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Abstract

Extending preferences over simple lotteries to compound (two-stage)
lotteries can be done using two different methods: (1) using the Re-
duction of compound lotteries axiom, under which probabilities of the
two stages are multiplied; (2) using the compound independence ax-
iom, under which each second stage lottery is replaced by its certainty
equivalent. Except for expected utility preferences, the rankings in-
duced by the two methods are always in disagreement and deciding
on which method to use is not straightforward. Moreover, sometimes
each of the two methods may seem to violate some kind of mono-
tonicity. In this paper we demonstrate that, under some conditions,
the disagreement disappears in the limit and that for (almost) any
pair of compound lotteries, the two methods agree if the second stage
lotteries are replicated sufficiently many times.

JEL classification: D81
Keywords: Reduction of compound lotteries axiom, compound indepen-
dence axiom, duplicated lotteries

1 Introduction

Compound lotteries, that is, lotteries where the outcomes are tickets to sim-
ple lotteries, can be reduced to simple lotteries by using the reduction of
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compound lotteries axiom (RCLA), that is, by multiplying the probabilities
of the various final outcomes. For example, if X = (. . . ; xi, pi; . . .) and Y =
(. . . ; yj , qi; . . .) are lotteries, then the compound lottery Q = (X,α;Y, 1−α) is
viewed as αX+(1−α)Y = (. . . ; xi, αpi; yj , (1−α)qj ; . . .) (see Samuelson [27]).
De Finetti’s [13] went even further, claiming that probabilities over proba-
bilities are just probabilities, therefore such compound lotteries do not take
us out of the original space of lotteries. Denote by Q

R
the reduced form of

the compound lottery Q using RCLA.
Alternatively, one can use the compound independence axiom (CIA) to

reduce compound lotteries recursively, where Q = (X,α;Y, 1−α) is assumed
to be indifferent to the simple lottery (c(X), α; c(Y ), 1−α) over the certainty
equivalents of X and Y . Kreps and Porteus [18] and Segal [28] presented
a formal analysis of this procedure. Numerous experiments show this is
the way many decision makers view compound lotteries and that RCLA is
widely violated. See, e.g., Halevy [16], Chew, Miao, and Zhong [10], Gillen,
Snowberg, and Yariv [14], Abdellaoui, Klibanoff, and Placido [1], and Epstein
and Halevy [11]. Denote by Q

CI
the reduced form of Q using CIA.

If preferences are expected utility, then for all Q, Q
R
∼ Q

CI
and expected

utility is the only theory to have this property. Moreover, each of the two
methods without the other may seem to violate some kind of monotonicity.
For example, suppose that X is indifferent to Y , yet 1

2
X + 1

2
Y is preferred to

both, hence c(1
2
X + 1

2
Y ) > c(X) = c(Y ). Consider the compound lotteries

Q = (X, 1
2
;Y, 1

2
) and Q′ = (1

2
(X − ε) + 1

2
Y, 1) where ε > 0 is sufficiently

small so that c(1
2
(X − ε) + 1

2
Y ) > c(X) = c(Y ). Then (c(1

2
(X − ε) + 1

2
Y ), 1)

dominates (c(X), 1
2
; c(Y ), 1

2
) by first-order stochastic dominance, yet 1

2
X+ 1

2
Y

first-order stochastically dominates 1
2
(X − ε) + 1

2
Y . A decision maker using

RCLA will choose Q but will necessarily regret it at the second stage while a
decision maker using CIA to choose Q′ is getting a lottery that is statistically
dominated by an available option. Both seem unsatisfactory. A similar
violation occurs if c(1

2
X+ 1

2
Y ) < c(X) = c(Y ), hence in all cases where there

are X and Y such that c(X) = c(Y ) 6= c(1
2
X+ 1

2
Y ). It turn out however that

this dichotomy disappears when the second stage lotteries are repeated many
times. We demonstrate our main argument using the following example.

At age t2 people find out whether or not they are at risk to suffer from a
certain disease later on in life. The ex ante probability of being at risk is q,
in which case the person will become sick. There exists a vaccination against
this disease: One or two rounds will reduce the conditional probability of
getting it (given that a person is at risk). One round will set it at p1 and
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two rounds will reduce it to p2 < p1. The outcome associated with not being
sick is h = 0 and that of being sick is s < 0.1 Each round will reduce these
outcomes by b > 0. The last round must be taken by age t3 > t2 and, as
there must be a pause greater than t3 − t2 between the two rounds, if two
rounds are administrated, then the first of the two has to be taken at age
t1 < t2. Consider the following two policies. P̄ : one round of vaccination at
t3, conditional on being at risk, and P̂ : two rounds of vaccination, the first
at t1 and conditional on being at risk, the second at t3.

2 Policies P̄ and P̂
lead to the compound lotteries Q̄ and Q̂, respectively (see Fig. 1)

• Q̄ = (0, 1 − q; X1, q) where X1 = (−b, 1 − p1; s − b, p1). The reduced
form of Q̄ is Q̄

R
= (0, 1− q; −b, q(1− p1); s− b, qp1)

• Q̂ = (−b, 1−q; X2, q) where X2 = (−2b, 1−p2; s−2b, p2). The reduced
form of Q̂ is Q̂

R
= (−b, 1− q; −2b, q(1− p2); s− 2b, qp2)

Q̄ Q̂

1−q q 1−q q

0 X1 −b X2

X1 X2

1−p1 p1 1−p2 p2

−b s− b −2b s− 2b

Figure 1: The lotteries Q and X

1For simplicity, suppose that all outcomes are monetary payoffs. For example, the
disease only effects people’s ability to work.

2We assume that both policies are better than no vaccination.
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Consider a public health official who has to decide which of the two poli-
cies to choose for a single individual. The official is using a rank-dependent
functional V (Y ) =

∫

v(t)dg(FY (t)) (Quiggin [24]), and suppose that v(x) =
x, g(p) = 4p for p 6 1

5
and g(p) = 3+p

4
for p > 1

5
, p1 = 2

5
, p2 = 3

10
,

q = 1
2
, b = 1, and s = −10. Then V (Q̂

R
) = −63

8
> −71

8
= V (Q̄

R
) yet

V (X1) = −38
4
> −41

4
= V (X2). Comparing Q̄

R
and Q̂

R
, decision makers will

choose the two-round policy P̂ . However, diagnosed as not being at risk, the
alternative policy yields a greater outcome (0 > −b) and, similarly, diagnosed
as being at risk, V (X1) > V (X2). Comparing Q̄

CI
and Q̂

CI
, decision makers

will choose the one-round policy P̄ . It is therefore not clear which of the two
rules should be used to make such decisions.

Suppose however that there are many identical individuals, and the official
has to decide which of the two policies to adopt for all. From his perspective,
the outcome of a policy is its total gain or loss. The official is therefore
not interested in the utility of each of the individuals, but in the overall
sum of their outcomes (recall that in our example all outcomes are monetary
payoffs). Our main result (Theorem 1 of section 3) implies that the official’s
choice does not depend on which of the two rules is used. Moreover, we
can tell which of the two policies is better. As a result, we provide officials
with a coherent and simple rule of how to choose between such policies. Our
analysis is using a technical wrapping assumption which we do not attempt to
motivate either on behavioral or normative grounds. However, as we show in
section 4, in most commonly used non-expected utility models, violations of
this assumption lead to uncompelling behavioral patterns. Section 5 extends
our main result to the case of cautious expected utility (Cerreia-Vioglio,
Dilleberger, and Ortoleva [4]), even though this model may not satisfy the
wrapping assumption. All proofs appear in the appendix.

2 The Model

Let X be the set of finite real lotteries endowed with the L1 topology and
assume that the decision maker has a complete, transitive, and continuous
preference relation � over it. Consider the set of compound lotteries over
lotteries Q = {Q = (X1, q1; . . . ; Xm, qm)}, where X1, . . . , Xm ∈ X are of
the form Xi = (xi,1, pi,1; . . . ; xi,ni

, pi,ni
), i = 1, . . . ,m. There are two ways

in which compound lotteries can be ranked, and they depend on the way
the decision maker transforms two stage lotteries into one stage lotteries (see
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Segal [28]).

Reduction of Compound Lotteries Axiom (RCLA) For all Q ∈ Q,

Q ∼ Q
R
:= (. . . ; xi,j , qipi,j ; . . .)

Compound Independence Axiom (CIA) For all Q ∈ Q,

Q ∼ Q
CI

:= (c(X1), q1; . . . ; c(Xm), qm)

where c(X), the certainty equivalent ofX, is given by δc(X) = (c(X), 1) ∼
X.

Consider now the case in which n replicas ofQ = (X1, q1; . . . ;Xm, qm) ∈ Q
are simultaneously played. Let Qn be the two stage lottery where the first
stage determines for each Q which lottery Xi will be played in the second
stage. This is done for each lottery Q independently of the other lotteries.
In the second stage, the decision maker is facing the sum of n lotteries, each
taken from the set {X1, . . . , Xm}. There are H := mn (m to the power of
n) such possible sequences, denote their sums Ynj, j = 1, . . . , H, with the
corresponding probabilities µnj, which are the product of the corresponding
qi probabilities. Observe that being the sum of simple lotteries, each Ynj is
a simple lottery. We thus obtain that

Qn = (Yn1, µn1; . . . ;YnH , µnH) (1)

The two-stage lottery Qn yields the lotteries Ynj with probabilities µnj,
j = 1, . . . , nH. For example, let X1 = (−1, 1

2
; 0, 1

2
), X2 = (−3, 1

2
; 0, 1

2
),

Q = (X1,
1
2
;X2,

1
2
), and n = 2. The four possible sequences are Y21 =

X1 + X1 = (−2, 1
4
;−1, 1

2
; 0, 1

4
), Y22 = X23 = X1 + X2 = X2 + X1 =

(−4, 1
4
;−3, 1

4
;−1, 1

4
; 0, 1

4
), Y24 = X2 + X2 = (−6, 1

4
;−3, 1

2
; 0, 1

4
), and Q2 =

(Y21,
1
4
; . . . ;Y24,

1
4
).

The lottery (Qn)
R
is obtained by taking the weighted mixture of these

lotteries, that is,
∑

j µnjYnj. The lottery (Qn)
CI

is obtained by replacing
each Ynj with its certainty equivalent. For simplicity, we denote them Qn

R

and Qn
CI
.
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3 Main Result

Our analysis depends on a technical wrapping assumption which we later
show to be satisfied by most theories in the literature under conditions that
can easily be justified.

Wrapping: A preference relation � satisfies wrapping if it can be repre-
sented by a functional V with the following property: There exist α > 1 and
β > 0 such that for all Y ∈ X , E[v(Y )] > V (Y ) > αE[v(Y )]− βv(ȳ), where
v(z) := V (δz) and ȳ is the highest possible outcome in Y .3

Consider the set U of all increasing, twice differentiable, and concave vNM
utilities such that lim

x→−∞
u′(x) = ∞ and lim

x→−∞
− u′′(x)

u′(x)
exists, is positive, and

finite. We restrict attention to concave functions v as in the functional forms
discussed in the next section this is a necessary condition for risk aversion,
which is a natural requirement in the context of social policy making.4 For
u ∈ U , let

au := lim
x→−∞

−
u′′(x)

u′(x)
(2)

and define ϕu(x) := −e−aux.
Consider the set Q̃ = {Q ∈ Q : E(Q

R
) 6 0}. We restrict attention to

compound lotteries with non-positive expected value as our proofs use some
results from Safra and Segal [26] where this restriction is assumed. In the
context of public health policy this is often the case as the choice is between
different ways of reducing potential harm. Let Q̄ and Q̂ be compound lotter-
ies in Q̃. The next theorem provides conditions under which, for sufficiently
large values of n, the ranking of reduced versions of Q̄n and Q̂n does not
depend on the reduction procedure.

Theorem 1 Suppose that the preference relation � with the representation
V satisfies wrapping and that v(z) = V (δz) is in U . Let Q̄, Q̂ ∈ Q̃. If
E[ϕv(Q̄R

)] > E[ϕv(Q̂R
)], then there exists n∗ such that for all n > n∗, Q̄n

R
≻

Q̂n
R
and Q̄n

CI
≻ Q̂n

CI
.

3This assumption is obviously satisfied if V is EU with α = 1 and β = 0.
4All CARA functions of the form −ke−ax with positive a and k are in U , but U is

much larger than that. For example, if u ∈ U then so is u + P where P is a polynomial
function. Also, the sum of two CARA functions is in U . Note that in both cases the sum
is not CARA.
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Theorem 1 assumes that the expected utility (with respect to ϕv) of Q̄R
is

different from that of Q̂
R
. This does not mean that if E[ϕv(Q̄R

)] = E[ϕv(Q̂R
)],

then there exists n∗ such that for all n > n∗, Q̄n
R
∼ Q̂n

R
and Q̄n

CI
∼ Q̂n

CI
, or

even that Q̄n
R
� Q̂n

R
iff Q̄n

CI
� Q̂n

CI
. The reason is that unless one sequence

is increasing and the other decreasing, the fact that lim
n→∞

an = lim
n→∞

bn doesn’t

imply any specific relation between an and bn (see the proof of the theorem).
On the other hand, consider a compound lottery Q ∈ Q̃. The set of

lotteries Q̄
R
such that E[ϕv(Q̄R

)] 6= E[ϕv(QR
)] is open and dense in X . In

other words, if E[ϕv(Q̄R
)] 6= E[ϕv(QR

)], then this inequality holds for all
sufficiently small perturbations of Q and Q̄, and if E[ϕv(Q̄R

)] = E[ϕv(QR
)],

then almost all small perturbations of either Q or Q̄ will break this equality.
Given two lotteries Q̄ and Q̂, Theorem 1 needs to know the shape of v

as x → −∞. But if Q̄
R
dominates Q̂

R
by first-order stochastic dominance,

then regardless of the exact form of v, the expected utility of Q̄
R
is higher

than that of Q̂
R
. Therefore, not only is Q̄n

R
preferred to Q̂n

R
for all n, but for

a sufficiently large n, Q̄n
CI

is also preferred to Q̂n
CI
. Formally:

Conclusion 1 If Q̄
R
first-order stochastically dominates Q̂

R
, then for every

� satisfying the assumptions of Theorem 1 and for sufficiently large n, Q̄n
R
≻

Q̂n
R
and Q̄n

CI
≻ Q̂n

CI
.

4 Functional Forms

We now show conditions under which the wrapping assumption is satisfied
by some well-known alternatives to expected utility theory. In all cases, we
assume risk aversion. As before, denote the highest outcome of Y by ȳ.

Rank Dependent Utility

The RDU model (Quiggin [24]) is defined by V (Y ) =
∫

v(t)dg(FY (t)) where
g : [0, 1] → [0, 1] is increasing and onto. We assume that v belongs to U .
Note that v(z) = V (δz). In this model, risk aversion with respect to mean
preserving spreads is obtained iff v and g are concave (Chew, Karni, and
Safra [9]). Under this condition, we show that this model satisfies wrapping
iff the probability transformation function g is Lipschitz. Lipschitz is weaker
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than differentiability and implies weak Gâteaux differentiability (see [9]).5

Claim 1 If the preference relation � can be represented by an RDU func-
tional where g is Lipschitz, then it satisfies wrapping.

Violations of the assumption that g is Lipschitz lead to doubtful behavior.
Since g is concave, being non-Lipschitz implies that lim

ε→0

g(ε)
ε

= ∞. For a

given outcome y and increment t, let s(ε) be the added value that makes the
decision maker indifferent between δy and (y− t, ε; y, 1− 2ε; y + s(ε), ε). We
get

v(y − t)g(ε) + v(y)[g(1− ε)− g(ε)] + v(y + s(ε))[1− g(1− ε)] = v(y)

hence

v(y + s(ε))− v(y)

v(y)− v(y − t)
=

g(ε)

1− g(1− ε)

=
g(ε)/ε

[1− g(1− ε)]/ε
−→
ε→0

∞ (3)

(Observe that since g is concave, [g(1) − g(1 − ε)]/ε 6 [g(1) − g(0)]/1 =
1). Eq. (3) implies that even for a minuscule downward change in y, the
equiprobable compensation s(ε) goes to infinity as ε goes to 0, regardless of
the size of t. Such behavior seems implausible. Moreover, if v is bounded,
no such compensation exists.

Remark: Tversky and Kahneman [29] offered cumulative prospect theory
(CPT) as a modification of their original model [17]. CPT uses differ-
ent probability transformation functions for gains and losses, and a convex
utility for losses. The transformation functions suggested by the authors,
pγ/[pγ +(1− p)γ ]1/γ are inconsistent with our wrapping assumption, as their
derivatives are not bounded at p = 0. However, if transformation with
bounded derivatives are permitted, and the utility function from losses is
concave, our results for the RDU model extend to CPT as well.

5A function is weak Gâteaux differentiable if all directional derivatives exist. It fol-
lows from [9, Theorem 1’s proof] that weak Gâteaux differentiability is sufficient for the
connection between risk aversion and the concavity of g.
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Weighted Utility

The WU model (see Chew [7]) is given by

V (Y ) =

∫

w(t)
∫

w(t)dFY (t)
· v(t)dFY (t)

where w is continuous and zero is not in its image, hence wlg, w > 0. We
assume that V (δz) = v(z) belongs to U . Chew [7, eq. (5.2)] showed that
−w′

w
increases the measure of risk aversion derived from the function v. We

therefore assume that w′

w
6 0. Under these restrictions, we get the following

characterization of the wrapping assumption:

Claim 2 If the preference relation � can be represented by a WU functional
with bounded w, then it satisfies wrapping.

Violations of the assumption that w is bounded lead to doubtful behav-
ior. Consider the lottery Yt = (t, p; 0, 1 − p) where wlg v(0) = 0. If w is
unbounded, then

lim
t→−∞

V (Yt)

v(t)
= lim

t→−∞

pw(t)v(t)

[pw(t) + (1− p)w(0)] v(t)
= 1

In other words, the certainty equivalent of Yt is almost t, implying that
regardless of the probability of loss p, the decision maker is willing to pay
almost the whole potential damage to insure himself against this potential
loss. Such behavior seems unlikely.

Disappointment Aversion

The DA model (Gul [15]) is given by

V (Y ) =

∫

γ(t, b, c(Y ))v(t)dFY (t)

where

γ(t, b, c(Y )) =







1
1+bFY (c(Y ))

δt ≻ Y

1+b
1+bFY (c(Y ))

Y � δt

Risk aversion in this model holds iff v is concave and b > 0 (see theorem 3
in [15]). We assume further that V (δz) = v(z) belongs to U .

Claim 3 The disappointment aversion model satisfies wrapping.
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Quadratic Utility

The general quadratic model is of the form

V (Y ) =

∫ ∫

ψ(t, s)dFY (t)dFY (s)

where the function ψ is increasing, symmetric, and unique up to positive
affine transformations (see Chew, Epstein, and Segal [8]. See also Machina
[19, p. 295]). Quadratic preferences satisfy risk aversion iff ψ11 6 0. Observe
that v(z) = V (δz) = ψ(z, z).

Claim 4 If the preference relation � can be represented by a quadratic
functional such that for all x, y, ψ(x, x) +ψ(y, y) > ψ(x, y) +ψ(y, x), then it
satisfies wrapping.6

5 Cautious Expected Utility

Let W be a set of vNM utilities. According to the Cautious Expected Utility
(CU) model (Cerreia-Vioglio, Dillenberger, and Ortoleva [4]),

V (Y ) = inf
u∈W

cu(Y ) (4)

where u(cu(Y )) = E[u(Y )]. We restrict attention to sets W in Ω, where
Ω = {W ⊂ U : W is finite or the convex hull of a finite set of utilities}. We
can therefore replace inf with min in eq. (4).

This functional does not necessarily satisfy the second inequality in the
definition of wrapping. Observe first that v(z) = V (δz) = z. All functions in
U are concave, hence for every Y , E[v(Y )] = E[Y ] > V (Y ). But there are no
α > 1 and β > 0 such that V (Y ) > αE[v(Y )]− βv(ȳ). Let W = {u} where
u(t) = 1− e−t and let Yk = (−k, 1

k
; 0, 1− 1

k
). Denote c(k) = cu(Yk) to obtain

1− e−c(k) = 1
k
(1− ek) =⇒ lim

k→∞

e−c(k) = lim
k→∞

1− 1
k
+ ek

k
= ∞

Hence c(k) → −∞ and, by construction, V (Yk) → −∞ as well. However, as

αE[v(Yk)]− βv(ȳ) = αE[Yk] = −α,

6This last property is implied by, but does not imply, supermodularity of ψ. Machina’s
example, V (Y ) = E[u(Y )] + (E[w(Y )])2, satisfies this property (this V is quadratic with
ψ(x, y) = (u(x) + u(y))/2 + w(x)w(y)).
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the inequality V (Yk) > αE[v(Yk)]−βv(ȳ) fails to hold for k sufficiently large.
Theorem 2 below shows that even though the functional of eq. (4) does not
satisfy wrapping, the conclusion of Theorem 1 holds for the CU model as
well.

Let � be CU whereW ∈ Ω is generated by the utility functions u1, . . . , uℓ.

Let ā := max
j

{auj
} where auj

= lim
x→−∞

−
u′′
j (x)

u′
j(x)

, and let ϕ
W
(x) = −e−āx.

Theorem 2 Suppose that the preference relation � is CU where W ∈ Ω
and let Q̄, Q̂ ∈ Q̃. If E[ϕ

W
(Q̄

R
)] > E[ϕ

W
(Q̂

R
)], then there exists n∗ such that

for all n > n∗, Q̄n
R
≻ Q̂n

R
and Q̄n

CI
≻ Q̂n

CI
.

Theorem 2 assumes thatW is generated by a finite set of utility functions.
But it can be extended to the case where all the generating functions exhibit
(weakly) decreasing absolute risk aversion, even if this set of functions is not
finite, provided ā = sup{au : u ∈ W} <∞.

Another case is Gul’s [15] model of disappointment aversion. Cerreia-
Vioglio, Dilleberger, and Ortoleva [5] show that it is a CU model where
W is the family of its local utilities. This set is not the convex hull of a
finite number or utilities (unless b = 0), and as these local utilities are not
differentiable, they are not in U , yet this model satisfies the conclusion of
Theorem 2 (see Claim 3 above).

6 Dutch Books

Violating any of the two methods for analyzing two-stage lotteries exposes
decision makers to Dutch books. De Finetti [12] claims that a decision maker
whose preferences violate the basic laws of probability theory is exposed
to manipulations that inevitably will lose him money. Markowitz [22] and
Raiffa [25] presented arguments against changing preferences while moving
down a decision tree.

A careful analysis of these arguments shows that they rely on some further
assumptions and therefore may not be prove that individual decision makers
must follow both RCLA and CIA (see Machina [20] and McClennen [21] for
arguments regarding Markowitz and Raiffa’s support of dynamic consistent
decision rules and Border and Segal [2, 3] for an analysis of Dutch books
involving violations of probability theory). But even if the Dutch books are
valid, they can hardly be understood as practical arguments. At best they
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are theoretical arguments that can be used to persuade a reluctant decision
maker to follow expected utility theory. But it is certainly conceivable to
imagine willingness to pay a hypothetical price to satisfy an intuitive feelings
regarding the proper simplification of a two stage lottery.

The example presented in the introduction is an extended version of the
Dutch book argument and seems to weigh against violations of RCLA and
CIA performed by the public official. It is hard to justify mathematical
mistakes done by such officials, and they will have hard time explaining why
they chose an option where all possible outcomes are inferior to an alternative
option. Theorems 1 and 2 show that none of these arguments can be raised in
a large society. For sufficiently large n, the official’s decisions are consistent
with both RCLA and CIA.

Appendix: Proofs

For X ∈ X , let Xn be the sum of n independent replicas of X. This notation
is consistent with the notation Qn, as every X ∈ X can be identified with
Q = (X, 1) ∈ Q, and the lottery Qn is obtained by taking the sum of n
repetitions of X. Although for Q = (X, 1), Qn is formally an element of Q,
it can be identified, as above, as an element of X .

Let Q = (X1, q1; . . . ;Xm, qm). Consider (Qn)
R
, the one stage lottery

derived from Qn using RCLA and (Q
R
)n, the sum of n repetitions of Q

R
.

Denote the set of outcomes of {X1, . . . , Xm} by X̄. A typical outcome of
(Qn)

R
, as well as of (Q

R
)n, is a sum of n (not necessarily different) outcomes

in X̄. The probability of a such a sum in (Qn)
R
and in (Q

R
)n is the product

of the compounded probabilities of each of its summands. Hence we get:

Claim 5 Let Q = (X1, q1; . . . ;Xm, qm). Then (Qn)
R
is the same as (Q

R
)n. �

Recall that we denote Qn
R
for (Qn)

R
(and hence for (Q

R
)n) and Qn

CI
for

(Qn)
CI
. mm

Proof of Theorem 1: We prove the theorem for a weaker version of wrap-
ping (hence for a possibly larger family of functionals V ):

Wrapping∗: The preference relation � satisfies wrapping∗ if it can be repre-
sented by a functional V with the following property: There exist α > 1, β >
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0, and γ such that for all Y ∈ X , E[v(Y )] > V (Y ) > αE[v(Y )]− βv(ȳ) + γ,
where v(z) := V (δz) and ȳ is the highest possible outcome in Y .

Note that if the preferences � with V, α, β, γ are as in the definition of
wrapping∗, then so are � with V + ζ, α, β, γ + ζ(1 − α + β) for all ζ. We
therefore assume wlg that v(0) = V (δ0) = 0.

Recall that av = lim
x→−∞

− v′′(x)
v′(x)

, ϕv(x) = −e−avx. Let Q ∈ Q̃ and let c

satisfy ϕv(c) = E[ϕv(QR
)]. We show that

lim
n→∞

c(Qn
R
)

n
= lim

n→∞

c(Qn
CI
)

n
= c (5)

Consider Y ∈ {Ynj}
H
j=1. Since by wrapping∗ for all Y , E[v(Y )] > V (Y ),

v(c(Qn
CI
)) = V (Qn

CI
)

6 E[v(Qn
CI
)] =

∑

jµnjv(c(Ynj))

=
∑

jµnjV (Ynj) 6
∑

jµnjE[v(Ynj)]

= E[v(
∑

j µnjYnj)]

= E[v(Qn
R
)] = v(cv(Q

n
R
))

(6)

Where cv(Q
n
R
) is the certainty equivalent of Qn

R
using expected utility with

v and the last equality signs hold since the expected utility model satisfies
RCLA and by Claim 5. It follows that

c(Qn
CI
) 6 cv(Q

n
R
) (7)

Similarly to eq. (6),

v(c(Qn
R
)) = V (Qn

R
)

6 E[v(Qn
R
)] = v(cv(Q

n
R
))

Where the inequality follows again from E[v(Y )] > V (Y ). Hence

c(Qn
R
) 6 cv(Q

n
R
) (8)

Let x̄ be the highest possible outcome in Q
R
and note that nx̄ is at least

as high as the highest outcome of Y and therefore it is also at least as high

13



as c(Y ), the certainty equivalent of Y . Let b := v(x̄). By the wrapping∗

assumption there exist α > 1, β > 0, and γ such that

V (Y ) > αE[v(Y )]− βv(ȳ) + γ

> αE[v(Y )]− βv(nx̄) + γ (9)

> αE[v(Y )]− βnb+ γ

where the last inequality follows from the concavity of v and the fact that
v(0) = 0. Hence, using inequality (9) and the fact that the highest possible
outcome in Qn

CI
cannot exceed nx̄, we get

V (Qn
CI
) > αE[v(Qn

CI
)]− βnb+ γ

= α
∑

jµnjv(c(Ynj))− βnb+ γ

= α
∑

jµnjV (Ynj)− βnb+ γ

> α
∑

jµnj[αE[v(Ynj)]− βnb+ γ]− βnb+ γ

= α2E[v((Qn)
R
)]− (α + 1)βnb+ (α + 1)γ

= α2E[v(Qn
R
)]− (α + 1)βnb+ (α + 1)γ

Here too, the last two equality signs hold since the expected utility model
satisfies RCLA and by Claim 5. Since V (Qn

CI
) = v(c(Qn

CI
)), we get

v(c(Qn
CI
)) > α2v(cv(Q

n
R
))− (α + 1)βnb+ (α + 1)γ (10)

Next we show that lim
n→∞

c(Qn

CI
)

n
exists and is equal to c. By Claim 5 and

Lemma 6 of Safra and Segal [26],

lim
n→∞

cv(Q
n
R
)

n
= lim

n→∞

cv((QR
)n)

n
= c (11)

By inequality (7), cv(Q
n
R
)− c(Qn

CI
) > 0. If cv(Q

n
R
)− c(Qn

CI
) > 0, then by the

concavity of v

v′(cv(Q
n
R
)) 6

v(cv(Q
n
R
))− v(c(Qn

CI
))

cv(Qn
R
)− c(Qn

CI
)

hence even if cv(Q
n
R
)− c(Qn

CI
) = 0,

cv(Q
n
R
)− c(Qn

CI
) 6

v(cv(Q
n
R
))− v(c(Qn

CI
))

v′(cv(Qn
R
))

14



It now follows by inequality (10) that

cv(Q
n
R
)− c(Qn

CI
) 6

v(cv(Q
n
R
))− [α2v(cv(Q

n
R
))− (α + 1)βnb+ (α + 1)γ]

v′(cv(Qn
R
))

=
−[α2 − 1]v(cv(Q

n
R
))

v′(cv(Qn
R
))

+
(α + 1)βnb

v′(cv(Qn
R
))

+
(α + 1)γ

v′(cv(Qn
R
))

By [26, Lemma 4], lim
n→∞

cv(Q
n
R
) = −∞, hence since v ∈ U , lim

n→∞
v′(cv(Q

n
R
)) =

∞ and, using l’Hôpital’s rule and eq. (2),

lim
n→∞

v(cv(Q
n
R
))

v′(cv(Qn
R
))

= lim
x→−∞

v′(x)

v′′(x)
= −

1

av

Therefore, using eq. (7),

0 6 lim
n→∞

cv(Q
n
R
)− c(Qn

CI
)

n
6 lim

n→∞

α2 − 1

n
·
1

av

+ lim
n→∞

(α + 1)βb

v′(cv(Qn
R
))

+ lim
n→∞

(α + 1)γ

nv′(cv(Qn
R
))

= 0

By (11) lim
n→∞

cv(Qn

R
)

n
= c, hence lim

n→∞

c(Qn

CI
)

n
exists and is equal to c.

We now show that lim
n→∞

c(Qn

R
)

n
exists and is equal to c. Once again, using

inequality (9), V (Qn
R
) > αE[v(Qn

R
)]− βnb + γ. Since V (Qn

R
) = v(c(Qn

R
)), we

get
v(c(Qn

R
)) > αv(cv(Q

n
R
))− βnb+ γ

Following similar analysis to the one following inequality (10) and using in-

equality (8) instead of (7), we obtain lim
n→∞

c(Qn

R
)

n
= c. Eq. (5) is thus proved.

Let Q̄, Q̂ ∈ Q̃, let c̄ and ĉ satisfy ϕv(c̄) = E[ϕv(Q̄R
)] and ϕv(ĉ) =

E[ϕv(Q̂R
)], and assume that c̄ > ĉ. By eq. (5), c̄ = lim

n→∞

c(Q̄n

R
)

n
= lim

n→∞

c(Q̄n

CI
)

n

and ĉ = lim
n→∞

c(Q̂n

R
)

n
= lim

n→∞

c(Q̂n

CI
)

n
, hence there is n∗ such that for all n > n∗,

Q̄n
CI

≻ Q̂n
CI

and Q̄n
R
≻ Q̂n

R
. �

Proof of Claim 1: The concavity of g implies that for all Y , E[v(Y )] > V (Y )
(see [9]). Suppose g is Lipschitz. We show that there exist α > 1 and

15



β > 0 such that V (Y ) > αE[v(Y )] − βv(ȳ). Note that being Lipschitz on
[0, 1] implies the existence of k > 1 such that for all p, dg 6 kdp.7 Define
v∗(t) = v(t)− v(ȳ) (note that v∗(t) 6 0 for all outcomes of Y ). Then,

V (Y ) =

∫

v(t)dg(FY (t))

=

∫

[v∗(t) + v(ȳ)]dg(FY (t))

=

∫

v∗(t)dg(FY (t)) + v(ȳ)

> k

∫

v∗(t)dFY (t) + v(ȳ)

= k

∫

[v(t)− v(ȳ)]dFY (t) + v(ȳ)

= kE[v(Y )]− (k − 1)v(ȳ)

The claim is obtained by choosing α = k and β = k − 1. �

Weighted Utility

The WU model (see Chew [7]) is given by

V (Y ) =

∫

w(t)
∫

w(t)dFY (t)
· v(t)dFY (t)

where w is continuous and zero is not in its image, hence wlg, w > 0. We
assume that V (δz) = v(z) belongs to U . Chew [7, eq. (5.2)] showed that
−w′

w
increases the measure of risk aversion derived from the function v. We

therefore assume that w′

w
6 0. Under these restrictions, we get the following

characterization of the wrapping assumption:

Claim 6 If the preference relation � can be represented by a WU functional
with bounded w, then it satisfies wrapping.

7As g(1)−g(0)
1−0 = 1, there is no k < 1 such that for all p, dg 6 kdp.
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Proof of Claim 2: Since w > 0, the requirement w′

w
6 0 is equivalent to

w′ 6 0. For every s,

∫ s
w(t)dFY (t)

∫

w(t)dFY (t)
−

∫ s

dFY (t) > 0

⇐⇒

∫ s [

w(t)−

∫

w(t)dFY (t)

]

dFY (t) > 0 (12)

At s = −∞ and at s = ∞, the last expression equals 0. Let t∗ be such that
for t 6 t∗, w(t) >

∫

w(t)dFY (t), and for t > t∗, w(t) <
∫

w(t)dFY (t). For
s 6 t∗, inequality (12) is obviously satisfied. For s > t∗ it is satisfied since
∫

s

[

w(t)−
∫

w(t)dFY (t)
]

dFY (t) 6 0.
Define GY (s) =

∫ s
w(t)dFY (t)/

∫

w(t)dFY (t). Since
∫ s

dFY (t) = FY (s),
it follows by (12) that FY first-order stochastically dominates GY , hence
E[v(Y )] > V (Y ).

To show that if w is bounded then there exist α > 1 and β > 0 such that
V (Y ) > αE[v(Y )]− βv(ȳ), suppose {w(·)} ⊂ [a, b] where b > a > 0. Choose
α > b

a
and β = α− 1 and define v∗(t) = v(t)− v(ȳ) (note that v∗(t) 6 0 for

all outcomes of Y ). Then,

V (Y ) =

∫

w(t)
∫

w(t)dFY (t)
· v(t)dFY (t)

=

∫

w(t)
∫

w(t)dFY (t)
· [v∗(t) + v(ȳ)]dFY (t)

=

∫

w(t)
∫

w(t)dFY (t)
· v∗(t)dFY (t) + v(ȳ)

As 0 < a 6 w 6 b, w(t)∫
w(t)dFY (t)

6 b
a
< α. And since v∗ 6 0, we get, similarly

to the proof of claim 1, that

V (Y ) > α

∫

v∗(t)dFY (t) + v(ȳ)

= α

∫

[v(t)− v(ȳ)]dFY (t) + v(ȳ)

= αE[v(Y )]− βv(ȳ) �
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Proof of Claim 3: To see that E[v(Y )] > V (Y ), note that similarly to
the proof of claim 2, in the DA model the utilities of all the outcomes that
are strictly preferred to Y are multiplied by 1

1+bFY (c(Y ))
6 1, while all other

utilities are multiplied by 1+b
1+bFY (c(Y ))

> 1 (note that
∫

γ(t, b, c(Y ))dFY (t) =

1). To show that there exist α > 1 and β > 0 such that V (Y ) > αE[v(Y )]−
βv(ȳ), observe that γ(t, b, c(Y )) 6 1 + b and proceed as in the RDU model
with α = 1 + b and β = b. �

Proof of Claim 4: We consider wlg finite lotteries of the form Y =
(y1,

1
n
; . . . ; yn,

1
n
) where y1 6 . . . 6 yn and start with the inequality V (Y ) 6

E[v(Y )]. Since v(y) = ψ(y, y), we get

V (Y ) =
1

n2

(

∑

i

ψ(yi, yi) +
∑

i

∑

j>i

[ψ(yi, yj)) + ψ(yj, yi)]

)

6
1

n2

(

∑

i

v(yi) +
∑

i

∑

j>i

[v(yi) + v(yj)]

)

=
1

n2

(

∑

i

v(yi) + (n− 1)
∑

i

v(yi)

)

= E[v(Y )]

where the inequality follows by the condition ψ(x, x) + ψ(y, y) > ψ(x, y) +
ψ(y, x).

Next we show that V (Y ) > 2E[v(Y )]− v(ȳ). Recall that ȳ = yn. Then

V (Y ) =
1

n2

∑

i

∑

j

ψ(yi, yj)

=
1

n2

[

∑

i

ψ(yi, yi) + 2
∑

j

∑

i>j

ψ(yi, yj)

]

>
1

n2

[

∑

i

v(yi) + 2
∑

j

∑

i>j

v(yj)

]

=
1

n2
[(2n− 1)v(y1) + (2n− 3)v(y2) + . . .+ v(yn)]
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> 2E[v(Y )]−
1

n2

n
∑

j=1

(2j − 1)v(ȳ)

= 2E[v(Y )]− v(ȳ)

The first inequality follows by the fact that for i > j, yi > yj and by the
monotonicity of ψ while the second inequality follows by the fact that for all
i, v(ȳ) > v(yi). �

Proof of Theorem 2: Since for all Y , c(Y ) = min
u∈W

cu(Y ), it follows that for

all u ∈ W (see eq. (1)),

c(Qn
CI
) = c (c(Yn1), µn1; . . . ; c(YnH), µnH)

6 c (cu(Yn1), µn1; . . . ; cu(YnH), µnH)

6 cu (cu(Yn1), µn1; . . . ; cu(YnH), µnH)

= cu(Q
n
CI
)

= cu(Q
n
R
)

where the last equality follows from a property of the EU model. As c(Qn
R
) =

min
u∈W

cu(Q
n
R
), we get c(Qn

CI
) 6 c(Qn

R
) and hence

lim
n→∞

c(Qn
CI
)

n
6 lim

n→∞

c(Qn
R
)

n
(13)

The set W is generated by a finite set of the utility functions u1, . . . , uℓ.

Let r(x) = max
j

{

−
u′′
j (x)

u′
j(x)

}

. Define as in Pratt [23]

w(x) =

∫ x

−∞

e−
∫ z

−∞
r(t)dtdz

By construction, r(x) = −w′′(x)
w′(x)

and observe that lim
x→−∞

r(x) = ā. Let

cw(Q
n
CI
) = cw(Q

n
R
) denote the certainty equivalents of Qn

CI
and Qn

R
using

the expected utility of w. Let u =
∑

ζjuj ∈ W where
∑

ζj = 1 and
ζ1, . . . , ζℓ > 0. Then

−
u′′(x)

u′(x)
= −

∑

ζju
′′
j (x)

∑

ζju′j(x)
=

∑

ζju
′
j(x)

(

−
u′′
j (x)

u′
j(x)

)

∑

ζju′j(x)
6 r(x)
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It thus follows that w is more risk averse than all u ∈ W , hence for all such
u, cw(Y

n
j ) 6 cu(Y

n
j ) and similarly to the argument above,

cw(Q
n
CI
) = cw (cw(Yn1), µn1; . . . ; cw(YnH), µnH)

6 cw (cu(Yn1), µn1; . . . ; cu(YnH), µnH)

6 cu (cu(Yn1), µn1; . . . ; cu(YnH), µnH) = cu(Q
n
CI
)

It thus follows that cw(Q
n
CI
) 6 min

u∈W

{

cu(Q
n
CI
)
}

= V (Qn
CI
) = c(Qn

CI
) (recall

that V (δz) = z). Let c satisfy ϕ
W
(c) = E[ϕ

W
(Q

R
)]. By [26, Lemma 6],

lim
n→∞

cw(Qn

R
)

n
= c and hence, since cw(Q

n
R
) = cw(Q

n
CI
) 6 c(Qn

CI
),

c 6 lim
n→∞

c(Qn
CI
)

n
(14)

Next, let ū denote a utility in W satisfying lim
x→−∞

− ū′′(x)
ū′(x)

= ā. Again

by [26, Lemma 6], lim
n→∞

cū(Qn

R
)

n
= c. As c(Qn

R
) = min

u∈W
cu(Q

n
R
) 6 cū(Q

n
R
), we get

lim
n→∞

c(Qn
R
)

n
6 c (15)

Combining (13), (14) and (15)

c 6 lim
n→∞

c(Qn
CI
)

n
6 lim

n→∞

c(Qn
R
)

n
6 c

and hence lim
n→∞

c(Qn

CI
)

n
= lim

n→∞

c(Qn

R
)

n
= c.

The conclusion of the proof is the same as the conclusion of the proof of
Theorem 1 with ϕ

W
replacing ϕv. �
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