
Optimal Foresight*

Ryan Chahrour

Boston College

Kyle Jurado

Duke University

September 11, 2020

Abstract

Agents have foresight when they receive information about a random process

above and beyond the information contained in its current and past history. In

this paper, we propose an information-theoretic measure of the quantity of

foresight in an information structure, and show how to separate informational

assumptions about foresight from physical assumptions about the dynamics of

the processes itself. We then develop a theory of endogenous foresight in which

the type of foresight is chosen optimally by economic agents. In a prototypical

dynamic model of consumption and saving, we derive a closed-form solution to

the optimal foresight problem.

JEL classification: D83, D84, E21

Keywords: Expectations, news, information choice

*Chahrour: Department of Economics, Boston College, 140 Commonwealth Avenue, Chestnut

Hill, MA 02467 (e-mail: ryan.chahrour@bc.edu); Jurado: Department of Economics, Duke Uni-

versity, 419 Chapel Drive, Durham, NC 27708 (e-mail: kyle.jurado@duke.edu).



1 Introduction

A popular hypothesis in macroeconomics and finance is that economic agents have

foresight: they receive information about the future of a random process that is not

revealed by its own past history. For example, the large and growing macroeconomic

literature on “news,” starting with Cochrane (1994) and Beaudry and Portier (2006),

explicitly analyzes this hypothesis. In addition, but perhaps less obviously, many

papers introduce foresight implicitly, by representing a structural driving process as

the sum of several independent “components,” each of which is separately observed

by agents. A classic example is the Friedman and Kuznets (1945) type representation

of income in terms of persistent and transitory components.

The first goal of this paper is to provide a measure of the quantity of foresight in an

information structure. We suggest measuring foresight by the information-theoretic

concept of conditional mutual information. According to this measure, the quantity of

foresight that agents have about a random process is equal to the information agents

have about the future history of that process above and beyond the information

contained in its own current and past history alone. This measure provides a way to

consistently compare seemingly different information structures based on the quantity

of foresight they contain.

The second goal of this paper is to show how to determine the type of fore-

sight implied by an information structure. This is useful for disentangling physical

assumptions about the law of motion of structural processes from informational as-

sumptions about foresight. In cases when foresight is introduced implicitly, through

independent-component representations, any change in the law of motion of one com-

ponent changes both the type of foresight in the information structure, as well as the

implied dynamics of the structural processes. This makes it difficult to perform com-

parative statics exercises, where one set of assumptions is altered holding fixed the

other. It also makes it difficult to independently validate these two sets of assump-

tions. Our approach is to make foresight explicit, by representing foresight as coming

exclusively from noise-ridden signals about the future of the structural process.

The third goal of this paper is to develop a theory of endogenous foresight in

which forward-looking agents optimally choose what information to process about

the future. Of course, the first best would be to choose to have perfect foresight,

but the agent faces various cognitive limitations which make it infeasible for him to
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achieve this. We model these limitations as a constraint on the total quantity of

foresight the agent can receive, but allow him to otherwise choose his information

structure optimally.

By way of results, we provide three propositions, each addressing one of the ob-

jectives described above. The first presents a closed-form expression for the quantity

of foresight in a popular persistent-transitory representation of a random process in

terms of the underlying parameters. The second presents the type of foresight implied

by this representation in the form of a noise-ridden signal of the future values of the

process. The third presents a closed-form solution to the optimal foresight problem

in a prototypical dynamic optimizing model of consumption and saving. All of these

results can be generalized for use in other settings, which is ongoing work.

Related literature

Our approach to constrained information choice is related to the approach used in

the rational inattention literature initiated by Sims (1998), but it is distinct in several

respects.1 First, this literature and the subsequent literature on endogenous informa-

tion choice imposes a “no foresight constraint,” which prevents agents from having

any foresight about the structural disturbances in the model. This constraint was

first introduced by Sims (2003), who suggested that it would be unrealistic to allow

agents to condition their information on future disturbances.2 By contrast, we allow

agents to have foresight regarding structural disturbances. Second, this literature

assumes that it is costly to process information about past and present structural

disturbances. By contrast, in this paper we assume that agents can costlessly process

information about current and past disturbances, and only face costs in processing

information about future disturbances.

One way to partially circumvent the no foresight constraint in the rational

inattention literature has been to introduce foresight implicitly, using independent-

component representations. This approach allows agents to have some foresight

regarding the sum of the components, even if they have no foresight regarding each

component separately. Examples of this type of implicit foresight in the rational

inattention literature include Luo (2008) and the related models in Section 6 of Sims

1See Veldkamp (2011) for a broad introduction to theories of endogenous information choice and

Maćkowiak et al. (2018a) for a recent survey of the rational inattention literature.
2Cf. Sims 2003, p. 672 where he describes the “more realistic situation.”
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(2003) and Section 5 of Miao et al. (2020), which allow consumers to inform them-

selves about different independent components of their income process. In all these

cases, however, the type of foresight is still constrained by the exogenously specified

independent-component representation of the fundamental process. In this paper,

we allow that representation to be determined endogenously by agents’ optimal

information choice.

There are three papers in the rational inattention literature that are more explicit

about introducing foresight. The first is Gaballo (2016), who presents an overlapping

generations equilibrium model in which agents receive a noise-ridden private signal

about next period’s average price level. The main difference is that information is

not endogenously chosen by agents in that model; the signal structure is determined

exogenously. However, in Appendix (B), we use the theory of foresight that we

develop here to formally prove that the exogenous signal structure also happens to be

optimal. This result provides an information-theoretic justification for the particular

signal structure chosen in that paper.

The second paper is Maćkowiak et al. (2018b). In Section 7 of the paper, they

formulate a business-cycle model with rational inattention and news. In this model,

technological disturbances are assumed to affect the level of technology with a delay

of k periods. This means that the history of technological disturbances contains more

information than the history of technology. The main differences with this paper are

that (i) agents are not able to costlessly observe current and past technology, and (ii)

agents are restricted to only have foresight about technology k periods into the future.

By contrast, in this paper agents have perfect hindsight, and are not restricted in the

type of foresight they can have, only in the quantity.

The third paper is Jurado (2020), which provides a frequency-domain solution

to the canonical dynamic rational inattention problem proposed by Sims (2003) and

analyzed in the time domain by Maćkowiak et al. (2018a). That paper also highlights

the importance of the no foresight constraint in the rational inattention literature

and analyzes how removing this constraint affects the problem. A key result is that

without the no foresight constraint, agents construct an endogenous band-pass filter,

and only pay attention to those frequencies that contribute most to the variation in

their target. The main difference with this paper is that Jurado (2020) follows the

rest of the rational inattention literature in assuming that information about the past

is costly to process.
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2 Defining foresight

This section defines what we mean by foresight and also provides a measure of the

quantity of foresight that an information structure contains.

Foresight refers to information about the future history of a process beyond what

is contained in its own current and past history. A natural way to quantify this

is by conditional mutual information, which measures the reduction in uncertainty,

as measured by entropy, that foresight provides. More specifically, let It denote an

arbitrary time-t information set, which is assumed to be generated by the current

and past history of a collection of stationary random processes (potentially infinitely

many), and consider a random process {yt} which is stationary and stationarily re-

lated to this collection. Then the quantity of foresight in the information structure

{It} regarding the process {yt} can be defined as follows.

Definition 1. The quantity of foresight regarding {yt} contained in the information

structure {It} is

lim
T→∞

I((yt+1, . . . , yt+T ), It|yt).

where I((yt+1, . . . , yt+T ), It|yt) denotes the conditional mutual information between

(yt+1, . . . , yt+T ) and It, conditional on yt = (yt, yt−1, . . . ).

To understand this definition, first note that conditional mutual information can

be expressed in terms of (differential) entropy as follows3

I((yt+1, . . . , yt+T ), It|yt) = H((yt+1, . . . , yt+T )|yt)−H((yt+1, . . . , yt+T )|It, yt).

The first term denotes the conditional entropy of (y1, . . . , yT ) with no foresight; it is

the degree of uncertainty about the process {yt} over the next T periods in the future

(as of time t) that remains after conditioning on its own current and past history.

The second term is the conditional entropy with foresight. The difference represents

the degree to which It reduces uncertainty about the future relative to only knowing

yt. By taking limits as T →∞, the definition represents the reduction in uncertainty

about the entire future history of the process {yt} that is provided by observing It.
The assumption of stationarity ensures that this definition is the same regardless of

which time period is treated as the present; e.g.

lim
T→∞

I((yt+1, . . . , yt+T ), It|yt) = lim
T→∞

I((y1, . . . , yT ), I0|y0).

3Cover and Thomas (2006) is a standard reference on conditional mutual information and entropy.
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It is also worth noting that foresight is a directed measure of information flow.

To understand this, suppose that It is generated by the current and past values of

the stationary process {xt}. The fact that foresight is directed means that the roles

of {yt} and {xt} cannot be reversed; i.e.

lim
T→∞

I((yt+1, . . . , yt+T ), xt|yt) 6= lim
T→∞

I((xt+1, . . . , xt+T ), yt|xt).

This is unlike the average rate of information flow between {xt} and {yt}, which is

undirected (i.e. symmetric).

When all processes are Gaussian, as we will maintain throughout this paper,

conditional mutual information can be expressed in terms of the covariance matrices

of forecast errors with and without foresight

I((yt+1, . . . , yt+T ), It|yt) = −1

2
ln

det Σ̂T

det ΣT

, (1)

where Σ̂T is the covariance matrix with foresight, and ΣT is the covariance matrix

without foresight,

Σ̂T ≡ var((yt+1, . . . , yt+T )− E[(yt+1, . . . , yt+T )|It, yt])

ΣT ≡ var((yt+1, . . . , yt+T )− E[(yt+1, . . . , yt+T )|yt]).

Using information-theoretic measures like conditional mutual information to quan-

tify information transmission is familiar from the economic literature on rational inat-

tention. In that literature, agents choose their information structures (i.e. what they

pay attention to) subject to a constraint on the rate of information flow. As we discuss

in the introduction, one important difference with respect to what we do is that in

rational inattention models, agents are not allowed to choose information structures

that contain any amount of foresight about the underlying structural disturbances.

If we call these disturbances {εt}, then this requirement can be expressed as

lim
T→∞

I((εt+1, . . . , εt+T ), It|εt) = 0 (2)

for all possible information structures {It}.4

4See Jurado (2020) for discussion of the relationship between this way of articulating the no fore-

sight constraint and the way it is more commonly articulated in the rational inattention literature.
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3 Computing foresight

A common way to introduce foresight into economic models is by representing a

random process as the sum independent components, each of which is separately

observed by an economic agent. Perhaps the most popular of such representations is

the persistent-transitory representation. This section derives closed-form expressions

for the quantity of foresight in this representation. Because it may not always be

feasible to obtain closed-form expressions for the amount of foresight in an information

structure, we also present an algorithm that can be used across a wide variety of

information structures in Appendix (C).

Let {yt} denote a stationary process; for the sake of concreteness we refer to it as

income. The persistent-transitory representation decomposes income into the sum of

two independent components,

yt = zt + σuut zt = ρzt−1 + σηηt, (3)

where σu, ση > 0, 0 < ρ < 1, and {ut} and {ηt} are independent orthonormal Gaussian

white noise processes. The persistent component is zt and the transitory component

is σuut. At each point in time, the agent’s information set is equal to the closed linear

space spanned by the current and past history of disturbances, It = span(ηt, ut).

To compute the quantity of foresight regarding the income process that is con-

tained in the information structure {It}, we can use equation (1). First, note that

the j-step-ahead forecast error in income according to the persistent-transitory rep-

resentation (3) is

êt+j|t = yt+j − E[yt+j|It] = σuut+j +

j∑
k=1

ρj−kσηηt+k.

Stacking these up for j = 1, . . . , T ,

êt+1|t

êt+2|t

êt+3|t
...

êt+T |t


= σuIT︸︷︷︸

Qu



ut+1

ut+2

ut+3

...

ut+T


+



ση 0 0 · · · 0

ρση ση 0 · · · 0

ρ2ση ρση ση · · · 0
...

...
...

. . .
...

ρT−1ση ρT−2ση ρT−3ση · · · ση


︸ ︷︷ ︸

Qη



ηt+1

ηt+2

ηt+3

...

ηt+T


.
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From this we can see that Σ̂T = QuQ
′
u + QηQ

′
η. By exploiting the structure of Qu

and Qη, it is possible to show that5

det Σ̂T =

[
(1− r2)

(ρ
θ

)T
+ r2(ρθ)T

]
σ2T
u , (4)

where the coefficient 0 ≤ r2 ≤ 1 is given by r2 ≡ (ρ− θ(1 + σ2
η/σ

2
u))/(ρ(1− θ2)).

Next, we need to find an expression for det ΣT in equation (1). This requires us

to forecast income only on the basis of its own past history. The key step at this

point is to find the Wold representation of the income process. In this case, the Wold

representation is6

yt = ρyt−1 + σε(εt − θεt−1), (5)

where {εt} is an orthonormal Gaussian white noise process with the special property

that span(εt) = span(yt) for all t. In this representation, σ2
ε = σ2

uρ/θ, and θ is the

root of the polynomial P(θ) = ρθ2 − (1 + ρ2 + σ2
η/σ

2
u)θ + ρ that lies inside the unit

circle. This is the familiar result from time series analysis that the sum of an AR(1)

process and white noise is an ARMA(1,1) process (e.g. Hamilton, 1994, ch. 4).

The j-step-ahead forecast error in income according to the Wold representation

(5) is

et+j|t = yt+j − E[yt+j|yt] = σεεt+j + (ρ− θ)
j−1∑
k=1

ρj−1−kσεεt+k.

Stacking these up for j = 1, . . . , T ,

et+1|t

et+2|t

et+3|t
...

et+T |t


=



σε 0 0 · · · 0

(ρ− θ)σε σε 0 · · · 0

ρ(ρ− θ)σε (ρ− θ)σε σε · · · 0
...

...
...

. . .
...

ρT−2(ρ− θ)σε ρT−3(ρ− θ)σε ρT−4(ρ− θ)σε · · · σε


︸ ︷︷ ︸

Qε



εt+1

εt+2

εt+3

...

εt+T


.

From this it is easy to see that

det ΣT = σ2T
ε , (6)

5See the proof of Proposition (1) in Appendix (A).
6The details are provided in the proof of Proposition (2) in Appendix (A).
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since ΣT = QεQ
′
ε, and Qε is lower triangular, so its determinant is the product of its

diagonal elements.

Now that we have computed the determinants of the forecast error covariance

matrices with and without foresight, we can use these expressions to compute the

conditional mutual information about (yt+1, . . . , yt+T ). Plugging (4) and (6) into (1)

and using the fact that σ2
ε = σ2

uρ/θ, we find that

I((yt+1, . . . , yt+T ), (yt, zt)|yt) = −1

2
ln
[
(1− r2) + r2θ2T

]
,

Since |θ|< 1, we can see that the second term vanishes as T →∞, which means that

we have arrived at the following result.

Proposition 1. The quantity of foresight in the information structure from the

persistent-transitory representation (3) is

lim
T→∞

I((yt+1, . . . , yt+T ), (ηt, ut)|yt) = −1

2
ln(1− r2),

where 0 ≤ r2 ≤ 1 is given by

r2 ≡
ρ− θ(1 + σ2

η/σ
2
u)

ρ(1− θ2)

and 0 < θ < 1 is given by

θ ≡ 1

2ρ

(
1 + ρ2 + σ2

η/σ
2
u −

√
(1 + ρ2 + σ2

η/σ
2
u)

2 − 4ρ2
)
.

Notice that the quantity of foresight in this representation depends only on ρ and

the ratio σ2
η/σ

2
u. The following corollary summarizes the way that foresight depends

on these parameters.

Corollary 1. Let F denote the quantity of foresight in the persistent-transitory rep-

resentation (3). Then

(i) F is monotonically increasing in ρ with limiting values limρ→0 F = 0 and

limρ→1 F = −1
2

ln(1− r̄2), where

r̄2 ≡
1− θ̄(1 + σ2

η/σ
2
u)

1− θ̄2

and

θ̄ ≡ 1

2

(
2 + σ2

η/σ
2
u −

√(
2 + σ2

η/σ
2
u

)2 − 4

)
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Figure 1: Quantity of foresight in the persistent-transitory representation. The circle

shows the amount of information at the baseline parameter values ρ = 0.9, σ2
u = 0.01,

and σ2
η = 0.003.

(ii) F has limiting values limσ2
η/σ

2
u→0 F = 0 and limσ2

η/σ
2
u→∞ F = 0.

We can illustrate these results in a numerical example. We select baseline param-

eter values consistent with the numerical exercise in Section 6 of Sims (2003),7

ρ = 0.9, σ2
u = 0.01, and σ2

η = 0.003.

At these values, the expression in Proposition (1) implies that the quantity of fore-

sight is 0.16 nats (0.23 bits). How “big” is this? While these units do have familiar

interpretations from computer processing, we must be careful not to rely too heavily

on those intuitions when it comes to agents in an economic model. This is because

economic models are drastically simplified versions of reality; small amounts of infor-

mation in an economic model can correspond to large amounts of information in the

actual world.

Figure (1) shows the effects of changing the parameters on the total quantity of

foresight. Each line shows the effects as the ratio σ2
η/σ

2
u varies over the range of values

on the horizontal axis. The different lines show these effects for different values of

ρ. From the figure, we can see that regardless of the value of σ2
η/σ

2
u, the quantity

of foresight is monotonically increasing in ρ. Moreover, the quantity of foresight

approaches zero as σ2
η/σ

2
u approaches either 0 or infinity for any value of ρ.

7In that exercise, the income process has two persistent components. We eliminate one and keep

all other parameters unchanged.
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4 Explicit foresight

As in the example from the previous section, foresight is typically introduced into

economic models by representing a structural process (e.g. income, technology, div-

idends) as the sum of independent components, which are all separately observable

by agents in the model. A difficulty with this approach is that foresight is intro-

duced only implicitly ; each of the independent components affects both the law of

motion of the structural process and the type of foresight agents have. This makes it

difficult to perform comparative statics exercises, such as altering informational as-

sumptions about the quantity of foresight, holding fixed physical assumptions about

the structural process. It also makes it difficult to validate these assumptions inde-

pendently. This section describes how to disentangle these two sets of assumptions,

by representing foresight explicitly in terms of subjective signals about the structural

process.

To alter informational assumptions regarding foresight without changing the phys-

ical assumptions regarding the structural process, it is necessary to hold the Wold

representation of the structural process fixed. The most straightforward way to do

this is to construct an equivalent representation of the agent’s information structure

in which the Wold innovations of the structural process appear in the set of struc-

tural disturbances. To illustrate, consider the persistent-transitory representation (3).

First, write income in terms of its Wold innovations as in equation (5). This isolates

the physical assumptions that the persistent-transitory representation makes regard-

ing the income process. Second, construct a set of subjective signals that isolate the

type of foresight agents have regarding the income process. In this case, it is possible

to show that span(ηt, ut) = span(yt, st), where8

st = (1− θ)
∞∑
j=0

θjyt+j + σvvt, (7)

σv = (1−θ)σεσu/ση, and {vt} is an orthonormal Gaussian white noise process which is

independent of {yt}. In other words, separately observing the history of the persistent

and transitory components is equivalent to observing the history of income and a noisy

signal of an exponential average of current and future income. The noise in this signal

captures purely expectational disturbances; these are disturbances that do not affect

income but they do affect the agent’s expectations.

8See the proof of Proposition (2) in Appendix (A).
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By separating representation (3) into a physical law of motion for income (5) and a

subjective signal (7), it becomes possible to analyze these physical and informational

assumptions separately. For example, to analyze the effect of increasing agents’ in-

formation about income far out into the future, we could replace the law of motion

for the signal {st} in (7) with a different signal that places more weight on future

income,

s̃t = (1− θ̃)
∞∑
j=0

θ̃jyt+j + σvvt,

with θ̃ > θ (and σv is defined as before). The change in information from It =

span(yt, st) to Ĩt = span(yt, s̃t) alters the quantity of foresight the agent has regarding

income, but does not alter the dynamics of income itself, which is held fixed at (5).

We summarize this discussion with a proposition. It is not difficult to see that this

result can be extended to apply to representations other than the persistent-transitory

representation in (3). The general recipe is: (i) derive the Wold representation of the

structural process using standard results from time series analysis, and (ii) create a

set of subjective signals that generates the same information structure by projecting

any other variables observed by agents onto the space spanned by all past, present,

and future values of the structural process.

Proposition 2. Consider the persistent-transitory representation (3), with informa-

tion structure {It}, It ≡ span(ηt, ut). Then It = span(yt, st) when

yt = ρyt−1 + σε(εt − θεt−1)

st = (1− θ)
∞∑
j=0

θjyt+j + σvvt,

where {εt} and {vt} are independent orthonormal Gaussian white noise processes,

σε ≡ σu
√
ρ/θ, σv ≡ (1− θ)σεσu/ση, and θ is defined as in Proposition (1).

This proposition reveals that in the persistent-transitory representation (3), it is

the implicit parameter θ which controls the magnitude of the signal weights on future

values of {yt}. From the expression in the Proposition, we can see that θ depends

only on ρ and the ratio σ2
η/σ

2
u. We summarize its dependence on these parameters in

a corollary.

Corollary 2. The parameter θ from Proposition (2) has the following properties.
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(i) θ is monotonically increasing in ρ with limiting values limρ→0 θ = 0 and

limρ→1 θ = θ̄, where θ̄ is defined as in Corollary (1).

(ii) θ is monotonically decreasing in σ2
η/σ

2
u with limiting values limσ2

η/σ
2
u→0 θ = ρ

and limσ2
η/σ

2
u→∞ θ = 0.

The intuition behind part (i) of the corollary is that as ρ increases, the persistent

component becomes more informative about income farther out into the future. This

corresponds to an increase in the weights of the signal st on future income. As ρ

approaches zero, income becomes white noise and the signal contains no information

about the future. The intuition behind part (ii) of the corollary is that the value of the

ratio σ2
η/σ

2
u determines how much of the variation in income is driven by the persistent

component relative to the transitory component. When it is arbitrarily small, income

becomes white noise; when it is arbitrarily large, income becomes an AR(1) process.

In either case, the implied signal st becomes completely uninformative. In the first

case, θ is large but the signal is uninformative because it becomes infinitely noisy,

σ2
v/σ

2
ε = σ2

u/σ
2
η →∞. In the second case, the signal is uninformative because it places

no weight on future income, θ → 0.

These results can be visualized in a numerical example. Using the same baseline

parameter values used to construct Figure (1), the expression in Proposition (1)

implies that θ = 0.56. Figure (2) illustrates the effects of changing the parameters

on the magnitude of θ. Each line shows what happens as the ratio σ2
η/σ

2
u varies

over the range of values on the horizontal axis. The different lines show these effects

for different values of ρ. From the figure, we can see both how θ is monotonically

increasing in ρ and monotonically decreasing in σ2
η/σ

2
u. We can also see how the point

at which each line crosses the vertical axis is equal to the corresponding value of ρ.

5 Optimal foresight

Having discussed what foresight is and how to measure it, we now ask: what type of

foresight would be optimal from an agent’s perspective? We answer this question in

the context of a simple model of consumption and saving, in which we can provide a

closed-form characterization of optimal foresight. This example is useful because it is

a standard reference point for models of information choice and shares many features

with a wider class of dynamic optimizing models with forward-looking behavior.
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Figure 2: Value of the discounting parameter θ implied by the persistent-transitory

representation. The circle shows the value of θ at the baseline parameter values

ρ = 0.9, σ2
u = 0.01, and σ2

η = 0.003.

This section has two parts. The first derives a closed-form expression for the

agent’s forecasting rule with optimal foresight, and illustrates how foresight affects

the responses of endogenous variables to the structural disturbances. The second

compares the model’s predictions under optimal foresight with its predictions under

exogenous foresight, in the form of the persistent-transitory representation (3).

5.1 Consumption with endogenous foresight

In the model, a consumer seeks to maximize expected lifetime utility

E
∞∑
t=0

βtu(Ct),

where Ct is consumption, 0 < β < 1 is a subjective time discount factor, u is an

increasing, concave period utility function. Each period, consumption Ct and savings

Bt are subject to the dynamic budget constraint

Ct +Bt ≤ (1 + rt−1)Bt−1 + Yt,

where Yt is (random) labor income and rt is the interest rate at which the consumer

can borrow at time t. The consumer is also prevented from engaging in Ponzi schemes

by the constraint limt→∞
∏t−1

s=0(1 + rs)
−1Bt ≥ 0.

The interest rate faced by the consumer is allowed to depend on his current level

of savings, rt = r + Φ(Bt), where r > 0 is a constant, and Φ is a strictly decreas-

ing function. This function represents a savings-elastic risk premium faced by the
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consumer; higher levels of savings (lower levels of debt) are associated with lower

interest rates. From a theoretical perspective, we can think of this as a simple way

of introducing financial frictions in the market for consumer debt. We introduce this

assumption primarily for technical convenience, because it ensures that the optimal

consumption process will be stationary, and it will allow us to nest non-stationarity

as a limit case.

We limit ourselves to characterizing the optimal dynamics of this model only in

response to random disturbances that generate sufficiently small fluctuations around

the deterministic steady state. To do so, we first construct a linear-quadratic (LQ)

analogue to the exact nonlinear problem, which has two special properties. First, its

optimality conditions are the same ones that result from performing a first-order Tay-

lor approximation to the exact nonlinear optimality conditions, as is commonly done

in the literature. Second, the objective function is purely quadratic in the endoge-

nous variables (it contains no linear terms), which means that the first-order accurate

optimality conditions are sufficient for computing a second-order accurate approxi-

mation to the lifetime utility of the consumer.9 This second property is important

for formally articulating the consumer’s information problem.

Our approximation is performed in terms of the log deviation of consumption

and income from their deterministic steady-state values, ct ≡ ln(Ct/C) and yt ≡
ln(Yt/Y ), and the deviation of savings from its steady-state value, bt ≡ Bt −B. It is

also convenient at this point to introduce the definitions σ ≡ −u′(C)/(u′′(C)C) and

φ ≡ −2Φ′(B) − Φ′′(B)B, where σ > 0 is the consumer’s intertemporal elasticity of

substitution at the steady state, and φ > 0 controls the elasticity of the interest rate

with respect to savings at the steady state. Using this notation, we can state the

appropriate LQ problem.

Lemma 1. A purely quadratic LQ approximation to the nonlinear problem is one in

which the consumer seeks to maximize the quadratic objective

−1

2
E
∞∑
t=0

βt
{
c2t +

βσφ

C
b2t +

(
β − δ
β − δ2

)
Y 2

C2

(
(1− δ)y2t − 2ytxt

)}
(8)

subject to the linear constraint Cct + bt = β−1bt−1 + Y yt, where xt is an exponential

9This type of LQ problem is the “correct LQ local approximation” in the language of Benigno

and Woodford (2012); see that paper for more discussion on the importance of the second property.
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average of current and future labor income,

xt ≡ (1− δ)
∞∑
j=0

δjyt+j, (9)

and the discounting parameter 0 < δ < β is

δ ≡ 1

2

(
1 + β + σφβ2C −

√
(1 + β + σφβ2C)2 − 4β

)
.

Under this LQ formulation, certainty equivalence implies that the consumer’s

consumption and saving decisions can be decoupled from his choices regarding infor-

mation.10 Conditional on his information, the consumer’s policy function takes the

familiar permanent-income form11

ct =
1

C

[
(1− δ)β−1bt−1 + Y Et[xt]

]
. (10)

The term β−1bt−1 is the total financial wealth the consumer has available for con-

sumption at time t, and the second term is his optimal estimate of average current

and future labor income. Based on the expression for xt in (9), we can see that the

consumer endogenously discounts future income at rate δ, which is less than β, due to

the fact that interest rates are savings-elastic. In the limit as φ→ 0, it is possible to

show that δ → β. The scaling terms C and Y appear because we are approximating

consumption and income in logs rather than levels.

The policy function (10) helps to clarify how the approach taken in this paper dif-

fers from the existing rational inattention literature. In that literature, the consumer

is both uncertain about his current savings bt−1 and the average of his current and

future labor income xt. Therefore, up to the same level of approximation, the policy

function of such an agent would depend only on his best estimates of both of these

variables,

ct =
1

C

[
(1− δ)β−1Et[bt−1] + Y Et[xt]

]
.

By contrast, we assume that the consumer perfectly knows his current and past

income, and therefore his current savings, so Et[bt−1] = bt−1. The relevant margin of

uncertainty for him is not the past or present, but the future. He remembers his past

10This well-known result is originally due to Simon (1956) and Theil (1957); see Whittle (1983)

for a somewhat more recent discussion.
11The intermediate steps are presented in Appendix (A).
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income and freely observes his current income and savings account balance, but finds

it costly to obtain additional information about his future income.

What remains is to specify the consumer’s information choice problem. To do

so, we first show that it is possible to rewrite the consumer’s utility maximization

problem as a tracking problem in terms of the target variable xt.

Lemma 2. Maximizing the quadratic objective (8) is equivalent to minimizing the

loss function

E

∞∑
t=0

βt(xt − Et[xt])2.

This result, which is something of a folk theorem in the information literature, has

a straightforward interpretation: the consumer would like to choose an information

structure that makes the discounted sum of errors in his estimate of average lifetime

income as small as possible.12 Due to the quadratic form of the objective in (8),

the magnitude of these errors is judged on a mean-square basis. A notable feature

of our proof of this result is that it does not invoke any assumptions regarding the

law of motion of the exogenous labor income process, beyond that it is appropriately

bounded. For example, we do not require it to be Markovian.

In minimizing the objective in Lemma (2), we allow the consumer to select his

time-t information set It ⊇ span(yt) subject to the constraint that the quantity of

foresight it contains cannot exceed a finite amount κ > 0,

lim
T→∞

I((yt+1, . . . , yt+T ), It|yt) ≤ κ.

We close the model by allowing the consumer’s income process to have arbitrary

stationary dynamics, given by the Wold representation

yt = h(L)εt, εt
iid∼ N(0, 1). (11)

To solve the consumer’s information problem, it is helpful to rewrite the problem

as one in which the consumer directly chooses an optimal forecast process rather than

an optimal information set. Letting x̂t ≡ Et[xt], we can set It = span(yt, x̂t). This is

without loss of generality because any information that is not contained in the current

and past history of forecasts has no effect on the objective but is costly in terms of

12Versions of this result are appealed to by, among others, Woodford (2003) and Azeredo da

Silveira and Woodford (2019).
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the constraint. Using this observation, we can re-write the consumer’s information

problem as:

min
{x̂t}

E
∞∑
t=0

βt(xt − x̂t)2 subject to (12)

(i) limT→∞((yt+1, . . . , yt+T ), x̂t|yt) ≤ κ

(ii) E[(xt − x̂t)x̂t−j] = 0 for all j ≥ 0

(iii) E[(xt − x̂t)yt−j] = 0 for all j ≥ 0,

where xt = (1 − δ)(1 − δL−1)−1h(L)εt, with εt
iid∼ N(0, 1). The first constraint

is the foresight constraint, after imposing It = span(yt, x̂t). The second and third

constraints are rationality constraints necessary to ensure that the optimal forecast

equals the mathematical expectation of xt with respect to It; that is, they ensure

that x̂t = E[xt|yt, x̂t]. One restriction that these constraints impose is that the the

consumer can never “forget” any past information.

It is possible to obtain a closed-form solution to the consumer’s problem, which

we present in the following proposition.

Proposition 3. The forecast process {x̂} given by

x̂t =

[
(1− δ)h(L)− e−2κδL−1h(δ)

1− δL−1

]
εt +

[√
e−2κ(1− e−2κ)(1− δ) h(δ)δ

1− δL

]
vt,

with vt
iid∼ N(0, 1) and {vt} independent of {εt}, solves problem (12).

It is illustrative to consider how the forecast process in this proposition depends on

the parameter κ, which controls the quantity of foresight available to the consumer.

As κ→ 0, the consumer’s forecast process converges to

x̂t = (1− δ)h(L)− δL−1h(δ)

1− δL−1
εt = E[xt|yt],

which is the optimal forecast of xt with no foresight, according to the well-known

formula of Hansen and Sargent (1980). On the other hand, as κ → ∞, the forecast

process converges to

x̂t = (1− δ) h(L)

1− δL−1
εt = xt,
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which is the perfect foresight solution. For intermediate values of κ, the optimal

forecast places some weight on future disturbances, but is also subject to independent,

purely expectational disturbances, captured by the process {vt}.13

The solution in Proposition (3) is stated in terms of the consumer’s optimal fore-

cast of the target variable xt. Additional insight into this solution can be gained from

looking at the types of signal structures that can generate these forecasts. While there

are generally many such signal structures, one that is particularly intuitive involves

the consumer receiving a signal of the target variable xt plus i.i.d. noise.

Corollary 3. The optimal forecast process in (1) is consistent with the consumer

having a time-t information set of the form It = span(yt, st) with

st = xt + σvvt

where {vt} is orthonormal white noise, independent of {εt}, and

σ2
v ≡

(
e−2κ

1− e−2κ

)
δ2h(δ)2

(1 + δ)2
.

From the expression for σ2
v we can see that the variance of the noise component

of the signal is monotonically decreasing in κ, with limiting values

lim
κ→0

σ2
v =∞ and lim

κ→∞
σ2
v = 0.

When the consumer has no information capacity, the signal becomes infinitely noisy,

and therefore completely uninformative about the target variable xt. As the con-

sumer’s capacity increases, the signal precision increases, eventually revealing the

value of xt perfectly. In interpreting this result, it is important to remember that the

signal structure is consistent with the optimal forecasting behavior of the consumer,

but it does not require us to interpret st as an objective random variable that might

in principle be directly measured by an outside econometrician. The corollary only

says that the consumer optimally forecasts future income “as if” he were receiving

signals of this type.

Corollary (3) describes an “imperfect information” representation of the con-

sumer’s optimal information structure, in which the consumer solves a signal-

extraction problem to form his forecast. Corollary (4) shows it is also possible

13For further discussion regarding the importance of purely expectational disturbances in models

with exogenous information structures, see Chahrour and Jurado (2018).
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to derive an equivalent “perfect information” representation, in which income is

expressed as the sum of independent components with time-t disturbances that the

consumer observes perfectly at each point in time.

Corollary 4. The optimal forecast process in (3) is consistent with the consumer

having a time-t information set It = span(ηt, ut) with

yt =
√

1− e−2κ
(
L− δ
1− δL

)
h(L)ηt + e−κh(L)ut,

where {ut} and {ηt} are independent orthonormal Gaussian white noise processes.

One way to interpret this result is to imagine that the consumer chooses among

arbitrary possible independent-component representations of income, subject to the

foresight constraint. Corollary (4) says that the consumer endogenously compresses

the information he receives into just two components, which optimally inform him

about his future income. Both components inherit the dynamics of income through

the term h(L). However, the first component has an additional dynamic term which

depends on the magnitude of the economic parameter δ.

So far we have characterized the solution to the consumer’s foresight problem,

but we have not explored how his optimal information choice affects his consumption

and saving behavior. The simplest way to do this is through a numerical example.

We assume that income follows the ARMA(1,1) process from Proposition (2), with

the same parameter values we used to construct Figure (2) in Section (4). For the

economic parameters in the model, we set

β = 0.95, σ = 0.5, and φ = 0.01,

and consider a range of different values for the informational parameter κ.

Figure (3) shows the impulse response functions associated with each of the two

model disturbances, the income disturbance εt and the purely expectational distur-

bance vt from Proposition (3). The horizontal axis measures the number of time

periods since the disturbance has occurred, so negative values indicate periods before

the disturbance has taken place.

Focusing on the left column, which depicts responses to the fundamental income

disturbance, the top panel shows how the income disturbance affects income over

time. The disturbance has no effect on income before it occurs, it has its largest
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Figure 3: Impulse responses when β = 0.95, σ = 0.5, φ = 0.01, and income follows the

ARMA(1,1) process from Proposition (2) with ρ = 0.9, σ2
u = 0.01, and σ2

η = 0.003.

The last row refers to the consumer’s forecast of the target variable xt, defined in (9),

which is an exponential moving average of current and future income.
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effect on impact, and then it has a smaller effect in subsequent periods as it decays

at rate ρ. This response clearly does not depend on the value of the parameter κ, so

all the lines lie on top of one another.

The response of consumption to the income disturbance depends on the informa-

tion of the consumer, and therefore on the value of κ. When κ = 0, the consumer has

no foresight; consumption does not respond to the income disturbance in advance,

and then increases once the disturbance occurs. As κ increases, the consumer begins

to respond to the disturbance in advance, by borrowing against his future income and

reducing the increase in his consumption after the disturbance occurs. The degree to

which the consumer is able to smooth his consumption response increases along with

κ. The smoothest consumption profile is achieved when the consumer has perfect

foresight.

The third panel in the first column shows how the consumer finances his chosen

consumption path. He increases his debt by borrowing before the disturbance occurs,

and then reduces his debt afterwards. The more foresight the consumer is allowed,

the more he adjusts his asset position in order to smooth consumption. The only

reason that consumption is not perfectly constant when κ =∞ is that the elasticity

of interest rates with respect to savings limits the consumer’s desire to hold the

extremely large asset positions required to achieve perfect consumption smoothing.

The bottom panel shows the response of x̂t, the consumer’s forecast of the target

variable xt. With low levels of foresight, the consumer has only a small degree of

confidence that a disturbance is going to occur in the future, so he only adjusts his

forecast of lifetime income upwards by a small amount in anticipation of the shock. As

the quantity of foresight increases, he becomes more confident that his lifetime income

has increased and adjusts his forecast accordingly. Once the disturbance occurs, the

consumer observes its realization and understands that income will evolve according

to the dynamics in the top panel thereafter, so his forecasts no longer depend on κ.

Turning to the right column of Figure (3), the top panel shows that the expecta-

tional disturbance is independent of income. If the consumer has either no foresight or

perfect foresight, then there are no independent disturbances to expectations, which

is why the solid line and the cross-marked lines are both constant at zero for all the

remaining panels in this column. For intermediate values of κ, the consumption re-

sponse becomes positive on impact, and dies out gradually over time. The magnitude

of the contemporaneous consumption response depends non-monotonically on κ, with
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an interior maximum. The consumer finances the higher consumption by borrowing

against the future; however, since income never actually increases in the future, this

means that at some point consumption must temporarily fall below its steady-state

level, as can be seen in the figure around eight periods later.

Finally, we note that foresight increases the persistence of endogenous variables,

holding fixed the persistence of income. Figure (4) plots the autocorrelation functions

of consumption and the consumer’s forecast of lifetime income. With higher levels of

foresight, the consumer is better able to smooth consumption, which implies greater

persistence.
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Figure 4: Autocorrelation functions when β = 0.95, σ = 0.5, φ = 0.01, and income

follows the ARMA(1,1) process from Proposition (2) with ρ = 0.9, σ2
u = 0.01, and

σ2
η = 0.003. The right panel refers to the consumer’s forecast of the target variable xt,

defined in (9), which is an exponential moving average of current and future income.

5.2 Comparison with sub-optimal foresight

Many of the results in Figure (3) would be qualitatively similar for any informa-

tion structure with foresight, regardless of whether the type of foresight is optimal

from the consumer’s perspective or not. Here we perform two exercises to compare

optimal foresight with sub-optimal foresight, as implied by the persistent-transitory

representation from Section (3).

The first exercise is simply to plot the responses of model variables to the same two

disturbances as in Figure (3) in two versions of the model: one in which the consumer

has exogenous foresight of the type implied by the persistent-transitory representation

(i.e. Proposition 2), and one in which the consumer has optimal foresight. In the
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first version, we use the same parameter values as in Section (3). We have seen that,

at these values, the quantity of foresight is 0.16 nats. Therefore, in the version with

optimal foresight, we set κ = 0.16 to ensure that the total quantity of foresight in

both versions of the model is held constant.

Figure (5) shows the responses of income, consumption, savings, and expected

lifetime income to the income and expectational disturbances. The second panel in

the left column shows that consumption begins increasing earlier under optimal fore-

sight, and does not exhibit a rapid run-up in the period just before the disturbance

occurs. This result depends on the quantitative relationship between the parameters

θ and δ. Under optimal foresight, Corollary (3) indicates that the consumer effec-

tively constructs a signal which contains information about future income discounted

at rate δ. However, with exogenous foresight of the type in Proposition (2), we saw

that the consumer’s signal discounts future income at rate θ. According to the pa-

rameter values in this example, θ < δ, which means that the exogenous signal is more

informative about the near future than the consumer would optimally like. Because

of this, the consumer’s expectations of lifetime income mostly increase just before the

income disturbance occurs, as can be seen in the bottom panel of the left column.

(If instead δ < θ, then the reverse would be true, and the consumer’s expectations of

lifetime income would react more during the period of anticipation.)

One implication of information structures that are more informative about income

far out into the future, is that expectational disturbances also have longer-lasting

effects. In terms of the signal interpretation from Corollary (3), this is because it

takes longer for the consumer to learn that increases in his signal were due to noise.

Another consequence is that, while the overall volatility of consumption is lower

under optimal foresight, the share of consumption volatility due to expectational

disturbances is larger. Under the parameterization in this example, the share of the

variance in log consumption that can be attributed to expectational disturbances is

1.9% with exogenous foresight, but 15.4% with optimal foresight. This is interesting

because it demonstrates that an individual’s optimal use of their limited information

capacity implies their choices should also reflect substantial (ex-post) “mistakes” and

that minimizing the effects of such noise is not the agent’s objective.

The second comparison exercise we perform illustrates the type of misspecification

errors that could arise from incorrectly assuming a sub-optimal form of foresight. The

thought experiment is to suppose that, according to the data generating process, the
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Figure 5: Impulse responses when β = 0.95, σ = 0.5, φ = 0.01, κ = 0.1625, ρ = 0.9,

σ2
η = 0.003, σ2

u = 0.01 and h(L) = ση(1− θL)(1− ρL)−1. The value of κ is chosen to

keep the amount of foresight in both information structures the same. The last row

refers to the consumer’s forecast of the target variable xt, defined in (9), which is an

exponential moving average of current and future income.
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Figure 6: Misspecified estimates of the autocorrelation function of income.

consumer makes choices under optimal foresight; however, an outside econometrician

attempts to fit a misspecified model in which the consumer has sub-optimal foresight

of the type implied by the persistent-transitory representation. What we show is that,

holding fixed the economic parameters, the only way the econometrician can match

the additional persistence in the endogenous variables is by introducing additional

(counter-factual) persistence in income.

Specifically, the econometrician chooses values of the three parameters in the

persistent-transitory representation of income in the following way. First, he cali-

brates one to exactly match the variance of income. Then, he chooses the remaining

two parameters to match the autocorrelation function of consumption as closely as

possible. He does this by minimizing the distance between the empirical (true) and

model-implied autocorrelations of consumption at one and ten periods (other ways

of matching these autocorrelations have the same result). In this exercise, we assume

that the econometrician knows the true values of the other model parameters, and

that he observes autocovariances exactly. This second assumption is consistent with

the econometrician basing his estimates on large samples from the data generating

process.

Figure (6) plots the autocorrelation function of income estimated by the econo-

metrician for different values of κ. When κ = 0, there is no foresight, and the

econometrician’s estimate exactly corresponds to the autocorrelation function of in-

come in the data generating process. However, as κ increases, the econometrician

mistakenly attributes the additional persistence in consumption to additional persis-

tence in income. This highlights the danger of tying physical assumptions regarding

income too closely to informational assumptions regarding foresight. In this case, the
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persistent-transitory representation provides insufficient degrees of freedom to cor-

rectly estimate these two independent sources of persistence. This is despite the fact

that the subjective signal in both the econometrician’s model and the data generating

process has exactly the same form: “average future income plus i.i.d. noise” (cf. the

signal in Proposition 2 and the signal in Corollary 3.)

6 Conclusion

Foresight is a common assumption in the literature on business cycles with technolog-

ical news, asset pricing with long-run risks, or consumption choice with persistent and

transitory components of income. In this paper we draw attention to this assumption

and provide ways of comparing information structures in terms of the type and quan-

tity of foresight they contain. A main result is Proposition (3), which generalizes the

Hansen-Sargent formula to the case when agents can endogenously choose the type

of foresight they have subject to an informational constraint.

The approach to endogenous foresight taken in this paper also suggests a number

of possible applications. One would be to combine endogenous foresight with the

typical assumption in the rational inattention literature that current and past ex-

ogenous variables are only imperfectly observed as well (although perhaps at a lower

informational cost). Such a combination has been performed by Jurado (2020), but

under the assumption that the cost of processing information about the past and the

future is the same. Introducing asymmetric (but nonzero) costs of processing infor-

mation about the past and future may be important for quantitatively reconciling the

tension between empirical evidence suggesting strong responses to anticipated distur-

bances (e.g. Kurmann and Sims, 2017) with other evidence of slow adjustment to

other economic developments (e.g. Carroll, 2003; Coibion and Gorodnichenko, 2015).

Other interesting applications require introducing endogenous foresight into a gen-

eral equilibrium environment. This would permit an analysis of the interaction be-

tween foresight and economic policy, such as “forward guidance” regarding monetary

policy. In such an environment, one advantage of shifting focus from endogenous

hindsight to endogenous foresight is that it would allow us to avoid many of the con-

ceptual challenges associated with market clearing and the presence of endogenous

individual-level state variables faced by existing models of information choice. As a

preliminary result in this direction, Appendix (B) illustrates how to apply our the-
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ory of foresight to the overlapping-generations equilibrium model of Gaballo (2016).

The model simplifies many dimensions of the equilibrium analysis, a full treatment

of which will require further work.
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A Proofs

Proof of Proposition (1). Relative to the discussion in the text, what remains is

to prove the expression for det Σ̂T given in (4), and then to show that 0 ≤ r2 ≤ 1.

Regarding the first of these, notice that

det Σ̂T = det(IT + C ′η(CuC
′
u)
−1Cη) det(CuC

′
u) (matrix determinant lemma)

= det

(
IT +

1

σ2
u

CηC
′
η

)
σ2T
u (CuC

′
u = σ2

uIT )

= det
(
IT + aA−1T

)
σ2T
u (CηC

′
η = σ2

ηA
−1
T , with a and AT defined below)

= det (AT + aIT )σ2T
u (matrix determinant lemma)

≡ dTσ
2T
u (13)

where we have defined a ≡ σ2
η/σ

2
u and

AT =



1 −ρ
−ρ 1 + ρ2 −ρ

−ρ 1 + ρ2
. . .

. . . . . . −ρ
−ρ 1 + ρ2


.

Using the band structure of AT , it follows that

AT + aIT =



1 + a −ρ
−ρ 1 + ρ2 + a −ρ

−ρ 1 + ρ2
. . .

. . . . . . −ρ
−ρ 1 + ρ2 + a


.

1



The determinant of this matrix for arbitrary T ≥ 1, can be computed from the

recurrence relation

dT = (1 + ρ2 + a)dT−1 − ρ2dT−2

with d0 = 1 and d1 = 1 + a (e.g. Gantmacher and Krein, 2002, p.67). The solution

to this recurrence relation is

dT = c1λ
T
1 + c2λ

T
2 , (14)

where λ1 and λ2 are the two roots of the polynomial P(λ) = λ2 − (1 + ρ2 + a)λ+ ρ2

and c1 and c2 are chosen to satisfy the initial conditions. Based on the definition of

θ in Proposition (2), we can see that the two roots of P(λ) must be

λ1 =
ρ

θ
and λ2 = ρθ.

Using these together with the initial conditions to determine c1 and c2, we find

c1 = 1− r2 and c2 = r2, where r2 ≡ ρ− θ(1 + a)

ρ(1− θ2)
.

Plugging the expressions for λ1, λ2, c1, and c2 into (14) and then plugging the ex-

pression for dT into (13), we arrive at the expression in (4).

To show that 0 ≤ r2 ≤ 1, first observe that θ ≤ 1 ≤ (1 + a)/ρ. Multiplying both

sides by ρθ, we find ρθ2 ≤ θ(1 + a), which implies that r2 ≤ 1. To show that r2 ≥ 0,

we need to prove that

ρ ≥ θ(1 + a). (15)

By the definition of θ, θ/ρ is the smaller root of the polynomial P(z) = ρ2z2 − (1 +

ρ2 + a)z+ 1. Since P(0) = 1 > 0, P(1) = −a ≤ 0, and P(z) > 0 as z →∞, it follows

that the two roots of this polynomial satisfy 0 ≤ z1 ≤ 1 ≤ z2. Now notice that

P
(

1

1 + a

)
= −ρ2 a

(1 + a)2
≤ 0,

so it must also be true that z1 = θ/ρ ≤ 1/(1 + a), which proves (15).

Proof of Corollary (1). Define the ratio a ≡ σ2
η/σ

2
u so that

r2 =
ρ− θ(1 + a)

ρ(1− θ2)
.

Differentiating with respect to ρ,

∂r2

∂ρ
=

(1 + a)(θ − ρθ′) + 2θθ′ρ(ρ− θ(1 + a))

ρ2(1− θ2)
,

2



where θ′ ≡ ∂θ/∂ρ. The denominator is non-negative, so let us focus on the numerator.

The second term is non-negative, as we have shown in (15) and will establish in the

proof of Corollary (2). As for the first term, notice that

θ′ =
θ(1− ρ2 + a)

ρ
√

(1 + ρ2 + a)2 − 4ρ2
≤ θ

ρ

1− ρ2 + a

1 + ρ2 + a
≤ θ

ρ
.

This means that θ − ρθ′ ≥ 0, so the first term in the numerator is also non-negative,

and ∂r2/∂ρ ≥ 0. Since F is a monotonically increasing function of r2, it follows that

∂F/∂ρ ≥ 0 as well.

For the limiting values with respect to ρ, we use the result in Corollary (2) that

θ → 0 as ρ→ 0 to see that r2 → 0 and therefore F → 0 in this case. Similarly, using

the result that θ → θ̄ as ρ→ 1, it follows that r2 → r̄2 and F → −1
2

ln(1− r̄2) in this

case.

Turning to the second part of the Corollary, we can use the fact that θ → ρ as

a→ 0 to see that

lim
a→0

r2 =
ρ− ρ
1− ρ2

= 0,

which implies that F → 0 as well. For the second limit with respect to a, write

r2 =
ρ

1− θ2
− θ

1− θ2
− θa

1− θ2
.

As a → ∞, we know from Corollary (2) that θ approaches zero, so the first term

converges to ρ and the second term converges to zero. What remains is to prove that

the third term converges to −ρ. To that end,

lim
a→∞
−θa = lim

a→∞

−2ρa

1 + ρ2 + a+
√

(1 + ρ2 + a)2 − 4ρ2

(θ and 1/θ are reciprocal roots)

= lim
a→∞

−2ρ

1 +

√
(1 + ρ2 + a)2

(1 + ρ2 + a)2 − 4ρ2

(L’Hopital’s rule)

= −ρ.

Therefore, we have shown that r2 → 0 as a→∞, and so F → 0 as well.
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Proof of Proposition (2). According to the persistent-transitory representation in

(3), the autocovariance generating function of {yt} is given by

gy(z) =
σ2
η

|1− ρz|2
+ σ2

u =
σ2
η + σ2

u|1− ρz|2

|1− ρz|2
.

Factoring the numerator,

σ2
η + σ2

u|1− ρz|2= σ2
η

ρ

θ
|1− θz|2, (16)

where θ is the root of the polynomial P(z) = ρz2 − (1 + ρ2 + σ2
η/σ

2
u)z + ρ that lies

inside the unit circle,

θ =
1

2ρ

(
1 + ρ2 + σ2

η/σ
2
u −

√
(1 + ρ2 + σ2

η/σ
2
u)

2 − 4ρ2
)
.

Defining σ2
ε ≡ σ2

ηρ/θ and substituting (16) into the numerator of gy(z), we get

gy(z) = σ2
ε

|1− θz|2

|1− ρz|2
,

which is the autocovariance generating function of the ARMA(1,1) process stated in

the proposition.

As for the signal process, first project zt onto the space spanned by past, present,

and future income,14

zt = E[zt|. . . , yt+1, yt, yt−1, . . . ] + ζt =
gz(L)

gy(L)
yt + ζt, (17)

where gz(z) = σ2
η/|1−ρz|2 is the autocovariance generating function of {zt}, and {ζt}

is independent of income. More explicitly, the projection weights are generated by

the function

gz(z)

gy(z)
=

gz(z)

gz(z) + σ2
u

=
σ2
η

σ2
η + σ2

u|1− ρz|2
=
σ2
η

σ2
u

θ

ρ

1

|1− θz|2
,

where the last equality makes use of the factorization result (16). The autocovariance

generating function of the error process {ζt} is given by

gζ(z) = gz(z)− gzy(z)gyz(z)

gy(z)
= σ2

η

θ

ρ

1

|1− θz|2
.

14See Whittle (1983) for a review of this and related projection results.
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Substituting these two expressions into (17), we can write

zt =
σ2
η

σ2
u

θ/ρ

(1− θL)(1− θL−1)
yt +

ση
√
θ/ρ

1− θL
vt,

where vt is orthonormal white noise. Lastly, define the new signal

st ≡ (1− θ)σ
2
u

σ2
η

ρ

θ
(1− θL)zt

=
1− θ

1− θL−1
yt + (1− θ)σ

2
u

ση

√
θ

ρ
vt

= (1− θ)
∞∑
j=0

θjyt+j + σvvt,

where the second lines substitutes in the previous expression for zt, and the third line

defines σ2
v ≡ (1 − θ)2σ2

εσ
2
u/σ

2
η. Because 0 < θ < 1 and yt ∈ (yt), the transformation

in the first line is such that span(yt, st) = span(yt, zt).

Proof of Corollary (2). Define the ratio a ≡ σ2
η/σ

2
u so that

θ =
1

2ρ

(
1 + ρ2 + a−

√
(1 + ρ2 + a)2 − 4ρ2

)
.

Differentiating with respect to ρ,

∂θ

∂ρ
=

θ(1− ρ2 + a)

ρ
√

(1 + ρ2 + a)2 − 4ρ2
≥ 0,

which proves that θ is monotonically increasing in ρ. Regarding its limiting behavior

as ρ approaches one, we have

lim
ρ→1

θ =
1

2

(
2 + a−

√
(2 + a)2 − 4

)
.

As ρ approaches zero, we can use L’Hopital’s rule,

lim
ρ→0

θ = lim
ρ→0

ρ

(
1−

√
(1 + ρ2 + a)2

(1 + ρ2 + a)2 − 4ρ2

)
= 0.

This completes the proof of the first part of the Corollary. For the second part, we

can see from differentiating θ with respect to a that

∂θ

∂a
=

1

2ρ

(
1−

√
(1 + ρ2 + a)2

(1 + ρ2 + a)2 − 4ρ2

)
≤ 0,
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so θ is monotonically decreasing in a. As a approaches zero, we have

lim
a→0

θ =
1

2ρ

(
1 + ρ2 −

√
(1− ρ2)2

)
= ρ.

To find the limit as a approaches infinity, it is easiest to notice that

1

θ
=

1

2ρ

(
1 + ρ2 + a+

√
(1 + ρ2 + a)2 − 4ρ2

)
,

since the polynomial P(z) = ρz2− (1 + ρ2 +a)z+ ρ has reciprocal roots. Because the

right side becomes infinite as a does, it follows that θ approaches zero.

Proof of Lemma (1). We closely follow the strategy described in Benigno and

Woodford (2012). In the consumption-saving model, the steady-state values of

consumption C and savings B must satisfy the two equations

1 = β(1 + r + Φ(B) + Φ′(B)B) (18)

C = (r + Φ(B))B + Y, (19)

where Y is the (exogenous) steady-state level of income. We now seek to construct

an LQ approximation around this steady state. First, we perform a second-order

approximation to the consumer’s lifetime utility function

V0 ≡ E0

∞∑
t=0

βtu(Ct) = E0

∞∑
t=0

βt
[
u(C) + u′(C)C

(
ct +

1

2
c2t

)
+

1

2
u′′(C)C2c2t

]
+O(ε3)

(20)

where ε > 0 is a real number that scales the degree of randomness in the model. The

flow budget constraint implies that

E0

∞∑
t=0

βtλ [(1 + r + Φ(Bt−1))Bt−1 + Yt − Ct −Bt] = 0,

where λ = u′(C) is the steady-state Lagrange multiplier. Taking a second-order

approximation to this expression in terms of the variables ct, bt, and yt, we obtain

0 =
∞∑
t=0

βtu′(C)

[
−Cct −

1

2
Cc2t − bt + Y yt +

1

2
Y y2t + β

(
1

β
bt −

1

2
φb2t

)]
+O(ε3),

where we have substituted in the steady-state value of the Lagrange multiplier, and

made use of the steady-state relation (18). Rearranging this expression, we can write

∞∑
t=0

βtu′(C)C

[
ct +

1

2
c2t

]
=
∞∑
t=0

βtu′(C)

[
−1

2
βφb2t + Y yt + Y y2t

]
+O(ε3).
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We can then use this relation to eliminate the linear terms in (20), which delivers the

purely quadratic approximation

V0 = E0

∞∑
t=0

βt
[
u(C) +

1

2
u′′(C)C2c2t −

1

2
u′(C)βφb2t + u′(C)

(
Y yt +

1

2
Y y2t

)]
+O(ε3)

Finally, to arrive at the objective stated in the lemma, we divide this expression by

−u′′(C)C2 > 0 and then add terms which are independent of the consumer’s choices.

The reason for including these specific terms will become clear in the proof of Lemma

(2), but at this point it is sufficient to observe that they do not affect the consumer’s

rankings of alternative plans.

Derivation of (10). The optimality conditions associated with the LQ problem (1)

are given by

ct = Et[ct+1] + βφσbt (21)

Cct + bt = β−1bt−1 + Y yt, (22)

Substituting (22) into (21) to eliminate ct, we obtain an expectational difference

equation for {bt} of the form

Et[A(L)bt+1] = Y Et[yt+1 − yt], (23)

where

A(L) ≡ 1− (1 + β−1 + σφβC)L+ β−1L2.

This lag polynomial can be factored as

A(L) = (1− λ1L)(1− λ2L),

where λ1, λ2 are the two roots of the polynomial

P(λ) = λ2 − (1 + β−1 + σφβC)λ+ β−1. (24)

Notice that P(0) = β−1 > 0, P(1) = −σφβC < 0, and P(λ) > 0 for all large

enough positive values of λ. It follows that there must be two real roots, satisfying

0 < λ1 < 1 < λ2. Comparing the factorization with the original lag polynomial, we

see that

λ1 + λ2 = 1 + β−1 + σφβC, and λ1λ2 = β−1.

7



Using this factorization, we can write (23) as

Et[(1− λ1L)(1− λ2L)bt+1] = Y Et[yt+1 − yt],

or as

qt = λ−12 Et[qt+1]− λ−12 Y Et[yt+1 − yt],

where qt ≡ (1 − λ1L)bt. Because |λ−12 |< 1, this can be solved forward and rewritten

in terms of bt to get

bt = λ1bt−1 − λ−12 Y
∞∑
j=0

λ−j2 Et[yt+j+1 − yt+j]. (25)

Now, notice that

∞∑
j=0

λ−j2 Et[yt+j+1 − yt+j] = λ2

∞∑
j=1

λ−j2 yt+j − yt −
∞∑
j=1

λ−j2 yt+j

= −λ2yt + (λ2 − 1)
∞∑
j=0

λ−j2 yt+j.

Substituting this into (25), we get

bt = λ1bt−1 + Y yt − (1− λ−12 )Y
∞∑
j=0

λ−j2 Et[yt+j]. (26)

Substituting this solution for bt into (22) and solving for Cct, we obtain

Cct = (1− λ−12 )β−1bt−1 + (1− λ−12 )Y
∞∑
j=0

λ−j2 Et[yt+j],

This is the consumption function from (10) when we define δ ≡ 1/λ2.

Proof of Lemma (2). We begin by finding a closed-form expression for the continu-

ation utility V ∗t of a (hypothetical) consumer who enters period t with savings bt−1 and

has perfect foresight from then on. Using the method of undetermined coefficients,

we find that

V ∗t = −1

2

(
1

1− δ

)[
c∗2t −

β − δ
β − δ2

Y 2

C2
x2t

]
, (27)

where c∗t is the consumption plan from time t onward under perfect foresight,

c∗t =
1

C

[
(1− δ)β−1bt−1 + Y xt

]
. (28)
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To verify the expression in (27), let

u∗t ≡ −
1

2

{
c∗2t +

βσφ

C
b∗2t +

(
β − δ
β − δ2

)
Y 2

C2

(
(1− δ)y2t − 2ytxt

)}
denote the time-t utility flow under perfect foresight, where

b∗t =
δ

β
bt−1 + Y yt − Y xt (29)

is the associated optimal savings plan. The continuation value V ∗t must satisfy the

recursion

V ∗t = u∗t + βV ∗t+1.

By plugging the above expressions for u∗t and V ∗t+1 into the right side of this equation,

repeatedly substituting in the policy functions (28) and (29), and using the fact that

xt+1 = δ−1(xt − (1− δ)yt)

together with the definition of δ in Lemma (1) , we arrive at the expression for V ∗t in

(27).

Next, we conjecture that the optimal continuation utility of the consumer with

imperfect foresight Vt can be written in terms of the perfect foresight continuation

utility V ∗t and a discounted sum of forecast error variances,

Vt = EtV
∗
t − ωDt, (30)

where ω is an undetermined coefficient, and

Dt =
1

2
Et[(xt − Etxt)2] + βEtDt+1.

Letting

ut ≡ −
1

2
Et

{
c2t +

βσφ

C
b2t +

(
β − δ
β − δ2

)
Y 2

C2

(
(1− δ)y2t − 2ytxt

)}
denote the optimal time-t utility flow under imperfect foresight, (30) and the recur-

sions for V ∗t and Dt imply that Vt = ut + βEtVt+1 if and only if

ut = Etu
∗
t − ω

1

2
Et[(xt − Etxt)2].

9



Expanding the right side of this equation, we find that the equation is satisfied if and

only if ω = 1/δ. Therefore, by (30),

E[V0] = E[V ∗0 ]− 1

δ
E[D0]

Finally, since E[V ∗0 ] is independent of the consumer’s choices, maximization of E[V0]

is equivalent to minimization of E[D0], which is the loss function stated in the lemma.

Proof of Proposition (3). The proof begins by reducing the consumer’s problem

(12) to a simpler problem which only involves predicting the part of the target variable

that is unknown conditional on current and past income.

Lemma 3. Choosing {x̂t} to solve the consumer’s problem (12) is equivalent to choos-

ing {ẑt} to solve the problem

min
{ẑt}

E[(zt − ẑt)2] subject to (31)

(i) limT→∞ I((εt+1, . . . , εt+T , ẑ
t|εt) ≤ κ

(ii) E[(zt − ẑt)ẑt−j] = 0 for all j ≥ 0

(iii) E[(zt − ẑt)εt−j] = 0 for all j ≥ 0,

where zt = δL−1/(1− δL−1)εt, and then setting

x̂t = (1− δ)h(L)− δL−1h(δ)

1− δL−1
εt + (1− δ)h(δ)ẑt.

Proof. By exchanging expectation and summation, is easy to see that minimizing (12)

is equivalent to minimizing E[(xt−x̂t)2]. We now show that this, in turn, is equivalent

to minimizing E[(zt − ẑt)2], when zt is defined as in the lemma and ẑt ≡ Et[zt]. To

see this, notice that

xt − x̂t = (xt − E[xt|yt])− (Et[xt]− E[xt|yt]) (definition of x̂t)

= (xt − E[xt|yt])− Et[xt − E[xt|yt]] (since span(yt) ⊆ It)

= (1− δ)h(δ)(zt − ẑt),

if we define

zt ≡
1

(1− δ)h(δ)

(
xt − E[xt|yt]

)
. (32)

10



Therefore, E[(xt− x̂t)2] = (1− δ)2h(δ)2E[(zt− ẑt)2]. To verify that the law of motion

for zt in Lemma (3) is consistent with (32), we can use the formula of Hansen and

Sargent (1980) to compute

E[xt|yt] = (1− δ)h(L)− δL−1h(δ)

1− δL−1
εt, (33)

and then substitute this expression and the definition of xt into (32). We can also

take conditional expectations on both sides of (32) with respect to It and rearrange

to find the implied relationship between x̂t and ẑt stated in the lemma,

x̂t = E[xt|yt] + (1− δ)h(δ)ẑt.

Second, we show that the constraints of the original problem are satisfied if and

only if the constraints of the reduced problem are satisfied. Notice that with Gaussian

information structures, the constraint sets only depend on the linear spaces spanned

by the relevant variables, and not on the variables themselves. And, in both cases,

Gaussian information structures are optimal for the consumer because the objective

is to minimize the error variance, and Gaussian processes maximize entropy (min-

imize foresight) for a given error variance. Therefore, all we need to show is that

span(x̂t, yt) = span(ẑt, εt). But this follows from the fact that x̂t ∈ span(ẑt, εt) and

yt ∈ span(ẑt, εt) for all t, and conversely, ẑt ∈ span(x̂t, yt) and εt ∈ span(x̂t, yt) for all

t as well.

Using the relation between x̂t and ẑt stated in Lemma (3), the conjectured solution

for x̂t in (3) translates into a conjectured solution for ẑt of the form

ẑt = ψ
δL−1

1− δL−1
εt +

√
ψ(1− ψ)

δ

1− δL
vt, (34)

where we have defined the new parameter ψ ≡ 1 − e−2κ to simplify some of the

following expressions. Therefore, what we need to show is that this solves the problem

in Lemma (3). To do so, we first construct a lower bound on the objective function

and show that the conjectured solution attains this lower bound. Then, we show that

the conjecture is feasible by verifying that it satisfies all the constraints.

Lemma 4.

E[(zt − ẑt)2] ≥
(

δ2

1− δ2

)
e−2κ,

with equality when ẑt is given by (34).

11



Proof. Observe that

κ = lim
T→∞

I((εt+1, . . . , εt+T ), ẑt|εt) (foresight constraint)

= lim
T→∞

I((zt, . . . , zt+T ), ẑt|εt) (since εt+1 = zt/δ − zt+1)

≥ I(zt, ẑ
t|εt) (property of conditional information)

=
1

2
lnE[(zt − E[zt|εt])2]−

1

2
lnE[(zt − ẑt)2] (Gaussianity)

=
1

2
ln

(
δ2

1− δ2

)
− 1

2
E[(zt − ẑt)2]. (definition of zt)

By rearranging this inequality, we obtain the lower bound stated in the lemma. Under

the conjectured solution,

zt − ẑt = (1− ψ)
δL−1

1− δL−1
εt −

√
ψ(1− ψ)

δ

1− δL
vt. (35)

Therefore

E[(zt − ẑt)2] = (1− ψ)2
(

δ2

1− δ2

)
+ ψ(1− ψ)

(
δ2

1− δ2

)
=

(
δ2

1− δ2

)
e−2κ,

so the conjectured solution attains the lower bound on the objective.

Lastly, we need to show that the conjectured solution is feasible. First, observe

that constraint (iii) is trivially satisfied by the conjecture, since the weights on {εt}
in (34) are zero for all εt−j, j ≥ 0. Second, by combining (34) with (35), the cross

autocovariance generating function of the forecast error and the forecast is given by

gz−ẑ,ẑ(z) = ψ(1− ψ)
δ2

|1− δz|2
− ψ(1− ψ)

δ2

|1− δz|2
= 0,

so constraint (ii) is satisfied as well. To show that the foresight constraint (i) is

satisfied, we will need to make use of the following lemma.

Lemma 5. The Wold representation of ξt ≡ (ẑt, εt)
′ is given by ξt = Γ(L)wt, where

{wt} is orthonormal Gaussian white noise and

Γ(z) =


√
ψ

δ

1− δz
0

√
ψ
z − δ
1− δz

√
1− ψ

 .
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Proof. Using the law of motion for ẑt in (34), the autocovariance generating function

of {ξt} is given by

gξ(z) =


ψ

δ2

|1− δz|2
ψ

δz−1

1− δz−1

ψ
δz

1− δz
1

 .
Now notice that (i) all elements of Γ(z) are rational with respect to z, (ii) Γ(z)Γ(z)∗ =

gξ(z), where the asterisk denotes complex conjugate transposition, (iii) Γ(z) is analytic

in the unit circle (i.e. the Laurent expansions of each element have no negative powers

of z), and (iv) Γ(z) is full rank for all |z|< 1. Therefore, by Theorem 7 of Rozanov

(1960), Γ(z) is maximal. By Theorem 4 of that same paper, {wt} is fundamental

with respect to {ξt}, which is to say that the representation ξt = Γ(L)wt is the Wold

representation of {ξt}.

Using Lemma (5), we can express the joint dynamics of ẑt and εt as

ẑt = δẑt−1 +
√
ψδw1,t

εt = δεt−1 −
√
ψ(δw1,t − w1,t−1) +

√
1− ψ(w2,t − δw2,t−1),

where wt = (w1,t, w2,t) is orthonormal white noise and ψ = 1 − e−2κ. From this

representation, we can compute the optimal j-step ahead forecast error of the income

disturbance,

ζt+j|t = εt+j −Et[εt+j] = −
√
ψδw1,t+j +

√
1− ψw2,t+j +

√
ψ(1− δ2)

j−1∑
k=1

δj−1−kw1,t+k.

13



Stacking these up for j = 1, . . . , T ,



ζt+1|t

ζt+2|t

ζt+3|t
...

ζt+T |t


=
√
ψ(1− δ2)



−δ
1− δ2

0 0 · · · 0

1
−δ

1− δ2
0 · · · 0

δ 1
−δ

1− δ2
· · · 0

...
...

...
. . .

...

δT−2 δT−3 δT−4 · · · −δ
1− δ2


︸ ︷︷ ︸

Q1



w1,t+1

w1,t+2

w1,t+3

...

w1,t+T



+



√
1− ψ 0 0 · · · 0

0
√

1− ψ 0 · · · 0

0 0
√

1− ψ · · · 0
...

...
...

. . .
...

0 0 0 · · ·
√

1− ψ


︸ ︷︷ ︸

Q2



w2,t+1

w2,t+2

w2,t+3

...

w2,t+T



From this we can compute the covariance matrix of forecast errors as ΣT = Q1Q
′
1 +

Q2Q
′
2. Multiplying these matrices together, we find that

ΣT = IT − ψ(1− δ2)bT b′T ,

where bT = (1, δ, δ2, . . . , δT−1)′. By the matrix determinant lemma,

det ΣT = 1− ψ(1− δ2)b′T bT = 1− ψ(1− δ2)
T−1∑
k=0

δ2k = 1− ψ(1− δ2T ).

Taking limits as T →∞, we find

lim
T→∞

I((εt+1, . . . , εt+T ), ẑt|εt) = −1

2
ln(1− ψ) = −1

2
ln(e−2κ) = κ.

This proves that constraint (i) is also satisfied. The conjectured solution achieves the

lower bound on the objective, and is feasible; therefore, it is optimal. So far we have

not formally established that the stated solution is unique; however, evidence from

brute-force numerical solutions indicates that it is.

Proof of Corollary (3). From Proposition (3), we know that the consumer’s opti-

mal information set is span(yt, ẑt), where

ẑt = ψ
δL−1

1− δL−1
εt +

√
ψ(1− ψ)

δ

1− δL
vt.
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If we define z̃t ≡ ẑt − δẑt−1, then (yt, ẑt) = (yt, z̃t), since this definition implies that

ẑt is a discounted sum of z̃t, z̃t−1, . . . . Now define the signal

st ≡
(1− δ)h(δ)

ψ(1− δ2)
(z̃t − E[z̃t|yt]) + E[xt|yt]. (36)

Since both E[z̃t|yt] and E[xt|yt] are elements of (yt), this transformation of z̃t preserves

the consumer’s time-t information set, (yt, ẑt) = (yt, st). Now we just need to verify

that this definition of st coincides with the expression stated in the proposition.

First, we compute the forecast error of z̃t based on current and past income. By

definition,

z̃t = ψ(1− δL)
δL−1

1− δL−1
εt +

√
ψ(1− ψ)δvt.

Therefore,

z̃t − E[z̃t|yt] = ψ

[
(1− δL)

δL−1

1− δL−1

]
−
εt +

√
ψ(1− ψ)δvt,

where [f(z)]− indicates the principal part of the Laurent series expansion of f(z)

around z = 0. Since

(1− δz)
δz−1

1− δz−1
=
∞∑
j=1

δjz−j − δ2
∞∑
j=0

δjz−j

= (1− δ2) δz−1

1− δz−1
− δ2,

we can write [
(1− δL)

δL−1

1− δL−1

]
−

= (1− δ2) δL−1

1− δL−1
.

Therefore,

z̃t − E[z̃t|yt] = ψ(1− δ2)zt +
√
ψ(1− ψ)δvt.

Substituting this into (36) and using (32) to substitute out E[xt|yt], we find that

st = xt + σvvt, where σ2
v is defined as in the proposition.

Proof of Corollary (4). Income is related to the vector ξt = (ẑt, εt)
′ by the linear

transformation

yt =
[

0 h(L)
]
ξt

In Lemma (5), we derived the Wold representation of the vector as ξt = Γ(L)wt.

Substituting this into the previous expression, we get

yt =

[
√
ψ
L− δ
1− δL

h(L)
√

1− ψh(L)

]
wt.
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Defining ηt ≡ w1,t and ut ≡ w2,t, and substituting ψ = 1− e−2κ, we obtain the repre-

sentation of the income process stated in the proposition. Moreover, since span(wt) =

span(ξt) by definition of {wt}, it follows that span(ηt, ut) = span(ẑt, yt).

B Relation to Gaballo (2016)

In this section, we show how our theory of endogenous foresight provides a formal

justification for the private signal structure assumed exogenously in Gaballo (2016).

The first step is to show that, up to an appropriate linear-quadratic approximation

of the agent’s objective function, the target variable is next period’s aggregate price.

The second step is to derive the solution to the optimal foresight problem with this

target variable. The third step is to verify that the agent’s optimal forecast can be

generated by a private signal of the form assumed in Gaballo (2016), which is “next

period aggregate price plus i.i.d. noise.”

According to the model, overlapping generations of “young” agents work and save

to finance their consumption when they become “old”. Because agents only plan

for two periods, their problem does not involve optimization over infinite sequences,

which greatly simplifies the task of determining the optimal target variable. Slightly

generalizing the functional forms in Gaballo (2016), the utility maximization problem

of the agent is

max
Hit,Cit+1

Eit [u(Cit+1)− v(Hit)] s.t Pt+1Cit+1 = Pt+1w +RPtΘ
−1
it Hit, (37)

where Pt is the price of a private consumption good, w is an exogenous and fixed net

tax expenditure, R = 1 is the nominal return on the risk free asset, Qt ≡ PtΘ
−1
it Hit is

the quantity of the risk free asset, which are financed by labor supplied at the stochas-

tic wage Θ−1it . This wage has independent aggregate and idiosyncratic components,

Θ−1it = Θ−1t Ξ−1it ,

where θt ≡ ln Θt
iid∼ N(0, σ2

θ) and ξit ≡ ln Ξit
iid∼ N(0, σ2

ξ ). When making choices,

the agent treats the random variables Pt Pt+1, and Θ−1it as exogenous, and costlessly

observes Pt and Θit.

Using letters without time subscripts to represent non-stochastic steady-state val-

ues, and defining hit ≡ log(Hit/H), pt ≡ log(Pt/P ), and γ ≡ (u′ + u′′H)/(u′′H −
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v′′H) > 0, the following Lemma presents a purely quadratic approximation to the

agent’s objective.

Lemma A.1. A purely quadratic LQ approximation to the nonlinear problem (37) is

one in which the agent seeks to maximize the quadratic objective

−1

2
Eit
[
h2it − 2γ (pt+1 + θit − pt)hit

]
. (38)

Proof. Substituting the constraint into the objective to eliminate Cit+1, the agent’s

objective is EitUit, where

Uit ≡ u
(
w + PtP

−1
t+1Θ

−1
it Hit

)
− v(Hit).

Next, note that steady-state optimality requires that u′(w+H) = v′(H). We can use

this optimality condition to eliminate the linear terms in the quadratic approximation

of the agent’s objective without following the more complicated steps in Benigno and

Woodford (2012), as we did in the proof of Lemma (1).

Specifically, a quadratic approximation to Uit is

Uit = U + (u′H − v′H)︸ ︷︷ ︸
=0

hit (39)

+
1

2

u′′H2 − v′′H2 + (u′H − v′H)︸ ︷︷ ︸
=0

h2it + (u′H + u′′H) (pt − θit − pt+1)hit

+
1

2

(
u′′H2 + u′H

)
(pt − θit − pt+1)

2 +O(ε3)

The quadratic term in the last line is independent of the agent’s policy variables.

Removing this term and dividing by −(u′′H2 − v′′H2) gives the desired result.

Lemma A.2. Maximizing the quadratic objective (38) is equivalent to minimizing

the loss function

E
[
(pt+1 − Eit[pt+1])

2
]
.

Proof. Optimal labor choice requires that

hit = γ (Eit[pt+1] + θit − pt) .

Because of the overlapping generations structure, we do not need to conjecture any-

thing about the continuation value of the problem in future periods, as we did in the
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proof of Lemma (2). Substituting this optimality condition into the objective (38)

and simplifying, we get

−1

2
Eit
[
h2it − 2γ (pt+1 + θit − pt)hit

]
= −1

2
γ2 (Eit[pt+1]− pt+1)

2 + t.i.p.

where t.i.p. indicates terms that are independent of the agent’s policy variables. Re-

moving this term and dividing by −1
2
γ2 gives the desired result.

Consistent with the baseline analysis in Section III of Gaballo (2016), we take

σ2
ξ →∞, so that Θit is not informative about the value of the aggregate state variable

Θt. Given Lemma (A.2), the agent’s foresight problem can therefore be written as

min
Iit

E[(pt+1 − E[pt+1|Iit])2] s.t lim
T→∞

I((pt+1, . . . , pt+T ), Iit|pt) ≤ κ (40)

The solution to this problem is presented in the following Lemma.

Lemma A.3. Let pt = h(L)wt denote the Wold representation of the equilibrium

price process, with wt
iid∼ N(0, 1). Then the forecast process

E[pt+1|Iit] =
h(L)− e−2κh(0)

L
wt +

√
e−2κ(1− e−2κ)h(0)vit,

with vit
iid∼ N(0, 1) and {vit} independent of {wt}, solves problem (40).

Proof. First, we show that solving problem (40) is equivalent to solving

min
Iit

E[(wt+1 − E[wt+1|Iit])2] s.t lim
T→∞

I((wt+1, . . . , wt+T ), Iit|wt) ≤ κ, (41)

where {wt} are the Wold innovations in {pt}. The left side of the constraint is the

same, since span(pt) = span(wt) for all t by definition of {wt}. With respect to the

objective, note that

pt+1 − E[pt+1|Iit] = (pt+1 − E[pt+1|pt])− (E[pt+1|Iit]− E[pt+1|pt])

= (pt+1 − E[pt+1|pt])− E[(pt+1 − E[pt+1|pt])|Iit],

since Iit ⊇ span(pt). Therefore, it is equivalent to treat pt+1−E[pt+1|pt] as the target

variable. Moreover, we can use the Wold representation of {pt} to write

pt+1 − E[pt+1|pt] =
h(L)

L
wt −

h(L)− h(0)

L
wt = h(0)wt+1.
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Diving by h(0) does not affect the optimal choice, which means it is also equivalent

to treat wt+1 as the target variable. This establishes that solving (40) is equivalent

to solving (41).

Second, we conjecture that

E[wt+1|Iit] = ψwt+1 +
√
ψ(1− ψ)vit ≡ ẑit, (42)

where ψ ≡ 1− e−2κ. To verify this conjecture, we show that it attains a lower bound

on the objective function, and it is feasible. The lower bound on the objective function

is

E[(wt+1 − E[wt+1|Iit)2] ≥ e−2κ.

This is because

κ ≥ lim
T→∞

I((wt+1, . . . , wt+T ), Iit|wt)

≥ I(wt+1, Iit|wt)

=
1

2
lnE[(wt+1 − E[wt+1|wt])2)−

1

2
lnE[(wt+1 − E[wt+1|Iit)2].

Using the fact that E[wt+1|wt] = 0 and rearranging delivers the stated lower bound.

Moreover, the conjecture in (42) attains this lower bound, since

E[(wt+1 − ẑit)2] = (1− ψ)2 + ψ(1− ψ) = 1− ψ = e−2κ.

To verify that the conjecture is feasible, notice first that under the conjecture, the

following two rationality restrictions are satisfied:

E[(wt+1 − ẑit)wt−j] = 0 for all j ≥ 0

E[(wt+1 − ẑit)ẑi,t−j] = 0 for all j ≥ 0.

The first holds by definition of {wt} and because the innovations are independent of

{vit}, and the second follows from observing that the cross autocovariance generating

function between {wt+1 − ẑit} and {ẑit} is zero.

Finally, we need to show that the the foresight constraint is satisfied with equality.

To do this, first note that the Wold representation of the vector process (ẑit, wt) under

the conjecture is [
ẑit

wt

]
=

[ √
ψ 0

√
ψL

√
1− ψ

][
υ1t

υ2t

]
,
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where {υt} is a two-dimensional orthonormal Gaussian white noise process. Since

Iit = span(ẑti , w
t), we can use this representation to compute the optimal j-step-

ahead forecast errors

ζt+1|t ≡ wt+j − E[wt+j|Iit] =


√

1− ψυ2t+1 j = 1

√
ψυ1t+j−1 +

√
1− ψυ2t+j j > 1.

Stacking these up for j = 1, . . . , T ,

ζt+1|t

ζt+2|t

ζt+3|t
...

ζt+T |t


=



0 0 0 · · · 0
√
ψ 0 0 · · · 0

0
√
ψ 0 · · · 0

...
...

. . . . . .
...

0 0 0
√
ψ 0


︸ ︷︷ ︸

Q1



υ1,t+1

υ1,t+2

υ1,t+3

...

υ1,t+T


+
√

1− ψIT︸ ︷︷ ︸
Q2



υ2,t+1

υ2,t+2

υ2,t+3

...

υ2,t+T



The covariance matrix associated with these forecast errors is

ΣT = Q1Q
′
1 +Q2Q

′
2 = diag(1− ψ, 1, . . . , 1),

so detΣT = 1− ψ for all values of T . From this it follows that

lim
T→∞

I((wt+1, . . . , wt+T ), Iit|wt) = −1

2
ln det ΣT = −1

2
ln(1− ψ) = κ.

Therefore, we have proven that the conjecture (42) solves problem (41). This implies

that

E[pt+1|Iit] = h(0)ẑit + E[pt+1|pt] = h(0)ẑit +
h(L)− h(0)

L
wt

solves problem (40). Plugging the conjecture (42) into this expression and simplifying

gives the desired result.

Finally, we show that the optimal forecast from Lemma (A.3) is consistent with

the signal structure assumed in Gaballo (2016), where each period, in addition to

observing pt, the agent receives a private signal of the form “pt+1 plus i.i.d. noise.”

Lemma A.4. The optimal forecast process in (A.3) is consistent with the agent having

a time-t information set of the form It = span(pt, st), with

sit = pt+1 + σvvit,
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where {vit} is orthonormal white noise, independent of {pt}, and

σ2
v =

(
e−2κ

1− e−2κ

)
h(0)2.

Proof. We know from the proof of Lemma (A.3) that the optimal forecast of wt+1 is

E[wt+1|Iit] = ψwt+1 +
√
ψ(1− ψ)vit ≡ ẑit,

and Iit = span(ẑti , w
t). Define the private signal

sit =
1

ψ
h0ẑi,t +

∞∑
j=0

hj+1wt−j.

Rescaling ẑit and adding lags of the innovation process {wt} does not change the

information set, since span(wt) ⊂ Iit. Therefore, Iit = span(sti, w
t). But then, by

substituting in the known law of motion for ẑit, it follows that

sit =
h(L)

L
wt +

√
1− ψ
ψ

h(0)vit = pt+1 + σvvit,

where σv is defined as in the statement of the Lemma.

C Foresight in state-space models

This section presents a numerical algorithm that can be used to compute the quantity

of foresight for a general class of information structures. The algorithm computes the

quantity of foresight in an information structure {It} such that It = span(yt, xt),

where {yt} and {xt} are ny and nx dimensional vector processes related by the state-

space structure

yt = Axt xt = Bxt−1 + Cet. (43)

The ne dimensional random vector et is i.i.d. over time with distribution N(0, Ine).

Separately computing the determinants of the matrices ΣT and Σ̂T and dividing

them, as we did in Section (3), can be numerically unstable. A preferable option is

make use of the fact that, with Gaussian random variables, information depends only

on the closed linear spaces spanned by each set of random variables; it is independent

of the choice of bases in those spaces. This implies that

lim
T→∞

I((yt+1, . . . , yt+T ), It|yt) = lim
T→∞

I((εt+1, . . . , εt+T ), It|yt), (44)
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where εt is the nε dimensional disturbance in the Wold representation of the process

{yt}. By definition, it is i.i.d. over time with distribution N(0, Inε), and its current

and past values at each point in time form an orthonormal basis for span(yt). The

equality in (44) says that the amount of information about the future values of the

process {yt} is the same as the amount of information about the future values of the

disturbances {εt}.
The reason this is helpful is because, without foresight, the disturbance εt+j is,

by definition, completely unforecastable for any j > 0. Therefore, the covariance

matrix of forecast errors without foresight reduces to the identity matrix, which has

a determinant of one. Combining (1) and (44), we can express conditional mutual

information in terms of the determinant of one matrix,

I((yt+1, . . . , yt+T ), It|yt) = −1

2
ln det Σ̃T ,

where Σ̃T ≡ var((εt+1, . . . , εt+T )− E[(εt+1, . . . , εt+T )|It]).
It is well known that, given a state-space structure of the form in (43), it is

possible to relate {εt} to {et} through a state-space structure of the form (see, e.g.

the discussion in ch. 8 of Hansen and Sargent 2014),

εt =
[
V −1/2AB V −1/2A

]
︸ ︷︷ ︸

Ã

x̃t−1 + V −1/2AC︸ ︷︷ ︸
D̃

et (45)

x̃t =

[
B 0nx

KAB B −KA

]
︸ ︷︷ ︸

B̃

x̃t−1 +

[
C

KAC

]
︸ ︷︷ ︸

C̃

et,

where V ≡ APA′, K ≡ BPA′V −1, and P solves the Riccati equation

P = BPB′ + CC ′ −BPA′(APA′)−1APB′.

Using this system, the j-step-ahead forecast error is

ζt+j|t = εt+j − E[εt+j|yt, xt] = D̃et+j +

j−1∑
k=1

ÃB̃T−1−kC̃et+k.
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Stacking these up for j = 1, . . . , T ,

ζt+1|t

ζt+2|t

ζt+3|t
...

ζt+T |t


=



D̃ 0 0 · · · 0

ÃC̃ D̃ 0 · · · 0

ÃB̃C̃ ÃC̃ D̃ · · · 0
...

...
...

. . .
...

ÃB̃T−2C̃ ÃB̃T−3C̃ ÃB̃T−4C̃ · · · D̃


︸ ︷︷ ︸

Q̃



εt+1

εt+2

εt+3

...

εt+T


.

From this we can see that Σ̃T = Q̃Q̃′, so to approximate the limit of −1
2

ln det Σ̃T

as T → ∞, we can compute this quantity for successively larger values of T , until

the incremental change in information, −1
2

ln(det Σ̃T/det Σ̃T−1), becomes acceptably

close to zero. (One limitation of this algorithm is that it could run into problems if

information converges at a slower rate than the growth in the computational burden

of taking the determinant of a T×T matrix. For all the examples we have considered,

however, this has not been an issue.) What follows is a simple Matlab function that

implements this algorithm.
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function f = foresight(A,B,C)

% -------------------------------------------------------------------------

% Numerically compute the amount of foresight in the state-space model

% y(t) = A*x(t) x(t) = B*x(t-1) + C*e(t) e(t)~N(0,I)

% -------------------------------------------------------------------------

% State-space form for innovations

P = dare(B’,A’,C*C’,0);

V = A*P*A.’;

K = B*P*A’/V;

sqrtV = chol(V,’lower’);

A1 = sqrtV\[A*B,A];

B1 = [B,zeros(size(B));K*A*B,B-K*A];

C1 = [C;K*A*C];

D1 = sqrtV\A*C;

% Iterate to convergence

tol = 1e-6;

err = 1;

Tmax = 1e3;

Q = D1;

f = -1/2*log(det(Q*Q.’));

B1p = 1;

T = 2;

ny = size(A,1);

ne = size(C,2);

while err > tol && T < Tmax

Q = [Q,zeros(ny*(T-1),ne);A1*B1p*C1,Q(end-ny+1:end,:)];

fnew = -1/2*log(det(Q*Q.’));

err = abs(fnew-f);

f = fnew;

B1p = B1*B1p;

T = T + 1;

end

end
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