ut
is achievable in a coalition type γ ∈ Γt by (A3). Let Ṽ γ ≡ V γ ∩ RTγ

+ for

γ ∈ Γ̃ =
{
γ ∈ Γ : V γ ∩ RTγ

+ ̸= ∅
}
, and let Ṽ γ = {0} for all γ /∈ Γ̃. We

will replace Γ by Γ̃, since Γ\Γ̃ is irrelevant. Let the weak Pareto frontier of

Ṽ γ be ∂Ṽ γ ≡
{
uγ ∈ Ṽ γ : {uγ}+ RTγ

++ ∩ Ṽ γ = ∅
}
. For all γ ∈ Γ̃, let ∆γ ≡{

xγ ∈ RTγ

+ :
∑

t∈Tγ x
γ
t = 1

}
, and consider a mapping fγ : ∂Ṽ γ → ∆γ such that

fγ(uγ) =
(

ut

Σt′∈Tγut′

)
t∈Tγ

. This is a one-to-one continuous onto mapping in

V γ ∩RTγ

+ due to comprehensiveness (A2).5 For a visualization of this transfor-

5Strictly speaking, the inverse mapping of fγ might be multi-valued at the border due to
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mation please consult Figure 2 below. Let the inverse function of fγ be uγ :
∆γ → ∂Ṽ γ . This continuous mapping can be interpreted that uγ(xγ) is a payoff
vector for each abstract policy xγ ∈ ∆γ . We will work on ∆γ instead of ∂Ṽ γ to
apply Kakutani’s fixed point theorem.

1

1

abstract 
policy 
space

0

Figure 2: The weak-Pareto frontier and its transformation onto abstract policy space
(Theorem 1).

For each γ ∈ Γ̃, let φγ : Πt∈T

(
ν̄t ×∆Γ̃

)
↠ ∆γ be such that φγ((νγt )t∈T ) =

{(xγt )t∈T ∈ ∆γ : (1) xγt = 0 for all t /∈ T γ , (2) xγ = argminxγ

∑
t∈Tγ x

γ
t × νγ

t

mγ
t
}.

For each t ∈ T , let ψt : Πγ∈Γ̃ (∆
γ) ↠ ν̄t × ∆Γ̃ be such that ψt((xγ)γ∈Γ̃) =

argmax(νγ
t )γ∈Γ̃

∑
γ∈Γ̃ u

γ
t (x

γ)νγt . Let φ : Πt∈T

(
ν̄t ×∆Γ̃

)
↠ Πγ∈Γ̃ (∆

γ) be a

Cartesian product of φγs, and let ψ : Πγ∈Γ̃ (∆
γ) ↠ Πt∈T

(
ν̄t ×∆Γ̃

)
be a

Cartesian product of ψts. Letting ξ be a Cartesian product of φ and ψ, we

have a fixed point mapping ξ : Πγ∈Γ̃ (∆
γ) × Πt∈T

(
ν̄t ×∆Γ̃

)
↠ Πγ∈Γ̃ (∆

γ) ×

Πt∈T

(
ν̄t ×∆Γ̃

)
. Since sets Πγ∈Γ̃ (∆

γ) and Πt∈T

(
ν̄t ×∆Γ̃

)
are nonempty,

compact, and convex, and functions
∑

t∈Tγ x
γ
t ×

νγ
t

mγ
t
and

∑
γ∈Γ̃ u

γ
t (x

γ)νγt are con-

tinuous, and convex in uγt and concave in νγt , respectively. Thus, ξ is nonempty-
valued, upper hemi-continuous, and convex-valued. Since T and Γ are finite by
(A1) and (A5), all the conditions of Kakutani’s fixed point theorem is satisfied,

and there is a fixed point
(
(νγt )t∈T,γ∈Γ̃, (x

γ)γ∈Γ̃

)
of ξ.

Let u∗t ≡ maxγ∈Γ̃ u
γ
t (x

γ). Then, by construction of ψt, νγt > 0 only if

‘weak’ Pareto frontier (there is at least one type who gets ut = 0). However, we can truncate
the abstract policy space slightly by a small ϵ > 0 to ensure one-to-one and onto property of
the mapping.
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uγt (x
γ) = u∗t for all t ∈ T . Thus, type t players get u∗t almost everywhere. For

all γ ∈ Γ̃, we have
νγ

t′
mγ

t′
=

νγ
t

mγ
t
for all t, t′ ∈ T γ , since by the construction of φγ , if

νγ

t′
mγ

t′
> mint∈Tγ

νγ
t

mγ
t
holds then xγt′ = 0 and uγt′ = 0 must occur, which cannot be a

fixed point because for each t ∈ T , payoff ut > 0 is guaranteed by the individual
rationality. Thus, (νγt )t∈T,γ∈Γ̃ is a feasible assignment (νγt = 0 for all γ /∈ Γ̃ and

all t ∈ T ). Suppose that a pair
(
(νγt )t∈T,γ∈Γ̃, (u

∗
t )t∈T

)
generated from the fixed

point is not an f-core allocation. Then, there is a pair γ̂ ∈ Γ̃ and (x̃γ̂)t∈T γ̂ ∈ ∆γ̂

such that uγ̂t (x̃
γ̂) > u∗t for all t ∈ T γ̂ . However, since xγ̂ is the fixed point

allocation for γ̂, u∗t ≥ uγ̂t (x
γ̂) holds for all t ∈ T γ̂ . Since uγ̂(xγ̂) ∈ ∂Ṽ γ̂ , there

is no x̃γ̂ such that uγ̂(x̃γ̂) ∈ ∂Ṽ γ̂ with uγ̂(x̃γ̂) ≫ uγ̂(xγ̂) by (A2). This is a
contradiction. Hence, a pair ((νγt )t∈T,γ∈Γ, (u

∗
t )t∈T ) generated from the fixed

point
(
(νγt )t∈T,γ∈Γ̃, (x

γ
t )t∈T,γ∈Γ̃

)
is an equal-treatment f-core allocation.□

Theorem 2 can be shown easily even if (A2) is violated by the argument in
the latter half of Example 1.

Theorem 2. The f-core is nonempty under (A1), (A3), (A4), and (A5).

Proof of Theorem 2. Let V̄ γ ≡ {uγ ∈ RTγ

: uγ ≤ ũγ for some ũγ ∈ V γ} be
a comprehensive cover of V γ for all γ ∈ Γ̃ (see Figure 3). Then, clearly (A2)
satisfied for an NTU game Ḡ ≡ (T,Γ, (ν̄t)t∈T , (V̄

γ)γ∈Γ), and Ḡ has an equal
treatment core allocation ((νγt )t∈T,γ∈Γ, (u

∗
t )t∈T ) by Theorem 1. Let ūγ ∈ ∂V̄ γ

be a Pareto-efficient allocation within γ with ūγt ≥ u∗t for all t ∈ T γ . Since V̄ γ is
a comprehensive hull of V γ , ūγ ∈ V γ holds. Since ((νγt )t∈T,γ∈Γ, (u

∗
t )t∈T ) is an

equal-treatment f-core for Ḡ, there is no pair γ̂ ∈ Γ̃ and uγ̂ ∈ ∂V̄ γ̂ with uγ̂t > u∗t
for all t ∈ T γ̂ , thus ((νγt )t∈T,γ∈Γ, (ū

γ
t )t∈T,γ∈Γ̃ ) has no pair γ̂ ∈ Γ̃ and uγ̂ ∈ ∂V̄ γ̂

with uγ̂t > ūγ̂t for all t ∈ T γ̂ . Hence, ((νγt )t∈T,γ∈Γ, (ū
γ
t )t∈T,γ∈Γ̃ ) is feasible, thus

is an f-core allocation.□

Comprehensiveness (A2) is easily achieved if an underlying economic prob-
lem has means of transferring payoffs across players. If there is a good (such as
money) that every type of players has strongly monotonic preferences and is es-
sential (any consumption bundle with zero money is the least preferred), Strict
Comprehensiveness (A2’) is satisfied, and we ∂V γ becomes the Pareto-efficient
frontier of V γ instead of the weak-Pareto-efficient frontier.
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Figure 3: The comprehensive hull and its weak-Pareto frontier (Theorem 2).

Theorem 3. The f-core and the equal-treatment f-core are equivalent under
(A1), (A2’), (A3), (A4), and (A5).

Proof of Theorem 3. First note that under (A2’), in any coalition γ ∈ Γ with
νγt > 0 for t ∈ T γ , two distinct allocations uγ and ũγ cannot coexist in an f-core
allocation. Suppose not. Then there exist γ ∈ Γ and uγ , ũγ ∈ V γ such that
uγ ̸= ũγ and positive measures of players are assigned to these two allocations.
Since uγ ̸= ũγ , there is t ∈ T γ with uγt < ũγt without loss of generality. Then,
there exists ûγ ∈ V γ such that ûγt′ > min {uγt , ũ

γ
t } for all t′ ∈ T γ . This is

a contradiction. Second, we will show that the following holds in any f-core
allocation: In any two distinct coalitions γ, γ̃ ∈ Γ with νγt > 0 and ν γ̃t > 0
for t ∈ T γ , and any t ∈ T γ ∩ T γ̃ , uγt = uγ̃t . Suppose not, and assume that
uγt < uγ̃t holds without loss of generality. Then, a coalition of coalition type
γ̃ can kick out their type t member by replacing her with a type t player in a
coalition of coalition type γ can improve all members of the new coalition by
(A2’). Hence, there is no f-core allocation without equal-treatment property.
We have completed the proof.□

5 Remarks

We list a few remarks on our assumptions and results here.

5.1 Strict f -Core and (A2’)

Under (A2’), we can strengthen the equivalence theorem. Let a strict f-core
allocation for G be a feasible allocation for G such that there is no pair

(γ̃, (ũγ̃t )t∈T γ̃ ) such that (i)
(
ũγ̃t

)
t∈T γ̃

∈ V γ̃ , and (ii) for all t ∈ T γ̃ , ũγ̃t ≥ uγt
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holds for some γ with νγt > 0 with a strict inequality for at least one t ∈ T γ̃ .
The strict f-core for G is a collection of all strict f-core allocations. Under
(A2’), ∂V γ becomes a Pareto-efficient frontier instead of a weak-Pareto-efficient
frontier. Thus, as a corollary of Theorem 3, it is easy to see that we have the
following result for the strict f-core.

Corollary 1. The strict f-core, the f-core, and the equal-treatment f-core are
equivalent under (A1), (A2’), (A3), (A4), and (A5).

Without (A2’), the strict f-core may be empty. This can be shown by our
Example 1.

Continuation of Example 1. The unique f-core allocation of the original

game is ν
{1,2}
1 = ν

{1,2}
2 = ν

{2,3}
2 = ν

{2,3}
3 = ν

{3,1}
3 = ν

{3,1}
1 = 1

2 , (u
{1,2}
1 , u

{1,2}
2 ) =

(3, 2), (u
{2,3}
2 , u

{2,3}
3 ) = (3, 2), and (u

{3,1}
3 , u

{3,1}
1 ) = (3, 2). We claim that this

is not a strict f-core allocation. Consider type 1 players in coalition type {3, 1}.
They can invite type 2 players who are already in coalition type {1, 2} simply
switching partners. This way, these type 2 players are indifferent, but type 1
players in coalition type {3, 1} is better off. Thus, the allocation is not immune
to a weakly-improving coalitional deviations.

5.2 Compact Type Sets

Kaneko and Wooders (1996) extended their nonemptiness of the f-core result in
games with a compact set of types of atomless players. For this generalization,
they strengthened their assumptions in two ways: One is (A2) Comprehensive-
ness to (A2’) Strong Comprehensiveness which requires ∂V γ has positive slopes
uniformly bounded below everywhere (see Kaneko and Wooders 1996). The
second one is to set a uniform upper bound for coalition size—exactly our (A5),
instead of imposing milder conditions such as their small group effectiveness or
per capita boundedness. Their proof is done by taking limits of the result by
Kaneko and Wooders (1986) under more strict assumptions, thus our result can
also be used to prove their theorem under (A2’).

5.3 Scarf’s (1971) Theorem

We can apply our Theorem 1 to prove Scarf’s theorem (1971): the nonemptiness
of the core of the standard NTU games under “Scarf-balancedness”. Need-
less to say, there is only a single player for each type in a standard NTU
game. A T -person NTU game is a list (T, (V (S))S⊆T,S ̸=∅) such that V (S) ≡{
u ∈ RT : (ut)t∈S ∈ V S , (ut)t∈T\S ∈ RT\S} be a cylinder based on V S for all

∅ ≠ S ⊆ T (see, for example, Ichiishi, 1983). A core allocation of a T -
person NTU game (T, (V (S))S⊆T,S ̸=∅) is (u

∗
t )t∈T ∈ V (T ) such that there is no

S ∈ Γ = 2T and (u′t)t∈TS ∈ V S such that u′t > u∗t for all t ∈ S. We say that
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(T, (V (S))S⊆T,S ̸=∅) is Scarf-balanced if every balanced subfamily B of 2T , it
follows that ∩S∈BV (S) ⊆ V (T ). Scarf’s theorem (1971) is as follows.

Corollary 2 (Scarf, 1971). Let (T, (V (S))S⊆T,S ̸=∅ be an NTU game. The
core of an NTU game (T, (V (S))S⊆T,S ̸=∅) is nonempty if

(B1) V (S)− RT
+ = V (S) for all S ⊆ T, S ̸= ∅ (Comprehensiveness)

(B2) V S ∩ RS
+ is compact for all S ⊆ T, S ̸= ∅

(B3) (T, (V (S))S⊆T,S ̸=∅) is Scarf-balanced.

Proof. Consider the following special case of our problem in order to connect
it with the standard NTU game: ν̄1 = ... = ν̄T = 1, Γ ≡ {S ⊆ T : S ̸= ∅},
and mS

t = 1 for all t ∈ S ∈ 2T \{∅} = Γ (where TS ≡ S for all S ∈
Γ). This special case is an atomless player version of a standard T -person
NTU game (T, (V (S))S⊆T,S ̸=∅). By Theorem 1, we have an f-core allocation(
(νSt )t∈S,S∈Γ, (u

∗
t )t∈T

)
. Since (νSt )t∈S,S∈Γ is a feasible assignment,

∑
S⊆T,S ̸=∅ ν

S
t =

1 for all t ∈ T and νSt = νSr for all t, r ∈ S. Let νS = νSt for t ∈ S ⊆ T .
This implies that B ≡

{
S ⊆ T : νS > 0

}
is a balanced family and

{
νS : S ∈ B

}
is an associated balanced coefficients. Since (u∗t )t∈S ∈ V (S) for any S ∈ B,
(u∗t )t∈T ∈ ∩S∈BV (S) holds. By Scarf-balancedness, (u∗t )t∈T ∈ V (T ). By the
definition of an f-core allocation, there is no S ∈ Γ and (u′t)t∈TS ∈ V S such that
u′t > u∗t for all t ∈ TS . Hence, if an NTU game is Scarf-balanced, there is a core
allocation (u∗t )t∈T ∈ V (T ).□

5.4 Competing Teams and Contracts

Alchian and Demsetz (1972) considered a team production problem in the pres-
ence of moral hazard in a partial equilibrium model, and Holmstrom (1982)
showed that an efficient allocation is achievable depending on the class of con-
tracts available for teams. We can illustrate how a team formation problem in
a competitive environment can be incorporated in our framework to analyze an
equilibrium team structure with optimal contracts, allowing for limited freedom
for teams to choose their contracts. Let V γ be a collection of all implementable
payoff vectors for all available contracts for team-type γ. If the set V γ is a
compact set for all γ ∈ Γ, Theorem 2 shows that there is an f-core allocation.6

That is, the f-core allocation is an allocation in which each team-type γ uses
a contract, such that there is no feasible contract that can improve all mem-
bers’ payoffs. That is, an f-core allocation is an equilibrium competing contract
structure—a list of team contracts that cannot be shaken by any other contracts
by entrants with new contracts (Konishi, Pan, and Simeonov 2023). In addi-
tion, we can allow for wide-spread externalities due to market price changes—if

6Moral hazard problems may not necessarily have binding individual rationality constraints
due to limited liability by the agent, and the comprehensiveness assumption could be violated.
In such a case, an f-core allocation may not satisfy the equal-treatment property
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market price changes, the set of achievable payoffs V γ can change as well. Ham-
mond, Kaneko, andWooders (1989) and Kaneko andWooders (1989) introduced
widespread externalities to Kaneko and Wooders model (1986), and showed that
the f-core is nonempty using the property that atomless coalitions’ deviations
do not affect the whole economy (in contrast, the Aumann core can be empty
under widespread externalities due to the atomic impact of a large (positive-
measure) coalition’s deviation). Our fixed-point-based proof strategy turns out
to be useful even under widespread externalities as is shown in Konishi, Pan,
and Simeonov (2023).
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