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Abstract

China has implemented affirmative action reforms to improve access to quality high

school education for students from underperforming middle schools by awarding bonus

points to a select group of students. Our study reveals significant flaws in practice due

to challenges in determining how bonuses should be distributed. We propose a choice

rule that “endogenously” identifies bonus-recipients and show that it is the unique

acceptant and fair choice rule that efficiently assigns the bonus. Embedded in the de-

ferred acceptance mechanism, it ensures stability, strategy-proofness, and constrained

optimality. Empirical analysis shows that our proposal significantly improves repre-

sentation for underperforming schools and effectively assigns the bonus to the “right”

students.
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1 Introduction

China has the world’s largest centralized school choice system, encompassing admissions from

elementary school to college. Each year, around 16 million students graduate from middle

schools in China. However, only about half of these graduates are able to attend high

school, exhibiting significant disparities in admission rates across provinces.1 Meanwhile,

minority students and those from rural areas tend to have considerably lower admission

rates compared to their urban counterparts.2 Such educational inequality has long been a

controversial issue in China. The Chinese government has implemented diverse education

reforms to address this issue.3 One widely implemented policy to reduce this inequality is

affirmative action within school admission systems.

Since the beginning of the reform era in the 1980s, various forms of affirmative action

have been introduced at different levels of the admission process. In 2002, the Ministry

of Education reformed the primary and secondary education admission system to improve

access for students from lower socioeconomic districts to quality urban schools.4 In 2014, the

State Council introduced a guideline for comprehensive nationwide reforms in examination

and admission systems. Among these reforms, the introduction of the Zhibiaosheng (ZBS)

policy, which implements affirmative action in high school admissions, is considered one of

the most significant nationwide initiatives.5 Some cities have explicitly outlined the purpose

of this policy. For example, the Education Bureau of Dezhou in Shandong Province stated:

“The purpose of the ZBS policy is to uphold educational equity by ensuring that every

middle school has a certain proportion of students admitted to regular high schools... it

is a key initiative to promote balanced development in compulsory education, aiming to

provide students from underperforming schools with opportunities to access high school

educational resources.”6

1See http://www.moe.gov.cn/jyb_sjzl/moe_560/jytjsj_2019/gd/202006/t20200610_464550.html;
http://www.moe.gov.cn/jyb_sjzl/moe_560/jytjsj_2019/gd/202006/t20200610_464605.html.

2See https://www.sohu.com/a/207893982_112404.
3See https://www.globaltimes.cn/content/1192288.shtml.
4In 2002, the Ministry of Education stated: “Relying solely on the entrance examination scores as the main

criterion for enrollment is worth re-evaluation... It is imperative an imperative to actively explore systems
that allocate enrollment quotas... promote balanced development among schools during the compulsory
education phase.” See https://www.gov.cn/gongbao/content/2003/content_62173.htm.

5See https://www.gov.cn/zhengce/content/2014-09/04/content_9065.htm.
6See https://sdxw.iqilu.com/share/YS0yMS0xMjk0NzUyNw==.html.

1

http://www.moe.gov.cn/jyb_sjzl/moe_560/jytjsj_2019/gd/202006/t20200610_464550.html
http://www.moe.gov.cn/jyb_sjzl/moe_560/jytjsj_2019/gd/202006/t20200610_464605.html
https://www.sohu.com/a/207893982_112404
https://www.globaltimes.cn/content/1192288.shtml
https://www.gov.cn/gongbao/content/2003/content_62173.htm
https://www.gov.cn/zhengce/content/2014-09/04/content_9065.htm
https://sdxw.iqilu.com/share/YS0yMS0xMjk0NzUyNw==.html


High school admissions in Chinese cities are based on local high school entrance exams.

The ZBS policy is implemented through a so-called privilege system, in which each high

school offers more favorable admission standards to select students from designated middle

schools, either by adding bonus points to their exam scores or by lowering admission thresh-

olds. Although privilege systems may appear similar and serve comparable purposes, they

differ from reserve systems, which have gained significant attention in recent market design

applications, including school choice (e.g., Dur et al. 2020), pandemic rationing (e.g., Pathak

et al. 2023), affirmative action in India (e.g., Sönmez and Ünver 2022), and H1-B visa allo-

cation (e.g., Pathak et al. 2022). In a reserve system, intended beneficiaries (e.g., students

from designated middle schools) receive unconditional priority for reserved resources (e.g.,

designated high school seats), often resulting in exclusive access. Differently, a privilege

system provides a more flexible advantage, offering a “bump up” in priority or a conditional

admission guarantee, subject to meeting a (endogenously determined) minimum standard.

A privilege system generalizes the reserve system, as any reserve system can be implemented

with an appropriate allocation of bonus scores, but not vice versa. These notable differences

render privilege systems as a hybrid approach between priority-based (i.e., score-subsidy) and

reserve-based systems, enabling high schools to admit students with similar aptitude while

maintaining overall quality. This “filtering flexibility” likely influenced Chinese officials to

adopt privilege systems over purely reserve- or priority-based models.

Privilege systems are conceptually innovative and flexible, but their integration with

student assignment algorithms remains unsettled. By analyzing China’s current high school

admissions, we highlight the challenges of implementing privilege systems, identify flaws in

existing mechanisms, and propose a solution to achieve their intended goals.

Currently, various types of privilege systems have emerged across Chinese cities. The

core of the ZBS policy debate centers on determining which subset of a middle school’s

students should benefit from the designated privileges for that school. Cities with privilege

systems generally adopt one of two mechanisms: privileged students are determined either

autonomously by each middle school or automatically by the assignment algorithm. We

refer to the former as the Chinese Early Selection (CES) mechanism and the latter as the

Chinese Automated Selection (CAS) mechanism. A CES mechanism consists of two stages.

2



In the first stage, each middle school has full autonomy to select which of its students will

be eligible to receive the privilege benefit, such as bonus scores. After privilege eligibility is

determined in the early selection stage, all students proceed to the second stage, participating

in a Chinese parallel mechanism (Chen and Kesten 2017), in which high schools apply easier

admission standards for students eligible for privileges.

A major shortcoming of CES mechanisms is the lack of transparency in the early selection

stage, where outcomes are often shaped by internal coordination between school adminis-

trators and students. To boost their school’s representation at top high schools, officials

may prioritize granting privileges to students who need them most, rather than high achiev-

ers likely to secure admission without additional support. This practice has sparked major

controversy, as reflected in the following interview from a public debate on the reform:

“An education expert supporting the change [to CAS] told a journalist,“I support the

change in [implementation of the] ZBS policy, primarily because of transparency.” She ex-

plained that the traditional method of determining ZBS eligibility, based on middle school

recommendations and criteria set by the schools, creates opportunities for black-box ma-

nipulation, a concern frequently raised by parents.”7

A second major shortcoming of the CES mechanisms is the suboptimal assignment of

privileges. Even with the best intentions, middle schools distributing privileges ad hoc,

without knowing students’ relative rankings based on exam scores, may result in privileges

being granted to the “wrong” students. This issue is highlighted by Chinese Education News:

“In many cities [using CES], 50% of the total quota of good high schools is privilege

capacity, but only 35% is effectively used. However, students who need bonus points may

not receive them and end up in less undesirable schools.”8

To address the lack of transparency in the CES mechanism, some Chinese cities have

adopted the CAS mechanism, which eliminates the early selection stage. CAS automatically

awards the designated privileges to the top applicants (based on raw exam scores) from each

middle school in the form of lump-sum bonus points on top of their raw scores. While CAS

resolves CES’s transparency issues, it still results in wasted privileges. Intuitively, privileges

can be wasted in two ways: (1) the privilege is assigned to a high-achiever who would gain

7http://www.hebjy.com/html/2014/08/221108217563.htm
8https://www.edu.cn/edu/yiwujiaoyu/201305/t20130510_941017.shtml
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admission without it (observed under both the CES and CAS mechanisms); and (2) the

privilege is assigned to a low-achiever who fail to gain admission and cause a high-achiever

not to be admitted (observed under the CES mechanism).

In addition to falling short of an ideal privilege distribution, mechanisms in both classes

lack strategy-proofness. This stems from two factors: first, student assignments rely on the

Chinese parallel mechanisms, which are well-known for their strategic vulnerabilities; second,

privileges are effective only if the corresponding high school is ranked first. Worse still, the

CES and some versions of CAS mechanisms may also lead to unstable outcomes. Moreover,

these shortcomings cannot be rectified by a simple transition to a mechanism such as the

deferred acceptance (DA), as the choice rules associated with these mechanisms fail to be

substitutable.

In this paper, we ask whether a privilege system can systematically and transparently

assign privileges to the “right” students while ensuring fairness, stability and strategy-

proofness. We define a context-appropriate fairness as: (1) a student has a rightful claim

to a seat if her score exceeds the (privilege-adjusted) score of the current assignee, and (2)

a student has a rightful claim to a privilege if it is not already utilized by a higher-scoring

student from her middle school. We further introduce the concept of “efficient allocation of

privileges” to formalize the goal of assigning privileges to the “right” students.

Toward the goal of assigning privileges in the most efficient and fair way, we design a

privilege choice rule that ensures that a student who would be chosen based on her raw

score, is never granted the privilege. In essence, our choice rule “endogenously” determines

who should receive the privilege designated for a middle school by iteratively “simulating”

scenarios where no privileges are initially assigned but may be potentially allocated later, only

if they improve the outcome for the beneficiary. We show that this choice rule is essentially

the unique acceptant and fair choice rule that efficiently allocates privileges (Theorem 1).

Furthermore, the DA mechanism embedded with this choice rule, called DA-PCR, is stable,

strategy-proof, fair, and efficient in privilege allocation (Theorem 2). More importantly,

DA-PCR Pareto dominates any other fair mechanism that efficiently allocates privileges

(Theorem 3).

The theoretical properties of these mechanisms motivate an investigation into real-world
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student behavior and welfare outcomes. We use a dataset on high school admissions from

a large Chinese city in 2014.9 By combining admission records with survey data from the

same year, we address the challenge of analyzing student preferences based solely on ob-

served rank-ordered lists (ROLs). This is particularly relevant under non-strategy-proof

mechanisms, where students may misreport their true preferences. We detect at least 798

unfair matches where privileges were “misallocated”, impacting 747 out of 5,254 students.

Although we cannot directly observe early selection processes for evidence of coordination,

we infer potential coordination by analyzing students’ ROLs and assignments. Our findings

suggest that 3.9% of students from top middle schools are likely to engage in coordination

within their schools, compared to less than 2% from other schools. This suggests that top

middle schools, with more high-achieving students, have stronger incentives to coordinate to

secure more spots in prestigious high schools.

Using survey data, we estimate students’ true preferences without considering students’

strategic behaviors in ROLs and conduct counterfactual experiments to evaluate different

matching mechanisms. The ZBS policy aims to improve access for students of lower-achieving

middle schools to top high schools. Our analysis shows that replacing the CES mechanism

with the CAS mechanism reduces top middle schools’ placements in top high schools by 0.9%

to 4.5%, with marginal gains for other tier schools. While the CAS mechansim improves

transparency, it does little to enhance representation for lower-achieving schools. In contrast,

replacing the CES mechanism with DA-PCR significantly benefits median and bottom-tier

schools, with bottom-tier schools placing 7.6% to 10.5% more students in top high schools.

A notable feature of DA-PCR is its ability to allocate privileges to the students who

need them most. We evaluate privilege allocation effectiveness by measuring the proportion

of students admitted due to privilege bonuses—students who would otherwise be rejected

without this privilege. Under DA-PCR, over 95% of privileges are used effectively, with

84% to 100% of low-tier middle schools’ privilege capacities directly aiding admissions.10

In contrast, CES allocates less than 26% and CAS less than 35% of privilege capacities to

students who genuinely benefit from these bonuses.

9Confidentiality restrictions prevent disclosure of the city’s name.
10Less than full utilization occurs when students’ scores are too low to gain admission even with bonuses.
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The rest of this paper proceeds as follows. Section 2 defines the school choice problem

with privileges. Section 3 discusses the current mechanisms for implementing affirmative

action policies in China. In Section 4, we introduce our mechanism design approach to

this market. Sections 5 and 6 describe our data and analyze students’ behaviors in practice,

respectively. Section 7 presents the empirical model and our estimates of student preferences,

while Section 8 conducts counterfactual experiments across mechanisms. Section 9 reviews

the relevant literature, and Section 10 concludes with a summary of our findings.

2 School Choice Problem with Privileges

Our model is based on the standard school choice framework (Balinski and Sönmez, 1999;

Abdulkadiroğlu and Sönmez, 2003), with a finite set of students I and a finite set of high

schools H. Each high school h ∈ H has a capacity of qh, and q = (qh)h∈H represents the

capacity vector. Unlike the standard model, each student has a type defined by the type

set M , with a type function τ : I → M . Consistent with the Chinese high school admission

context, M represents the set of middle schools. For each m ∈ M , the set of students

currently attending middle school m is Im = {i ∈ I : τ(i) = m}. Since students can be only

enrolled one middle school, I = ∪m∈MIm and Im ∩ Im
′
= ∅ for all m,m′ ∈ M .

Every student i ∈ I has a strict preference order Pi over schools and the option of being

unassigned, ∅. Let P = (Pi)i∈I represent the preference profile, and Ri the associated weak

preference order of student i. Every student i ∈ I has a raw score π(i) ∈ [0, πmax], where

πmax is the maximum raw score. Conditional on eligibility and meeting certain criteria, a

student may receive an additional bonus score β ∈ [0, πmax + 1], referred to as the privilege.

For simplicity, we assume π(i) ̸= π(j) and π(i) ̸= π(j) + β for any two students i, j ∈ I.11

Each high school h offers the privilege only to a certain number of students from each

middle school, denoted by pmh , the privilege capacity of middle school m at high school h.

We allow for the possibility that the total privilege capacity of a high school may exceed its

capacity. For h ∈ H, let pnh = max{0, qh−
∑

m∈M pmh } denote its undesignated capacity. Let

ph = (pmh )m∈M and p = (ph)h∈H .

11In practice, exogenous tie-breaking rules are used. Moreover, bonus points can be easily arranged in a
way that does not cause a tie in the scores.
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Typically, not every student from a given middle school is eligible for a bonus. Let

Em
h ⊆ Im be the set of eligible students for bonus from middle school m at high school h,

with Eh = (Em
h )m∈M and E = (Eh)h∈H . Eligibility alone does not guarantee receiving a

bonus, i.e., an eligible student may need to meet additional criteria to receive a bonus.

A school choice problem is a tuple G = (I,H,M, q, p, π, P, β, E). We fix all elements

except P , β, and E, and simply denote a problem with (P, β, E).

A matching is a function µ : I → H ∪ {∅} such that |µ−1(h)| ≤ qh for all h ∈ H.

In the context of Chinese high school admissions, a student can be admitted to a school

either with or without bonus scores. To track admission scores, we pair a given matching

with an admission score profile. Let α(i) ∈ {π(i), π(i) + β} denote the admission score

of student i to a school, possibly ∅, and α = (α(i))i∈I be an admission score profile. An

assignment is a matching-admission-score pair (µ, α) such that for each h ∈ H and m ∈ M ,

{i ∈ µ−1(h)∩ Im : α(i) = π(i)+β} ⊆ Em
h , and |{i ∈ µ−1(h)∩ Im : α(i) = π(i)+β}| ≤ pmh .

That is, only eligible students can receive a bonus score, and the number of bonus recipients

from middle school m for high school h never exceeds its privilege capacity, pmh .

Next, we define the desirable properties of an assignment. An assignment (µ, α) is non-

wasteful if no school-student pair (h, i) exists such that h Pi µ(i) and |µ−1(h)| < qh. An

assignment (µ, α) is individually rational if µ(i) Ri ∅ for all i ∈ I.

In the standard school choice model, fairness requires that a student with a higher score

does not envy a student with a lower score. In our context, affirmative action allows for this

possibility if the lower-scoring student receives the privilege and her raw score is “sufficiently

high”. Our fairness notion incorporates this feature as follows:

An assignment (µ, α) is fair if whenever there exists a student-school pair (i, h) such that

i ∈ Im and h Pi µ(i), then

(a) α(j) > π(i) for all j ∈ µ−1(h); and

(b) if i ∈ Eh and there exists j ∈ µ−1(h) such that π(i)+β > α(j), then |{i′ ∈ µ−1(h)∩Im :

π(i′) > π(i) and α(i′) = π(i′) + β}| = pmh .

Condition (a) means that any student assigned to a school preferred by i to µ(i) has

a higher admission score than the raw score of i. Condition (b) means that if i is eligible
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for a bonus and would have a higher score with bonus than the admission score of another

student assigned to h, then there are at least pmh other eligible students in Im assigned to h

who already received a bonus, and their raw scores are higher than the raw score of i.

An assignment (µ, α) efficiently allocates privileges if there does not exist a high

school h and a student pair (i, j) ∈ Eh × Eh such that

(a) τ(i) = τ(j), h = µ(j) Pi µ(i),

(b) α(j) = π(j) + β, and

(c) π(j) > α(k) and π(i) + β > α(k) for some k with µ(k) = µ(j) = h.

In words, under an assignment that efficiently allocates privileges, a student j assigned to

some school h with bonus does not get this privilege if she could have already been assigned

to h without it when that privilege would have helped with the admission to h of another

eligible student i from the same middle school.

An assignment (µ, α) Pareto dominates another assignment (µ′, α′) if µ(i) Ri µ
′(i) for

all i ∈ I and µ(j) Rj µ
′(j) for some j ∈ I.

Amechanism Φ is a procedure that selects an assignment for every problem. The assign-

ment selected by Φ in problem (P, β, E) is denoted as Φ[P, β, E] = (Φµ[P, β, E],Φα[P, β, E]),

where Φ[P, β, E](i) = (Φµ[P, β, E](i),Φα[P, β, E](i)) represents the assignment for student

i. Let Φ[P, β, E](h) be the set of students assigned to h under Φ for (P, β, E). A mech-

anism Φ is fair {individually rational} [non-wasteful], if Φ[P, β, E] is fair {individually

rational} [non-wasteful] for any problem (P, β, E). A mechanism Φ efficiently allocates

privileges, if Φ[P, β, E] efficiently allocates privileges. A mechanism Φ is strategy-proof

if there is no problem (P, β, E), some student i, and a preference order P ′
i such that

Φµ[(P ′
i , P−i), β, E](i) Pi Φµ[P, β, E](i), i.e., no student can benefit from misreporting her

true preferences.

3 Affirmative Action Mechanisms in China

In this section, we describe two types of mechanisms used across China to implement the

ZBS policy. Table 1 summarizes the distribution of these mechanisms in some major cities,
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including provincial capitals and economically developed large cities.12

Table 1: Affirmative action mechanisms used in some major Chinese cities

City Full score/Bonus Mechanism Privilege capacity Position in the ROL
Changchun 750/30 CES 80% or 60%† 1st Choice
Chengdu 710/threshold CES 50% or 30%† 1st Choice
Hangzhou 600/50 CES 50% or 40%† 1st Choice
Our focal city 650/30, 360/15‡ CES until 2014, CAS after 65% 1st Choice
Tianjin 800/20 CES 50% 1st Choice
Wuhan 550/30 CES 50% 1st Choice
Changsha 720/♯ CAS 60% Choose one school
Fuzhou 800/35 CAS 50% or 40%† 1st Choice
Lanzhou 740/50 CAS 75% 1st Choice
Nanchang 670/40 or 50♯ CAS 70% Choose one school
Shenzhen 610/20 CAS 50% Choose one school
Shijiazhuang 640/50 CAS 80% Choose one school
Taiyuan 660/50 CAS 60% 1st Choice
Xiamen 800/25 CAS 10% to 50%† Choose one school
Xining 770/50 CAS 50% 1st Choice
Zhengzhou 600/50 CAS 60% 1st Choice

Notes: This table shows mechanisms used in some large Chinese cities to implement the ZBS policy in
2022. The privilege capacity refers to the proportion of privilege capacity relative to a high school’s total
capacity. ‡ denotes that the full score/bonus points was 650/30 until 2014, then it switched to 360/15
after. ♯ denotes that the bonus point is school dependent. † represents that various types of high schools
offer differing capacities for privileges.

3.1 The Class of Chinese Early Selection Mechanisms

A typical CES mechanism has two stages: “the early selection stage” and “the admission

stage”. In the early selection stage, each middle school determines a subset of its students

eligible for the privilege. In the admission stage, students are assigned to high schools

using a modified Chinese parallel mechanism, in which those eligible students who score

above a (fixed or endogenously-determined) cutoff receive a bonus score on top of their raw

scores. Variations in the second stage exist across cities, so we broadly refer to these as the

class of CES mechanisms. To isolate the effects of privilege assignment from mechanism-

specific effects, for the admission stage, our analysis assumes a version of the Chinese parallel

mechanism that is equivalent to DA to eliminate the fairness and incentive issues arising in

12Other provincial capitals and major cities, such as Beijing and Shanghai, lack clear explanations of high
school admission mechanisms in official documents, and are thus excluded from the table.
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other versions of Chinese parallel mechanisms even in standard school choice settings.13

Moreover, we focus on a general version of these mechanisms where the cutoff for eligible

students to receive a bonus is set endogenously, and an eligible student i ∈ Eh for any high

school h can receive bonus regardless of h’s position in Pi.

Early Selection Stage:

• Each middle school m ∈ M autonomously determines the subset Em
h ⊆ Im with |Em

h | =

pmh of students who will be eligible to receive the privilege of each high school h ∈ H in

the admission stage. We refer to students in Em = (Em
h )h∈H as eligible students.14

Due to its ad-hoc nature and variation across middle schools, we do not formalize this

stage. Eligibility is often determined through a mix of predetermined rules and informal

negotiations. Generally, students with higher GPAs or notable extracurricular achievements

are prioritized for the privilege. However, as high-achieving students are more likely to gain

admission to top high schools without the privilege, administrators may persuade them to

relinquish their claims, as suggested by our empirical analysis (see Section 6.3).

Admission Stage:

The matching algorithm in this stage is the DA mechanism. Recall that, pnh = max{0, qh−∑
m∈M

pmh } is the undesignated capacity of high school h ∈ H.15 We calculate the outcome

through the following steps:

• Step 1: Each student applies to her first choice. Each high school h considers its

normal (i.e., non-eligible) applicants. If the number of normal applicants is less than pnh

or pnh = 0, set ch = 0. Otherwise, let ch be the pnh-th highest-scoring normal applicant’s

raw score. For each eligible applicant i ∈ Eh such that π(i)+β ≥ ch, set her admission

score as α(i) = π(i) + β. For other applicants, set their admission score equal to the

raw score. Each high school h tentatively holds the top qh applicants with the highest

admission scores, and rejects the rest.

13For brevity, we skip a detailed description of the Chinese parallel mechanisms. These mechanisms are
hybrids between the immediate acceptance and DA mechanisms. As such, they might fail stability and
strategy-proofness. See Chen and Kesten (2017) for their incentive, stability, and welfare properties.

14An eligible student has the potential (but not the guarantee) to receive the privilege. In China, these
students are also referred as ZBS or privileged students.

15In practice, every high school has undesignated capacity under the CES mechanism.
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In general, for k > 1

• Step k > 1: Each student applies to her most preferred choice which has not rejected

her yet. Each high school h considers its normal (i.e., non-eligible) applicants. If the

number of normal applicants is less than pnh or pnh = 0, set ch = 0. Otherwise, let ch

be the pnh-th highest-scoring normal applicant’s raw score. For each eligible applicant

i ∈ Eh such that π(i) + β ≥ ch, set her admission score as α(i) = π(i) + β. For

other applicants, set their admission score equal to the raw score. Each high school h

tentatively holds the top qh applicants with the highest admission scores, and rejects the

rest.

The algorithm terminates in Step K in which no student is rejected. All tentative

assignments at this step are final. The admission scores of the assigned students are

the scores calculated in this termination step. The admission scores of the unassigned

students are their raw scores.

The CES mechanisms have several deficiencies. We have previously discussed the public

concerns raised due to the non-transparent early selection stage. Additionally, these mech-

anisms encounter two major incentive issues: (1) the use of Chinese parallel mechanisms,

other than DA, which are nonstrategy-proof and compel students to carefully strategize their

school preferences for each round; and (2) the requirement in some cases for eligible students

to rank the corresponding high school as their first choice to exercise the privilege. Both

practices also undermine fairness. It is tempting to imagine that switching to the DA mech-

anism, where eligible students retain their privileges for all choices, could potentially solve

these issues. This is indeed the version of the CES mechanism described above. However,

as Example 1 illustrates, such a switch does not completely resolve fairness and incentive

problems.

Example 1. Let H = {h1, h2}, M = {m1,m2}, Im1 = {i1, i2} and Im2 = {i3, i4, i5, i6}.

The school capacities are qh1 = 3 and qh2 = 1, with privilege capacities pm1
h1

= 2 and pm2
h1

=

pm1
h2

= pm2
h2

= 0. Suppose β = 10, and the students’ raw scores are: π(i1) = 73, π(i2) = 75,

π(i3) = 82, π(i4) = 81, π(i5) = 86, and π(i6) = 87. Let Em1
h1

= Im1 = {i1, i2}.

The preferences of students are given as:
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Pi1 Pi2 Pi3 Pi4 Pi5 Pi6

h1 h1 h1 h1 h2 h2

∅ h2 h2 h2 h1 h1

∅ ∅ ∅ ∅ ∅

We run the CES mechanism as described above, using the DA algorithm in the admission

stage without requiring students to rank a school as their top choice to exercise their privileges.

In the admission stage, in Step 1, students i1, i2, i3, i4 apply to h1, while i5 and i6 apply

to h2. For h1, set ch1 = 82. Since the raw scores of i1 and i2, when added with bonus, exceed

the cutoff of 82, they receive bonus scores. Then, based on admission scores, i1, i2, and i3 are

tentatively held, while i4 is rejected by h1. For h2, i6 is tentatively held, and i5 is rejected.

In Step 2, students i1, i2, i3, i5 apply to h1, while i4 and i6 apply to h2. For h1, the cutoff

is set at ch1 = 86. Since the raw scores of i1 and i2, even added with bonus, do not exceed

86, they do not receive bonus scores. Then, based on the admission scores, i2, i3, and i5 are

tentatively held, and i1 is rejected by h1. For h2, i6 is tentatively held and i4 is rejected.

The algorithm terminates in Step 3, i1 and i4 apply to ∅, while all other students apply

to the schools where they were tentatively held in Step 2.

Finally, CES selects the assignment (µ, α) such that:

µ(i1) =∅, µ(i2) = h1, µ(i3) = h1 µ(i4) = ∅, µ(i5) = h1, µ(i6) = h2

α(i1) =73, α(i2) = 75, α(i3) = 82, α(i4) = 81, α(i5) = 86, α(i6) = 87.

Assignment (µ, α) is not fair because i4 prefers h1 to her assignment, ∅, and she has a

higher raw score than i2’s admission score. Additionally, i4 could have been assigned to h1

by misreporting her preferences as h2 − h1 − ∅.

In addition to the persistent issues with CES in Example 1, the challenge that lies in

selecting the “right” set of eligible students often leads to wasteful usage of privileges. We

illustrate this problem in Example A.1 in Appendix A.
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3.2 The Class of Chinese Automated Selection Mechanisms

A second class of mechanisms eliminates the early selection stage and instead determines

privilege recipients from each middle school automatically during the matching stage. These

are referred to as the class of Chinese Automated Selection (CAS) mechanisms.

There are two types of CAS mechanisms. The first type uses the same admission stage as

a CES mechanism but considers all students from a middle school m eligible for the privilege

at high school h when pmh > 0. Namely, it sets Em
h = Im for all m ∈ M and h ∈ H where

pmh > 0, awards bonuses to at most pmh students, and follows the CES admission process.

We refer to this mechanism as a CAS-1 mechanism. By eliminating the early selection

stage, CAS-1 mechanisms overcome the nontransparency issue in CES. However, they fail to

satisfy fairness and strategy-proofness.16 Moreover, since all students from middle schools

with privilege capacity are de facto privilege-eligible at the corresponding high schools, the

admission round automatically favors higher-scoring students for privileges. This makes

these mechanisms prone to the inefficient use of privileges, which we will explore further

with the second type of CAS mechanisms.

Under the second type of CAS mechanisms, all students from middle school m are eligible

for privilege at high school h when pmh > 0.17 Whether an eligible student i receives a bonus

at high school h depends on her relative ranking among the eligible applicants from her

middle school. Specifically, the top pmh applicants from m automatically have the bonus

score added to their raw scores. More precisely, the CAS-2 mechanism works as follows:18

• Step 1: Each student applies to her first choice. For each high school h and middle

school m, any applicant i ∈ Im ranked among the top pmh from m receives an additional

β privilege bonus points, and set her admission score α(i) to π(i)+β. For other appli-

cants, set their admission score equal to the raw score. Each high school h tentatively

holds the top qh applicants with the highest admission scores, and rejects the rest.

In general, for k > 1

16In particular, CAS-1 and CES mechanisms work exactly in the same way when applied to Example 1,
illustrating these failures.

17In some versions, eligibility also requires ranking the relevant school as first choice.
18As with CES, CAS-2 is based on the DA mechanism, and privileges are not limited to first-choice schools.

13



• Step k > 1: Each student applies to her most preferred choice which has not rejected

her yet. For each high school h and middle school m, any applicant i ∈ Im ranked

among the top pmh from m receives an additional β privilege bonus points, and set her

admission score α(i) to π(i) + β. For any other applicants, the admission score is set

equal to their raw score. Each high school h tentatively holds the top qh applicants with

the highest admission scores, and rejects the rest.

The algorithm terminates when no student is rejected. All tentative assignments at

the termination step become final. The admission scores of assigned students are those

calculated in the termination step, while unassigned students retain their raw scores as

admission scores.

CAS-2, while innovative, still leads to privilege misallocation. High-scoring students who

don’t need bonuses may use up a middle school’s privilege capacity, depriving marginal

students of the opportunity to gain admission to better schools. This issue, common to both

types of CAS mechanisms, is illustrated in Example 2.

Example 2. Let H = {h1, h2}, M = {m1,m2}, Im1 = {i1, i2} and Im2 = {i3}. The school

capacities are qh1 = 2 and qh2 = 1, with privilege capacities pm1
h1

= 1 and pm2
h1

= pm1
h2

= pm2
h2

=

0. Suppose, and students’ raw scores are: π(i1) = 86, π(i2) = 75, and π(i3) = 82.

The preferences of students are given as:

Pi1 Pi2 Pi3

h1 h1 h1

h2 h2 h2

∅ ∅ ∅

We first consider CAS-1, which follows the CES admission stage to selects its outcome.

When all students apply to h1, i3 is selected for the undesignated capacity, and i1 receives a

bonus score. Hence, i1 and i3 are tentatively held by h1, and i2 is rejected. In the next step,

i2 applies to h2 and is tentatively held.

Next, we consider CAS-2. When all students apply to h1, i1 receives a bonus score. Thus,

i1 and i3 are tentatively held by h1, while i2 is rejected. In the next step, i2 applies to h2 and

is tentatively held.
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Then, both CAS-1 and CAS-2 select the assignment (µ, α) such that:

µ(i1) =h1, µ(i2) = h2, µ(i3) = h1

α(i1) =96, α(i2) = 75, α(i3) = 82.

Although assignment (µ, α) is fair, the privilege capacity of middle school m1 at h1 is “wasted”

on i1, who does not need it. Indeed, a fair alternative could achieve better representation of

middle school m1 at h1:

µ′(i1) =h1, µ
′(i2) = h1, µ

′(i3) = h2

α′(i1) =86, α′(i2) = 85, α′(i3) = 82.

4 A Mechanism Design for Privilege Systems

We consider a mechanism satisfying strategy-proofness, fairness, non-wastefulness, and effi-

cient allocation of privileges as a first-best. In Section 3, Examples 1 and 2 demonstrate that

the current mechanisms fail to meet these criteria. This result is summarized in Proposition

1. All proofs are provided in Appendix B.

Proposition 1. (a) The class of CES and CAS-1 mechanisms violate fairness, strategy-

proofness, or efficient allocation of privileges.

(b) The class of CAS-2 mechanisms violate efficient allocation of privileges.

Additionally, the CES mechanisms are highly nontransparent, adding further complica-

tions and practical challenges (see Example A.1 in Appendix A). Therefore, our main goal

is to explore an alternative mechanism that satisfies all the desired properties should such a

mechanism exist.

Our design relies on a two-step approach: first, identifying the appropriate “student

selection procedure” for high schools, and then embedding it into the “right” mechanism. In

CES and CAS mechanisms, a primary difference lies in how high schools (tentatively) select a

subset of applicants during each step of the DA mechanism. In the literature, such a selection
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procedure is commonly known as a choice rule, which determines which students are retained

and their admission scores for a given set of applicants. The inclusion of the choice rule into

our framework also enables us to define the property of stability: An assignment is stable

if it is individually rational and no school prefers to select a student, who also prefers that

school over their current match, from the set of its current assignees and the said student.19

We begin by constructing a suitable choice rule to guarantee fairness and efficient privilege

allocation. To guarantee stability, strategy-proofness, and non-wastefulness in the resulting

DA mechanism, this construction must also meet a set of necessary conditions, which we

define next.

4.1 Choice Rules in Privilege Systems and Stability

Given a set of applicants J ⊆ I, let Cs
h(J ; β,Eh) ⊆ J and Cα

h (J ; β,Eh) ∈ R|J |, respectively,

represent the chosen set of applicants and the admission score profile under the choice rule

Ch, where β is the bonus score and Eh is the set of eligible students. Let Ch(J ; β,Eh) =

(Cs
h(J ; β,Eh), C

α
h (J ; β,Eh)). The admission score of student i ∈ J , denoted Cα

h (J ; β,Eh)[i],

is such that Cα
h (J ; β,Eh)[i] ∈ {π(i), π(i)+β} for all i ∈ J and |{i ∈ J∩Im : Cα

h (J ; β,Eh)[i] =

π(i) + β}| ≤ pmh for all i ∈ J and m ∈ M . This formulation assigns admission scores to all

applicants, regardless of whether they are selected by high school h.

First, we define the key properties of suitable choice rules to meet our objectives. These

properties are typically specified only for the chosen set of applicants; we adopt them to our

setting.

A choice rule Ch satisfies law of aggregate demand (LAD) if |Cs
h(J ; β,Eh)| ≤ |Cs

h(K; β,Eh)|

for each subset of students J ⊂ I and K ⊆ I such that J ⊂ K.

A choice rule Ch is qh-acceptant if |Cs
h(J ; β,Eh)| = min{qh, |J |} for each subset of

students J ⊆ I. Note that qh-acceptance implies the law of aggregate demand.

A choice rule Ch is substitutable if i /∈ Cs
h(J∪{i}; β,Eh) implies i /∈ Cs

h(J∪{i, j}; β,Eh)

for any subset of students J ⊂ I and any pair of students i, j ∈ I \ J .

Next, we define two key properties to ensure fairness in the student selection procedure

and efficient use of privileges. These properties apply to both the chosen applicants and

19We formalize the choice rule and stability in the following subsection.
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their admission score profiles.

A choice rule Ch is fair20 if for any J ⊆ I and i ∈ J \ Cs
h(J ; β,Eh) the following holds

(a) Cα
h (J ; β,Eh)[i] < Cα

h (J ; β,Eh)[j] for all j ∈ Cs
h(J ; β,Eh); and

(b) if i ∈ Eh and there exists j ∈ Cs
h(J ; β,Eh) such that π(i) + β > Cα

h (J ; β,Eh)[j], then

|{i′ ∈ J ∩ E
τ(i)
h : π(i′) > π(i) and Cα

h (J ; β,Eh)[i
′] = π(i′) + β}| = pmh .

Condition (a) says that a student not selected by a school has a lower admission score

than any selected student. Condition (b) says that if an eligible student is not selected but

would have been with a bonus, then the privilege capacity of her middle school must be fully

exhausted by higher-scoring students from the same middle school.

Next, we define our property that ensures optimal usage of privileges for choice rules,

capturing the idea that bonuses are never allocated to students who do not need them, while

another student from the same middle school could achieve a better assignment with a bonus.

A choice rule Ch efficiently allocates privileges if for any J ⊆ I, there does not exist

a student pair i, j ∈ J ∩ Eh such that

(a) τ(i) = τ(j), i ∈ Cs
h(J ; β,Eh) and j /∈ Cs

h(J ; β,Eh);

(b) Cα
h (J ; β,Eh)[i] = π(i) + β and Cα

h (J ; β,Eh)[j] = π(j); and

(c) π(i) > Cα
h (J ; β,Eh)[k] and π(j)+β > Cα

h (J ; β,Eh)[k] for some k ∈ Cs
h(J ; β,Eh)\{i, j}.

A choice rule that allocates privileges efficiently avoids the following situation:

• Among two eligible students i and j from the same middle school, only i receives the

bonus and is selected by the choice rule while j, without the bonus, is not selected

(conditions a and b), and

• The student receiving the bonus, i, has a raw score higher than the admission score of

at least one selected student, while the student not receiving the bonus, j, would have

a higher admission score than at least one selected student if given the bonus.

We begin with a general class of choice rules that encompass many commonly used in

practice.21 A typical choice rule in this class involves two main steps: (1) setting the ad-

20A fair choice rule is the natural analog of a fair assignment in this setting. Indeed, one can consider the
outcome of a choice rule as the assignment in a problem composed of only one school.

21Examples of these choice rules are provided in Appendix C.
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mission score profile by determining which applicants receive bonus points, and (2) selecting

a subset of applicants based on the admission scores. We refer to these as 2-step choice

rules.

2-step Choice Rules:

Given a subset of students J ⊆ I the admission score profile, Cα
h (J ; β,Eh), and

the chosen set of students, Cs
h(J ; β,Eh), are determined following the two steps:

Step 1: Admission Score Profile Setting. Consider students in J and

determine which eligible students, i.e., J ∩ Eh, receive bonus scores accordingly,

by respecting the following conditions:22

(a) Cα
h (J ; β,Eh)[i] ∈ {π(i), π(i) + β} for all i ∈ J ,

(b) {i ∈ J : Cα
h (J ; β,Eh)[i] = π(i) + β} ⊆ Eh, and

(c) |{i ∈ J : Cα
h (J ; β,Eh)[i] = π(i) + β} ∩ Im| ≤ pmh for all m ∈ M .

Step 2: Applicant Selection. Once the subset of applicants receiving bonus

scores is determined, select the highest-scoring qh students under (C
α
h (J ; β,Eh)[i])i∈J

and add them to Cs
h(J ; β,Eh).

By the construction of Step 2, it is evident that, either all applicants are selected or

all seats are filled regardless of the outcome of Step 1. Thus, all choice rules that can be

represented as a 2-step choice rule, including those used in practice, satisfy qh-acceptance and,

consequently, the law of aggregate demand. However, none of the choice rules associated with

existing mechanisms meet the remaining properties. Table 2 summarizes the performance of

these choice rules.23

We end this subsection with the definition of stability. Given a list of choice rules for all

high schools, (Ch)h∈H , an assignment (µ, α) is stable if it is it is individually rational and

(a) µ−1(h) = Cs
h(µ

−1(h); β,Eh) for all h ∈ H, and

22The three conditions follow from our model. Conditions (a) and (c) follow from the definition of a choice
rule whereas (b) comes from the feasibility of an assignment.

23Proposition 5 in Appendix C formally states the results shown in this table.
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Table 2: Performances of Choice Rules Associated with the Mechanisms in Practice

Substituability qh-acceptant Fairness Efficient Allocation of Privilege
CES × ✓ × ×
CAS1 × ✓ × ×
CAS2 ✓ ✓ ✓ ×

(b) there does not exist a high school-student pair (h, i) such that h Pi µ(i) and i ∈

Cs
h(µ

−1(h) ∪ {i}; β,Eh).

It is important to note that the stability of an assignment depends on the choice rules,

whereas its fairness does not. Therefore, stability and fairness are distinct properties that

do not necessarily imply one another. A natural question arises: does a fair choice rule used

with the DA mechanism guarantee a stable matching? The answer is negative. Fairness does

not imply substitutability or the LAD property for a choice rule, both of which are essential

for achieving stable matching. This point is illustrated in Example 3.

Example 3. Let H = {h}, M = {m}, I = Im = {i1, i2}, qh = 1, β = 0, and pmh = 0. Both

students consider h acceptable. Consider a choice rule Ch such that Cs
h({i1}; β,Eh) = {i1},

Cs
h({i2}; β,Eh) = {i2}, Cs

h(I; β,Eh) = ∅, and Ch selects ∅ for any other instance. This choice

rule is fair.

Applying the DA mechanism equipped with this choice rule yields the outome: µ(i1) =

µ(i2) = ∅. Here, µ is not stable given choice rule Ch.

Since substitutability and LAD are independent of scores, while fairness is score-dependent,

a stable outcome can be achieved by using the DA mechanism with substitutable choice rules

that satisfy LAD, even if they fail fairness.

4.2 Privilege Choice Rule

We design a new 2-step choice rule that aims to ensure fairness and efficient allocation of

privilege capacities. To achieve stability and deter strategic behavior, it must also satisfy

qh-acceptance and substitutability.

Intuitively, the first step of our choice rule determines which eligible students receive

privileges. All privilege assignments are tentative until the process converges. Initially, the
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top qh students are selected based on raw scores, and the rest are rejected. In each subsequent

step, students who has been rejected at any previous step are reconsidered for privileges.

For each m ∈ M , privileges are tentatively assigned to the highest-scoring pmh students in

this group. As privileges are reassigned and scores updated (e.g., a privilege granted at

one step may be revoked later), a student’s score can fluctuate. The top qh students are

then reselected based on updated scores, potentially leading to new rejections. The process

continues until no further rejections occur, where tentative privileges become permanent. In

Step 2, the highest-scoring qh students are finalized based on updated scores.

Now, we are ready to formally present our choice rule.

Privilege Choice Rule (PCR):

Let PCRh = (PCRs
h, PCRα

h) denote the choice rule for high school h. Given a

set of applicants Ī, it works as follows:

Step 1: Admission Score Profile Setting.

Step 1.0: Let Īm = Ī∩Im for allm ∈ M . If |Ī| ≤ qh, then set PCRα
h(Ī; β,Eh)[i] =

π(i) for all i ∈ Ī and continue with Step 2. Otherwise, set πb
1(i) = π(i) for all

i ∈ Ī, A1 = B1 = ∅, and continue with Step 1.1.24

Step 1.1: Add qh students one by one to A1 by considering their scores under

πb
1. Let R

1 = Ī \A1 and T 1 = R1.25 For each i ∈ Ī \ (T 1 ∪ Eh), set π
b
2(i) = π(i).

For each i ∈ T 1 ∩ Eh, if |{j ∈ Īτ(i) ∩ T 1 ∩ E
τ(i)
h : π(j) > π(i)}| < p

τ(i)
h , then set

πb
2(i) = π(i) + β. Otherwise, set πb

2(i) = π(i). Set A2 = ∅ and B2 = {i ∈ Ī :

πb
2(i) = π(i) + β}.26

In general, for k > 1

Step 1.k: Add qh students one by one to Ak by considering their scores under

πb
k. Let R

k = Ī \ Ak and T k = T k−1 ∪Rk = R1 ∪ . . . ∪Rk. We have two cases:

24As it will be apparent below, in Step 1.k, Ak is the qh highest-scoring applicants based on the updated
scores in the previous step, and Bk is the set of students to whom bonus points are added in Step 1.k − 1.

25Here, Rk denotes the set of rejected students in Step 1.k. Whereas, T k denotes the set of rejected
students in Steps 1.1− 1.k.

26Notice that, we provide bonus scores to the top pmh scoring students from each m who have been rejected
so far.
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• T k = T k−1. We set PCRα
h(Ī; β,Eh)[i] = π(i) + β for all i ∈ Bk. We set

PCRα
h(Ī; β,Eh)[i] = π(i) for all i ∈ Ī \Bk. We continue with Step 2.

• T k ̸= T k−1. For each i ∈ Ī \ (T k ∪ Eh), set πb
k+1(i) = π(i). For each

i ∈ T k ∩ Eh, if |{j ∈ Īτ(i) ∩ T k ∩ E
τ(i)
h : π(j) > π(i)}| < p

τ(i)
h , then

set πb
k+1(i) = π(i) + β. Otherwise, set πb

k+1(i) = π(i). Set Ak+1 = ∅ and

Bk+1 = {i ∈ Ī : πb
k+1(i) = π(i) + β}. We continue with Step 1.k + 1.

Step 2: Applicant Selection

Select the highest qh scoring students under (PCRα
h(Ī; β,Eh)[i])i∈Ī and add them

to PCRs
h(Ī; β,Eh).

Example A.2 in Appendix A illustrates how PCR works.

Since the number of students is finite, Step 1 (admission score profile setting) is guaran-

teed to terminate in a finite number of steps. Let Step 1.K denote the termination step. From

the definitions of Step 1.K and Step 2 of the choice rule, it follows that PCRs
h(Ī; β,Eh) = AK .

With this observation, we focus on the set AK to show that PCR satisfies our desiderata.

We next show that PCR satisfies all the attractive properties discussed in Section 4.1.

Moreover, we show that it is essentially the unique choice rule that satisfies a subset of these

properties.

Theorem 1. Fix h, β, and Eh.

(a) PCRh satisfies the qh-acceptance (and therefore LAD), substitutability, fairness, and

efficient allocation of privilege capacities.

(b) Suppose Dh is a qh-acceptant and fair choice rule that efficiently allocates privilege

capacities. Then, for any Ī ⊆ I, Ds
h(Ī; β,Eh) = PCRs

h(Ī; β,Eh).

In addition, under PCRh, if a student can be admitted without a bonus score, then she

does not receive a bonus score. In the next result, we highlight an implicit consequence of

the efficient allocation of privileges property on the number of selected students eligible for

privilege. Before presenting our result, we introduce a weaker fairness property. A choice

rule Ch is weakly fair if for any J ⊆ I and i ∈ J \ Cs
h(J ; β,Eh) the following holds
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(a) Cα
h (J ; β,Eh)[i] < Cα

h (J ; β,Eh)[j] for all j ∈ Cs
h(J ; β,Eh); and

(b) i ∈ Eh implies that π(j) > π(i) for all j ∈ Cs
h(J ; β,Eh) ∩ Iτ(i).

Note that fairness implies weak fairness for choice rules. .

Proposition 2. Fix Ī, h, β and Eh. Let Î = {i ∈ Īm ∩ Eh : pmh > 0} and Dh be a weakly

fair choice rule. If Ch is fair, qh-acceptant, and satisfies efficient allocation of privileges,

then |Cs
h(Ī; β,Eh) ∩ Î| ≥ |Ds

h(Ī; β,Eh) ∩ Î|.

All choice rules associated with mechanisms used in practice satisfy weak fairness.27

Therefore, Theorem 1, Proposition 2, and the weak fairness of these choice rules imply that

PCRh selects more privilege-eligible students than other choice rules used in practice.

Next, we examine how changes in the bonus score level affect the set of eligible students

chosen under PCR and show that this set monotonically increases with the size of the bonus.

Proposition 3. Fix Ī, h and Eh. Let Î = {i ∈ Īm ∩ Eh : pmh > 0} and β > β̂. Then

|PCRs
h(Ī; β,Eh) ∩ Î| ≥ |PCRs

h(Ī; β̂, Eh) ∩ Î|.

We conclude this section by showing that slot-specific priorities (Kominers and Sönmez,

2016) cannot be used to implement a privelege system without violating fairness. Consider a

high school h. Suppose
∑

m∈M
pmh ≤ qh. Let Sh denote the set of seats at h such that |Sh| = qh.

Then, the slot-specific priorities framework can simply be adopted to our context as follows:

for each m ∈ M , we choose pmh seats. We construct the priorities of each of these seats by

adding β on top of the raw score of each student in Im ∩ Eh and keeping the raw scores

(and hence priorities) of all other students the same. Let ▷h be the processing order over Sh.

Then, for a given set of students, we consider seats in Sh one-by-one following ▷h and fill the

seats according to the constructed slot-specific priorities. If a student i is selected for some

seat s, then her admission score is equal to her score calculated for seat s. Otherwise, the

admission scores of unselected students are set to their raw scores. We call this choice rule

as score-elevated choice rule and denote it with SECh (Sönmez and Ünver, 2022). The

following example illustrates that SECh (with a given processing order) violates fairness.

27See Appendix C for definitions of these choice rules.
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Example 4. Let H = {h}, M = {m1,m2,m3}, Im1 = {i1}, Im2 = {i2}, Im3 = {i3},

qh = 2 and pm1
h = pm2

h = 1. The raw scores of the students are π(i1) = 60, π(i2) = 50, and

π(i3) = 100. Let β = 20.

Now consider the case in which the first seat gives privilege to m1 and the second seat

gives privilege to m2. Then, the priority orders for the first and second seats are i3 − i1 − i2

and i3 − i2 − i1, respectively.

The score-elevated choice rule selects i2 and i3 with the admission scores 70 and 100, re-

spectively. That is, SECs
h(I; β,Eh) = {i2, i3}, SECα

h (I; β,Eh)[i1] = 60, SECα
h (I; β,Eh)[i2] =

70, and SECα
h (I; β,Eh)[i3] = 100. However, this outcome is not fair: m1’s privilege capacity

is not binding and π(i1) + β > SECα
h (I; β,Eh)[i2].

28

Although SECh fails to satisfy fairness; it is weakly fair. Hence, Theorem 1 and Propo-

sition 2 imply that PCRh selects weakly more privilege eligible students than SECh.

Next, we focus on a restricted case in which there is only one middle school with privilege

capacity. Then, PCRh and SECh select the same set of students when open seats are

processed first under SECh.

Proposition 4. Fix Ī, h, β, and Eh. Suppose p
m
h > 0 for some m ∈ M , pm

′

h = 0 for all m′ ̸=

m and open seats are processed first under SECh. Then, PCRs
h(Ī; β,Eh) = SECs

h(Ī; β,Eh).

4.3 Proposed Solution

When stability and strategy-proofness are desired in a matching market, the DA mechanism

is the go-to solution. If the choice rules embedded in the DA mechanism satisfy substitutabil-

ity and the LAD property, no student can benefit from misreporting their true preferences,

and the selected outcome is stable. Since PCR satisfies substitutability and LAD (Theorem

1), the DA mechanism equipped with the PCR choice rule ensures stability and strategy-

proofness. Furthermore, it satisfies fairness and efficient allocation of privileges, as defined

in Section 2. It is worth noting that the standard DA mechanism only considers current

applicants in each step and produces a matching. To align with our model, we adopt the

28One could argue that the fairness violation in this example could be avoided if the processing order of
the seats were reversed. In this case, a new problem where the scores of the students were switched would
lead to the same conclusion.
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mechanism to allow for high schools to consider all applicants who have proposed so far, as

in the cumulative offer process (Hatfield and Milgrom, 2005).29

We define the DA mechanism with PCR as follows.

DA Mechanism with PCR:

Step 1: Each student i applies to her most preferred school. For each school h,

we denote the set of applicants in Step 1 as I1h. Each school h tentatively holds

applicants in PCRs
h(I

1
h; β,Eh) and rejects the rest of the applicants.

In general:

Step k > 1: Each student i applies to her most preferred school that has not

rejected her yet. For each school h, we denote the set of applicants in Step k

as Ikh . Each school h tentatively holds applicants in PCRs
h(∪k′≤kI

k′

h ; β,Eh) and

rejects the rest of the applicants.

The procedure terminates when no more students are rejected, and each student

is assigned to the school, tentatively holding her in the terminal step with the

admission score calculated via the PCR. If a student i is not tentatively held by

any school, then she is matched to ∅ with an admission score of π(i).

We illustrate how DA-PCR works in Example A.3 in Appendix A. Now, we present our

results on DA-PCR. First, we show that it satisfies all desired properties.

Theorem 2. DA-PCR is fair, individually rational, non-wasteful, stable, strategy-proof, and

efficiently allocates privileges.

In addition to satisfying all the appealing properties, DA-PCR provides welfare gains over

any other mechanism that satisfies fairness and efficient allocation of privileges, as shown in

the following theorem.

Theorem 3. Let Φ be a fair mechanism that efficiently allocates privileges. Then DA-PCR

(weakly) Pareto dominates Φ.

29This modification does not change the DA mechanism’s outcome when the choice rules satisfy substi-
tutability (Hatfield et al., 2020).
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5 Local Background and Data Description

5.1 High School Admission in Our Focal City

Our empirical analysis uses data from high school admissions in a large Chinese city.30

Every March, the City Education Bureau (hereafter referred to as “the Bureau”) announces

an admissions plan detailing the total and privilege capacities for each school. In mid-May,

students submit their ROLs with up to three schools. In mid-June, students take the high

school entrance exam.31 Then, a centralized matching mechanism assigns students to schools.

The admission procedure has two parts. The first part focuses on admission to local

public high schools. The Bureau sets and announces a public high school admission threshold

(hereafter “the threshold”) based on the score distribution and the availability of seats. Only

students who score above this threshold, which was 535 in 2014, are eligible for admission to

public high schools. The second part of the admission procedure is for other types of high

schools, such as vocational and private high schools.

Our study focuses on the first part of the admission procedure for public high schools.

Before 2015, the Bureau adopted the CES mechanism, using the Chinese parallel mechanism

with a permanency execution vector (2,1). Students who received privileges from high schools

need to list those schools as their first choices. They also need to indicate whether they would

accept random assignments if rejected by all listed schools in ROLs. Unmatched students

open to random assignment are placed in public high schools with available seats,32 while

others explore alternatives, such as the second part of the admission to other schools or

joining the workforce. In 2015, the Bureau replaced the CES with the CAS-2 mechanism,

maintaining the same underlying Chinese parallel mechanism. All schools use the same strict

priority based on exam scores and include a 30-point privilege bonus.

30The city’s urban population was 3.7 million in 2014.
31In 2014, the maximum score that can be received was 665
32In 2014, around 7.3% of students are assigned through this channel.
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5.2 Data Description

Our data set consists of two parts: administrative data and survey data. The former was

collected from the Bureau, and it comprises admission records in 2014. Those records include

the students’ ROLs, exam scores, final assignments, whether a student was admitted as

a normal student or as a privileged student, and each student’s middle school and home

address. In 2014 administrative records, a total of 14,194 students were included. After

excluding unqualified students, the final sample size was 5,254 students.33

In early May 2014, we conducted a survey of middle school graduates that asked each

student to list five high schools they might attend and to rank them according to her true

preferences. Our design aims to compare students’ ROLs. Therefore, limiting the selection

to five schools is sufficient to cover the required length of the ROL (three schools), while

also avoiding an overload of options that could reduce response accuracy. We surveyed 6,980

middle school graduates. After matching the survey data with the final administrative data

sample just described above, we were left with 2,611 survey observations for the subsequent

analysis. Thus, our survey covers 49.7% of the selected sample. The validity of this survey

has been addressed in Wang and Zhou (2024).34

5.3 School Characteristics

In the administrative data, all non-public high schools were coded by the Bureau with a

single number, so we treated them as a single group without distinguishing among them.

Table F.1 in Appendix F summarizes the characteristics of public high schools. There were

13 public high schools and six special classes in 2014,35 and they charge a flat tuition of

1,600 Yuan ($260) per year for all students. Eight high schools provide middle school-specific

privilege capacities. These high schools offer privileges to every middle school, except for one

small middle school. On average, the privilege capacity accounts for 61% of a high school’s

33We excluded students whose exam scores were below the threshold (60.2% of all students), as well as
those admitted under separate procedures (2.8%), such as sports or art scholarships.

34We provide discussion in Appendix D.
35Special classes admit gifted students. They have their own admission quotas and do not allocate privilege

capacities to middle schools.
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total capacity.36 Additionally, each middle school, on average, has a privilege capacity that

accounts for 14% of its total graduates. The reputation of public high schools is measured by

the college admission rates of the schools in 2014, which is the most commonly used measure

by Chinese students and parents to gauge school quality (Lai et al. 2009).37 The average

reputation of the schools is 82.4 over 100.38

For the convenience of subsequent analysis, we classify high schools into three categories:

top high schools, which include two schools with the highest admission cutoffs and notable

gaps relative to other schools; leftover schools, which consist of three schools with cutoffs

equal to the high school admission threshold, indicating they have more available seats than

acceptable applications received (i.e., the number of students listing them in ROLs); and

moderate high schools, which encompass the remaining high schools.39 Middle schools are

classified into four groups based on their average graduates’ exam scores: top middle schools,

consisting of the ten middle schools with the highest average scores; upper median middle

schools, which include the next eleven middle schools with average scores lower than the top

ten; lower median middle schools, comprising another eleven middle schools with average

scores lower than those of the upper median group; and bottom middle schools, which include

the eleven middle schools with the lowest average scores.

6 Students’ Behaviors under the CES

In this section, we characterize the behavior of students and detect deficiencies under the

CES mechanism used in 2014.

6.1 Students’ Strategic Behaviors in ROLs

Table F.2 in Appendix F summarizes students’ ROLs and their assignments. The majority

of both normal and privileged students submitted complete lists with three schools. Among

36The distribution of privilege capacity to middle schools mainly depends on the ratio of the high school
entrance exam takers in a middle school to all the exam takers. Also, it may depend on factors such as the
education and management quality of a middle school.

37The college admission rate includes the admissions to both four-year colleges (benke) and three-year
specialized postsecondary colleges (dazhuan).

38To scale the measurement, we multiply the college admission rate by 100.
39Note that the demand for top and moderate high schools exceeds their capacities.
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privileged students, 90.4% were assigned to their first choice, and only 3.7% of them were

rejected by all three choices. In contrast, only 26.4% of normal students secure their first

choice, while 17.5% were rejected by all choices they listed.

Figure 1: Average Admission Cutoffs of Schools in the Survey and ROLs

(a) Normal Students (b) Privileged Students

Notes: These figures show the average admission cutoffs for schools chosen by students in the survey and
ROLs. The y-axis shows cutoff scores, and the x-axis groups students by their score percentiles: above
the 90th, 80th–90th, 70th–80th, and below the 70th. Dashed lines represent survey responses, solid lines
represent ROLs.

To analyze student strategies in their ROLs, we compare students’ survey responses

with their ROLs in Figure 1, which shows average admission cutoffs for schools selected by

students, grouped into four categories based on their score percentiles.

For normal students (Figure 1a), according to survey responses, the average cutoff gap

between consecutive choices within each student percentile group is around six points. Ad-

ditionally, the average cutoff for the same choices decreases as exam scores decrease, with

this trend of declining cutoffs for each additional choice, being consistent across all groups.

In the ROLs, the average cutoffs for students’ first-choice schools closely align with those in

the survey. As exam scores decrease, the gap between the first and second choices widens

considerably, with the average cutoffs for third choices hovering around the threshold across

all groups. The larger gaps between consecutive choices in the ROLs compared to the survey

suggest students’ strategic behaviors to improve their admission chances.

For privileged students, their choices in the survey and ROLs follow a similar pattern to

those normal students, with one notable difference shown in Figure 1b. The gap between

their first and second choices in the ROLs (more than 30 points) is significantly larger than
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for normal students (7 to 25 points). This reflects the tendency of privileged students to

maintain a larger gap between their choices because their 30-point bonus is added only to

their first choice. All these comparisions show that both normal and privileged students

acted strategically when submitted their ROLs.

6.2 Who Become the privileged students?

Under the CES mechanism used in 2014, middle schools generally use a merit-based crite-

rion to rank students during the early selection stage, though specific criteria vary across

schools. While we cannot directly observe students’ rankings and decisions during this stage,

we use their exam scores as a proxy to analyze their choices of becoming privileged students.

We consider the students with highest exam scores based on each middle school’s privilege

capacity and calculate the proportion who chose privilege status. Figure 2 shows this pro-

portion decreases with the middle school’s average exam score. For instance, at the best

middle school (School 111) with a privilege capacity of 64, only 31% of its top 64 students

become privileged students. Conversely, at a lower-ranked school (School 62) with a privilege

capacity of 62, 79% of its top 62 students accept the privilege bonuses.

The variation in privileged student choices across middle schools likely stems from dif-

ferences in student quality. Under the version of CES used in 2014, a privileged student

must rank that high school as their top choice in the ROL. Therefore, top students at good

middle schools may decline privilege status if their preferred high schools’ privilege slots are

filled early. At School 111, 140 out of 478 students score above 598, and the exam scores

of its privileged students range from 590 to 640 (Figure F.1a in Appendix F). In contrast,

at School 62, where only 9 out of 412 graduates score above 598, nearly all students scoring

over 580 opt for privilege status.

6.3 Potential Strategic Coordination

Another reason for opting out of privilege status could be strategic coordination among

students from the same middle school, potentially orchestrated by the schools. A middle

school might boost its representation in prestigious high schools by allowing high-scoring
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Figure 2: Fraction of Top Students Attain Privilege Status

Notes: This figure shows the percentage of top-ranked students who become privileged students in middle
schools. Each data point corresponds to one middle school. The x-axis is the average exam score of all
graduates from each middle school, while the y-axis is the proportion of top-ranked students who became
privileged students.

students to enter as normal students while allocating privilege bonuses to students with

scores on marginal. Although we cannot definitively confirm coordination due to the lack of

early selection information, we use students’ ROLs and exam scores as proxies to approximate

the likelihood of such behavior.

To detect students potentially involved in coordination, we apply the following criteria:

First, they are normal students but assigned to their first-choice school in the ROL. Second,

their exam scores exceed the school admission cutoffs by a significant margin (13 points, i.e.,

2% of the full score). Third, within their middle schools, their scores are notably higher

(by 13 points) than the lowest scores among privileged students receiving privileges at their

assigned high schools. The first criterion ensures that these students are placed in their most

preferred attainable school. The second criterion reduces the uncertainty from entrance exam

results, as students confident in securing admission to their preferred school are more likely

to participate in coordination. The third criterion indicates that these students’ academic

performances surpass some privileged students, suggesting they might have the opportunity

to become privileged students at their assigned schools.

Table 3 shows that 3.9% of students from top middle schools may pontential engage in co-
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ordination, primarily (2.1%) targeting the top two high schools. The likelihood decreases to

1.8% for upper median middle schools, 0.5% for lower median middle schools, and is nonex-

istent for bottom middle schools. This trend suggests that top middle schools, with more

high-scoring students, are more likely to coordinate to enhance their presence in prestigious

high schools.

Table 3: Potential Coordination (%)

Total Top high schools Moderate high schools
(1) (2) (3)

Top middle schools 3.9 2.1 1.8
Upper median middle schools 1.8 0.7 1.1
Lower median middle schools 0.5 0.0 0.5
Bottom middle schools 0.0 0.0 0.0

Notes: This table shows the percentage of students who may have forfeited their privilege

bonus by coordinating with peers during the early selection stage. Column 2 indicates the

percentage of students who forfeited their privilege bonus at top high schools, while Column 3

shows the same for moderate high schools.

6.4 Unfair Privilege Assignment

Our theoretical analysis indicates that the CES mechanism may result in unfair matching

outcomes. Since our study focuses on affirmative action, we limit our analysis to unfair

outcomes related to the allocation of privilege bonuses.

We detect an unfair student-school pair (i, h) as follows: Student i from middle school

mi is assigned to high school hi but ranks high school h over hi and does not receive a

privilege bonus from h. If i received the bonus, her score would exceed h’s cutoff, allowing

her to attend. Meanwhile, another student j from mi, with a lower raw score than i, receives

the privilege bonus from h. After comparing matching outcomes and ROLs, we detect 798

unfair student-school pairs involving 747 students. Our findings likely underestimates the

true number of unfair matches, as the ROLs include only 3 choices.
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7 Empirical Model and Preference Estimate

Our empirical estimation of students’ preferences is a simplified version of the approach

described in Wang and Zhou (2024). We briefly outline the process in this section.

Student i’s (indirect) utility from being assigned to school h is

ui,h =
∑
l

βlylh +
∑
w

βwxw
i y

w
h + βDdih + εih. (1)

Here {yh} is a vector of school h’s observed characteristics; {xi} is a vector of student i’s

observed characteristics; dih is the home–school distance, and we normalize the coefficient

of dih to be -1 for female students. εih is i’s idiosyncratic errors for school h. Following

Abdulkadiroğlu et al. (2017), we do not explicitly model an outside option.40 We assume

that εih is independent of the explanatory variables and follows a type I extreme value

distribution with cumulative distribution function Fε.
41

We use survey data to estimate student preferences without considering students’ strate-

gic behavior in their ROLs. Since each surveyed student ranked five schools they believed

they could attend, these survey responses reflect students’ true relative preferences. We focus

on the ranks of the listed schools in the survey, ignoring the unlisted schools, and use the

rank-ordered logit model (Beggs et al. 1981) to estimate coefficients. A detailed discussion

of the validity of using this survey for estimation is provided in Appendix E.

7.1 Estimation Results and Model Fit

Table 4 presents the estimated results. We focus on Columns 5 and 6, which correspond to

the full model with school fixed effects for normal and privileged students, respectively.

Rows 2-4 of Columns 5 and 6 report students’ preferences for school reputation by exam

scores: high (above the 90th percentile), medium (70th to 90th percentile), and low (below

70th percentile but above the threshold). privileged students across all groups are similarly

40This is because, as mentioned in Section 5.1, no outside option can be observed in the current admission
record.

41In addition, when i attends a nonpublic high school, we simplify the utility function as ui,o = Fo + εio.
Here Fo is represents the fixed effect of nonpublic high schools.
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willing to travel further for higher-reputation schools: a 1-unit increase in reputation leads

girls to travel an extra 0.32 to 0.38 km, and boys 0.9 to 1 km. High-scoring normal stu-

dents show the greatest sensitivity, with a 1-unit increase leading girls to travel 0.59 km and

boys 3.02 km. Medium-scoring girls and boys will travel 0.21 km and 1.1 km, respectively,

while low-scoring girls and boys will travel 0.18 km and 0.89 km, respectively. All students

generally prefer smaller schools. A reduction of 100 seats in school capacity prompts priv-

ileged medium-scoring students to travel an additional 2.44 km, while their high-scoring

counterparts are willing to travel 1.37 km. Meanwhile, normal students with similar scores

are less willing to travel these additional distances compared to their privilege counterparts.

High-scoring students, both normal and privilege, generally have a negative attitude towards

special classes. Conversely, these classes are favored by medium- and low-scoring students.

Next, we examine how well our estimations from the survey data match the administrative

data. We perform out-of-sample tests to validate the aggregate-level matching results, using

the estimated coefficients from Columns (5) and (6) of Table 4 to simulate students’ behaviors

and compare it with administrative data.42 First, we compare the actual and predicted

admission cutoffs of each high school and special class (Table F.5 in Appendix F).The gaps

between the actual and predicted cutoff are all less than 6 points (less than 1% of the full

score). Second, we explore the aggregate-level matching outcomes for students’ first two

school choices (Table F.6 in Appendix F). The administrative data show that 26.45% of

normal students were admitted to their first-choice schools, while our prediction is 28.59%.

We underpredicted by 6 percentage points the number of normal students admitted to their

second choices. For privileged students, the data show 90.44% were admitted to their first

choices, and our prediction is 93.8%. We also predict 1.28% of privileged students would be

admitted to their second choices, whereas the actual percentage is 3%.

8 Counterfactual Analysis

In this section, we conduct a counterfactual analysis comparing the CES and CAS-2 mech-

anisms used in our focal city with our proposed mechanism DA-PCR. Recall that in our

42We use all students in our sample in the test. The simulation procedure of students’ behaviors in the
sample test is in Appendix G.
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Table 4: Preference Parameters

No student interactions With student interactions
Normal Privilege Normal Privilege
(1) (2) (3) (4)

Reputation 0.296 0.401
(0.020) (0.027)

Reputation × H 0.592 0.384
(0.147) (0.099)

Reputation × M 0.209 0.368
(0.037) (0.035)

Reputation × L 0.175 0.324
(0.029) (0.067)

Special class -2.121 5.218
(0.917) (2.363)

Special class × H -6.925 -2.975
(1.931) (2.382)

Special class × M 0.597 2.880
(1.586) (2.585)

Special class × L 6.365 11.609
(6.116) (10.028)

Same district -1.905 -1.518
(0.234) (0.290)

Same district × Male 1.759 2.075
(0.296) (0.431)

Distance -1 -1 -1 -1
Distance × Male 0.804 0.645

(0.036) (0.056)
Dorm 4.253 0.205 4.389 -0.201

(0.968) (1.613) (1.029) (1.066)
Dorm × Male 0.633 1.169

(0.275) (0.570)
Capacity -1.969 -2.554

(0.122) (0.219)
Capacity × H -0.999 -1.374

(0.854) (0.525)
Capacity × M -1.489 -2.443

(0.301) (0.380)
Capacity × L -1.064 -2.321

(0.242) (0.550)
Indexed High School 3.664

(0.281)
Non-public high school 2.005 3.372 1.052 3.096

(0.439) (0.573) (0.580) (0.802)
School Fixed Effect Y Y Y Y

Notes: This table reports the estimated parameters of students’ preferences. The first four
columns do not involve any interaction terms between students and school characterises. Col-
umn 5–8 include these interaction terms. Standard errors in parentheses. Distance is mea-
sured by kilometer. The coefficient of distance for female students is nomralized to -1. School
capacities are normalized to 100 seats. H, M and L represent high-scoring, medium-scoring
and low-scoring students respectively.
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focal city, the CES and CAS-2 mechanisms are based on non-strategy proof alghorithms.

Differently, we use the DA algorithm as the basis for both CES and CAS-2.43 This allows

our analysis to focus on the effects of different selection rules in affirmative action policies,

rather than the intricacies of the Chinese parallel mechanism.

In this counterfactual analysis, utilizing estimated preferences and profiles of students

and schools from administrative data, we simulate students’ ROLs for all high schools and

calculate the resulting matches. Since the DA-PCR and CAS-2 are strategy-proof, we assume

students report their true preferences in ROLs under both mechanisms. For CES, to simplify

the calculation, we assume that students use the truth-telling strategy (see Appendix G

for details). Further, we consider three experiments involving different values of privilege

capacities, which account for 20%, 40%, or 60% of the total capacity. Each middle school

receives privileges proportional to its real privilege proportion in each high school.

8.1 Representation of Middle Schools in High Schools

The ZBS policy aims to provide opportunities for students from low-performing middle

schools to attend prestigious high schools. Using the CES mechanism as the benchmark,

we test whether an alternative mechanism can improve representation in high schools by

admitting more students from lower median and bottom middle schools when replacing CES

with this alternative.

In Table 5, Column (1) shows that replacing CES with CAS-2 results in a slight decrease

(0.9% to 4.5%) in the number of students from top middle schools attending top high schools.

While the representation of upper median and lower median middle schools varies with

privilege capacities. The impact on bottom middle schools are larger than other middle

schools. Column (3) reveals that with 20% privilege capacities, top and upper median middle

schools have slightly increased representation in moderate high school seats. Conversely,

with 40% and 60% privilege capacity, top and upper median middle schools gain less seats

in moderate high schools, while lower median and bottom middle schools gain seats.

When CES is replaced with DA-PCR, top middle schools experience a more significant

loss (5.3% to 13.5%) of seats in top high schools under all scenarios (Column 2). In contrast,

43Note that despite using DA as the base matching algorithm, the CES is still not strategy-proof.
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other middle schools benefit by placing more students into these top high schools. Specifi-

cally, bottom middle schools place 10.5% to 14.7% more students in top high schools with

20% and 40% privilege capacities, and 7.6% more with a 60% capacity. Column (4) shows

that top middle schools compensate for their losses in top high schools by increasing their

shares in moderate high schools. Meanwhile, upper median middle schools, despite gaining

more seats in top high schools, place fewer students in moderate high schools, but their gains

in top high schools outweigh these losses.

In summary, although CAS-2 is more transparent than CES due to the lack of an early

selection stage, it does not significantly improve diversity in high schools. Our proposed

mechanism, DA-PCR, effectively provides lower-performing middle schools with more op-

portunities to send their students to prestigious high schools.

Table 5: Change of Representation (%)

Top High Schools Moderate High Schools
CES–CAS-2 CES–DA-PCR CES–CAS-2 CES–DA-PCR

(1) (2) (3) (4)
20%
Top middle Schools -0.9 -5.3 0.9 2.4
Upper median middle schools -0.4 9.0 0.3 -3.7
Lower median middle schools 2.5 3.3 -0.8 2.3
Bottom middle schools 3.9 10.5 2.4 6.3
40%
Top middle Schools -2.7 -9.8 -0.3 2.1
Upper median middle schools 1.1 13.1 -2.9 -7.5
Lower median middle schools 5.8 11.7 1.7 2.1
Bottom middle schools 6.5 14.7 12.0 20.1
60%
Top middle Schools -4.5 -13.5 -1.7 3.7
Upper median middle schools 0.4 19.2 -5.6 -10.9
Lower median middle schools 8.9 14.4 8.6 8.4
Bottom middle schools 10.5 7.6 12.9 8.4

Notes: This table shows the impact on diversity when CES is replaced. Columns (1) and (3) report the

percentage change in students assigned to top or moderate high schools with CAS-2, while columns (2) and

(4) show the change with the DA-PCR. Results are presented for 20%, 40%, and 60% privilege capacities

across the three panels.

8.2 Usage of Privileges

In this section, we examine whether the privileges are used to improve students’ assignment

rather than being wasted. Privileges can be wasted in two ways:
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• A student receiving a bonus would still be assigned to the same school without it, while

there are lower-scoring students from the same middle school rejected but could have

attended this high school with the bonus.

• A student receives a bonus but is still rejected by the high school, while there are higher-

scoring students from the same middle school also rejected but could have attended

this high school with the bonus.

Table 6 shows that the DA-PCR allocates privileges much more efficiently than CES

and CAS-2, causing less waste. With a privilege capacity of 20%, 100% of privileges are

effectively used under the DA-PCR, compared to only 2.5% under CES and 11% under

CAS-2. Although the effectiveness of privilege usage improves under CES and CAS-2 as the

capacity increases, the DA-PCR remains superior. Both CES and CAS-2 tend to allocate

privileges to top students in each middle school, resulting in most privileges being wasted.

We also examine the ratio of students admitted due to privileges over the total admitted

students in different types of middle schools. With a 20% privilege capacity, 48.4% of students

from bottom middle schools are admitted to better high schools using privileges under the

DA-PCR, compared to 5.7% under CES and 15.8% under CAS-2. The DA-PCR continues

to outperform CES and CAS-2 as the privilege capacity increases. In short, the DA-PCR is

more effective in allocating privilege bonuses to students who genuinely need them to access

better high schools.

9 Literature Review

This paper contributes to the growing literature on affirmative action policies in matching

markets, especially in school choice. Two main affirmative action policies discussed in the

literature are score subsidies and reserves for targeted groups.

The idea of score subsidies in matching markets was first discussed by Balinski and

Sönmez (1999) in the form of improvement for a single student’s test scores. Kojima (2012)

studies the score subsidies in the form of improvement for a group of students’ test scores.
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Table 6: Usage of Privilege Capacities (%)

CES CAS-2 DA-PCR
Waste Used Used/Admitted Waste Used Used/Admitted Waste Used Used/Admitted

20%
Top middle School 100.0 0.0 0.0 98.5 1.5 0.2 0.0 100.0 11.6
Upper median middle schools 99.8 0.2 0.0 98.4 1.6 0.3 0.0 100.0 19.3
Lower median middle schools 97.8 2.2 0.8 82.3 17.7 6.2 0.0 99.9 34.1
Bottom middle schools 89.1 10.9 5.7 68.7 31.3 15.8 0.0 100.0 48.4
Total 97.5 2.5 0.5 89.0 11.0 2.2 0.0 100.0 20.0
40%
Top middle School 100.0 0.0 0.0 97.9 2.1 0.5 0.0 100.0 22.2
Upper median middle schools 99.2 0.8 0.3 96.3 3.7 1.4 0.0 99.3 39.1
Lower median middle schools 84.4 15.6 11.1 62.5 37.4 25.9 0.0 98.2 66.4
Bottom middle schools 57.8 41.5 39.8 42.7 57.3 50.0 0.0 97.4 79.2
Total 88.3 11.6 4.6 78.2 21.8 8.6 0.0 98.9 39.2
60%
Top middle School 98.3 1.7 0.6 94.7 5.3 1.8 0.0 100.0 34.9
Upper median middle schools 92.8 6.6 3.9 88.6 10.9 6.7 0.0 98.8 60.4
Lower median middle schools 50.6 46.3 46.8 37.0 61.5 57.2 0.0 94.6 86.6
Bottom middle schools 25.0 63.6 73.1 19.8 75.8 77.9 0.0 84.7 90.2
Total 71.1 25.9 15.4 64.3 34.4 20.4 0.0 95.6 56.6

Notes: This table presents the usage of privilege bonuses. “Used” refers to the percentage of privileges utilized by students to gain admission to high schools,
where they would otherwise be rejected without those privileges. “Used/Admitted” refers to the percentage of students admitted with privilege bonuses,
who would otherwise be rejected, relative to the total number of students admitted from this level of middle school. The first panel shows results for a 20%
privilege capacity, with the second and third panels covering 40% and 60% capacities, respectively.

He shows that for some markets, all students receiving score subsidies might be hurt.44

Abdulkadiroğlu and Sönmez (2003) introduce the type-specific quotas in the context of

school choice. As in score subsidies, Kojima (2012) show the adverse effects of majority quo-

tas on the welfare of minority students. As a welfare-enhancing alternative to the majority

quota, Hafalir et al. (2013) introduce reserves for minority students. Dur et al. (2018) high-

light the importance of the processing order of reserved seats using the slot-specific priority

model introduced by Kominers and Sönmez (2016). In particular, when every individual has

at most one reserve eligible type, then the highest representation of a target type can be

achieved when the open seats are processed after the reserved seats for all other types and

before the reserved seats of the corresponding type (Dur et al., 2020; Pathak et al., 2022,

2023). As discussed, in our context, slots are not designated for bonus recipients and doing

so leads to a violation of fairness45

The affirmative action policy in our paper generalizes both score subsidies and reserve

systems. Unlike traditional score subsidies, which grant equal bonuses to the same group

members, we generalize this policy by limiting the number of recipients. This approach

44Jiao et al. (2022) and Dur and Xie (2023) focus on the restrictions that guarantee students receiving
score subsidies will not be hurt.

45Papers such as Ehlers et al. (2014), Aygün and Turhan (2020), Delacrétaz (2021), Aygün and Bó (2021),
Sönmez and Yenmez (2022) have studied different aspects of reserve systems in various other contexts.
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enables analysis of selection procedures. Reserve policies allocate a set number of seats to

specific student groups, prioritizing reserve-eligible students over others. This prioritization

can be viewed as assigning sufficiently high bonus scores, applied to a limited number of

seats. Privilege systems generalize reserve systems by allowing a subset of reserve-eligible

students to receive bonus scores without necessarily prioritizing them over others. It elimi-

nates the need to specify a processing order and makes it possible to generate an equivalent

representation to any reserve system by assigning sufficiently high bonuses to chosen stu-

dents.

In a recent paper inspired by applications in India, Sönmez and Ünver (2022) propose a

variant of the reserve system, the score-elevated VR protected policy, where a reserve-eligible

student is prioritized over a higher-scoring student if the score difference is below a specific

threshold. Like our policy, it does not grant exclusive seat rights. While their focus is on

reserves and the role of the processing order, our goal is to optimize the selection of students

receiving bonus scores, without designating specific slots for them.

Our policy, which uses bonus scores and restricts their allocation to a subset of students,

strikes a balance between meritocracy and diversity. It limits priority violations by ensuring

that bonus recipients may not surpass all other students. Under reserve policies, Abdulka-

diroglu and Grigoryan (2021) formalize the compromise by minimizing priority violations

and provide an axiomatic characterization. Imamura (2020) introduces a choice rule for

reserve systems to balance meritocracy and diversity, allowing policymakers to compare stu-

dents based on priorities. He characterizes this rule with an axiom requiring greater merit

in the chosen set as diversity constraints are relaxed. Hafalir et al. (2022) propose choice

rules that maximize merit while meeting diversity goals, using an index satisfying ordinal

concavity to achieve optimal diversity. In a continuum model, Celebi and Flynn (2022) de-

velop mechanisms to optimize an authority’s expected utility, balancing student scores with

diversity objectives. This paper examines a discrete economy where policymakers lack ex-

plicit diversity objectives. Our proposed choice rule, characterized by axioms, ensures stable

matching and the efficient, fair distribution of bonus scores. In a recent study, Dur and

Zhang (2025) examine choice rules in Chinese high school admissions, focusing on two types

of score constraints for reserve eligibility. They show that these rules lack substitutability
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and propose an alternative substitutable choice rule. Unlike our analysis, their study does

not model privilege systems or consider properties such as fairness and efficient privilege

allocation.

Additionally, our study relates to papers addressing distributional constraints in match-

ing markets (c.f.,Abdulkadiroğlu (2005), Westkamp (2013), Echenique and Yenmez (2015),

Kamada and Kojima (2015), Doğan (2016), Fragiadakis and Troyan (2017), and Hafalir et al.

(2022)).

Our research also contributes to a growing body of empirical work on school choice mech-

anisms (see Agarwal and Somaini 2020 and Agarwal and Budish 2021 for two reviews of this

literature). One strand of that literature uses preferences reported under non–strategy-proof

mechanisms to estimate students’ preferences. The challenge of these studies is to recover

students’ preferences from their manipulated ROLs. From the supply and demand approach,

Agarwal and Somaini (2018) develop a method to identify preferences through the choice

environment variation. Calsamiglia et al. (2020) identify the sophisticated and naive types

of households using data from Barcelona. Other papers focus on strategy-proof mechanisms.

Abdulkadiroğlu et al. (2017) treat preferences reported under the DA mechanism as stu-

dents’ true preferences and then use those preferences to analyze the demand for particular

schools in New York City. Fack et al. (2019) propose an approach to estimate preferences

that does not require truth-telling to be the unique equilibrium under the DA mechanism.

Several empirical papers (e.g., Burgess et al. 2014; Akyol and Krishna 2017; Ajayi 2022)

bear similarities to our strict priority setting, such as exam scores.

Using reported ROLs to identify preferences is subject to the fact that students can make

mistakes, even under the strategy-proof mechanisms (Fack et al. 2019). Therefore, there is

an increasing use of survey data to explore strategic behavior under matching mechanisms.

Budish and Cantillon (2012) conduct a survey on students’ preferences over offered courses

to study the course allocation mechanism at Harvard Business School, and Rees-Jones (2018)

provides survey-based evidence of preference misrepresentation. Burgess et al. (2014) use

survey data to directly assess student preferences regarding schools. Surveys are also used

by Kapor et al. (2020) to study heterogeneous beliefs in the school choice problem and by

De Haan et al. (2023) to analyze students’ mistakes and deficiencies of the Boston mechanism.
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10 Conclusion

We examine the allocation of middle school students to high schools in China as a prominent

case of affirmative action policy reforms in school choice. These policies operate through what

we have termed “privilege systems,” which blend elements of priority-based and reserve-based

assignment, allowing authorities to screen candidates rather than providing unconditional

admission guarantees. However, our research indicates that current privilege systems in

China fall short of their intended goals.

We propose that the allocation of privileges should be determined internally to achieve

optimal distribution and fairness. Our empirical analysis suggests that employing the DA

mechanism, coupled with a unique choice rule, can significantly enhance the representation

of middle schoolers from disadvantaged socioeconomic backgrounds in quality high schools.

Privilege systems represent an innovative approach, bridging priority-based and reserve-

based assignment models, offering greater flexibility compared to traditional methods. There-

fore, it would be worthwhile to reevaluate existing implementations of these systems from a

privilege-basedstandpoint. Further investigation into these matters is left for future research.
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Appendices

A Omitted Examples

In Example A.1, we consider three possible cases that illustrate the difficulty of choosing the

privileged (eligible) student a prior under the CES mechanism. In each case, the bonus is

added to the “wrong” student either rendering the bonus useless while some student from

the same middle school could have benefited or a student with a higher raw score prefers the

assignment of another student from the same middle school with lower raw score.

Example A.1. Let H = {h1, h2}, M = {m1,m2}, Im1 = {i1, i2} and Im2 = {i3, i4}. Each

school has two seats, i.e., qh1 = qh2 = 2. Let pm1
h1

= 1 and pm2
h1

= pm1
h2

= pm2
h2

= 0. Suppose

β = 10, and we apply the DA mechanism without ranking restriction in the admission stage.

The preferences of students are given as:

Pi1 Pi2 Pi3 Pi4

h1 h1 h1 h1

h2 h2 h2 h2

∅ ∅ ∅ ∅

Case 1: The added bonus does not improve the assignment of an under-

achieving student, although it could have helped someone else from the same

middle school. The raw scores of the students are π(i1) = 70, π(i2) = 75, π(i3) = 82, and

π(i4) = 84 . Suppose, in the early selection stage, student i1 is selected to be eligible to enjoy

the privilege, i.e., Em1
h1

= {i1}.

In the admission stage of CES, all students apply to h1. As the normal applicants,

students i2, i3, and i4 are first considered for the single undesignated capacity. Since i4 has

the highest raw score, we set ch = 84. The raw score of the unique eligible student, i1, does

not exceed 84 when the bonus score is added (70 + 10 < 84). Hence, no student will receive

a bonus score. Then, admission scores of all students are set to their raw scores, and i3 and

i4 are tentatively held by h1. In the next step, both rejected students apply to h2, and no

student is rejected.
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CES selects the assignment (µ, α) such that:

µ(i1) =h2, µ(i2) = h2, µ(i3) = h1, µ(i4) = h1

α(i1) =70, α(i2) = 75, α(i3) = 82, α(i4) = 84.

Notice that the only eligible student from m1, i.e., i1, does not receive bonus. However, i2

would have been receiving a bonus and assigned to h1 if she had been selected as eligible by

m1.

Case 2: The added bonus improves the assignment of an underachieving

student although it could have helped a more deserving student from the same

middle school. Consider the same problem with the following changes. The raw score of

i1 is 80, i.e., π(i1) = 80, and Em1
h1

= {i2}.

In the admission stage of CES, all students apply to h1. Among the normal applicants,

i1, i3, and i4, i4 has the highest raw score. Hence, we set ch = π(i4) = 84. The raw score of

the unique eligible student, i2, exceeds 84 when bonus score is added (75 + 10 > 84). Hence,

she will receive a bonus score, and her admission score will be 85. The admission scores of

all other students are set to their raw scores. Then, based on the admission scores, i2 and i4

are tentatively held. In the next step, both rejected students apply to h2, and no student is

rejected.

CES selects the assignment (µ, α) such that:

µ(i1) =h2, µ(i2) = h1, µ(i3) = h2, µ(i4) = h1

α(i1) =80, α(i2) = 85, α(i3) = 82, α(i4) = 84.

Notice that, i1 prefers h1 to her assigned school and has a higher raw score than i2, who

receives the privilege.

Case 3: The added bonus has no effect on the assignment of a high-achieving

student, but it could have helped a low-achiever from the same middle school

who does not get it. The previous two cases might suggest that determining the higher-

scoring student as eligible would have led to the ideal usage of the privilege capacity. We next
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show that this is not the case in general. Consider now the same problem with the following

changes. The raw score of i1 is 88, i.e., π(i1) = 88, and Em1
h1

= {i1}.

In the admission stage of CES, all students apply to h1. Among the normal applicants,

i2, i3, and i4, i4 has the highest raw score. Hence, we set ch = π(i4) = 84. The raw score of

the unique eligible student, i1, exceeds the cutoff of 84 even without the bonus score. Hence,

she will receive a bonus score, and her admission score will be 98. The admission scores of

all other students are set to their raw scores. Then, based on the admission scores, i1 and i4

are tentatively held. In the next step, both rejected students apply to h2, and no student is

rejected.

CES selects the assignment (µ, α) such that:

µ(i1) =h1, µ(i2) = h2, µ(i3) = h2, µ(i4) = h1

α(i1) =98, α(i2) = 75, α(i3) = 82, α(i4) = 84.

The privilege of m1 is “wasted” on student i1 who would have gotten into h1 without any

privilege, and i2 would have been assigned together with i1 if she had received the bonus score.

Example A.2. Let Ī = {i1, i2, i3, i4, i5}, M = {m1,m2,m3}, Īm1 = {i1, i2}, Īm2 = {i3, i4},

Īm3 = {i5}, qh = 3, pm1
h = pm2

h = 1, and pm3
h = 0. Students’ raw scores are π(i1) = 74,

π(i2) = 70, π(i3) = 65, π(i4) = 69, and π(i5) = 81. Let β = 10.

We first apply the privilege selection step, i.e., Step 1 of the PCR.

Step 1:

Step 1.0: Since |Ī| > qh, we set πb
1(i) = π(i) for all i ∈ Ī and A1 = B1 = ∅.

Step 1.1: We add {i1, i2, i5} to A1, i.e., A1 = {i1, i2, i5}. We set T 1 = R1 = Ī \ A1 =

{i3, i4}. Then, we add bonus scores to i4 and obtain the updated scores as follows: πb
2(i) = π(i)

for all i ∈ Ī \ {i4} and πb
2(i4) = π(i4) + β = 69 + 10 = 79. We set A2 = ∅ and B2 = {i4}.

Step 1.2: We add {i1, i4, i5} to A2, i.e., A2 = {i1, i4, i5}. We set R2 = Ī \A2 = {i2, i3}

and T 2 = T 1∪R2 = {i2, i3, i4}. Since T 2 ̸= T 1, we add bonus scores to i2 and i4 and obtain the

updated scores as follows: πb
3(i) = π(i) for all i ∈ Ī\{i2, i4}, πb

2(i2) = π(i2)+β = 70+10 = 80

and πb
2(i4) = π(i4) + β = 69 + 10 = 79. We set A3 = ∅ and B3 = {i2, i4}.
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Step 1.3: We add {i2, i4, i5} to A3, i.e., A3 = {i2, i4, i5}. We set R3 = Ī \A3 = {i1, i3}

and T 3 = T 2 ∪ R3 = {i1, i2, i3, i4}. Since T 3 ̸= T 2, we add bonus scores to i1 and i4 and

obtain the updated scores as follows: πb
3(i) = π(i) for all i ∈ Ī \ {i1, i4}, πb

3(i1) = π(i1) + β =

74 + 10 = 84 and πb
2(i4) = π(i4) + β = 69 + 10 = 79. We set A4 = ∅ and B4 = {i1, i4}.

Step 1.4: We add {i1, i4, i5} to A4, i.e., A4 = {i1, i4, i5}. We set R4 = Ī \A4 = {i2, i3}

and T 4 = T 3 ∪ R4 = {i1, i2, i3, i4}. Since T 4 = T 3, we calculate the admission scores as

follows: PCRα
h(Ī; β,Eh)[i] = π(i) for all i /∈ B4 = {i1, i4}, and PCRα

h(Ī; β,Eh)[i1] = 84 and

PCRα
h(Ī; β,Eh)[i4] = 79.

Step 2: Since {i1, i4, i5} have the highest qh = 3 scores under (PCRα
h(Ī; β,Eh)[i])i∈ī, we

have PCRs
h(Ī; β,Eh) = {i1, i4, i5}.

Example A.3. Let H = {h1, h2, h3}, M = {m1,m2,m3,m4}, Im1 = {i1, i2}, Im2 = {i3, i4},

Im3 = {i5} and Im4 = {i6}. Schools h1 and h3 have two seats and h2 has one seat. The raw

scores of the students are π(i1) = 50, π(i2) = 40, π(i3) = 55, π(i4) = 46, π(i5) = 47 and

π(i6) = 42. Let Eh = I for all h ∈ H, β = 10, pm2
h1

= pm3
h2

= pm1
h3

= pm4
h3

= 1, and all other

privilige capacities be 0.

Students’ preferences over schools are as follows:

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6

h1 h1 h2 h1 h3 h3

∅ h3 h1 h2 h2 h1

h2 h3 h3 h1 h2

∅ ∅ ∅ ∅ ∅

Note that the second favorite school of student i1 is ∅, i.e., only h1 is acceptable for i1.

The admission process based on DA-PCR will proceed as follows:

Step 1: Students i1, i2 and i4 apply to high school h1; student i3 applies to high school

h2; students i5 and i6 apply to h3. Then, we have

PCRs
h1
({i1, i2, i4}; β,Eh}) = {i1, i4}

PCRs
h2
({i3}; β,Eh}) = {i3}

PCRs
h3
({i5, i6}; β,Eh}) = {i5, i6}
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Step 2: Students i1 and i4 apply to high school h1; student i3 applies to high school h2;

students i2, i5 and i6 apply to h3. Then, we have

PCRs
h1
({i1, i2, i4}; β,Eh}) = {i1, i4}

PCRs
h2
({i3}; β,Eh}) = {i3}

PCRs
h3
({i2, i5, i6}; β,Eh}) = {i2, i6}

Step 3: Students i1 and i4 apply to high school h1; student i3 and i5 apply to high

school h2; students i2 and i6 apply to h3. Then, we have

PCRs
h1
({i1, i2, i4}; β,Eh}) = {i1, i4}

PCRs
h2
({i3, i5}; β,Eh}) = {i5}

PCRs
h3
({i2, i5, i6}; β,Eh}) = {i2, i6}

Step 4: Students i1, i3 and i4 apply to high school h1; student i5 applies to high school

h2; students i2, and i6 apply to h3. Then, we have

PCRs
h1
({i1, i2, i3, i4}; β,Eh}) = {i3, i4}

PCRs
h2
({i3, i5}; β,Eh}) = {i5}

PCRs
h3
({i2, i5, i6}; β,Eh}) = {i2, i6}

Step 5: Students i3 and i4 apply to high school h1; student i5 applies to high school h2;

students i2 and i6 apply to h3; student i1 applies to ∅. Then, we have

PCRs
h1
({i1, i2, i3, i4}; β,Eh}) = {i3, i4}

PCRs
h2
({i3, i5}; β,Eh}) = {i5}

PCRs
h3
({i2, i5, i6}; β,Eh}) = {i2, i6}

Since no more students are rejected, the procedure terminates. The assigned schools and
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admission scores of the students are as follows:

µ(i1) = ∅, µ(i2) = h3, µ(i3) = h1, µ(i4) = h1, µ(i5) = h2, µ(i6) = h3

α(i1) = 50, α(i2) = 52, α(i3) = 55, α(i4) = 56, α(i5) = 57, α(i6) = 52

B Proofs

Proof of Proposition 1. Example 1 shows that CES and CAS-1 mechanisms fail to satisfy

fairness and strategy-proofness. Example 2 shows that CAS-1 and CAS-2 mechanisms fail to

satisfy efficient allocation of privileges. In the next example, we show that CES mechanisms

fail to satisfy the efficient allocation of privileges.

Example A.4. Let H = {h1}, M = {m1,m2}, Im1 = {i1, i2}, Im2 = {i3, i4} and qh1 = 3.

Let β = 10, pm1
h1

= 2, pm2
h1

= 0, and Eh1 = {i1, i2}.

The raw scores of the students are π(i1) = 90, π(i2) = 84, π(i3) = 95, and π(i4) = 86.

Suppose all students consider h1 acceptable.

In this problem, CES selects the assignment (µ, α) such that:

µ(i1) = h1, µ(i2) = ∅, µ(i3) = h1, µ(i4) = h1

α(i1) = 100, α(i2) = 84, α(i3) = 95, α(i4) = 86

Assignment (µ, α) does not satisfy the efficient allocation of privileges.

Before providing the proof of Theorem 1, we state and prove a lemma, which is referred

to in the proof.

Lemma 1. Suppose Step 1 of PCR terminates in Step 1.K and K > 1 when the set of

applicants is J . Let σk = min{πb
k(i) : i ∈ Ak} for all k ∈ {1, . . . , K}. Then, for all

k ∈ {1, . . . , K − 1}, σk ≤ σk+1.

Proof of Lemma 1. Since Step 1 of PCR terminates in Step 1.K where K > 1, we have

|J | > qh. We first consider Steps 1.1 and 1.2. Since πb
2 is obtained from πb

1 adding bonus
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score to some students and keeping the raw score for the others, we have πb
1(i) ≤ πb

2(i) for

all i ∈ J . Let i1 be the lowest scoring student in A1 based on πb
1. If i

1 ∈ A2, then she is the

lowest scoring student in A2 based on πb
2. If i1 /∈ A2, then every student in A2 has higher

score than πb
2(i

1). Since, πb
1(i

1) ≤ πb
2(i

1), we have σ1 ≤ σ2.

Suppose that σk̄−1 ≤ σk̄ for all k̄ ≤ k where k < K. Now we compare σk and σk+1. Let i
k

be the lowest scoring student in Ak based on πb
k. If i

k ∈ Ak+1, then she is the lowest scoring

student in Ak+1 based on πb
k+1. This follows from the following observation: By definition,

T k+1 ⊇ T k, and therefore, for each student who has been added a bonus score at the end of

Step 1.k, there exists a student with a weakly higher raw score, and bonus score is added

at the end of Step 1.k + 1. If ik /∈ Ak+1, then every student in Ak+1 has higher score than

πb
k+1(i

1). Since, πb
k(i

k) ≤ πb
k+1(i

k), we have σk ≤ σk+1.

Proof of Theorem 1. We prove these two statements separately.

Proof for Part a:

qh-acceptance: Consider a set of applicants Ī ⊆ I. First, if |Ī| ≤ qh, every student in

Ī will be selected. If |Ī| > qh, then at the end of Step 2 qh student will be selected. As a

result, |PCRs
h(Ī; β,Eh)| = min{qh, |Ī|}.

As discussed in the main text, for any Ī ⊆ I, PCRs
h(Ī; β,Eh) = AK where Step 1.K is

the termination step of the privilege selection step. In the rest of the proof, we focus on AK

instead of PCRs
h(Ī; β,Eh).

Substituability: Consider a set of applicants Ī ⊆ I. Since PCR satisfies qh-acceptance,

no student will be rejected when the number of applicants is less than or equal to the capacity

of high school h. Therefore, we cannot observe a violation of substitutability when |Ī| ≤ qh.

We consider a case in which |Ī| > qh. Let Ĩ = Ī ∪ {j} and i ∈ Ī \ PCRs
h(Ī; β,Eh). We will

show that i /∈ PCRs
h(Ĩ; β,Eh).

We denote the corresponding variable of X in the calculation of PCRh(Ĩ; β,Eh) and

PCRh(Ī; β,Eh) with X̃ and X̄, respectively.

We first compare Step 1.1 of the choice rule applied to Ī and Ĩ. Since Ĩ ⊃ Ī and |Ī| > qh,

we have R̃1 ⊃ R̄1 and σ̄1 < σ̃1. Moreover, since R̃1 ⊃ R̄1, T̄ 1 = R̄1 and T̃ 1 = R̃1, we have

T̃ 1 ⊃ T̄ 1. Notice that, |R̃1 \ R̄1| = |T̃ 1 \ T̄ 1| = 1. This follows from the fact that |Ĩ \ Ī| = 1
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and π̄b
1(k) = π̃b

1(k) = π(k) for all k ∈ Ī. By definition, we will continue with Step 1.2 under

both applications of the choice rule to Ī and Ĩ.

Next, we consider Step 1.2. Since T̃ 1 ⊃ T̄ 1, for every student receiving bonus score

under the calculation of π̄b
2, there exists a separate student with weakly higher raw score

receiving bonus score under the calculation of π̃b
2. Hence, we have σ̃2 ≥ σ̄2. Consider a

student k ∈ Ī. If k /∈ R̄1 = T 1 and k ∈ R̄2, then π̄b
2(k) = π̄(k), and either k ∈ R̃1 or k ∈ Ã1

and π̃b
2(k) = π̄b

2(k) = π̄(k). Since, π̄(k) < σ̄2 ≤ σ̃2, we have k ∈ R̃1 ∪ R̃2. Then, combining

this with R̄1 ⊆ R̃1, we have T̄ 2 = R̄1 ∪ R̄2 ⊆ R̃1 ∪ R̃2 = T̃ 2.

We consider three cases based on the relation between T̄ 1, T̄ 2, T̃ 1 and T̃ 2.

Case 1: T̄ 1 = T̄ 2. Since T̄ 1 = R̄1, T̄ 2 = T̄ 1 ∪ R̄2 and |R̄1| = |R̄2|, T̄ 1 = T̄ 2 implies

R̄1 = R̄2. By definition of the PCR, Step 1.2 is the last substep of Step 1 when PCR is

applied to Ī. Then, Ā2 = PCRs
h(Ī; β,Eh). Hence, by supposition, i /∈ Ā2. Since i /∈ Ā2 and

R̄1 = R̄2, we have i ∈ R̄1 ⊂ R̃1 and i ∈ R̄2. Moreover, R̄1 = T̄ 1 ⊂ T̃ 1 = R̃1 and σ̄2 ≤ σ̃2 and

i ∈ R̄2 imply that i ∈ R̃2. Lemma 1 implies that any student rejected in two consecutive

steps will be rejected in all further steps. Hence, i /∈ PCRs
h(Ĩ; β,Eh).

Case 2: T̄ 1 ̸= T̄ 2 and T̃ 1 = T̃ 2. Since T̃ 1 = R̃1, T̃ 2 = T̃ 1 ∪ R̃2 and |R̃1| = |R̃2|, T̃ 1 = T̃ 2

implies R̃1 = R̃2. Since T̄ 1 ⊂ T̃ 1, |T̃ 1 \ T̄ 1| = 1, T̄ 1 ⊂ T̄ 2, and T̄ 2 ⊆ T̃ 2, we have T̄ 2 = T̃ 2.

Since j /∈ Ī and T̃ 2 = T̄ 2 ⊆ Ī, we have j /∈ T̃ 2 and therefore j ∈ PCRs
h(Ĩ; β,Eh) = Ã2.

Moreover, PCRs
h(Ĩ; β,Eh) = Ã1 = Ã2, PCRs

h(Ĩ; β,Eh) \ Ā1 = {j}. Let {k} = Ā1 \ Ã1 =

R̃1 \ R̄1. Since T̄ 2 = T̃ 2 = R̃1, T̄ 2 = R̄1 ∪ R̄2, and R̃1 \ R̄1 = {k}, we have {k} = R̄2 \ R̄1.

Then, |R̄1| = |R̄2| and |R̄2\R̄1| = 1 imply that |R̄1\R̄2| = 1. Let {k′} = R̄1\R̄2. Since R̃1 =

R̃2 = T̄ 2 = R̄1 ∪ R̄2, we have k, k′ ∈ R̃1 = R̃2. Then, T̃ 1 = T̃ 2 = T̄ 2 implies that B̃2 = B̄3.

Then, none of the students in B̄3 can replace students in PCRs
h(Ĩ; β,Eh) \ {j} in Step 1.3

of PCR when applied to Ī. Otherwise, we cannot have R̃2 = R̃1. Moreover, it is easy to see

that (PCRs
h(Ĩ; β,Eh) \ {j}) ⊂ Ā2 and (PCRs

h(Ĩ; β,Eh) \ {j}) ⊂ Ā3. Then, we have either

k′ ∈ R̄3\R̄2 or R̄2 = R̄3. Since, k′ ∈ R̄1, T̄ 3 = R̄1∪R̄2∪R̄3, T̄ 2 = R̄1∪R̄2, either case implies

that T̄ 2 = T̄ 3. Hence, Ā3 = PCRs
h(Ī; β,Eh). Since i /∈ Ā3 and (PCRs

h(Ĩ; β,Eh) \ {j}) ⊂ Ā3,

we have i /∈ PCRs
h(Ĩ; β,Eh).

Case 3: T̄ 1 ̸= T̄ 2 and T̃ 1 ̸= T̃ 2. Then, we continue with Step 3 under both cases. As

explained for Step 2, σ̃3 ≥ σ̄3 and T̄ 3 ⊆ T̃ 3. We consider the possible relations between T̃ 3,
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T̄ 3, T̃ 2, and T̄ 2 as we did for the previous step.

For the rest of the steps of the privilege selection procedure, by following the same

arguments, we can show that i /∈ PCRs
h(Ĩ; β,Eh).

Fairness: Consider a set of students Ī ⊆ I. If |Ī| ≤ qh, then PCRs
h(Ī; β,Eh) = Ī.

Hence, PCRh satisfies fairness when |Ī| ≤ qh. Suppose |Ī| > qh and i ∈ Ī \ PCRs
h(Ī; β,Eh).

By the definition of Step 2 of PCR, PCRα
h(Ī; β,Eh)[j] > PCRα

h(Ī; β,Eh)[i] for all j ∈

PCRs
h(Ī; β,Eh). Moreover, if PCRα

h(Ī; β,Eh)[i] = π(i), then, by the definition of Step 1 of

PCR, |{j ∈ Īτ(i) : PCRα
h(Ī; β,Eh)[j] = π(j) + β and π(j) > π(i)}| = p

τ(i)
h . This concludes

that PCRh is fair.

Efficient Allocation of Privilege Capacity: Consider a set of students Ī ⊆ I. If

Ī ≤ qh, then PCRs
h(Ī; β,Eh) = Ī and PCRs

h(Ī; β,Eh)[i] = π(i) for all i ∈ Ī. Hence, PCRh

efficiently allocates privilige capacities when |Ī| ≤ qh. Suppose |Ī| > qh and the privilege

selection procedure terminates in Step 1.K. Suppose i ∈ PCRs
h(Ī; β,Eh). First note that if

i /∈ Rk for all k ≤ K, then PCRα
h(Ī; β,Eh)[i] = π(i). Hence, if PCRα

h(Ī; β,Eh)[i] = π(i)+β,

then i ∈ Rk for some k < K. Then, by definition, π(i) < σk where σk = min{πb
k(j) : j ∈

Ak}. Lemma 1 implies that admission score of all students in PCRs
h(Ī; β,Eh) are weakly

greater than σk, and therefore π(i). Hence, there does not exist a student k ∈ PCRs
h(Ī; β,Eh)

such that π(i) > PCRα
h(Ī; β,Eh)[k]. This concludes that PCR satisfies efficient allocation

of privileges.

Proof for Part b:

On the contrary, suppose Dh be a choice rule satisfying all these three properties and it

selects a different outcome for some set of applicants Ī, i.e., Ds
h(Ī; β,Eh) ̸= PCRs

h(Ī; β,Eh).

First, notice that, if |Ī| ≤ qh, then any qh-acceptant choice rule selects all applicants in

Ī. Hence, Ds
h(Ī; β,E

D
h ) ̸= PCRs

h(Ī; β,Eh) implies |Ī| > qh.

By following the substeps of the privilege selection step of PCR, we will show the con-

tradiction. Let 1.K be the last substep of the privilege selection under PCR.

We start with Step 1.1 of PCR. Since |Ī| > qh, R1 = T 1 ̸= ∅ and B2 ̸= ∅. Let

χ1 = T 1 \ B2, i.e., the set of rejected students who did not get bonus points at the end of

Step 1.1. By the definition of PCR and Lemma 1, students in χ1 will not be included in Ak

in any further Step 1.k. Since PCRs
h(Ī; β,Eh) = AK , χ1 ∩ PCRs

h(Ī; β,Eh) = ∅. Moreover,
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any fair choice rule will not select a student from χ1. To see that, on the contrary, suppose

i ∈ Ds
h(Ī; β,Eh) ∩ χ1. Then, there exists at least one student j /∈ Ds

h(Ī; β,Eh) and j ∈ A1.

Notice that, π(j) > π(i). Hence, in order not to violate fairness, Dα
h (Ī; β,Eh)[i] = π(i) + β.

In particular, Dα
h (Ī; β,Eh)[i

′] = π(i′)+ β for any student i′ ∈ Ds
h(Ī; β,Eh)∩T 1. Recall that,

i ∈ T 1 \ B2, i.e., i did not receive bonus points at the end of Step 1.1 of PCR. Hence,

either p
τ(i)
h = 0 or there is another student î such that τ (̂i) = τ(i), τ (̂i) = B2 ⊂ T 1 and

Dα
h (Ī; β,Eh)(̂i) = π(̂i). As a result, π(̂i) > π(i) and î /∈ Ds

h(Ī; β,Eh)
s. This violates fairness.

Hence, χ1 ∩Ds
h(Ī; β,Eh) = χ1 ∩ PCRs

h(Ī; β,Eh) = ∅.

Next, we consider Step 1.2 of PCR. As explained above, all students in χ1 will be

rejected in this step. Let Γ2 = B2 ∩ R2, i.e., the set of students who received bonus points

at the end of Step 1.1 but rejected in Step 1.2 of PCR. Let κ2 = B2 ∩ A2, i.e., the set of

students who received bonus points at the end of Step 1.1 and included in A2 in Step 1.2.

Let Ω2 = A1 ∩R2, i.e., the set of students who were selected in Step 1.1 but rejected in Step

1.2.

First note that, for every student i ∈ A2 \B2, j ∈ Γ2, and k ∈ κ2, we have the following

relations: π(i) > π(k) > π(j), π(i) > π(j) + β, and π(k) + β > π(j) + β. By Lemma 1,

Ak ∩ Γ2 = ∅ for k > 2 (and therefore, PCRs
h(Ī; β,Eh) ∩ Γ2 = ∅). Moreover, in order not to

violate fairness, if there exists j ∈ Γ2 ∩Ds
h(Ī; β,Eh), then Dα

h (Ī; β,Eh)[j] = π(j) + β. Also

notice that, A2 \ B2 ⊆ Ds
h(Ī; β,Eh). Then, there exists at least |Γ2 ∩Ds

h(Ī; β,Eh)| students

in κ2 who are not included in Ds
h(Ī; β,Eh). Let κ̂ = |κ2 \ Ds

h(Ī; β,Eh)|. Then, each such

student cannot receive bonus to avoid fairness violation. Moreover, in order not to violate

efficient allocation of privilege if i ∈ A2 \ B2, k ∈ κ2 \ Ds
h(Ī; β,Eh) and τ(i) = τ(k), then

i cannot receive bonus when Dh is applied. Then, at least κ̂ students in Ω2 receive bonus

scores when Dh is applied to Ī in order not to violate fairness. Since all such students have

higher raw score than students in Γ2, they are all included in Ds
h(Ī; β,Eh). To sum up, if

Γ2 ∩Ds
h(Ī; β,Eh) ̸= ∅, then |Ds

h(Ī; β,Eh)| > qh, which is a contradition.

Also, notice that any student in κ2 cannot be selected by a fair choice rule without

receiving bonus points. This follows from the fact that |A1| = qh and all students in A1 have

higher raw scores than the ones in κ2. In particular, if a student in κ2 does not receive bonus

points at the end of Step 1.2 of PCR, then she will not be included in Ak for k > 2. For Step
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1.2, we next consider students in Ω2. First, notice that if a student i ∈ Ω2 does not receive

bonus points at the end of Step 1.2, then she will not be included in any further substeps of

PCR. Suppose that i ∈ Ds
h(Ī; β,Eh) and Dα

h (Ī; β,Eh)[i] = π(i). Then, all students accepted

in both Step 1.1 and Step 1.2 will be in Ds
h(Ī; β,Eh) and they will be admitted without bonus

points. Then, some of the students in κ2 will not be in Ds
h(Ī; β,Eh). As explained above,

there are at least |κ2 \Ds
h(Ī; β,Eh)| in Ω2 ∩Ds

h(Ī; β,Eh) admitted with bonus points. Then,

|Ds
h(Ī; β,Eh)| > qh, which is a contradiction. To sum up, if a student who is rejected in

Step 1.2 of PCR and does not receive bonus points at the end of this step will not be in

PCRs
h(Ī; β,Eh) and Ds

h(Ī; β,Eh).

Since for any Step 1.k where k > 2, we only need to consider the students included in

Ak and students start to receive bonus points in the previous step, we can apply the same

reasoning as above. All other students cannot be included in Ds
h(Ī; β,Eh). Moreover, as

explained above in Step 1.K students who are not in AK and start to receive bonus points

in Step 1.K−1 cannot be in Ds
h(Ī; β,Eh). Then, we can show that any student not included

in PCRs
h(Ī; β,Eh) cannot be included in Ds

h(Ī; β,Eh).

Proof of Proposition 2. On the contrary, suppose |Cs
h(Ī; β,Eh) ∩ Î| < |Ds

h(Ī; β,Eh) ∩ Î|.

Since Ch is qh-acceptant, |Cs
h(Ī; β,Eh)| = min{qh, |Ī|}. If |Ī| ≤ qh, then |Cs

h(Ī; β,Eh) ∩ Î| =

|Î| ≥ |Ds
h(Ī; β,Eh) ∩ Î|. Hence, we consider the case qh < |Ī|. When qh < |Ī|, we have

|Cs
h(Ī; β,Eh)| = qh. Then, we have at least two students i ∈ Î and j ∈ Ī \ Î such that

i ∈ Ds
h(Ī; β,Eh)\Cs

h(Ī; β,Eh) and j ∈ Cs
h(Ī; β,Eh)\Ds

h(Ī; β,Eh). Without loss of generality,

let i and j be such students with the lowest raw scores. Then, weak fairness and the fact that

j /∈ Î imply that π(j) > Cα
h (Ī; β,Eh)[i] = π(i) and Dα

h (Ī; β,Eh)[i] = π(i) + β > π(j). Since

Ch is fair and efficiently allocates privileges, there exist p
τ(i)
h students from τ(i) in Ī ∩ Eh

with higher raw scores than π(i) and lower raw scores than π(j) who receive bonus scores

when Ch is applied to Ī. Given i receives bonus under Dh at least one student k from τ(i)

who receives bonus under Ch does not receive bonus under Dh. Recall that, π(k) > π(i)

and k ∈ Eh. Since π(j) > π(k) = Ds
h(Ī; β,Eh)[k] and j /∈ Ds

h(Ī; β,Eh), k /∈ Ds
h(Ī; β,Eh).

However, selecting i with a lower score than k violates the weak fairness of Dh.
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Proof of Proposition 3. Since PCR is qh-acceptant, if |Ī| ≤ qh, then |PCRs
h(Ī; β,Eh) ∩ Î| =

|PCRs
h(Ī; β̂, Eh) ∩ Î|.

Suppose |Ī| > qh. Since PCR is qh-acceptant, |PCRs
h(Ī; β,Eh)| = |PCRs

h(Ī; β̂, Eh)| =

qh. On the contrary, suppose that |PCRs
h(Ī; β,Eh) ∩ Î| < |PCRs

h(Ī; β̂, Eh) ∩ Î|. Then,

there exists at least two students i ∈ Ī \ Î and j ∈ Î, such that i ∈ PCRs
h(Ī; β,Eh) but

i /∈ PCRs
h(Ī; β̂, Eh), and j ∈ PCRs

h(Ī; β̂, Eh) but j /∈ PCRs
h(Ī; β,Eh).

Since i /∈ Î, PCRα
h(Ī; β,Eh)[i] = π(i). Hence, fairness implies that π(i) > π(j) and

π(j) + β̂ > π(i). Moreover, since j /∈ PCRs
h(Ī; β,Eh), i ∈ PCRs

h(Ī; β,Eh), β > β̂, and

π(j) + β̂ > π(i), we have PCRα
h(Ī; β,Eh)[j] = π(j). Then, fairness implies that there exists

at least one student k such that τ(k) = τ(j), π(k) > π(j), PCRα
h(Ī; β,Eh)[k] = π(k) + β,

PCRα
h(Ī; β̂, Eh)[k] = π(k), and k ∈ PCRs

h(Ī; β̂, Eh). Efficient allocation of privileges implies

that π(i) > π(k). Then, π(i) > π(k), k ∈ PCRs
h(Ī; β̂, Eh), i /∈ PCRs

h(Ī; β̂, Eh), and

PCRα
h(Ī; β̂, Eh)[k] = π(k) contradict the fairness.

Proof of Proposition 4. Let Î ⊆ Ī be the set of students who have the top qh−pmh raw scores

among students in Ī. Under SECh, students in Î are selected to fill the first qh − pmh seats,

i.e., open seats. Under the PCR, independent of who gets the bonus score, students in Î

belong to the top qh scoring students based on the updated scores after bonus scores are

added to the raw scores. Hence, by definition of PCR, students in Im ∩ Î do not receive a

bonus score under PCR. In particular, students in Î are never rejected in Step 1 of PCR.

Let Ĩ ⊆ Ī \ Î be the set of students who have the top pmh updated scores among students

in Ī \ Î such that under updated scores every student in Ī ∩ Im receives bonus scores. Under

SECh, students in Ĩ are selected to fill the remaining pmh seats. Let i ∈ Ĩ \ Im. Independent

of who gets the bonus score when PCR is applied, student i has one of the top qh students

based on the updated scores in Step 2. Hence, all students in Ĩ \Im will be selected by PCR.

Suppose i ∈ Ĩ ∩ Im and i is not selected by PCR. However, this contradicts the fairness of

PCR.

Proof of Theorem 2. Since PCR satisfies the LAD and substitutability conditions (Theorem

1), by Hatfield and Milgrom (2005), the DA-PCR is strategy-proof and stable.
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Since no student applies to an unacceptable school and PCR satisfies qh-acceptance, the

DA-PCR is individually rational and nonwasteful.

Notice that in the last step of the DA, each high school h considers all students weakly

preferring h to their match. Definitions of fairness for a choice rule and an assignment and

Theorem 1 imply fairness of the DA-PCR. Similarly, definitions of efficient allocation of

privileges for a choice rule and an assignment and Theorem 1 imply efficient allocation of

privileges of the DA-PCR.

Proof of Theorem 3. Consider an arbitrary problem (P, β, E). Let (µ̄, ᾱ) and (µ̂, α̂) be the

assignments of DA − PCR and Φ under problem (P, β, E), respectively. We show that,

under µ̂, a student cannot be assigned to a school that has rejected her in the calculation of

DA− PCR[P, β, E] = (µ̄, ᾱ).

Consider Step 1 of the calculation of DA−PCR[P, β, E]. If there is no student rejected

in this step, then our desired result follows, i.e., under µ̂, no student is assigned to a school

that has rejected her in the calculation of DA − PCR[P, β, E]. Suppose some student i is

rejected by some school h in Step 1. We will show that µ̂(i) ̸= h. On the contrary suppose

that µ̂(i) = h. We consider the application of PCR to the students applying to h in Step 1

of DA-PCR. Let Ī denote that students. Since PCR is qh-acceptant, |Ī| > qh. Let Ī
a be the

selected students by PCR, i.e., Īa = PCRs
h(Ī; β,Eh). Due to fairness of PCR, all students

in Īa ∩ Īτ(i) have higher raw score than π(i). As a result, since all such students rank h as

top choice, fairness of Φ implies that all such students are also in µ̂−1(h).

Consider a student j ∈ Īa such that PCRα
h(Ī; β,Eh)[j] = π(j). Then, any student who is

not selected or selected with bonus score under PCR has raw score less than π(j). Therefore,

π(i) < π(j). If PCRα
h(Ī; β,Eh)[i] = π(i) + β, then π(j) > π(i) + β and fairness of Φ implies

that µ̂(j) = h. If PCRα
h(Ī; β,Eh)[i] = π(i) and α̂(i) = π(i), then, since π(j) > π(i),

fairness of Φ implies that µ̂(j) = h. If PCRα
h(Ī; β,Eh)[i] = π(i) and α̂(i) = π(i) + β, then

there exists at least one student k such that τ(k) = τ(i), PCRα
h(Ī; β,Eh)[k] = π(k) + β,

α̂(k) = π(k) and µ̂(k) = h. By definition of PCR, π(j) > π(k). Then, fairness of Φ implies

that µ̂(j) = h. As a result, µ̂(i) = h implies that any student in Ī who is accepted by PCR

without bonus is in µ̂−1(h). Then, there exists at least one student j ∈ PCRs
h(Ī; β,Eh) such
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that PCRα
h(Ī; β,Eh)[j] = π(j) + β and j /∈ µ̂−1(h). As explained above, τ(j) ̸= τ(i). We

consider the following cases:

Case 1: PCRα
h(Ī; β,Eh)[i] = π(i) + β. Then, π(j) > π(i). Hence, if α̂(i) = π(i),

then Φ cannot be fair. Suppose α̂(i) = π(i) + β. Since π(j) + β > π(i) + β, in order

not to violate fairness, there are at least p
τ(j)
h students in µ̂−1(h) ∩ Iτ(j) receiving bonus

scores. Moreover, if there exists a student k ∈ PCRs
h(Ī , β, Eh) such that τ(k) = τ(j) and

PCRα
h(Ī , β, Eh)[k] = π(k), then k ∈ µ̂−1(h) and α̂(k) = π(k). This implies that the number

of students from τ(j) and in PCRs
h(Ī , β, Eh) is weakly less than the one in µ̂−1(h). Since

this is true for any such j, we have |µ̂−1(h)| > qh.

Case 2: PCRα
h(Ī; β,Eh)[i] = π(i). There are at least p

τ(i)
h students with type τ(i) who

receive bonus scores in the calculation of PCRh(Ī; β,Eh) and π(j) + β > π(i). We consider

two subcases:

Case 2.1: α̂(i) = π(i). Since π(j) + β > π(i), to avoid violation of fairness, there are

at least p
τ(j)
h students in µ̂−1(h) ∩ Iτ(j) receiving bonus scores. Moreover, due to efficient

privilege allocation, if there exists a student k ∈ PCRs
h(Ī , β, Eh)∩ Iτ(j) who does not receive

a bonus, then she is in µ̂−1(h) and still does not receive bonus. This implies that the number

of students from τ(j) and in PCRs
h(Ī , β, Eh) is weakly less than the one in µ̂−1(h). Since

this is true for any such j, we have |µ̂−1(h)| > qh.

Case 2.2: α̂(i) = π(i) + β. There is at least one student k ∈ Ī with type τ(i) such

that k ∈ µ̂−1(h), α̂(k) = π(k), and π(k) > π(i). Since PCR allocates privileges efficiently,

π(j) + β > π(k). To avoid violation of fairness, there are at least p
τ(j)
h students from τ(j) in

µ̂−1(h) who receive bonus scores. Moreover, due to efficient privilege allocation, if a student

who is in PCRs
h(Ī , β, Eh) and from τ(j) does not receive a bonus, then she is in µ̂−1(h)

and still does not receive bonus. This implies that the number of students from τ(j) and in

PCRs
h(Ī , β, Eh) is weakly less than the one in µ̂−1(h). Since this is true for any such j, we

have |µ̂−1(h)| > qh.

This concludes that there does not exist a student who is assigned to the school that

rejected her in the first step of DA-PCR under µ̂. Then, we can apply the steps described

above the following steps one by one and show the desired result.
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C Choice Rules of Current Mechanisms

In this section, we define choice rules that mimic the selection procedures of the high schools

in each step of the mechanisms used in practice. We represent these choice rules as 2-step

choice rules. As explained before, there might be different variants of these choice rules.

Below, we provide the definitions corresponding to the variants emphasized in Section 3.

CES: Recall that, under the CES mechanism, each middle school m selects a subset of

its own students, with size pmh , as eligible for the privilege by high school h. Let CESh =

(CESs
h, CESα

h) denote the choice rule for the CES mechanism. Given a set of applicants Ī,

CESh works as follows:

Step 1: Admission Score Profile Setting. Select pnh highest score students

from Ī \Eh and denote it by Īo. If |Īo| < pnh or pnh = 0, we set ch = 0. Otherwise,

set ch to the minimum score of students in Īo. Let Īp = {i ∈ Eh ∩ Ī : π(i) + β ≥

ch}. For each i ∈ Īp, set CESα
h(Ī; β,Eh)[i] = π(i) + β. For each i ∈ Ī \ Īp, set

CESα
h(Ī; β,Eh)[i] = π(i).

Step 2: Applicant Selection. Select the highest pnh scoring students under

(CESα
h(Ī; β,Eh)[i])i∈Ī and add them to CESs

h(Ī; β,Eh).

CAS-1: Under CAS-1, each middle school m with pmh > 0 sets all its students as

eligible for the privilege by high school h. That is, under CAS-1, Em
h = Im for every

middle school m with pmh > 0 and Em
h = ∅ for every middle school m with pmh = 0. Let

CAS1h = (CAS1sh, CAS1αh) denote the choice rule for CAS-1 mechanism. Given a set of

applicants Ī, CAS1h works as follows:

Step 1: Admission Score Profile Setting. Select pnh highest score students

from the set of normal applicants, i.e., Ī \ Eh, and denote it by Īo. If |Īo| < pnh

or pnh = 0, we set ch = 0. Otherwise, set ch to the minimum score of students

in Īo. For each middle school m, denote the subset of students in {i ∈ Īm \ Īo :

π(i) + β ≥ ch} and have highest pmh raw score among such students with Īpm. Let

Īp = ∪m∈M Īpm. For each i ∈ Īp, set CAS1αh(Ī; β,Eh)[i] = π(i) + β. For each

i ∈ Ī \ Īp, set CAS1αh(Ī; β,Eh)[i] = π(i).
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Step 2: Applicant Selection. Select the highest qh scoring students under

(CAS1αh(Ī; β,Eh)[i])i∈Ī and add them to CAS1sh(Ī; β,Eh).

CAS-2: Under CAS-2, each middle school m with pmh > 0 sets all its students as

eligible for the privilege by high school h. That is, under CAS-2, Em
h = Im for every

middle school m with pmh > 0 and Em
h = ∅ for every middle school m with pmh = 0. Let

CAS2h = (CAS2sh, CAS2αh) denote the choice rule for CAS-2 mechanism. Given a set of

applicants Ī, CAS2h works as follows:

Step 1: Admission Score Profile Setting. For each middle school m, denote

the subset of students in Īm ∩ Eh and have highest pmh raw score among such

students with Īpm. Let Īp = ∪m∈M Īpm. For each i ∈ Īp, set CAS2αh(Ī; β,Eh)[i] =

π(i) + β. For each i ∈ Ī \ Īp, set CAS2αh(Ī; β,Eh)[i] = π(i).

Step 2: Applicant Selection. Select the highest qh scoring students under

(CAS2αh(Ī; β,Eh)[i])i∈Ī and add them to CAS2sh(Ī; β,Eh).

We emphasize that these choice rules differ based on the privilege selection step. We

state the properties of these choice rules in the following proposition.

Proposition 5. Consider a high school h.

a) CESh, CAS1h, and CAS2h satisfy qh-acceptance, and therefore LAD.

b) CAS2h satisfies fairness and substitutes condition.

c) CESh, CAS1h, and CAS2h fail to satisfy efficient allocation of privileges. In addition,

CESh and CAS1h fail to satisfy fairness and substitutes condition.

Proof. a) Recall that, independent of the privilege selection procedure, any 2-step choice

rule is qh-acceptant and, therefore, satisfies LAD. Since we represent these three choice

rules as 2-step choice rules, they satisfy qh-acceptance, and therefore LAD.

b) By definition, CAS2h selects students by their admission scores in Step 2. Moreover,

if a student from some middle school m does not receive bonus score, then pmh students

from m with higher raw scores receive bonus score. Hence, CAS2h is fair.
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Consider an arbitrary set of students Ī. Suppose i ∈ (Ī \ CAS2sh(Ī; β,Eh)). Let

Î = Ī ∪ {j} and j /∈ Ī. A student not receiving bonus scores in Step 1 under the

calculation of CAS2h(Ī; β,Eh) will not receive bonus scores under the calculation of

CAS2h(Î; β,Eh). Moreover, the minimum admission score of the selected students

will weakly increase when we apply CAS2h to Î. Hence, i /∈ CAS2sh(Î; β,Eh), i.e., the

CAS2 choice rule is substitutable.

c) Example A.5 shows neither CAS1h nor CAS2h satisfies efficient allocation of privileges.

Example A.6 shows CESh does not satisfy efficient allocation of privileges. Example

A.7 shows both CESh and CAS1h fail to satisfy fairness and substitutes condition.

Example A.5. Let I = {i1, i2, i3}, Im = {i1, i2}, Im
′
= {i3}, Im

′′
= ∅, pmh = pm

′′

h = 1,

pm
′

h = 0 and qh = 2. Students’ raw scores are: π(i1) = 100, π(i2) = 40, and π(i3) = 50.

Let β = 20.

We apply CAS1h and CAS2h choice rules to I. Under both choice rules, in Step 1,

i1 will receive bonus score. As a result, in Step 2, i1 and i3 will be selected. It is easy

to see that i1 will have the highest admission score regardless of whether she receives

bonus scores or not. We could have selected one more student from m, which has a

privilege capacity at h, if we gave the bonus score to i2 instead of i1.

Example A.6. Let I = {i1, i2, i3, i4}, Im = {i1, i2}, Im
′
= {i3, i4}, pmh = 2, pm

′

h = 0

and qh = 3. Students’ raw scores are: π(i1) = 100, π(i2) = 40, π(i3) = 80, and

π(i4) = 50. Let β = 20. Let Em
h = {i1, i2}.

We apply CESh choice rule to I. In Step 1, i1 will receive bonus score. As a result, in

the application selection step, i1, i3, and i4 will be selected. It is easy to see that i1 will

have the highest admission score no matter whether she receives bonus scores or not.

We could have selected one more student from m, if we gave the bonus score to i2.

Example A.7. Let M = {m,m′,m′′}, I = {i1, i2, i3, i4, i5}, Im = {i1}, Im
′
= {i2},

Im
′′
= {i3, i4, i5}, pmh = pm

′

h = 1, pm
′′

h = 0, q = 3, and β = 30. Students’ raw scores

are: π(i1) = 50, π(i2) = 40, π(i3) = 55, π(i4) = 60, π(i5) = 90. Under CES, m and

m′ select their students as eligible for privilege.
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We first consider Ī = {i1, i2, i3, i4}. Under CESh and CAS1h, i1 and i2 receive bonus

scores in Step 1. Then, we have CESs
h(Ī; β,Eh) = CAS1sh(Ī; β,Eh) = {i1, i2, i4}.

Now, consider I = Ī ∪ {i5}. Under CES and CAS1h, neither i1 nor i2 receives bonus

scores in Step 1. Then, we have CESs
h(I; β,Eh) = CAS1sh(I; β,Eh) = {i3, i4, i5}.

Hence, both CAS1h and CESh fail to be substituable.

Notice that, under CES and CAS1, when I is considered, no student from m receives

bonus scores and π(i1) + β exceeds i3’s admission score. Hence, these choice rules fail

to be fair.

D Survey Validity

In this section, we discuss the validity of the survey data (also see Wang and Zhou 2024).

We conducted the survey in early May 2014, just two weeks before student submitted their

ROLs, so a shift in their preferences within that brief window seems unlikely. Students were

explicitly asked to report their true preferences over their attainable schools, and there was

no compelling reason for them not to honor this request.

Unlike typical surveys that aim to uncover students’ preferences regarding their favorite

choices (Budish and Cantillon 2012, Kapor et al. 2020), we did not ask students to simply

rank their favorite schools. Instead, we asked them to rank schools to which they thought

they might be admitted based on their true preferences.

Our survey design aims to prevent low-scoring students from ranking schools where they

have no chance of admission, despite the fact that they could include three schools with

low cutoffs in their ROLs. This approach seeks to minimize the underreporting of lower-

tier schools. However, if underreporting occurs, it may result in less accurate estimates of

preferences for lower-tier schools, making it difficult to distinguish between students’ prefer-

ences over these schools.46 Furthermore, we cannot ask students to rank too many schools

46For example, if there are four schools, namely A, B, C and D. Most students prefer school A over B.
Therefore, we can only infer preferences between A and B but not between lower-tier schools C and D.
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in the survey. In the admission procedure, students can choose from over 50 schools, includ-

ing public high schools, fine arts schools, and vocational schools.47 Generally, when asking

respondents to rank items according to their preferences, presenting respondents with too

many choices can lead to cognitive overload, resulting in lower response rates and decreased

accuracy (Groves et al. 2009). Therefore, asking students to rank five attainable schools

is a reasonable design. Table D.1 shows that all public high schools received substantial

representation in students’ responses. In particular, each of the three leftover schools was

chosen by more than 100 low-scoring students, while these schools were seldom mentioned

by high-scoring students.

The validity of our survey can also be confirmed from students’ responses. Figure 1 shows

the average admission cutoffs of schools chosen by students both in the survey and in their

ROLs. In the survey, the average cutoff gap between consecutive choices within each student

percentile group is around six points. The consistency between the first choices in the survey

and the ROLs implies that students prefer to apply to their favorite attainable schools. This

consistency, along with the small cutoff gaps among choices reported in the survey, provides

further evidence that the surveyed students accurately reported their five favorite attainable

schools.

E Details of the Empirical Estimation

In this section, we describe the approach to estimate students’ preferences (also see Wang

and Zhou 2024). The utility function of students in Equation (1) is similar to that in

Abdulkadiroğlu et al. (2017) and Agarwal and Somaini (2018), except that we do not present

the random coefficient model for estimating students’ heterogeneous preferences for observed

school characteristics, owing to our data’s limited variation. As a robustness check, we

present an alternative random coefficient model, which performs worse than the non-random

coefficient model in the out-of-sample tests. Note that the high school admission process

47Our analysis focuses on students whose scores exceed the threshold for admission to public high schools.
Students with scores below the threshold participate in a separate admission process, which takes place after
the public high school admissions are finalized. Since our survey was conducted before the entrance exam,
students could list any school in their survey responses.
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Table D.1: Schools’ Frequencies of Occurrence in the Survey

Students’ Score in Percentile
Above 90th 90th-80th 80th-70th Below 70th

School ID Total Freq. Freq. Freq. Freq. Freq.
141 904 415 249 148 92
142∗ 153 6 12 43 92
147 421 31 79 126 185
165† 98 38 47 11 2
166† 82 11 33 33 5
167 1330 387 380 326 237
169† 152 57 70 21 4
173 129 9 20 43 57
177† 133 30 69 27 7
179 1080 100 231 358 391
180† 90 5 38 27 20
181∗ 193 10 23 45 115
183 677 331 152 102 92
184∗ 409 27 71 128 183
185 1652 322 415 485 430
186 1219 168 302 393 356
187 1155 393 342 251 169
188 412 53 92 129 138
200† 57 19 31 7 0

Notes: This table indicates the frequency of occurrence of each school in the survey. ∗

indicates the leftover schools. † indicates the special classes. The second column shows
the total frequency of occurrence, the third to sixth columns show the frequency of
occurrence in different student scoring groups by categorized by score percentile.
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in this city is citywide and does not consider the locations of school districts or homes.

Therefore, we assume that the school choice mechanism does not directly influence residential

decisions in the city.

We use the survey data to estimate student preferences. The advantage of survey data is

that our estimates can proceed without having to account for students’ strategic behavior

when they submit their ROLs. Recall that each surveyed student ranked five schools that

she believed herself capable of attending. This procedure implies that the student first selects

the schools for where admission is possible and then ranks them. That process complicates

our construction of a model showing how these students select schools in the first place. For

example, if a school with a high admission cutoff does not make the surveyed student’s list,

then it is difficult to distinguish between (a) her preferring the listed schools to the focal

school and (b) her thinking that admission to the high–cutoff school is not possible. From

the evidence presented in Appendix D, we conclude that the survey responses represent

students’ true relative preferences—that is, conditional on their belief in the possibility of

admission. To simplify the estimation process, we focus on the rankings of the listed schools

(i.e., without considering the unlisted schools). In other words, we do not attempt to infer

the relative ranks of listed and unlisted schools. This approach renders the estimate less

efficient, but the estimation is consistent when surveyed students report their true relative

rankings. For example, suppose student i lists high school h1 before h2 in her survey; these

two high schools’ admission cutoffs are Sh1 and Sh2 , respectively. Then the probability that

i prefers h1 to h2 conditional on these two schools being attainable to her, is Pr(ui,h1 >

ui,h2|α̃i,h1 > Sh1 ∩ α̃i,h2 > Sh2), where α̃i,h denotes i’s estimated admission score to school h.

This conditional probability equals to the unconditional probability, i.e.,

Pr(ui,h1 > ui,h2|α̃i,h1 > Sh1 ∩ α̃i,h2 > Sh2) =
Pr(ui,h1 > ui,h2 ∩ α̃i,h1 ≥ Sh1 ∩ α̃i,h2 ≥ Sh2)

Pr(α̃i,h1 ≥ Sh1 ∩ α̃i,h2 ≥ Sh2)

=
Pr(ui,h1 > ui,h2)Pr(α̃i,h1 ≥ Sh1 ∩ α̃i,h2 ≥ Sh2)

Pr(α̃i,h1 ≥ Sh1 ∩ α̃i,h2 ≥ Sh2)

= Pr(ui,h1 > ui,h2). (2)

The second equality follows from the fact that students’ beliefs about the admission proba-

bility only affect whether researchers can observe students’ preferences in the survey, but do
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not affect the relative positions of these preferences. For example, suppose that student i’s

true preference over all schools is h1Pih2Pih3Pi . . . , i.e., she prefers hk to hk′ when k < k′.

If the selected set of schools in the survey is h5Pih8Pih12, then the relative rank of any two

of these schools still preserves the relationship: hkPihk′ with k < k′, regardless of how these

schools are selected into the survey.

In short, our approach is based on the assumption that the process of selecting the

feasible set is independent of preferences and the preference ranking among schools satisfies

the independence of irrelevant alternatives (IIA). Thus, the rankings are independent of the

set of schools selected, as long as the top five schools in a feasible set are chosen. Eq.(2)

indicates that the relative preference between any two schools is independent of the set of

schools picked in the survey. Note that we do not assume the selection of feasible schools

in the survey is independent of students’ scores or that students with the same scores select

the same set of schools.

Using the survey data, we apply the rank-ordered logit model to estimate coefficients.

Given a surveyed student i’s ranked school list (h1, . . . , hl) of length l ≤ 5, we conclude that

h1Pih2 · · ·Pihl. The joint probability of these choices is

Pr(ui,h1 > ui,h2 > · · · > ui,hl
) =

l−1∏
k=1

eûi,hk

eûi,hk + eûi,hk+1 + · · ·+ eûi,hl

,

where ûi,h is the deterministic component of ui,h or ui,o; and the log-likelihood function can

be written as

logL(β) =
n∑

i=1

l−1∑
k=1

ûi,hk
−

n∑
i=1

l−1∑
k=1

log

( l∑
s=k

eûi,hs

)
.

Then we can estimate coefficients using maximum likelihood estimation.
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F Supplement Summary Statistics and Empirical Re-

sults

Table F.1: School Characteristics

Number Mean S.D. Max Min
Number of high schools 13
Number of special classes∗ 6
Number of high schools provide privileges 8
Admission capacity of high schools 400 136.6 600 80
Privilege capacity of high schools† 247.25 104.72 390 26
Privilege capacity/total capacity† 0.61 0.11 0.65 0.33
Reputation 82.4 11.2 97 65.7
Number of Middle schools 44
Number of Middle schools receive privileges 43
Privilege capacity of middle schools‡ 45.3 19.2 79 11
Received privilege/total graduates‡ 0.14 0.01 0.18 0.12
Total privilege capacity 1,946
Total admission capacity 5,560

Notes: ∗ the capacity of every special class is 40. † only considers the high schools providing privilege
capacities. ‡ only considers the middle schools receiving privilege capacities.

Table F.2: ROLs and Assignments

Privileged Students Normal Students
No. Percent No. Percent

Rank Ordered Lists
3 Schools 1,789 91.93% 3100 93.71%
2 Schools 148 7.61% 189 5.71%
1 Schools 9 0.46% 19 0.57%
Assignment Results
1st Choice 1,760 90.44% 875 26.45%
2nd Choice 60 3.08% 1,290 39%
3rd Choice 55 2.83% 565 17.08%
Rejected by all 3 71 3.65% 578 17.47%
Total observations 1,946 3,308
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Table F.3: Whole Sample vs. Survey Sample

Whole Sample Survey Sample
Score Distributions
High-Scoring (>90th) 24.7% 23.5%
Medium-Scoring ( 80th-90th) 50.5% 52.2%
Low-Scoring (<70th) 24.8% 24.4%

Mean S.D. Mean S.D.
Total 579.5 25.1 576.9 576.5
Assignment Results
1st Choice 51% 51.6%
2nd Choice 26.2% 26%
3rd Choice 11.4% 11.7%
Rejected by all three choices 11.4% 10.6%
Average School Cutoffs in ROLs

1st Choice 2nd Choice 3rd Choice 1st Choice 2nd Choice 3rd Choice
>90th 607.4 587.2 542.6 606.9 582.3 543.3
80th-90th 601.1 572.3 539.1 600.8 569.4 539.3
70th-80th 592.8 563.7 537.4 592.3 562.4 537.4
<70th 581 553.3 535.9 580.2 551.8 536.4

Notes: Due to scheduling conflicts, some middle schools did not participate in our survey. In this table, we compare the survey sample
with the whole sample to determine if our survey accurately represents the whole sample. The first panel shows the score distribution of
the whole sample and the survey population. Students are categorized by score percentile. The second panel indicates the assiginment
results of the whole sample and the survey sample. Third panel indicates the average admission cutoffs of schools chosen by the whole
sample and the survey sample in ROLs. Students are grouped into four categories by score percentile.

Table F.4: Survey Length

Privileged Students Normal Students
Freq. Freq. Percent

5 schools 683 900 63.75%
4 schools 130 242 14.98%
3 schools 97 130 9.14%
2 schools 126 175 12.12%
Total 1036 1447

Notes: This table indicates how many schools are listed by surveyed
students.
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Table F.5: Admission Cutoffs

School ID True Cutoffs Predicted Diff.
(1) (2) (3)

141 605.0 600.5 4.5
142* 535.0 535.0 0.0
147 558.0 562.2 -4.2
165† 609.0 612.2 -3.2
166† 595.0 598.9 -3.9
167 593.5 590.3 3.2
169† 604.0 608.7 -4.7
173 552.0 555.0 -3.0
177† 600.5 600.8 -0.3
179 573.5 572.7 0.8
180† 584.5 590.4 -5.9
181* 535.0 535.0 0.0
183 611.0 607.5 3.5
184* 535.0 535.0 0.0
185 583.0 579.9 3.1
186 576.0 578.4 -2.4
187 596.5 593.4 3.1
188 580.0 580.5 -0.5
200† 607.0 612.2 -5.2

Notes: This table indicates the out-of-sample test
for the schools’ cutoffs. The full mark is 665. The
threshold is 535 in 2014. ∗ represents the leftover
school with cutoff equal to the threshold. † repre-
sents the special class.

Table F.6: Admission Patterns (%)

True Data Predicted Diff.
Normal 1st Choice 26.45 28.59 -2.14
Normal 2nd Choice 39 32.96 6.04
Indexed 1st Choice 90.44 93.8 -3.36
Indexed 2nd Choice 3.08 1.28 1.8

Notes: This table indicates the out-of-sample tests of the
matching patterns for the 1st and 2nd choices for both nor-
mal and privileged students in the ROLs.
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Table F.7: Admission under Different Matching Mechanism in the Counterfactual Analysis

CES CAS-2 DA-PCR
Top high Moderate high Top high Moderate high Top high Moderate high

20%
Top middle schools 578.8 706.5 573.8 712.4 548.3 723.0
Upper median middle schools 221.1 601.2 220.3 602.8 240.9 578.9
Lower median middle schools 145.1 283.6 148.7 281.3 149.9 290.1
Bottom middle schools 56.1 120.6 58.2 123.4 61.9 128.1
40%
Top middle schools 568.2 715.9 552.9 713.8 512.7 731.3
Upper median middle schools 217.4 604.5 219.8 587.2 245.8 558.9
Lower median middle schools 148.9 277.6 157.5 282.4 166.3 283.4
Bottom middle schools 66.5 122.0 70.8 136.6 76.3 146.4
60%
Top middle schools 533.9 711.7 510.1 699.9 461.6 737.7
Upper median middle schools 222.3 573.7 223.1 541.6 265.0 511.1
Lower median middle schools 164.0 282.5 178.6 306.9 187.5 306.3
Bottom middle schools 80.8 152.1 89.2 171.6 86.9 164.9

Notes: This table shows the number of students admitted to top and moderate high schools from middle schools of different levels in

the counterfactual analysis. The results are presented for privilege capacities of 20%, 40%, and 60% across the three panels.

Figure F.1: Score distributions of the privileged students vs. all students in two schools

(a) A top-ranked middle school (School 111) (b) A bottom-ranked middle school (School 62)

Notes: These histograms display the raw scores of all students and the raw scores of privileged students from
the same middle school. These two schools have comparable size of graduates.

G Simulations in Counterfactual Analysis

In this section, we outline the simulation procedure used for both the counterfactual analysis

and the out-of-sample test. For each mechanism, the reported results are based on the

average of 3,000 simulations. To calculate matching outcomes under different mechanisms,

the procedure is described as follows.48

48We would like to highlight that the CES used in the counterfactual analysis differs from that in the
out-of-sample test. Therefore, the simulation procedure for the former is presented in Part 2, while that for
the latter is described in Part 3.
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Part 1. Generate utility functions

For each student i, we draw a value of |H| dimensional vector of errors εi from type I extreme

value distribution. Note that |H| is the number of public high schools in the students’ choice

set. Label the draw εdi with d and the elements of the draw as εdi1, ..., ε
d
i|H|, where d denotes

the dth draw from a total number of draws. Then we calculate the utility function as,

ud
i,h = ûi,h + εdih, where ûi,h is the deterministic part of the utility function, i.e., student i’s

utility from getting into public high school h (the parameters come from Column (3) and

(4) of Table 4).

Part 2. Run the matching mechanisms in the counterfactual anal-

ysis

Since our theoretical results are based on a complete information environment and apply to

the general case—where the privilege bonus can be applied to any choice in the ROL—we

adopt this setup in the counterfactual analysis.

The DA-PCR and the CAS-2:

Since both the DA-PCR and CAS-2 mechanisms are strategy-proof, we treat students’

true preferences over all schools as their reported ROLs.49 Each student is allowed to list all

high schools in their ROL. We then apply the matching algorithm outlined in Section 4.3

for DA-PCR and the algorithm in Section 3.2 for CAS-2 to match students to schools.

The CES in the counterfactual analysis:

To align with our theoretical results, we use the DA as the base mechanism and allow the

privilege bonus to apply to any choice in the ROL. Note that CES is not strategy-proof even

if the CES choice rules are embedded to DA, thus it is difficult to calculate a pure strategy

of all students under the complete information environment. Instead, we use the following

way to simplify the simulation.

• Step 1. In the early selection stage, each middle school follows a sequential order based

on students’ exam scores,50 allowing students to choose their privileges in turn. When

49Under CAS-2, we allow students to use their privilege bonus for any choice.
50As noted in Section 6.2, since students’ rankings are not observable at this stage, we use exam scores as

a proxy for their rankings within their middle schools.
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student i makes her decision, she lists all high schools according to her true preferences

and calculates the expected payoff for each still-available privilege from these schools.

From student i’s perspective, we assume she uses the schools’ admission cutoffs from

the previous year as her prior belief. She anticipates her exam score to be mi + ηi,

where mi represents either her mock exam score or her true ability (used to estimate

her exam score), and ηi captures the uncertainty. We also assume ηi is i.i.d. and follows

a normal distribution, N(0, δ). Since mi cannot be directly observed in the data, we

use the student’s actual exam score, π(i), as a proxy for mi. For simplicity, we set

δ = 20, which corresponds to 3% of the full score. Student i then selects the privilege

from the high school that offers the maximum expected payoff.

• Step 2. In the normal admission stage, each student reports her true preferences over

all high schools and receives the privilege bonus from the high school that is selected

from the early selection stage. Then students are matched to high schools following

the CES mechanism.

Note that, due to the complexity of calculating the pure strategy equilibrium under our

theoretical setup, the resulting matching outcome is not an equilibrium outcome. How-

ever, since our goal is to highlight the weaknesses of the CES in the matching process, this

simplified analysis does not undermine any of our conclusions or counterfactual analysis.

Part 3. Run the CES in the out-of-sample test

In the out-of-sample test in Section 7.1, we aim to mimic students’ strategic behavior in re-

ality. To achieve this, we simulate an incomplete information environment (e.g., Calsamiglia

et al. 2020; Wang and Zhou 2024), where students face uncertainty about their exam scores

and maximize their expected payoffs.

Similar as described in Part 2. From the perspective of student i, he anticipates her exam

score to be π̃i+ ηi, where π̃i is i’s expected exam score, such as her mock exam score, and ηi

is i.i.d. and follows a normal distribution N(0, δ) with δ = 20. In the simulation, we use her

true score π(i) as a proxy. Given any school’s admission cutoff, students can then calculate

their admission probability and the expected payoff for any potential ROL.
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To align with the CES used in our focal city, we adopt the Chinese parallel mechanism

with a permanency execution vector of (2,1) as the base mechanism. privileged students,

who receive a bonus from school h, are required to list h as their first choice in their ROL.

We then calculate the equilibrium outcomes as follows:

• Step 1. Use the admission cutoffs from the previous year as the first prior belief for all

the students.

• Step 2. For a given belief of the admission cutoffs, calculate each student’s optimal

strategy as follows:

– Step 2.1 Calculate the expected payoff of each student’s potential ROLs as a

normal student without any privileges, then choose the optimal ROL for each

student with the highest payoff. If the optimal ROL is not unique, then randomly

select one of these optimal ROLs. Here the admission probability of each school

used to calculate the expected payoff comes from the belief of the admission

cutoffs, which is the true school cutoff from the previous iteration (See Step 3),

and students’ expected scores are their true exam scores.

– Step 2.2 In the early selection stage, for each high school h, each student i cal-

culates the expected payoff if she becomes a privileged student of h. This payoff

is calculated as follows: Given the belief of the admission cutoffs, i must indicate

h as her first choice in the ROL, then calculate the optimal option for the rest

choices in the ROL, considering that she will receive bonus points for her first

choice. When the optimal choice is not unique, we randomly select one.

– Step 2.3 Each student will form an optimal strategy as follows: In the early

selection stage, student i ranks all the high schools based on the expected payoffs

calculated in Step 2.2 as a privileged student, together with her optimal ROL as a

normal student calculated in Step 2.1. In the normal admission stage, if i becomes

a privileged student of h, then she will submit the optimal ROL calculated in Step

2.2 for h. If i is a normal student, then she will submit the optimal ROL calculated

in Step 2.1.
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• Step 3. Given students’ optimal strategies, run the matching algorithm of the CES to

match students to high schools. The matching outcome from this step will generate

new admission cutoffs for schools. Use these cutoffs as the new belief to replace the

previous one.

• Step 4. Rank all the students by their exam scores. Start this step with the first

student, and let k = 1. Fix all the other students’ strategy, and calculate the k-th

student’s optimal response (using the method in Step 2) to the belief generated in

Step 3. If at least one deviation exists, either in the early selection stage or in the

normal admission stage, for this student to strictly increase her expected payoff, then

proceed to Step 5. If no deviation exists for this student to become strictly better off,

then repeat Step 4 for the k + 1-th student and set k = k + 1 when k < N . When

k = N , the algorithm will proceed to Step 6.

• Step 5. Choose the optimal strategy of the k-th student in Step 4 as the new strategy

in the submitted ROL. If the optimal strategy is not unique, then randomly choose

one of optimal strategies. Thereafter, proceed to Step 3.

• Step 6. The current students’ strategies are the equilibrium strategies. The matching

outcome is the equilibrium outcome.
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