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Abstract

We prove identification of coefficients for a set of semiparametric specifications that

are related to multiple index models. Potential applications of these results include mod-

els of observed heterogeneity in production functions and in consumer demand systems.

We then generalize these results to identify a class of collective household consumption

models. We extend the existing literature by proving point identification, rather than

the weaker generic identification, of all the features of the collective household model,

including price effects. We estimate the model using Japanese consumption data, and

find substantial variation in resource shares and indifference scales across households of

different sizes.

1 Introduction

Let p = (p1, ..., pJ) be a vector of observed covariates (these will be prices in our empirical appli-

cation), and let s be an observed discretely distributed vector or index. Consider models of the

∗JEL codes: C21, C31, D12, D13. Keywords: Identification, Semiparametric, Collective Household
Model, Cost of Children, Bargaining Power, Sharing Rule, Demand Systems. Corresponding Author:
Arthur Lewbel, Department of Economics - Maloney 315, Boston College, 140 Commonwealth Ave.,
Chestnut Hill, MA, 02467, USA. (617)-552-3678, lewbel@bc.edu, https://sites.google.com/bc.edu/arthur-
lewbel/

1



form M (p, s) = G (as1p1, ..., asJpJ) where the function M is known or identified, e.g., M could be

a conditional mean function estimated by nonparametric regression. We wish to point identify, up

to normalization, the vector of coefficients as = (as1, ..., asJ) for each value that s can take on.

Note that this is not a single linear index model. Many results exist for identifying coefficients

in linear index models, i.e., models that are functions of a1p1 + ... + ajpj. But those results are

not applicable to this context. Here each pj appears separately, and generally nonlinearly, in the

function G. Still, as we show below, multiple (rather than single) linear index models do form a

special case of the models we consider, so our results add to the existing literature on identification

of multiple linear index models.

We provide three different assumptions that suffice to point identify the coefficients asj for

j = 1, ..., J . Each assumption has different strengths and weaknesses, so different ones will be more

or less useful depending on context. An attractive feature of these identification results is that they

do not impose any monotonicity on the function G.

We then extend these results to show point identification of a general set of collective household

consumption models. There is a long literature on the identification and estimation of collective

household models of consumption. These are models of households with multiple members, each

of whom maximizes a utility function, subject to their claims on the household’s resources and

a household budget constraint. Objects of particular interest are resource shares, defined as the

fractions of household resources spent on each family member. Virtually all of the identification

results in this collective household model literature either point identify specific functional forms,

or point identify only a subset of the model’s features, or only establishes either set or generic

identification rather than point identification.

Generic identification of a model means that the model is usually point identified, but there can

exist situations where point identification fails. More formally, generic identification says that in

the set of all possible data generating processes that satisfy the model’s assumptions, the subset for

which point identification fails has measure zero. See McManus (1992) and Lewbel (2019) for more

details regarding the formal definition of generic identification.

The well known collective household identification results of Chiappori and Ekeland (2006,

2009) and earlier authors, showing nonparametric identification up to unknown levels for resource

shares, are generic identification theorems. As a result, there exist functional forms where point

identification fails. For example, their model is not nonparametrically point identified if household

members have Cobb-Douglas preferences. Moreover, as is typical for generic identification results,
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these authors do not fully characterize when point identification fails and when it does not.1 What

we do is essentially add some additional assumptions and information that suffices to rule out all

cases that are not point identified, and we do so for a set of models that is more general than theirs

in terms of joint and shared consumption of goods.

After providing a few different sets of sufficient conditions for establishing point identification

of the relative indices asj above, we extend these theorems to point identify the related but more

complicated structure of collective household models. We then illustrate the results by estimating

a collective household model with Japanese data, where we find some new results regarding the

sharing and division of goods among husbands, wives, and children. In particular, we find wide

variation in resource shares by household size, though relatively little variation in total household

economies of scale to consumption.

2 Examples

Let As be a diagonal matrix with the vector as = (as1, ..., asJ) on the diagonal. We first consider

models of the form

M (p, s) = G (as1p1, ..., asJpJ) = G (Asp) (1)

Our goal is identification of the as vectors and the function G. Examples of such models in the

economics literature include the following.

1. Consumption taste heterogeneity. Consider a continuous consumption demand function

w = M (p, s) + e where w is a single consumer’s (not a household’s) budget share for some good, p

is prices divided by total expenditures, and s are observed demographic characteristics. Modeling

taste heterogeneity in the form of equation (1), with the coefficients asj being commodity specific

equivalence scales (most commonly, so-called Barten scales), has a long history in demand system

estimation. See, e.g., Prais and Houthakker (1955), Barten (1964), Pollak and Wales (1981), Jor-

genson, Lau, and Stoker (1982), Folkertsma, (1995), Lewbel and Pendakur (2017), and Ray (2018).

2. Production function heterogeneity. Consider a production function q = M (p, s) + e

where q is output, p is a vector of input quantities, and s is a set of firm characteristics. Then

1Browning, Chiappori, and Lewbel (2013) provide more details on this point. They also only show generic
identification.
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equation (1) holds where each asj captures the non-neutral technical efficiency of input j, and/or

the quality of input j, by a firm with characteristics s. More generally, the p in M (p, s) could be

a vector of both input and output prices in a multiple output production process, with signs of asj

determining which elements are inputs and which are outputs in a firm with characteristics s. A

large literature exists on modeling heterogeneity in non-neutral efficiency in both macro, as in Basu

and Fernald (1997), and industrial organization, as in Ackerberg, Caves, and Frazer (2015), and

Gandhi, Navarro, and Rivers (2020).

3. Multiple linear index models. These can be constructed as a special case of our model.

Suppose we add the constraint that all asj and pj are strictly positive (this constraint will ap-

ply in our empirical application). Then we can equivalently write equation (1) as M (p, s) =

G̃ (ln as1 + ln p1, ..., ln asJ + ln pJ). Since s has finite support we can next equivalently replace each

ln asj with a saturated model ln aj (s) = α′jS where S is a vector of binary variables indicating each

possible value in the support of s. We then get M (p, s) = G̃
(
α′1S + ln p1, ..., α

′
jS + ln pJ

)
, which is

a multiple linear index structure. Multiple linear index models are popular structures in statistics

and econometrics, with estimators including Ichimura and Lee (1991), Horowitz (1998), Xia, Tong,

Li, and Zhu (2002), Xia (2008), Donkers and Schafgans (2008), and Ahn, Ichimura, Powell, and

Ruud (2018). The restriction that each linear index has one explanatory variable that appears only

in that index, with a coefficient of one (corresponding to the ln pj terms in G̃) appears as Assump-

tion 3a in Donkers and Schafgans (2008). They observe this is one way to satisfy some necessary

conditions for identification that appeared previously in the literature. Note that, in addition to the

constraint that all asj and pj in our model be strictly positive, the multiple linear index literature

mostly focuses on applications where regressors are continuous, rather than our opposite extreme

where only p is continuous.

4. Collective Household Models. The modern literature on Pareto efficient collective

household models begins with Becker (1965, 1981) and Chiappori (1988, 1992). An important series

of papers in this literature establishes that, from only observing the demand functions of households,

one cannot point identify resource shares (a resource share is the fraction of a household’s total

resources that are spent on the utility of any one household member). However, one can generically

identify the marginal effects of policy variables on resource shares. Equivalently, each resource share

is only point identified up to an unknown location constant. See, e.g., Browning, Bourguignon,

Chiappori, and Lechene (1994), Browning and Chiappori (1998), Vermeulen (2002), and Chiappori
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and Ekeland (2006, 2009).2 Prominent papers that make use of these identification results include

Chiappori, Fortin, and Lacroix (2002), and Blundell, Chiappori, and Meghir (2005).

By adding additional assumptions, more recent papers either generically identify the entire

model, including the levels of resource shares, e.g., Browning, Chiappori, and Lewbel (2013), or

point identify some features of the model (such as resource shares without price effects), e.g.,

Lewbel and Pendakur (2008), Bargain and Donni (2012), Dunbar, Lewbel, and Pendakur (2013),

and Penglase (2019). Still other papers impose additional parametric restrictions to obtain point

identification, e.g., Couprie, Peluso, and Trannoy (2010) and Lise and Seitz (2011).

None of the above results accomplish our goal, which is to provide sufficient conditions to

semiparametrically point identify (not just generically identify) an entire collective household model,

including resource share levels and price effects.

One large, general class of collective household models in the literature is based on Browning,

Chiappori, and Lewbel (2013), which we will hereafter refer to as BCL. All but a handful of the

papers cited above can be cast as special cases of BCL. BCL yields demands that can be written

as a system of equations, each having a form resembling3

M (p, s, y) = G (Asp, ηs (Asp) y) (2)

where M is quantity demand, G and ηs are unknown functions, p is a vector of observed prices, y

is observed total expenditures, ηs is a resource share function, and the asj terms on the diagonal of

As are parameters that summarize how much each good k is shared among the household members

(BCL calls this a Barten consumption technology, and calls these asj terms Barten coefficients, due

to their resemblance to Barten scales).We extend our results on point identification of equation (1)

by providing sufficient conditions to point identify the BCL model.

2Although not point identified without additional information, bounds can be obtained on resource shares via
revealed preference theory. See Cherchye, De Rock, and Vermeulen (2012a, 20102b), Cherchye, De Rock, Lewbel,
and Vermeulen (2015), and Cherchye, Demuynck, De Rock, and Vermeulen (2017).

3Equation (2) is a special case of the more general demand functions obtained by BCL. The special case of
equation (2) is for a single good in a two person household. We will later identify a more general model, consisting
of multiple equations of this form with multiple resource shares, which also includes some cross equation restric-
tions that are helpful for the identification.
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3 Semiparametric Coefficient Identification

Let as = (as1, ..., asJ) be a J-vector of coefficients we wish to identify. Let As be the J by J diagonal

matrix that has the vector as on the diagonal. Let P = (P1, ..., PJ) be a J-vector of continuous

covariates (possibly also including some mass points) and let S be a discrete covariate (or vector

of covariates). Assume we can identify a function M (P, S), e.g., M (P, S) might be a conditional

mean, conditional density, or conditional quantile function that we could consistently estimate. The

goal is to identify the unknown vector of coefficients as = (as1, ..., asJ) in the model

M (p, s) = G (as1p1, ..., asJpJ) = G (Asp) (3)

for some unknown function G.

In this section we provide three alternative sets of conditions, each of which suffice for point

identification of the vector of coefficients (as1, ..., asJ) for each value s that S can equal. Each has

relative advantages and disadvantages. None, however, require monotonicity of the function G. The

following two assumptions are common to all three sets of assumptions.

ASSUMPTION A1: Let the support of (P, S) be Ωp×Ωs. For each (p, s) ∈ Ωp×Ωs, equation (3)

holds for some unknown function G and some vector of constants as = (as1, ..., asJ). The function

M (p, s) is identified for all (p, s) ∈ Ωp × Ωs.

ASSUMPTION A2: Assume for some t ∈ Ωs that atj = 1 for j = 1, ..., J .

Assumption A1 essentially just lays out the model. Assumption A2 is a scale normalization.

Assumption A2 can be made without loss of generality (as long as atj is not identically zero),

because we can simply redefine the function G to make atj = 1, by replacing G with G̃ defined by

G̃ (p) = G (at1p1, ..., atJpJ) and replacing each asj with ãsj defined by ãsj = asj/atj. Note, however,

that the choice of normalization can affect economic interpretation of the function G and the asj

coefficients.4

Our first alternative identifying assumption is the following

ASSUMPTION A3: Assume G (p) is continuously differentiable. Let mj (p, s) = ∂M (p, s) /∂pj

4In our collective household application, the asj coefficients are measures of how much each good j is shared
(consumed jointly by multiple members) in a household of type s. There it will be appropriate to normalize atj to
equal one for singles t (people who live alone), and who therefore cannot be sharing. See Lewbel (2019) for more
on the economic implications of scale normalizations.
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and let gj (p) = ∂G (p) /∂pj. For any J-vector α = (α1, .., αJ), define the J-vector valued function

ζ (α, p, s) as having the elements

ζj (α, p, s) =
mj (p, s)

gj (α1p1, ..., αJpJ)
for j = 1, ..., J

For each s ∈ Ωs, assume there exists a p̃ ∈ Ωp such that Asp̃ ∈ Ωp and ζj (α, p, s) is a contraction

on a.

Assumption A3, is a high level assumption, which may therefore be hard to verify in practice.

However, in the special case of multiple linear index models, Assumption A3 corresponds to uniquely

recovering index coefficients from derivatives of M , and so relates to the identification conditions

given in Xia (2008) and Donkers and Schafgans (2008).

An alternative to Assumption A3 is Assumption A4, which is more restrictive than A3, but is

a much lower level assumption and hence may be simpler to verify in some applications.

ASSUMPTION A4: Assume Ωp includes a (possibly one sided) neighborhood of zero, and that

G (p) is continuously differentiable for all p in that neighborhood of zero. Assume for each j = 1, ..., J

that ∂G (p) /∂pj (or the corresponding one sided derivatives) does not equal zero when p = 0.

Assumption A4 exploits how our model simplifies at the point where p = 0. This is a method of

identification that is also used by Matzkin (2003, 2012) and Lewbel and Pendakur (2017). Applying

Assumption A4 when p is prices requires the one sided version of Assumption A4, since prices cannot

be negative. In practice, this identification would require some probability of observing arbitrarily

low prices (so the support of p contains values in the neighborhood of zero). However, both ordinary

consumer demand models and collective household models are linearly homogeneous in prices p and

total expenditures y. Therefore, it is only p/y that needs to include a one sided neighborhood of

zero, and the presence of very wealthy consumers can insure that some observed values of p/y are

very close to zero.

Define the random vector V by V = (V1, ..., VJ) where Vj = asjPj. Let Ωv denote the support

of V .

LEMMA 1: Let Assumptions A1 and A2 hold. If either Assumption A3 or Assumption A4 also

holds then the coefficients as1, ..., asJ and the function G (v) are point identified for all v ∈ Ωv and

s ∈ Ωs.
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The identification in Lemma 1 is what Khan and Tamer (2010) call ”thin set” identification.

Thin set identification is when identification is based on a measure zero subset of the support of

the data. In this example, identification is based either on the point p that makes Assumption A3

hold, or the point p = 0 for Assumption A4. Either such point is observed with probability zero

if P is continuous. The more well known concept of ”identification at infinity” as in Chamberlain

(1986) and Heckman (1990) is another example of thin set identification. Many of the identification

theorems given in Matzkin (2003, 2007, 2012) assume a normalization that otherwise unknown

functions take on known values at one point, such as zero. Such normalizations typically imply thin

set identification. In practice, estimators of parameters that are only thin set identified will usually

converge at slow rates. See Khan and Tamer (2010) and Lewbel (2019) for details regarding thin

set identification.

One way to avoid thin set identification is to assume that Assumption A3 holds at a mass point

p. Another way would be to assume that Assumption A3 holds for all points p in some convex

positive measure subset of Ωp. However, this is an additional strong high level assumption that

could be difficult to verify.

To avoid issues associated with thin set identification, we now give a third alternative assumption

for obtaining identification. A disadvantage of this identification condition is that it requires a large

support assumption on P . However, unlike identification at infinity or other thin set identification

arguments, here the large support assumption is only needed to avoid the presence of boundary

terms in a change of variables argument.

For a given function ψj, define cj by

cj =

∫ ∞
0

...

∫ ∞
0

ψj [G (p)] p−11 ...p−1j−1p
−1
j+1...p

−1
J dp1...dpJ (4)

ASSUMPTION A5: Assume Ωp is the positive orthant. G (p) is continuous for all p ∈ Ω. All asj

are positive. For each j ∈ {1, ..., J}, we can find a continuous function ψj such that the constant cj

defined by equation (4) exists, is finite, and non-zero.

Having Ωp be the positive orthant is the large support assumption. As noted above for As-

sumption A4, when p is prices we can replace p with p/y, so very low and very high incomes

(corresponding to extreme values of y) can generate very low and very high prices. However, large
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support also requires that extremes in relative prices of goods be possible.

The assumption that all asj are positive is testable, using the estimated average derivatives with

respect to pj of M (p, s) relative to average derivatives of M (p, t) (recalling that by Assumption

A2, all atj equal one). In our empirical application, the asj coefficients will be sharing parameters

that are positive by construction.

Assumption A5 says we can find a continuous function ψj that makes the integral given by

equation (4) convergent. Note that G (p) is identified by G (p) = M (p, t), so knowing G, the

assumption is that we can construct a continuous function ψj that goes to zero sufficiently quickly

whenever any element of P goes to zero, and grows sufficiently slowly, or not at all, when any

element of P goes to infinity. A simple example that satisfies Assumption A5 is where G (p) equals

some strictly monotonic transformation of ΠJ
j=1pje

−bjpj for positive constants bj (ψj would then be

the inverse of that monotonic transformation). A similar construction to Assumption A5 appears

in Lewbel and Pendakur (2017). However, their application involves stronger conditions than the

above assumptions, because they identify distributions of random coefficients rather than constants.

LEMMA 2: If Assumptions A1, A2, and A5 hold, then the coefficients as1, ..., asJ and the

function G (v) are point identified for all v ∈ Ωv and s ∈ Ωs.

Both Lemmas 1 and 2 have proofs by construction, so semiparametric estimators could be readily

constructed by mimicking the steps of either proof. Combining Lemmas 1 and 2, and separately

considering the scale normalization of Assumption A2 gives us our first identification theorem.

THEOREM 1: Let Assumption A1 hold. If either Assumption A3, A4, or A5 also holds, then

the relative coefficients as1/at1, ..., asJ/atJ are point identified for all v ∈ Ωv, s ∈ Ωs, and t ∈ Ωs. If

Assumption A2 also holds then the coefficients as1, ..., asJ and the function G (v) are point identified

for all v ∈ Ωv and s ∈ Ωs.

In practice, for estimation it may be unnecessary to know which identifying assumptions hold;

it can suffice to just assume that any one of them hold. For example, suppose M is defined by

a conditional expectation, so M (p, s) = E (Y | P = p, S = s). Then we could consider estimating

the parameters asj and function G by, e.g., Ai and Chen’s (2003) sieve GMM, based on conditional

moments E (Y −G (Asp) | P = p, S = s) = 0. Regularity conditions simply assume identification

based on conditional moments, along with assumptions on the data generating process. Note,

9



however, that the rate of convergence of the resulting estimator may depend on which identifying

assumptions hold.

4 The Collective Household Model of Consumption

We briefly summarize Pareto efficient collective household consumption models here, focusing on the

BCL model. Until recently, virtually all collective household models divided goods into two types:

private goods, that are individually consumed by household members, and public goods, that are

jointly consumed by all household members. The BCL model generalizes this earlier literature by

allowing goods to be partially shared. An example is something like gasoline use, which is shared,

or jointly consumed, when household members travel together in a car, and is privately consumed

when a household member drives alone. Each asj parameter in this model is a measure of how much

good j is jointly consumed by the members of a household having characteristics s. As noted earlier,

by analogy with the model of Barten (1964), these asj parameters are called Barten coefficients or

Barten scales.

A household consists of K members. Let subscript j index goods and superscript k index

household members. Let z denote the vector of continuous quantities of goods purchased by the

household. In the BCL model, a Pareto efficient household facing prices p, with characteristics s,

and total expenditures (budget) y, solves the following optimization problem

max
x1,...,xK

K∑
k=1

µks(p/y)Uk
s (xk) (5)

such that z = Asx, x =
∑K

k=1 x
k, and p′z = y

Uk
s is member k’s utility function. The model allows household members to have different

preferences. µks is the so-called ”Pareto weight” of each member. the higher a member’s Pareto

weight, the more that member’s tastes affect the household’s purchases. p′z ≤ y is the household’s

budget constraint. The quantity vector xk = (xk1, ..., x
k
J) is the vector of member k’s ”private

good equivalents” of goods, that is, the indifference curve member k attains in the household is

the indifference curve that he or she would attain, if while living alone, her or she had consumed

the vector xk. The vector x is the sum of the private good equivalents for all members. The

square diagonal matrix As, which contains the terms asj, summarizes the household’s ”consumption

technology function,” which converts purchased goods z into private equivalents x via sharing and
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jointness of consumption. For each good j, the household sets xj/zj equal to 1/asj. Having asj = 1

means good j is not jointly consumed at all (this would be the case if all goods were private, or if

the individual lived alone), otherwise the smaller asj is, the more good j is consumed jointly.

BCL show5 that the household’s demand functions arising from the above optimization have the

form
pjzj
y

= ωj (p, s, y) =
K∑
k=1

η̃ks (p, y)hkj
(
as1p1, ..., asJpJ , η̃

k
s (p, y)y

)
j = 1, ..., J (6)

The function ωj (p, s, y) is the household’s budget share demand function for good j. hkj is

household member k’s demand function for good j, based on member j’s utility function. η̃ks (p, y)

is member k’s resource share, that is, the fraction of the household’s total budget y that is spent

on buying private good equivalents consumed by member j.

We make the following modifications to the BCL model with Barten consumption technology:

1. BCL assumes the hkj functions are known, while we mostly do not.6 In their data, BCL

identify all of the hkj functions by using data from singles (individuals living alone), and assume

these demand functions do not change when people cohabit. Among other implications, this means

BCL cannot include children in their model, while we can. We will identify most or all of the hkj

functions along with the rest of the model.

2. We assume the household has some private, assignable goods. A private assignable good

is a good that is only consumed by (and provides utility for) one, known, household member. In

our empirical application, only two private assignable goods are needed for identification, but we

have three in our data: men’s, women’s, and children’s clothing and shoes. We also assume that

resource share functions do not depend on y. These restrictions are commonly assumed in the

collective household literature. Examples include Lewbel and Pendakur (2008), Couprie, Peluso,

and Trannoy (2010), Bargain and Donni (2009, 2012), Lise and Seitz (2011), and Dunbar, Lewbel,

and Pendakur (2013), Penglase (2019), and Calvi (2020). Many of these papers also use clothing

as private assignable goods. Other researchers provide direct empirical evidence supporting these

assumptions, including Menon, Pendakur, and Perali (2012) and Cherchye, De Rock, Lewbel, and

5BCL derive this equation for K = 2, and do not include the s subscript, but these extensions to their theory
are straightforward.

6Our results showing identification of relative resource shares and relative Barten consumption technology co-
efficients assume the hk

j functions are not known at all. Our results showing full identification of all features of the

model assume that, of the J times K total number of hk
j functions, just K − 1 of them are known (i.e., can be

identified from singles data). In particular, none of the children’s functions need to be known.
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Vermeulen (2015) (see also Bonke and Browning 2011).

With these assumptions, we can write the resulting BCL demand functions as

pjzj
y

= ωj (p, s, y) =
K∑
k=1

ηks (Asp)h
k
j

(
Asp, η

k
s (Asp)y

)
. (7)

where resource shares now have the simpler form ηks (Asp). For each member k who has a private

assignable good, we will index that good as good k. The household demand functions of the private

assignable good simplify to

pkzk
y

= ωk (p, s, y) = ηks (Asp)h
k
k

(
Asp, η

k
s (Asp)y

)
(8)

It will be important for some later results to note that utility maximization results in demand

functions that are homogeneous of degree zero in p and y (this is known as the absence of money

illusion), which means that equation (7) can be equivalently written as

pjzj
y

= ωj (p, s, y) =
K∑
k=1

ηks

(
As
p

y

)
hkj

(
As
p

y
, ηks

(
As
p

y

))
. (9)

and similarly for equation (8).

5 Identification of the Collective Household Model

We now consider identification of the collective household model given by equations (7) and, for

private assignable goods, (8). As with Theorem 1, we present a few alternative sets of identifying

assumptions each with relative advantages and disadvantages depending on context.

ASSUMPTION B1: Household budget share demand functions ωj (p, s, y) for j = 1, ..., J are

given by equation (7), which for private assignable goods reduces to equation (8), where for all

(p, s, y) ∈ Ωp × Ωs × Ωy, the functions hkj (p, y) and ηks (p) are positive and continuous for each

member k = 1, ..., K, and each s ∈ Ωs. The consumption technology constants asj are bounded and

strictly positive for each s ∈ Ωs and each good j.

Assumption B1 essentially lays out the collective household model as discussed in the previous

section. The continuity conditions follow naturally from smooth utility and household bargaining
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or social welfare functions. Similarly, having the Barten coefficients asj be bounded and positive

must hold because it is impossible for every member of a household to consume more than the

total purchased quantity of a good (even if it is completely shared), and it is impossible to consume

negative quantities of goods.

Our first goal is to identify relative values of the Barten constants as1,...,asJ . We cannot imme-

diately apply Theorem 1 (taking G to be any of the household demand functions ωj) because of

the presence of the resource share functions ηks which vary by s. We therefore will first construct a

function G out of either one or two demand functions ωj using Theorem 2 below, and then apply

Theorem 1 to the result.

Assumptions B2, B3, B4, B5, and B6 below are alternatives; only one needs to hold for Theorem

2. Analogous to the Assumptions for Theorem 1, some of these assumptions (B2 and B3) entail

thin set identification, while others (B4 and B5) require large support. These assumptions also

vary in how many private assignable goods they require: B2, B4 and B6 each require one private

assignable good, B3 requires two, and B5 does not require any.

By providing a range of alternative assumptions, we can obtain identification with a wide variety

of different demand functions. Note that the class of demand functions in Assumption B6 are widely

used in the empirical literature (see, e.g., Gorman 1981 or Banks, Blundell, and Lewbel 1997). The

demand functions we use in our empirical application satisfy Assumptions B3 and B6. These

assumptions are discussed further in the next section.

ASSUMPTION B2: Assume that Ωy includes a one sided neighborhood of zero. Assume there

exists a private assignable good j. Assume that, for all (p, s) ∈ Ωp×Ωs (except possibly on a subset

of measure zero), the function M (p, s) defined by the following equation is finite, nonzero, and has

nonzero derivatives with respect to p.

M (p, s) = lim
y→0

∂ωj (p, s, y) /∂y

ωj (p, s, y)2

ASSUMPTION B3: Assume that Ωy includes a one sided neighborhood of zero. Assume there

exist two private assignable goods j and j̃. Assume that, for all (p, s) ∈ Ωp×Ωs (except possibly on

a subset of measure zero), the function M (p, s) defined by the following equation is finite, nonzero,
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and has nonzero derivatives with respect to p.

M (p, s) = lim
y→0

∂ωj (p, s, y) /∂y

ωj (p, s, y)2
/
∂ωj̃ (p, s, y) /∂y

ωj̃ (p, s, y)2

ASSUMPTION B4: Assume that Ωy includes (0,∞). Assume there exists a private assignable

good j. Assume that for all (p, s) ∈ Ωp × Ωs (except possibly on a subset of measure zero), there

exists a real constant c such that the function M (p, s) defined by the following equation is finite,

and has nonzero derivatives with respect to p.

M (p, s) =

∫ ∞
0

[ωj (p, s, y)]c yc−1dy

ASSUMPTION B5: Assume that Ωy includes (0,∞). Assume there exists a good j such that,

for all (p, s) ∈ Ωp ×Ωs (except possibly on a subset of measure zero), the function M (p, s) defined

by the following equation is finite, and has nonzero derivatives with respect to p.

M (p, s) =

∫ ∞
0

ωj (p, s, y) dy

ASSUMPTION B6: Assume there exists a private assignable good k = j for each household

member j such that hkj (p, y) =
∑L

`=0 ψ
k
j` (p) (ln (y))` for some positive integer L and functions ψkj`.

Define ξ (p, s) = |∂Lωj (p, s, y) /∂ (ln y)L |−1. Assume the function M (p, s) defined by the following

equation is finite, and has nonzero derivatives with respect to p.

M (p, s) = ξ (p, s)ωj (p, s, ξ (p, s))

THEOREM 2: Let Assumption B1 hold. If either Assumption B2, B3, B4, B5, or B6 also holds

then there exists a function G (p), with nonzero derivatives for all p ∈ Ωp (except possibly on a

subset of measure zero), such that, for all s ∈ Ωs, M (p, s) = G (Asp).

COROLLARY 1: Let Assumption B1 hold. If either Assumption B2, B3, B4, B5, or B6 also

holds, and if G (Asp) from Theorem 2 satisfies Assumption A1 and either Assumption A3 or A4 or

A5, then asj/atj is identified for every s ∈ Ωs, every t ∈ Ωs, and every j ∈ {1, ..., J}.

Theorem 2 shows that equation (3) holds, and so Theorems 1 and 2 can be combined as in

Corollary 1. Corollary 1 shows that all the relative Barten scales asj/atj are identified. Note that
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in Theorem 2 we do not assume a scale normalization, i.e., we do not yet impose Assumption A2.

Later we will use data on singles living alone, who therefore cannot share, to properly scale each

asj.

A notable feature of Theorem 2 is that it gets identification from the demand functions of just

one or two goods that the household consumes. Since we can estimate household demand functions

for many goods, we can expect the Barten scales to be greatly over identified in practice. Also,

these results do not require monotonicity of demands, which is useful because empirically the effects

of both p and y on budget shares can change signs.

Another feature of Theorem 2 is that the only constraint it places on the resource share functions

ηks (p) is the minimal regularity given in Assumption B1. In particular, Assumptions B2 to B6 place

no additional constraints on the resource share functions, as can be seen by replacing each ηks (p)

with any other suitably bounded regular function η̃ks (p) in the proof of Theorem 2.

To illustrate some of the above alternative identifying assumptions, consider the general case

of private assignable demand functions that are polynomials in y. More precisely, let good k be

assignable to member j, and assume the function hkj is an arbitrary L’th order polynomial in y, so

ωj (p, s, y) = ηjs(Asp)
∑L

`=0
h̃`j (Asp) η

j
s(Asp)

`y`

for some functions h̃`j. We now give closed form expressions for what the resulting M (p, s) functions

will equal, to which we can then apply Theorem 1. First, applying Assumption B2 gives

M (p, s) = h̃1j (Asp) /h̃0j (Asp)
2

while applying Assumption B3 gives

M (p, s) =
h̃1j (Asp) /h̃0j (Asp)

2

h̃1j̃ (Asp) /h̃0j̃ (Asp)
2

To provide one more example, consider demands that are polynomials in ln y instead of in y. Then

we can apply Assumption B6, which yields

M (p, s) =

∑L
`=0 ψ

j
j` (Asp)

(
− ln |ψjjL (Asp) |

)`
|ψjjL (Asp) |
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Given identification of the Barten technology, our next goal is identification of the relative values

of the resource share functions ηks . Define the vector φst (p) to be the vector of elements φstj (pj)

defined by

φstj (pj) =
pj

asj/atj

for some t ∈ Ωs chosen by the econometrician.

ASSUMPTION C1: Assume that Ωy includes a one sided neighborhood of zero, that there exists

a private good j that is assignable to some household member k, and for that good j the budget

share function ωj (s, φst (p) , 0) is finite and nonzero for all (p, s) ∈ Ωp × Ωs.

ASSUMPTION C2: Assume that Ωy includes (0,∞), that there exists a private good j that is

assignable to some household member k, and for that good j, for all (p, s) ∈ Ωp × Ωs, the function

m (p, s) defined by the following equation is finite and nonzero for some real constants c1 and c2

where c2 6= c1 − 1 and c1 6= 0.

m (p, s) =

∫ ∞
0

[ωj (s, φst (p) , y)]c1 yc2dy.

THEOREM 3: Let the Assumptions of Corollary 1 hold for some s ∈ Ωs and let them also

hold replacing s with some other value r ∈ Ωs. If in addition either Assumption C1 or C2

holds, then the relative values of resource shares ηks (Atp)/η
k
r (Atp) are identified for all p such that

(as1φst1 (p1) , ..., asJφstJ (pJ)) and (ar1φrt1 (p1) , ..., arJφrtJ (pJ)) lie in Ωp. If Ωp is the positive or-

thant, then ηks (Atp)/η
k
r (Atp) is identified for all p ∈ Ωp.

The classical identification result in the collective household literature discussed earlier, that

resource shares are identified up to unknown location, is equivalent in our model to identifying

ηks (Asp)/η
k
r (Arp) for r, s ∈ Ωs. Theorems 2 and 3 together generalize this classical result to the

BCL model where goods can be partly shared. Moreover, these theorems give explicit conditions

for point identification of these relative shares, rather than just generic identification.

One limitation of Theorem 3 is that, if Ωp is not the positive orthant, there could exist values of

p for which identification of the relative resource shares is not shown. However, the identification
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in Theorem 3 uses just the demand functions of at most two goods for each household member.

Since the demand functions for many goods are observed, as with Theorem 2 we can in general

expect substantial overidentification, based on information using multiple goods that the household

consumes. Another limitation of Theorem 3 relative to the earlier generic identification literature

(albeit a restriction with a great deal of theoretical precedent and empirical support, as discussed

earlier) is our assumed restriction that the resource share function not depend on y.

Identification of relative values of resource shares does not suffice to answer some questions

of economic significance. In particular, as stressed by Dunbar, Lewbel, and Pendakur (2013),

identification of poverty rates and of relative bargaining power of household members requires

identifying the levels of resource shares, not just their relative values.

Therefore, for the last part of this section, we consider using additional information to obtain

identification of the entire model, including levels of resource shares, levels of Barten scales, and

the demand functions of each household member.

ASSUMPTION D1: For each household member k = 1, ..., K − 1 assume there exists a private

assignable good, which without loss of generality denote as good k. Assume that we observe singles

of member type k living alone, and that the demand functions for these assignable goods, the

functions hkk, are the same whether a member of type k is in a collective household or not.

To identify the levels of resource shares, BCL assume that we can observe singles of every

household member type k = 1, ..., K, and that their demand functions for all goods remain the

same whether inside or outside a collective household. Assumption D1 considerably weakens the

BCL assumptions, by only requiring that we observe singles of K − 1 member types, and that only

one good for each type needs to have a demand function that doesn’t change when in a collective

household.7 However, Assumption D1 is stronger than BCL in one sense, which is that it requires

existence of some private assignable goods.

THEOREM 4: Let the Assumptions of Corollary 1 hold for all s ∈ Ωs, and let Assumption D1

hold. Let either Assumption C1, C2, or B6 hold. Then the entire model is identified.

What we mean by the entire model being identified in Theorem 4 is that all the Barten scales

7Note that when we say the demand function doesn’t change, we only mean the functions hk
k (which are de-

rived from individual k’s utility function) stay the same. Actual consumption quantities as functions of prices and
total expenditures will differ, because within the collective household, each function hk

k is evaluated at shadow
prices and a shadow budget, rather than market prices and the single’s actual budget.
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asj, all the resource share functions ηks (p), and all the demand functions hkj (p, y) are identified.

In our application, we have K = 3: men, women, and children. So for Theorem 4 we need

K − 1 = 2 of these three to have an identifiable private assignable good. In our case we observe

men’s clothes and women’s clothes, which have demand functions that we identify from single men

and single women. In this example we do not need to observe or identify any child assignable goods,

which is very useful because we would not expect to observe households consisting of children living

alone (the original BCL model did not include children because, unlike the present paper, it did

not overcome this obstacle to identification with children). We also observe children’s clothing in

our application, but we of course can only identify the demand for children’s clothing within the

collective household, not as a single.

6 An Applied Model and Identifying Assumptions

We have proven identification of the model where all the component functions are nonparametric.

However, these functions are high dimensional, so nonparametric estimation is not practical with

modest sample sizes. We will therefore instead estimate a parametric model, but make use of

relatively flexible functional forms. In this section we lay out our parametric model, and verify its

compatibility with our identifying assumptions.

Our model starts with a utility derived functional form for the budget shares of individuals.

We specify individual preferences using the Quadratic Almost Ideal Demand System (QUAIDS)

developed by Banks et al. (1997).

In our application the number of goods J = 6. Let h index households, and let k denote a

household member. Household member types k are f for female, m for male, and c for children.

For member k of household h, let ωjhk denote the fraction of member k’s total resources in the

household that he/she spends on good j, and let ωhk be the J-vector of budget shares ωjhk for

j = 1, ..., J . Note that we can only observe ωjhk in households h that have just one member k (since

for those households observed purchased budget shares equal the shares consumed by member k).

The QUAIDS demand system, for a single individual of type k, living in the household h, takes

the J-vector form

ωhk
(
p

yh

)
= αhk + Γklnp+ βhk[ln(yh)− chk(p)] +

λk

bhk(p)
[ln(yh)− chk(p)]2. (10)

18



Here bhk(p) and chk(p) are price indices defined as

ln[bhk(p)] = (lnp)′βhk, (11)

chk(p) = chk0 + (lnp)′αhk +
1

2
(lnp)Γk′lnp, (12)

αhk, βhk, and λk are J-vectors of preference parameters, Γk is a J×J matrix of preference parameters

γkjj′ having rank J − 1, and chk0 is a scalar parameter which we set to equal to zero based on the

insensitivity reported in Banks et al. (1997). By definition, budget shares must add up to one,

i.e., 1′Jω
hk = 1 for all p/y, where 1J is a J-vector of ones. This, in turn, implies that 1′Jα

hk = 1,

1′Jβ
hk = 0, 1′Jλ

k = 0, and Γk′1J = 0J , where 0J is a J-vector of zeros. Slutsky symmetry requires

that Γk be a symmetric matrix.

As the indices above show, we let the parameter vectors αhk and βhk vary by household h as

well as by individual k. In particular, we specify these parameter vectors by

αhk = αk0 +
Mα∑
m=1

αkmd
hk
m,α (13)

βhk = βk0 +

Mβ∑
m=1

βkmd
hk
m,β, (14)

where dhkm,α and dhkm,β are observed demographic characteristics, and Mα and Mβ are the number

of such covariates we observe. Each αhk and βhk is a J-vector, which from the above adding up

restrictions must satisfy 1′Jα
k
0 = 1, 1′Jα

k
m = 0 for m = 1, ...,Mα, and 1′Jβ

k
m = 0 for m = 0, ...,Mβ.

In our application dhkm,α consists of 7 region dummies and the age of member k, making Mα = 8,

while dhkm,β is an indicator for homeownership, so Mβ = 1. Taken together, we have 17 preference

parameters for each of J − 1 = 5 distinct equations, yielding a total of 85 parameters for each type

of individual k. Note that the model for households with more than one member will also have

additional parameters associated with resource shares and Barten scales.

We parameterize each household member’s resource share with the functional form

ηf =
exp(δf

′
s)

1 + exp(δf ′s) + exp(δm′s)
, (15)
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ηm =
exp(δm′s)

1 + exp(δf ′s) + exp(δm′s)
, (16)

where f denotes female and m denotes male, and the children’s resource share is 1 − ηf − ηm. If

there are no children in the household, then

ηf =
exp(δf

′
s)

1 + exp(δf ′s)
, (17)

and the husband’s share is 1 − ηf . This is a commonly used functional form for imposing the

constraint that resource shares are positive and sum to one.

In the collective household literature, variables s that affect resource shares are called ”distri-

bution factors.” See, e.g., Browning, Bourguignon, Chiappori, and Lechene (1994), Browning and

Chiappori (1998). In our model, these s variables also affect the Barten parameters asj. Lewbel and

Pendakur (2019) call variables that affect both resource shares and sharing, ”cooperation factors.”

The vector s in our application consists of the difference in age between the wife and husband, the

difference in log income between the wife and husband8, number of children, the minimum age of

children less 5, the age of the wife less 39 (the average age of wives in the sample), and indicators of

whether the wife has some college education, and whether the husband has some college education.

With the Barten consumption technology, we obtain the following expression for the budget

shares of couples with one to four children:

ωhj (p, sh, yh) = ηhfs ω
hf
j

(
Asp

ηhfs y

)
+ ηhms ωhmj

(
Asp

ηhms y

)

+ (1− ηhfs − ηhms )ωhcj

 Asp(
1− ηhfs − ηhms

)
y

 . (18)

Couples with no children have the same expression but with ωh
c
j (the budget share demand function

of children c for good j) set equal to zero.

We now consider consistency of this specification with our identification Theorems. As discussed

earlier, Assumption B1 follows directly from the general specification of collective household models.

8Income is a continuous variable in the dataset. In our theoretical section, we assume s to be discrete. In the
empirical section, we try discretizing household income with ten income brackets. The results on sharing rule pa-
rameters and Barten scales do not change much.
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We next require one of Assumptions B2, B3, B4, B5, or B6 to hold. In our demand model,

Assumption B6 holds with L=2. Alternatively, it can be directly verified that Assumption B3 holds

as well. Either suffices for Theorem 2.

Next consider Corollary 1. This entails identification of relative values of As from M (p, s).

This is most readily satisfied with M (p, s) = chk(Asp). Applying Assumption A3 we get that

∂M (p, s) /∂pj at p = 1 is
∑J

j̃=1 γ
k
jj′asj for j = 1, ..., J , from which we can recover the relative values

of the asj. Note that the matrix of parameters γkjj′ is identified from variation in p.

Finally, consider Theorems 3 and 4. Assumption C1 is in some ways a mild restriction, since it

only requires that budget shares, which should lie between zero and one, stay well bahaved even

when y goes to zero. However, some popular functional forms, including our QUAIDS model,

violate this assumption, because it’s a polynomial in ln y. The demand functions here do not satisfy

either Assumption C1 or C2, and so Theorem 3 identifying relative resource shares does not apply.

However, in this case we do not need Theorem 3, because we satisfy the assumptions of Theorem 4,

and Theorem 4 identifies the entire model. In particular, as discussed earlier, we satisfy Corollary

1 and Assumption B6, and we observe the demand functions of a private assignable good, clothing,

for men and for women.

7 Empirical Application

7.1 Japanese Expenditure Data

We use Japanese household expenditure and demographic data from the Keio Household Panel Sur-

vey (KHPS) and the Japan Household Panel Survey (JHPS).9 The survey instructions are, ”Enter

the amount your household spent on each of the following living expenditures last month (January).”

The expenditure categories that we include in this paper are food (at-home or eating-out and school

lunches), utilities, clothing and shoes, transportation, communication, and entertainment, giving

us a total of J = 6 different aggregate goods.

The consumption data separately reports household expenditures (in January) on clothing and

9These data were made available to us by the Panel Data Research Center at Keio University. The KHPS has
been implemented continuously since 2004, and consists of 4,000 households and 7,000 individuals nationwide.
An additional survey on a cohort of about 1,400 households and 2,500 individuals was initiated in 2007. In 2009,
the Panel Data Research Center at Keio University began implementing the JHPS, a new survey targeting 4,000
male and female subjects nationwide in parallel with the KHPS. The survey questionnaires cover comprehensive
topics such as household structure, individual attributes, academic background, employment or education status,
distribution of living hours, and matters related to cohabitation with parents.
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shoes for the household head, spouse(s), and children. The sum of expenditures on clothing and

shoes for each household member type (men, women, and children) are our private assignable

goods. Note that while the data include assignables for all K = 3 types of household members, our

identification theory only requires observation of K − 1 = 2 assignable goods. This provides over

identifying information.

We select households (single men, single women, and married couples) according to the following

criteria: (1) single women and men are restricted to be between 22 to 65 years old; (2) couples with

children aged 15 or over are excluded (since adult clothing purchases could be consumed by older

children); (3) households with members as students are excluded; (4) for married couples, households

with members over 50 are excluded; (5) observations where expenditures on four or more of the

six goods is zero are excluded; and (6) to mitigate the possible effects of outliers, we trim the

samples with respect to key variables (the budget share of each aggregate good and log real total

expenditure) by dropping observations in the lower and upper 1 percentile. After applying these

criteria, we are left with a sample consisting of 276 single women, 357 single men, and 1068 married

couples having from zero to four children.

Price data comes from the 2015 based Consumer Price Index (CPI) from e-sTat, the portal site

of official statistics of Japan. The detailed construction of price indexes for each aggregate good is

reported in Appendix B of the Supplemental Appendix.

7.2 The Estimator for Singles

The demand functions for households h consisting of just a single man or a single woman are given

by equation (10). Such households have either k = f if the household h is a single woman or k = m

if the household h is a single man. In this subsection we describe how these demand functions for

singles are estimated. The demand functions and associated estimators for households consisting

of multiple members are given in the next subsection.

For households h consisting of singles, we append a J-vector valued additive error term Uhk

(consisting of elements U jhk) to equation (10).10 We assume that Uhk are uncorrelated across

households. Adding up requires 1′JU
hk = 0, which implies that nonzero correlations must exist

among the elements of each Uhk, that is, within households across goods j. Budget share demand

equations are estimated using GMM, allowing for arbitrary correlations in the errors across goods.

10Additive errors can either be rationalized as measurement errors in budget shares, or by imposing restrictions
on preference heterogeneity as in Lewbel (2001).
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Let ujhk
(
θk
)

= U jhk denote ωjhk minus the j’th element of the right hand side of equation (10),

where θk is the vector of all the parameters in that equation. Note that ujhk
(
θk
)

is implicitly a

function of ωjhk and of all the regressors in the model. The moments used for GMM estimation take

the form E
(
ujhk

(
θk
)
τhk
)

= 0, with τhk being a vector of covariates as defined below. To impose

the adding-up constraints we apply the standard practice of dropping one demand equation, and we

recover the estimated parameters for that last equation using the adding-up constraints. The choice

of which demand equation to drop is numerically irrelevant, because by the adding-up constraints,

the parameters of the dropped equation are all deterministic functions of the parameters in the

remaining equations. The full set of moments for estimating the model of singles of type k is

therefore E
(
ujhk

(
θk
)
τhk
)

= 0 for j = 1, ..., J − 1. Letting uhk
(
θk
)

be the J − 1 vector of elements

ujhk
(
θk
)

for j = 1,...,J − 1, we equivalently write these moments as E
((
IJ−1 ⊗ τhk

)
uhk
(
θk
))

= 0.

The set of covariates τhk (for single households h) consists of region dummies, age, log relative

prices, log real total expenditure (defined as the log of total expenditures divided by a Stone price

index computed for our six nondurable goods) and its square, and the product of log real total

expenditures with the home ownership dummy and with log prices. The number of moments

therefore consists of J − 1 = 5 distinct demand equations times the number of elements of τhk,

which is 22, for a total of 110 moments each for k = f and for k = m. Let Hk denote the set of

households that consist of a single member of type k, and let nk denote the number of elements of

Hk. Denote the sample moments for GMM estimation by

vk(θk) =
1

nk

∑
h∈Hk

(
IJ−1 ⊗ τhk

)
uhk
(
θk
)
, (19)

the GMM criterion function is then θ̂k = arg minθk v
k(θk)′W kvk(θk).

Although we do not use it for our main analysis, in addition to estimating the above model for

single men and for single women, we for comparison also estimate it for other households (couples

with 0-4 children). For multiple member households, this corresponds to what is known in the

collective household literature as a unitary model, that is, a model that treats a household as if it

was a single maximizing agent. We provide this unitary model just for comparison to singles, and

to our later collective model estimates. Illustrating the differences in demands of single women,

single men, and other households, Figure 1 in Appendix D of the Supplemental Appendix presents

fitted Engel curve plots for our six goods, with total expenditures y ranging from the 1st to the
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99th percentile. We shift the plots for couples with 0-4 children to the left in these figures to

make them comparable to the singles plots. We find that food (at home and eating-out), utility,

and communication are necessities while clothing and shoes, transportation, and entertainment are

luxuries. Single women have a steeper Engel curve slope for clothing and shoes compared to other

households. Couples with 0-4 children have a steeper Engel curve slope for entertainment compared

to singles. Elasticity estimates for single women and single men are reported in Table 1 in Appendix

D of the Supplemental Appendix.

7.3 The Joint Model

Unlike singles, who have budget share equations for six goods, couples have budget shares ωhj (p, sh, yh)

for seven or eight goods, since they include men’s clothes, women’s clothes, and (when present) chil-

dren’s clothes as separate goods, while singles just consume one type of clothing.

The parameters of the joint model consist of all the QUAIDS parameters of budget shares, ωhf ,

ωhm, and ωhc, the Barten scales As, and the parameters of the sharing rules ηhfs and ηhms . We jointly

estimate all the parameters of the model using data from both singles and couples.

We have 150 preference parameters (5× 17 - 10 = 75 symmetry constrained QUAIDS parameters

for each of men and women). We also have 6 Barten scale parameters and 16 sharing rule parameters

(the 7 listed above plus the constant for each of men and women); this gives a total of 172 parameters.

We have 335 instruments (for each of the 5 goods there are 22 instruments for single men, 22 for

single women, and 23 for couples), giving a maximum degrees of freedom of 163 for the most general

model. The GMM weighting matrices for singles, W f and Wm, are obtained from the QUAIDS

estimates for singles in the previous subsection. The weighting matrix for children, W c is derived

using two-step GMM on the full system, starting with an initial identity weighting matrix. The

GMM criterion is:

min
θ

(vc(θ)′W cvc(θ) + vf (θ)′W fvf (θ) + vm(θ)′Wmvm(θ)), (20)

where θ is the full parameter vector of the joint model and the instrument matrices are defined as

in equation (19).
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Table 1: Summary Statistics, JHPS/KHPS 2004 - 2016

Single Men Single Women
Couples with

0 child 1 children 2 children 3 - 4 children
Number of observations 1,180 822 375 706 1,364 395
Number of unique households 357 276 192 282 456 138
Household income (thousand yen) 3460.66 . 7520.87 5910.11 6408.41 6400.97
Total expenditures (January, thousand yen) 121.20 113.33 181.33 175.14 191.00 202.10
Budget share (food) 0.45 0.40 0.34 0.35 0.36 0.38
Budget share (clothing) 0.05 0.08 0.09 0.08 0.08 0.07
Budget share (communication) 0.11 0.11 0.12 0.13 0.12 0.13
Budget share (entertainment) 0.18 0.16 0.23 0.22 0.23 0.22
Budget share (transportation) 0.08 0.09 0.09 0.09 0.07 0.07
Budget share (utility) 0.13 0.15 0.13 0.14 0.14 0.14
Husband clothing&shoes share - - 0.04 0.02 0.01 0.01
Wife clothing&shoes share - - 0.05 0.02 0.02 0.01
Children clothing&shoes share - - 0.00 0.03 0.04 0.04
Female age - 47.09 38.29 37.79 38.37 38.26
Female unemployed - 0.11 0.10 0.23 0.22 0.22
Female college graduate or above - 0.20 0.07 0.10 0.10 0.07
Female some college - 0.40 0.33 0.30 0.28 0.21
Male age 48.05 - 39.20 39.12 39.89 39.29
Male unemployed 0.07 - 0.01 0.00 0.00 0.00
Male college graduate or above 0.19 - 0.07 0.10 0.07 0.10
Male some college 0.46 - 0.39 0.27 0.26 0.30
Child 1 age - - - 6.80 9.72 11.41
Child 2 age - - - - 6.50 8.68
Child 3 age - - - - - 5.34
Child 4 age - - - - - -
Child average age - - - 6.79 8.11 8.33
Home ownership 0.36 0.41 0.49 0.59 0.73 0.80

Notes: Income and expenditures are in thousand yen. JHPS/KHPS covers years 2004 - 2016. Expenditures are

for January. Definition of aggregate goods in JHPS/KHPS: food expenditure includes eating out. Transportation

includes automobile expenses, fares, commuting passes, taxes, and tolls. Communications includes postage, fixed-

line, and mobile phone charges. Culture & amusement includes stationery, sporting goods, travel, hobbies. Utility

includes electricity, gas, water (supply & sewage). Clothing includes both clothese and shoes. All sources of income

are before tax in the past year. ”.” means observations are all missing for this variable. ”-” means information not

available/not applicable. For education variable, college graduate or above in JHPS/KHPS includes junior college

or technical college, univeristy, or graduate school. Household income refers to annual take-home income (after tax

and social insurance deductions).
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Table 2: Estimation Results: the Sharing Rule Parameters and Barten Scales

Wife Husband
Panel A: the Sharing Rule Coef Std Error Coef Std Error
Constant -0.701** 0.378 -0.913* 0.671
Difference in log income (female - male) -0.069 0.090 -0.106 0.127
Difference in age (female - male) -0.003 0.013 0.017 0.018
Number of children -0.357*** 0.096 -0.101 0.263
Minimum child age less 5 -0.375 0.500 -0.151 0.761
Female age less 39 0.223 0.253 0.409 0.574
Wife some college 0.925*** 0.613 -0.869 1.578
Husband some college 0.524 0.549 0.347 0.568

Panel B: Estimates of Barten Scales Barten scale Std Error
Food 0.838*** 0.211
Clothing and shoes 1.000 -
Communication 0.845*** 0.337
Entertainment 0.665*** 0.266
Transportation 0.760*** 0.270
Utility 0.562* 0.379

Notes: Barten Scales are assumed to be homogeneous across all households. The Barten scales of clothing and shoes

are assumed to be 1 (purely private). * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3: Estimated Resource Shares by Types of Households

0 child 1 child 2 children 3 - 4 children All households
Women Mean 0.51 0.30 0.24 0.17 0.28

Std Dev 0.12 0.11 0.10 0.07 0.14
Men Mean 0.49 0.24 0.25 0.27 0.28

Std Dev 0.12 0.10 0.10 0.10 0.13
Children Mean - 0.45 0.50 0.56 0.43

Std Dev - 0.07 0.07 0.07 0.19

Notes: For women, men, and children, the first row reports the mean resource shares of wives across households with

zero to three/four children and across all households. ”Std Dev” means standard deviation.

26



Table 4: Sharing Rule Implications

Household Characteristics Wife’s resource share
All households

Benchmark 0.21
Wife with some college education 0.45
Husband with some college education 0.32
Home owner 0.19

Notes: The benchmark households (row 1) are ones in which neither the wife nor the husband has college education

and are renters with median total expenditure. Row 2 shows the wife’s resource share in households that are similar

to the benchmark households but in which the wife has college education. Row 3 shows the wife’s resource share in

households that are similar to the benchmark households but in which the husband has college education. Row 4

shows the wife’s resource share in households that are similar to the benchmark households but are home owners.

Table 5: Implications of Estimates

Couples with
0 child 1 child 2 children 3 - 4 children

Wife’s resource share 0.51 0.30 0.24 0.17

Wife’s equivalent expenditure 121.66 69.79 59.71 45.15
Husband’s equivalent expenditure 119.80 56.47 62.58 69.09
Children’s equivalent expenditure - 107.47 126.26 148.15
Actual couple’s expenditure 181.82 173.31 183.40 192.64
Indifference scale for women 0.67 0.40 0.32 0.23
Indifference scale for men 0.66 0.33 0.34 0.36
Indifference scale for children - 0.62 0.69 0.77
Scale economy, R 0.33 0.35 0.35 0.36
Number of Observations 379 704 1369 392

Notes: Values are in mean. Equivalent budget share is the budget share of the wife (husband) if she (he) is endowed

with the fraction of resources and faced with shadow prices (market prices discounted by the Barten scales). The

equivalent expenditure is the expenditure that the wife (husband) needs to obtain the same private good equivalents

in marraige if she (he) is living alone, endowed with the fraction of resources in marriage and faced with market

prices. Scale economy means it would cost the couple R percent more to buy the (private equivalent) goods they

consumed if there had been no shared or joint consumption. The expenditures are in thousand yen.
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7.4 Resource Shares and Barten Scales

The main results for our preferred model are displayed in Table 2. Panel A in Table 2 reports

estimates of the sharing rule parameters. The estimated resource shares for each type of household

member (wives, husbands, and children) are reported in Table 3. The mean value of the wife’s

resource share is 0.51 in couples without children, 0.3 in couples with 1 child, 0.24 in couples with 2

children, and 0.17 in couples with 3 or 4 children. The mean value of the husband’s resource share

is 0.49 in couples without children, 0.24 in couples with 1 child, and stays almost constant as the

number of children increases to 3 or 4. These results suggest that when there are no children present

in the household, wives and husbands have similar resource shares or bargaining power. However,

when the number of children rises, mothers on average devote much more of their own resource

shares to children compared to fathers. Dunbar et al. (2013) similarly found that the number of

children affects husbands’ resource shares far less than wives’.

Table 4 reports wives’ resource shares conditional on household characteristics. The benchmark

household is one in which neither the wife nor the husband has college education and are renters

with median total expenditure. The first row shows that at our benchmark values, the wives’

resource share is 0.21.

Rows 2 and 3 show that education has a large impact on wives’ resource share. On average, the

resource share of wives who have some college education are 92.5% higher than those who do not.11

Even in families where husbands have some college education, wives enjoy a 52.4% higher resource

share than in families where wives do not have any college education.

Wives in households who are home owners have slightly lower resource share. Note that home-

owner households also tend to have children, and wives’ resource share is lower in families with

children.

The large ranges we find in husbands and wives resource shares are surprising, but others have

reported similar results in Japanese data. For example, Lise and Yamada (2018) find husband’s

private consumption is more than double that of wives, and, by a different measure, Fujii and

Lin (2018) report husband’s consumption is 50% larger. Both of these studies use a different

data set from ours, the Japanese Panel Survey of Consumers (JPSC). The JPSC reports private

consumption of husbands and wives, but, unlike our analysis, does not allocate joint consumption

11Note that wives with college have 92.5% higher shares only on average. For example, due to model nonlinear-
ity, while all women without children have a 0.51 share on average, the share for college educated women without
children is 0.63, which is much less than a 92.5% increase from 0.51. Childless women without college have an av-
erage share of 0.45.
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(which constitutes over three fourths of all household consumption in the JPSC).

As another check on our estimates, we do our own comparison (in Appendix C of the Sup-

plemental Appendix) to self-reports of individual private consumption in the JPSC. Overall, our

estimates are comparable to the JPSC reports, however, by failing to allocate shared goods, we

find that the JPSC appears to underestimate the relative contribution of wives vs. husbands to

children’s resources.

Estimates of Barten scales are reported in Panel B of Table 2. Clothing and shoes are our private

assignable goods, so their Barten scales equal one. We find that food and communication are highly

private (having Barten scales close to one), while communication and utility are highly public (i.e.,

they have Barten scales well below one, indicating that they are largely jointly consumed among

household members). Transportation, which includes both private cars and public transportation,

is found to be somewhat jointly consumed among household members. These Barten scales are

generally consistent with findings from the previous literature, including BCL, Cherchye et al.

(2012), Solvejg (2016), Lin (2018), and Fujii and Lin (2018).

A difference between our nonparametric identification theory and our parametric empirical im-

plementation is that we include income as a distribution factor, while the theory assumed the

elements of s are all discrete. As a robustness check, we divide household income into ten brackets

and re-estimate the model. The results are reported in Table 2 in Appendix D of the Supplemental

Appendix. This discretization sacrifices some information, but the signs and magnitude on our

sharing rule parameters and Barten scales remain similar to our baseline model estimates.

7.5 Indifference Scales and Economies of Scale

We next consider household member’s private equivalent expenditures, and the resulting household’s

economies of scale to consumption. The private good equivalent of good j by member k in household

h, xhkj , is the quantity of good j that member k consumes, accounting for the extent to which that

good is shared with other members. The more public a good is, and hence the more that good is

shared, the lower is its Barten scale, and the greater is the sum of xhkj across household members

k, relative to zhj , the household’s purchased quantity of good j.

A household’s economies of scale to consumption is how much more it would cost to buy every

member’s private good equivalents at market prices, relative to the household’s actual total expen-

diture level. Given our estimates of budget shares for singles, resource shares, and Barten scales,
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the private good equivalent quantities for each household member k for each good j are given by

xhkj =
ωhkj
asj

ηhks y
h (21)

and relative economies of scale to consumption R are defined as

R =

∑
j pj
∑

k x
hk
j

yh
− 1 =

∑
j pj((

∑
k x

hk
j )− zhj ))∑

j pjz
h
j

. (22)

BCL define a member’s indifference scale to be the cost (as a fraction of y), at market prices, of

the cheapest bundle of goods that gets member k to the same utility level (i.e., the same indifference

curve over goods) that the member attains in the household by consuming his or her own vector of

private good equivalents. Let Ṽ k denote the QUAIDS indirect utility function of member k. The

indifference scale IShk for each member k is defined as the solution to

Ṽ k

(
p/y

IShk

)
= Ṽ k

(
Asp/y

ηhks

)
. (23)

Table 5 reports the estimates of members’ private good equivalent expenditures xk, indifference

scales ISk, and the overall economies of scale R. Row 6 in Table 5 reports the indifference scale for

wives. This indifference scale can be interpreted as the fraction of the household’s total expenditures

that a wife would need when living alone (i.e., as a single) to attain the same indifference curve

over goods that she reaches as a member of the household. The table shows that, on average,

wives would require 67% of the couple’s total expenditures to be as well off living alone as she is

in the couple, when there are no children. This drops to only 23% in families with 3 to 4 children,

reflecting how much less, relatively, women consume when children are present. The corresponding

numbers for husbands (in row 7 of Table 5) are 66% without children, dropping to 36% when 3 to

4 children are present.

The interpretation of an indifference scale as the relative cost of living alone is not relevant

for children, however, indifference scales for children still provide a measure of the savings in costs

of children that households attain by sharing consumption, and it is meaningful to compare the

relative values of children’s indifference scales in households of different compositions. Children’s

indifference scales are reported in row 8 of Table 5.
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The second to the last row in Table 5 gives household’s overall economies of scale. On average,

it ranges between 0.33 to 0.36 across different household types. This implies that it would cost

families 33% to 36% more to buy the (private equivalent) goods they consumed if there had been

no shared or joint consumption.

8 Conclusions

We provide theorems for point identifying a general class of semiparametric models that are applica-

ble to a variety of applications, including continuous consumer demand, production functions, and

multiple index models. We then extend these results to show point identification for a large class

of collective household models, which previously had only been shown to be generically identified.

Moreover, we do so in a model that allows goods to be partly shared, including identifying the

demand functions and resource shares of children.

We apply our model to Japanese data consisting of single men, single women, and married

couples with zero to four children. Our findings have important policy implications for the analysis

of individual welfare, particularly children’s welfare, in multi-person households. For example, one

potential application of our identification and resulting estimates could be to calculate appropriate

levels of compensation for children, to maintain their standard of living, if parents separate or a

parent dies. Also, since we identify (ordinally) the utility functions of children and their parents,

the framework can be used to evaluate the impact of welfare programs (e.g., taxes or subsidies) on

the individual welfare of mothers, fathers, and children.
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A Appendix

A.1 Appendix A: Proofs

PROOF of LEMMA 1: The function G (p) is identified for all p ∈ Ωp by G (p) = M (p, t), where

t is defined in Assumption A2. Also, the functions mj (p, s) and gj (p) are identified (where the

derivatives defining these functions exist) for all p ∈ Ωp by construction because they are derivatives

of identified functions.

Now let Assumption A3 hold. Since mj (p, s) = gj (as1p1, ...asJpJ), we have that

ζj (α, p̃, s) = asj
gj (as1p̃1, ...asJ p̃J)

gj (α1p̃1, ...αJ p̃J)
for j = 1, ..., J (24)

Since this mapping is a contraction, by the Banach fixed point theorem there exists is a unique α

such that α = ζ (α, p̃, s). This unique α is identified, because the value of the function ζ (α, p̃, s)

is identified. But by equation (24), as = ζ (as, p̃, s), and therefore the unique identified α is the

desired coefficient vector as.

Next, suppose instead that Assumption A4 holds. For all p in the neighborhood of zero given

by Assumption A2, let mj (p, s) = ∂M (p, s) /∂pj and let gj (p) = ∂G (p) /∂pj (these can be one

sided derivatives). These functions are identified by construction given that M (p, s) and G (p)

are identified. Then, it follows from equation (24) that as is identified by asj = ζj (0, 0, s) =

limp→0m (p, s) /gj (p) (where, e.g., this limit is from above if p > 0).

Finally, given identification of each as, the function G (z) is identified not just for all z ∈ Ωp but

for all z ∈ Ωz by G (as1p1, ...asJpJ) = M (p, s) for all (p, s) ∈ Ωp × Ωs.

PROOF of LEMMA 2:

First observe that, given Ωp is the positive orthant and all asj are positive, it follows that Ωz is

also the positive orthant, and therefore that G (z) is identified for all z ∈ Ωz, by G (p) = M (p, 0).

It follows that cj defined by equation (4) is also identified, since G (p) is identified over the positive

orthant and the function ψj is chosen. Next define constants Csj by

Csj =

∫ ∞
0

...

∫ ∞
0

ψj [M (p, s)] p−11 ...p−1j−1p
−1
j+1...p

−1
J dp1...dpJ .

Each Csj is identified, since M (p, s) is identified for all p over the positive orthant and all s ∈ Ωs,

and the function ψj is chosen. Notice that cj = C0j. Then, using the change of variables φj = asjpj
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for each good j,

Csj =

∫ ∞
0

...

∫ ∞
0

ψj [G (as1p1, ...asJpJ)] p−11 ...p−1j−1p
−1
j+1...p

−1
J dp1...dpJ

=

∫ ∞
0

...

∫ ∞
0

ψ [G (φ1, ...φJ)]
as1
φ1

...
as,j−1
φj−1

as,j+1

φj+1

...
asJ
φJ

dφ1

as1
...
dφJ
asJ

=

∫ ∞
0

...

∫ ∞
0

ψ [G (φ1, ...φJ)]
1

φ1

...
1

φj−1

1

φj+1

...
1

φJ
dφ1...dφJ

1

asj
=

cj
asj

so asj is identified for each s ∈ Ωs and j ∈ {1, ..., J} by asj = cj/Csj.

PROOF of THEOREM 1: This follows immediately from Lemmas 1 and 2, noting that without

the normalization of Assumption A2, the coefficients asj in the proofs of Lemmas 1 and 2 correspond

to asj/atj for some t ∈ Ωs where the function G (p) in these proofs corresponds to G (at1p1, ...atJpJ)

PROOF of THEOREM 2: If Assumption B2 holds then without loss of generality let j = k.

Let hj′j (p, y) = ∂hjj (p, y) /∂y. Then

M (p, s) = lim
y→0

∂
[
ηjs(Asp)h

j
j (Asp, η

j
s(Asp)y)

]
/∂y

ηjs(Asp)2h
j
j

(
Asp, η

j
s(Asp)y

)2
= lim

y→0

ηjs(Asp)∂
[
ηjs(Asp)h

j
j (Asp, η

j
s(Asp)y)

]
/∂ [ηjs(Asp)y]

ηjs(Asp)2h
j
j

(
Asp, η

j
s(Asp)y

)2
= lim

y→0

hj′j (Asp, η
j
s(Asp)y)

hjj
(
Asp, η

j
s(Asp)y

)2
= lim

y→0

hj′j (Asp, y)

hjj (Asp, y)2
= G (Asp)

where the last equality above defines the function G.

Alternatively, if Assumption B3 holds then the same steps as above applied separately to good

j and to good j′ yield

M (p, s) = lim
y→0

hj′j (Asp, y)

hjj (Asp, y)2
/
hj̃′
j̃

(Asp, y)

hj̃
j̃
(Asp, y)2

= G (Asp)

Next, consider the case where Assumption B4 holds. Then again without loss of generality let
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j = k and we have

M (p, s) =

∫ ∞
0

[
ηks (Asp)

]c [
hkk
(
Asp, η

k
s (Asp)y

)]c
yc−1dy

Now do the change of variables τ = ηks (Asp)y

M (p, s) =

∫ ∞
0

[
ηks (Asp)

]c [
hkk (Asp, τ)

]c [ τ

ηks (Asp)

]c−1
dτ

ηks (Asp)

=

∫ ∞
0

[
hkk (Asp, τ)

]c
τ cdτ = G (Asp)

where the last equality above defines the function G.

Now, if Assumption B5 holds then

M (p, s) =

∫ ∞
0

(
K∑
k=1

ηks (Asp)h
k
j

(
Asp, η

k
s (Asp)y

))
dy

=
K∑
k=1

∫ ∞
0

ηks (Asp)h
k
j

(
Asp, η

k
s (Asp)y

)
dy

Next do the change of variables τ = ηks (Asp)y in each of the K integrals above.

M (p, s) =
K∑
k=1

∫ ∞
0

ηks (Asp)h
k
j (Asp, τ)

dτ

ηks (Asp)

=
K∑
k=1

∫ ∞
0

hkj (Asp, τ) dτ = G (Asp)

where the last equality above defines the function G.

Finally, consider the case where B6 holds. If hkj (p, y) =
∑L

`=0 ψ
k
j` (p) (ln y)` for the private

assignable k = j, then

ωj (p, s, y) = ηjs(Asp)
∑L

`=0
ψkj` (Asp)

(
ln y + ln ηks (Asp)

)`
Therefore ξ (p, s) = (ηjs(Asp)|ψkjL (Asp) |)−1 (using the fact that resource shares are positive), so

with M (p, s) = ξ (p, s)ωj (p, s, ξ (p, s)) we get

M (p, s) =

∑L
`=0 ψ

k
j` (Asp)

(
− ln |ψkjL (Asp) |

)`
|ψkjL (Asp) |
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which is a function of just terms of the form ψkj` (Asp), and so defines G.

PROOF of THEOREM 3:

By Corollary 1, the relative Barten technology parameters asj/atj and arj/atj are identified for

given r, s, and t elements of Ωs. Let Ast be the diagonal matrix that has elements asj/atj on the

diagonal. Given Assumption C1, define the identified function m by ηks (Astp)h
k
k

(
Astp, η

k
s (Astp)y

)
m (p, s) = ωj (s, φst (p) , 0) = ηks (Atp)h

k
j

(
Atp, η

k
s (Atp)0

)
. (25)

It then follows that relative values of resource shares are identified by

m (p, s)

m (p, r)
=
ηks (Atp)h

k
j (Atp, 0)

ηkr (Atp)hkj (Atp, 0)
=
ηks (Atp)

ηkr (Atp)
.

Alternatively, given Assumption C2,

m (p, s) =

∫ ∞
0

[
ηks (Atp)

]c1 [
hkj
(
Atp, η

k
s (Atp)y

)]c1
yc2dy

Now do the change of variables τ = ηks (Atp)y

m (p, s) =

∫ ∞
0

[
ηks (Atp)

]c1 [
hkj (Atp, τ)

]c1 [ τ

ηks (Atp)

]c2 dτ

ηks (Atp)
(26)

=
[
ηks (Atp)

]c1−c2−1 ∫ ∞
0

[
hkj (Atp, τ)

]c1
τ c2dτ

and it then follows that relative values of resource shares are identified by

[
m (p, s)

m (p, r)

]1/(c1−c2−1)
=

[[
ηks (Atp)

]c1−c2−1 ∫∞
0

[
hkj (Atp, τ)

]c1 τ c2dτ]1/(c1−c2−1)[
[ηkr (Atp)]

c1−c2−1 ∫∞
0

[
hkj (Atp, τ)

]c1 τ c2dτ]1/(c1−c2−1) =
ηks (Atp)

ηkr (Atp)
.

PROOF of THEOREM 4:

Let household. type t ∈ Ωs refer to a single. Since singles have no one to share with, they

must have all atj = 1 for every good j. We can therefore apply Corollary 1 and Theorem 2 to

identify each asj/atj using demand functions hkk (p, y), and since each atj = 1 (so At is the identify

matrix) we have identified each asj for all household types s. If Assumption C1 or C2 hold, then
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we also identify all relative resource shares ηks (Arp)/η
k
t (Arp) by Theorem 3. For singles of type

k = 1, ..., K−1, resource shares ηkt must equal one, so taking r = t we identify ηks (p)/ηkt (p) = ηks (p).

Alternatively, if Assumption B6 holds, then hkj (p, y) =
∑L

`=0 ψ
k
j` (p) (ln (y))`, so the ψkk` functions

are known. This, along with all asj being known for k = 1, ..., K − 1 means that resource shares ηks

can be recovered from equation (8).

Finally resource shares sum to one, so given the resource share functions ηks for all household

types s and members k = 1, ..., K−1, we identify the resource share functions for the last household

type K by ηKs (p) = 1−
∑K−1

k=1 η
k
s (p).
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This supplement contains Appendices B: Price Data, C: External Validation of Model Predic-

tions, and D: Additional Tables and Figures.

0.1 APPENDIX B: Price Data

We use price data from the 2015 based Consumer Price Index (CPI) available from e-Stat, the Portal

Site of Official Statistics of Japan. The goal is to construct a price index for each aggregate good

for each household in our sample. It is challenging to merge this CPI data into the JHPS/KHPS

because the two datasets divide the country somewhat differently. JHPS/KHPS provides the region

and city size of the residence of each household. The CPI divides Japan into 10 regions, whereas the

JHPS/KHPS divides it into 8 regions. We first reduce the number of regions in the CPI by merging

some of the CPI regions to match the definitions in JHPS/KHPS. While most prefectures belong

to the same region between the CPI and JHPS/KHPS data after merging, the three prefectures of

Yamanashi, Nagano, and Mie are classified to different regions between the CPI and JHPS/KHPS

data.1

∗Corresponding Author: Arthur Lewbel, Department of Economics - Maloney 315, Boston Col-
lege, 140 Commonwealth Ave., Chestnut Hill, MA, 02467, USA. (617)-552-3678, lewbel@bc.edu,
https://sites.google.com/bc.edu/arthur-lewbel/

1To match the JHPS/KHPS definition of Kyushu region (Fukuoka, Saga, Negasaki, Miyazaki, Kagoshima,
Kumamoto, Oita, and Okinawa prefectures), we merged Kyushu and Okinawa regions in CPI. To match the
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In addition to regional prices, the CPI dataset provides price data for each “designated city,” that

is, each major city with a population of more than half million that is designated as such by order

of the Cabinet of Japan.2 Combining these city level prices using CPI weights, we construct price

indices for designated cities within each of the eight regions, except for the Shikoku region where

there is no designated city. Using each regional price index and the price indices for designated

cities, we additionally back out price indices for the areas outside each designated city in each

region. Thus, for each aggregate good, we obtain price data for 15 (8 regions × 2 (designated city

or not) − 1 (no designated city in Shikoku region)) combinations of regions and city sizes, which

we then assign to households in the JHPS/KHPS dataset.

In the food category, the CPI dataset has separate price indices for food-at-home and eating-

out. We construct household-level price indices for food using a Stone price index, by taking a

weighted average of the log of the price of eating-out and the log price of food-at-home, where the

weights are the household’s food budget shares of eating-out and of food-at-home. By employing

each household’s own within food relative consumption weights, this construction more accurately

reflects the price for food faced by individual households than the total food index provided by the

CPI.

0.2 APPENDIX C: External Validation of Model Predictions

The estimated resource shares are unobserved, and may suffer from measurement error or estimation

error due to possible model misspecification (see, e.g. Calvi et al. 2019). To verify our results, we

compare our estimated resource shares to individual private consumption given by the Japanese

Panel Survey of Consumers (JPSC).

A unique feature of JPSC is that it asks the individual expenses and savings of each household

member. Specifically, JPSC asks the following question (answered for both the wife and husband):

How much expenditure, savings (including life insurance premiums etc.), and loan repayments did

you pay this September? The answers are divided into : i) expenses/savings for all of my family ii)

JHPS/KHPS definition of Chubu region (Yamanashi, Nagano, Niigata, Fukui, Toyama, Ishikawa, Shizuoka, Gifu,
and Aichi prefectures), we also merge Hokuriku and Tokai prefectures. With this merge, most prefectures belong
to the same region between the JHPS/KHPS and CPI datasets with the following exceptions: Yamanashi and
Nagano prefectures belong to Kanto [Chubu] region in CPI [JHPS/KHPS] dataset, and Mie prefecture belongs to
Chubu [Kinki] region in CPI [JHPS/KHPS] dataset. About 3.7 percent of the Japanese population live in these
three prefectures, according to the 2015 population census. See also, http://www.stat.go.jp/english/data/
kokusei/2015/final_en/final_en.html. This procedure follows Fujii and Lin (2018).

2There are 20 designated cities in Japan as of January 1, 2019.
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expenses/savings for me iii) expenses/savings for my husband iv) expenses/savings for my children

v) expenses/savings for the others.

Categories ii), iii), and iv) are measures of private consumption for wives, husbands, and children.

Category i) represents expenditures on goods that can be jointly consumed (like heat or gasoline).

Previous studies have used inequality in private consumption to infer intra-household inequality in

resource allocation.3 However, these types of estimates, at best based on data like the JPSC, are

incomplete, in the sense that they do not account for the potentially large role that shared goods

may have in the actual resources consumed by each family member. In the JPSC data, over two

thirds of expenditures are listed as shared goods.4

Comparing our results to the JPSC data, first consider children’s shares. Our model predicts

children’s resource shares in the range of 0.45 to 0.56. This is consistent with the JPSC data, being

above what JPSC reports for private children’s consumption, and below the sum of JPSC’s private

children plus shared household expenditures. Second, our model estimates are that wives and

husbands have roughly equal resource shares when there are no children present in the household.

But the resource share of husbands increases up to around 1.6 times that of wives as the number

of children in the household increases. This number is close to the ratio of private expenditures

between husbands and wives, 1.5 - 2.3, found in the JPSC data. Taken together, these results

provide evidence that our estimates are at least in ranges consistent with existing direct (albeit

incomplete) measures of resource shares.

Finally we compare implications that one might draw about intra-household inequality from

the JPSC data to estimates based on our model that accounts for and allocates expenditures on

shared goods. Our estimates are that increasing the number of children decreases the wive’s share

by 35 percent while the husband’s share decreases by only 10 percent. In the JPSC data, these

numbers are 47 percent and 15 percent (based on summary statistics reported in Table 1 of Fujii

3Lise and Yamada (2014) look at JPSC households and find that there is a substantial difference between pri-
vate consumption devoted to the wife, 6.3 percent, versus the husband, 15 percent. On average, 21.3 percent of
the household expenditures are reported as the private consumption of either the wife or the husband, leaving
78.7 percent of household expenditures as public (expenditures for the family, children, and others). Fujii and Lin
(2018) look at JPSC couples without children and also find similar patterns. The average private consumption de-
voted to the wife is 10 percent, versus the husband, 15 percent. 68 percent of household expenditures are devoted
to the family. The remaining 4 percent of household expenditures are devoted to others. The previous findings
imply that if we only consider private expenditures, the husband’s resources are about 1.5-2.3 times of the wife’s.
The public expenditures, including both children and family expenditures, are around 70-80 percent of total house-
hold expenditures.

4Note, however, that expenditures for the family in the JPSC data include some durables that our data ex-
cludes, like furniture and electronics spending.
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and Ishikawa 2013). By failing to allocate shared goods, the JPSC appears to underestimate the

relative contribution of wives vs. husbands to children’s resources.

0.3 Appendix D: Additional Tables and Figures
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Table 1: Elasticities Estimates of Single Men and Women

Budget Elasticities
Single women Single men

Food 0.74 0.81
Clothing 1.45 1.20
Communication 0.78 0.76
Entertainment 1.45 1.53
Transportation 1.13 1.24
Utility 0.54 0.43

Uncompensated Price Elasticities (single women)
Food Clothing Communication Entertainment Transportation Utility

Food -1.01 0.21 -0.59 0.95 -0.04 -0.23
Clothing 0.71 -1.69 0.91 -6.26 4.36 0.83
Communication -2.57 0.97 -0.37 1.61 0.56 -1.05
Entertainment 2.77 -4.01 0.98 -3.07 -0.27 3.45
Transportation -0.30 5.48 0.77 -0.53 -5.67 4.08
Utility -1.37 1.03 -0.92 4.51 2.25 -5.14

Compensated Price Elasticities/Slutsky Matrix (single women)
Food Clothing Communication Entertainment Transportation Utility

Food -0.72 0.29 -0.51 1.08 0.03 -0.13
Clothing 1.35 -1.44 1.11 -5.92 4.56 1.06
Communication -2.33 1.05 -0.26 1.74 0.64 -0.96
Entertainment 3.50 -3.78 1.21 -2.69 -0.06 3.72
Transportation 0.18 5.63 0.91 -0.28 -5.48 4.25
Utility -1.25 1.07 -0.89 4.58 2.29 -5.05

Uncompensated Price Elasticities (single men)
Food Clothing Communication Entertainment Transportation Utility

Food -1.29 -0.31 -0.42 1.60 0.18 -0.53
Clothing -2.44 -0.42 -0.10 1.21 -0.21 0.13
Communication -1.85 -0.25 -1.67 2.89 -0.02 0.46
Entertainment 3.69 -1.92 1.56 -4.30 -0.04 1.18
Transportation 0.99 5.38 -0.05 -0.21 -3.82 -1.27
Utility -2.11 0.60 0.16 -1.27 2.67 -0.45

Compensated Price Elasticities/Slutsky Matrix (single men)
Food Clothing Communication Entertainment Transportation Utility

Food -0.93 -0.25 -0.34 1.76 0.26 -0.44
Clothing -1.87 -0.28 0.05 1.51 -0.07 0.29
Communication -1.59 -0.19 -1.57 3.03 0.05 0.53
Entertainment 4.50 -1.76 1.78 -3.89 0.15 1.41
Transportation 1.60 5.49 0.11 0.11 -3.63 -1.10
Utility -2.01 0.62 0.18 -1.22 2.69 -0.39
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Table 2: Estimation Results: the Sharing Rule Parameters and Barten Scales (with
Income Divided into Ten Brackets)

Wife Husband
Panel A: the Sharing Rule Coef Std Error Coef Std Error
Constant -0.866*** 0.370 -0.979** 0.583
Difference in log income (female - male) -0.159 0.140 -0.118 0.171
Difference in age (female - male) -0.003 0.012 0.012* 0.018
Number of children -0.362*** 0.092 -0.074 0.274
Minimum child age less 5 -0.296 0.466 -0.555 0.724
Female age less 39 0.235 0.245 0.735* 0.515
Wife some college 0.985*** 0.590 -0.967 1.730
Husband some college 0.446 0.480 0.292 0.564

Panel B: Estimates of Barten Scales Barten scale Std Error
Food 0.808*** 0.235
Clothing and shoes 1.000 -
Communication 0.783*** 0.310
Entertainment 0.626** 0.303
Transportation 0.732** 0.323
Utility 0.510 0.428

Notes: Income here is divided into ten brackets and becomes a discrete variable. Barten Scales are assumed to be
homogeneous across all households. The Barten scales of clothing and shoes are assumed to be 1 (purely private). *
p < 0.10, ** p < 0.05, *** p < 0.01.
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