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Abstract

This paper investigates how certain relationship between observed and counterfac-

tual distributions serves as an identifying condition for distributional treatment effects

under endogeneity, and shows that this condition holds in a range of nonparametric

models for treatment effects. To this end, we first provide a novel characterization

of prevalent assumptions restricting treatment heterogeneity in the literature, namely

rank similarity. Our characterization demonstrates the stringency of this assumption

and allows us to relax it in a economically meaningful way, resulting in our identifying

condition. It also justifies the quest of richer exogenous variations in the data (e.g.,

multi-valued or multiple instrumental variables) in exchange for the weaker identify-

ing condition. The primary goal of this investigation is to provide empirical researchers

with tools that are robust and easy to implement but still yield tight policy evaluations.
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1 Introduction

This paper investigates how certain relationship between observed and counterfactual distri-

butions serves as an identifying condition for distributional treatment effects under endogene-

ity, and shows that this condition holds in a range of nonparametric models for treatment

effects. To this end, we first provide a novel characterization of prevalent assumptions restrict-

ing treatment heterogeneity in the literature, namely rank similarity. Our characterization

demonstrates the stringency of this assumption and allows us to relax it in a economically

meaningful way, resulting in our identifying condition. It also justifies the quest of richer

exogenous variations in the data (e.g., multi-valued or multiple instrumental variables) in

exchange for the weaker identifying condition.

The primary goal of this investigation is to provide empirical researchers with (i) a frame-

work where validity of identifying conditions prescribes the parameters of interest, (ii) tools

for identifying and estimating treatment effects that are flexible enough to allow for treat-

ment heterogeneity, but that still yield tight policy evaluation and are easy to implement,

and (iii) guidance on data collection that leads to drawing meaningful causal conclusions.

Our analysis centers on the relationship between observed and counterfactual distribu-

tions, specifically on the preservation of first-order stochastic dominance (FOSD) of one

distribution over the other to their corresponding counterfactual distributions: for arbitrary

compliance types t, t′ ∈ T induced by induced by individuals’ potential treatment responses

to instrumental variables (IVs), if

Y1|t ≺FOSD Y1|t′ (1.1)
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then

Y0|t ≺FOSD Y0|t′, (1.2)

where Yd denotes the counterfactual outcome given treatment D = d.1 This condition relates

a partial order between observed distributions to that of the counterfactual distributions.

For the sake of illustration, consider binary instrument Z ∈ {0, 1} that affects the treatment

participation in a monotone way (Imbens and Angrist (1994)) and T = {C,AT,NT} where

C, AT , and NT stand for compliers, always-takers, and never-takers, respectively. Let

Y be the observed outcome given by Y ≡ DY1 + (1 − D)Y0. A simple algebra shows that

Y1|AT ≺FOSD Y1|C is equivalent to the following expression of the distribution of observables

P [Y ≤ ·|D = 1, Z = 0] ≤ P [Y ≤ ·|D = 1, Z = 1] (1.3)

and Y0|AT ≺FOSD Y0|C is equivalent to the following expression of the distribution of coun-

terfactual

P [Y0 ≤ ·|D = 1] ≤ P [Y ≤ ·, D = 0|Z = 1]− P [Y ≤ ·, D = 0|Z = 0]

P [D = 1|Z = 0]− P [D = 1|Z = 1]
. (1.4)

Therefore, (1.4) provides an informative upper bound for P [Y0 ≤ y|D = 1] (and a symmetric

analysis provides a lower bound). Note P [Y0 ≤ y|D = 1] is a necessary component in

calculating the distributional treatment effect, such as the quantile treatment effect on the

treated (QTT). We also provide an analogous analysis to bound other treatment parameters

(e.g., the average effects). The proposed bounds can be informative for practitioners provided

(1.3) holds. Although (1.3) may seem restrictive, this is not generally the case when Z departs

from a scalar binary variable. In this sense, our approach underscores the significance of

searching for richer exogenous variations of IVs, such as multi-valued or multiple instrumental

1For r.v.’s A and B, let A ≺FOSD B denotes FB(t) ≤ FA(t) where FA and FB are CDFs of A and B,
respectively.
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variables, as a means of trading for less restrictive identifying conditions. Still, the benefit of

our approach can be manifested without requiring continuous or large support. We also show

that the preservation of FOSD (i.e., if (1.1) then (1.2)) yields a testable restriction under

selection monotonicity.

Nonparametric identification of treatment effects using IVs with limited support has been

a challenging goal even when the focus is on mean treatment effects, such as the average

treatment effect (ATE) and the ATE on the treated (ATT). In an influential line of literature,

Manski (1990), Manski (1997), and Manski and Pepper (2000), among many others, construct

sharp bounds on the ATE under a set of assumptions on the directions of treatment effects

and treatment selection while allowing instruments to be invalid in a specific sense. Even with

valid instruments, however, bounds on the ATE are typically wide and uninformative to yield

precise policy prediction. The local ATE (LATE) (Imbens and Angrist (1994)) and local QTE

(Abadie et al. (2002)) have been a popular alternative when researchers are equipped with

discrete IVs and impose a monotonicity assumption on the selection to treatment. However,

the local group for which the treatment effect is identified may not be the group of policy

interest. Therefore, the extrapolation of the local parameters becomes an important issue

for policy analysis (e.g., treatment allocation), in which case the identification challenge still

remains (see e.g., Mogstad et al. (2018), Han and Yang (2023)).

Another prevalent approach in the literature is to restrict the degree of treatment hetero-

geneity via rank similarity (or rank invariance). This assumption is shown to have substantial

identifying power for distributional treatment effects and the ATE and used in various non-

parametric contexts implicitly or explicitly (Heckman et al. (1997), Chesher (2003, 2005),

Chernozhukov and Hansen (2005), Vytlacil and Yildiz (2007), Jun et al. (2011), Shaikh

and Vytlacil (2011), D’Haultfœuille and Février (2015), Torgovitsky (2015), Vuong and Xu

(2017), Han (2021) to name a few). However, their plausibility can be questionable in many

applications (e.g., Maasoumi and Wang (2019)) and testing methods are proposed as one

reaction to the skepticism (Frandsen and Lefgren (2018), Dong and Shen (2018), Kim and

Park (2022)).
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In this paper, we clarify the stringency of the rank similarity assumption by characterizing

its restrictions on the relationship between observed and counterfactual distributions. In

particular, we show that the strong preservation of FOSD (i.e., (1.1) holds if and only if

(1.2) holds) is equivalent to rank linearity, a slight relaxation of rank similarity that allows

for a linear transformation of an individual’s rank to the counterfactual rank. By doing so, we

establish the connection between the rank similarity condition in Chernozhukov and Hansen

(2005)’s structural IV model and its corresponding assumptions in terms of counterfactual

outcomes within Rubin (1974)’s causal framework. Furthermore, we propose less stringent

FOSD preservation conditions that allow us to identify certain treatment parameters. We

provide economic justifications for weak preservation of FOSD by proposing a variety of non-

separable structural IV models that imply the FOSD preservation condition, but that do not

satisfy rank similarity.

Based on our identification strategy, we develop a statistical linear programming (LP) ap-

proach to estimate optimal bounds on the treatment parameters. These bounds are defined as

optimal values of LP (with a discrete outcome) or semi-infinite LP (SILP) (with a continuous

outcome). To address the infeasibility of the SILP problem, we transform the optimization

problem by (i) randomizing the constraints or (ii) invoking duality and approximates the

Lagrangian measure using sieves.

The next section formally introduces the main identifying conditions (i.e., the preservation

of stochastic ordering) and shows how to construct bounds on treatment effects. Section 3

introduces structural models as sufficient conditions for the identifying conditions presented

in the previous section. Section 4 discusses how to systematically calculate bounds using

linear programming and, finally, Section 5 presents numerical studies. In the Appendix,

Section A shows that point identification can be achieved with sufficient (but not infinite)

variation of IVs. The main text focuses on the QTE. The conditions for bounding the ATE

are provided in Section B. Section C contains more examples of structural models as sufficient

conditions and Section D holds further discussions on linear programming. All proofs are

collected in Section E.
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2 Key Conditions and Bounds on Treatment Effects

Let D ∈ {0, 1} be the observed treatment indicator, which represents the endogenous decision

of an individual responding to IVs Z. We assume Z is either a vector of binary IVs or a multi-

valued IV, which takes L distinct values: Z ∈ Z ≡ {z1, ..., zL}. Multi-valued or multiple IVs

are common in many observational studies (e.g., natural experiments typically provide more

than one instrument) and experimental studies (e.g., randomized control trials where multiple

treatment arms are implemented either simultaneously or sequentially).2 One of the main

purposes of this paper is to motivate this type of IVs from the perspective of identification

analysis. Let Y1 be the counterfactual outcome of being treated and Y0 be that of not being

treated. They can be either continuously or discretely distributed. The observed outcome

Y ∈ Y ⊆ R satisfies Y = DY1 + (1 −D)Y0. Finally, X ∈ X ⊆ Rk denotes other covariates

that may be endogenous.

Define QTE and ATE for treated and untreated populations. For d ∈ {0, 1} and x ∈ X ,

define

QTEτ (d, x) = QY1|D,X(τ |d, x)−QY0|D,X(τ |d, x)

and

ATE(d, x) = E[Y1 − Y0|D = d,X = x].

These parameters are what researchers and policymakers are potentially interested. The

unconditional QTE and ATE (with respect toD = d) can be recovered when these parameters

are identified for all d ∈ {0, 1}. Throughout the paper, we maintain that the IVs are valid

and satisfy the exclusion restriction.

Assumption Z. For d ∈ {0, 1}, Z ⊥ Yd|X.

2See Mogstad et al. (2021) for a recent survey.
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2.1 Introducing Key Conditions

Now we introduce the main identifying condition of this paper that establishes the mapping

between observed and counterfactual distributions.

Condition S1. For arbitrary non-negative weight vectors (w1, ..., wL) and (w̃1, ..., w̃L) that

satisfy
∑L

`=1 w` =
∑L

`=1 w̃` = 1, if

L∑
`=1

w`P [Y1 ≤ ·|D = 1, Z = z`, X = x] ≤
L∑
`=1

w̃`P [Y1 ≤ ·|D = 1, Z = z`, X = x], (2.1)

then

L∑
`=1

w`P [Y0 ≤ ·|D = 1, Z = z`, X = x] ≤
L∑
`=1

w̃`P [Y0 ≤ ·|D = 1, Z = z`, X = x]. (2.2)

Importantly, note that the probabilities in (2.1) are observed as Y1 = Y given D =

1. The mapping between observed and counterfactual distributions has been considered in

Vuong and Xu (2017), whose insights we share. Suppose that Z ⊥ (Yd, Dz)|X additionally

holds, where Dz is the counterfactual treatment given Z = z. Under this assumption, each

probability term in Condition S1 satisfies P [Yd ≤ ·|D = 1, Z = z`, X = x] = P [Yd ≤

·|Dz` = 1, X = x]. Note that the event {Dz` = 1} (for ` = 1, ..., L) captures a type of

compliance to a given Z = z`. Then,
∑L

`=1w`P [Yd ≤ y|Dz` = 1, X = x] can be viewed as

a mixture distribution of Yd weighted across different compliance types, and thus resulting

in a distribution for a hypothetical population with a specific composition of compliance

types. Therefore, Condition S1 posits that the FOSD ordering between the distributions of

Y of two compliance compositions is preserved between the distributions of Y0 of the same

pair of compliance compositions. For example, when L = 2 and defiers are excluded as a

possible compliance type (e.g., by Imbens and Angrist (1994)’s monotonicity assumption for

the LATE), then Condition S1 simply describes the stochastic ordering between always-takers

and compliers. When L ≥ 3, however, the composition becomes more complex as illustrated

in Section 2.3. Note that Condition S1 is not an “if and only if” statement. It would be
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stringent to impose the preservation of ordering to hold in both directions. In fact, such

a condition is closely related to the rank similarity condition (Chernozhukov and Hansen

(2005)); see Section 3 for full details.

2.2 Bounds on Treatment Effects

Now, we show that Condition S1 is useful in constructing bounds on FY0|D,X(·|1, x) and

subsequently on QTEτ (1, x). Let

Γ(x) ≡

{
(γ1, ..., γL) ∈ RL :

L∑
`=1

γ` = 0 and
L∑
`=1

γ`p(z`, x) = 1

}
.

Theorem 2.1. Suppose that Assumption Z and Condition S1 hold. Fix x ∈ X . For γ ≡

(γ1, ..., γL) and γ̃ ≡ (γ̃1, ..., γ̃L) in Γ(x), suppose

P [Y ≤ ·|D = 1, X = x] ≤
L∑
`=1

γ`P [Y ≤ ·, D = 1|Z = z`, X = x], (2.3)

L∑
`=1

γ̃`P [Y ≤ ·, D = 1|Z = z`, X = x] ≤ P [Y ≤ ·|D = 1, X = x]. (2.4)

Then FY0|D,X(·|1, x) is bounded by

−
L∑
`=1

γ̃`P [Y ≤ ·, D = 0|Z = z`, X = x] (2.5)

≤ P [Y0 ≤ ·|D = 1, X = x]

≤ −
L∑
`=1

γ`P [Y ≤ ·, D = 0|Z = z`, X = x] (2.6)

The proof of this theorem and most of other proofs are contained in the appendix. Note

that there can be multiple γ and γ̃ in Γ(x) that satisfy (2.3) and (2.4), respectively. Therefore,

we can further tighten the bounds as follows.

Corollary 2.1. Suppose that Assumption Z and Condition S1 hold. Fix x ∈ X . Then,
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FY0|D,X(·|1, x) is upper and lower bounded by

FUB
Y0|D,X(y|1, x) ≡ min

γ∈Γ(x):(2.3) holds
−

L∑
`=1

γ`P [Y ≤ y,D = 0|Z = z`],

FLB
Y0|D,X(y|1, x) ≡ max

γ̃∈Γ(x):(2.4) holds
−

L∑
`=1

γ̃`P [Y ≤ y,D = 0|Z = z`].

Theorem 2.1 and Corollary 2.1 highlight the identifying power of multi-valued IVs. The

key step in Theorem 2.1 to calculate the bounds is to find γ (resp. γ̃) in Γ(x) that satisfies

(2.3) (resp. (2.4)), which serves as a rank condition. Note that this condition is verifiable

with the data. Corollary 2.1 additionally implies that the bounds can be further tightened

if one increases the degree of freedom in the feasible set Γ(x) by increasing L, in which case

(2.3)–(2.4) are more likely to hold. See below and Section 5 for related discussions.

Finally, note that

QTEτ (1, x) = QY |D,X(τ |1, x)−QY0|D,X(τ |1, x)

and the bounds on the second quantity on the right-hand side can be calculated using the

worst case bounds for the conditional quantile (Manski (1994), Blundell et al. (2007)):

QLB
Y0|D,X(τ |1, x) ≤ QY0|D,X(τ |1, x) ≤ QUB

Y0|D,X(τ |1, x),

whereQLB
Y0|D,X(τ |1, x) andQUB

Y0|D,X(τ |1, x) are the τ -th quantiles of FLB
Y0|D,X(·|1, x) and FUB

Y0|D,X(·|1, x),

respectively. Although the bounds on ATE(1, x) = E[Y |D = 1, X = x]−E[Y0|D = 1, X = x]

can be calculated based on E[Y0|D = 1, X = x] =
∫ 1

0
QY0|D,X(τ |1, x)dτ , we present later how

the bounds on the ATE(d, x) can be calculated under a weaker condition than Condition S1.

Remark 2.1 (Constraints on γ). In Theorem 2.1, Γ(x) imposes two restrictions on γ: (i)∑L
`=1 γ` = 0 and (ii)

∑L
`=1 γ`p(z`, x) = 1. First, note that the existence of such a sequence

requires the relevance of the IV: p(z`, x) 6= p(z`′ , x) for some z`, z`′. Second, note that (ii) is a

condition implied by either (2.3) or (2.4) with y →∞. Restriction (ii) implicitly introduces a
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scale normalization. That is, for any γ satisfying
∑L

`=1 γ`p(z`, x) 6= 0, we can always rescale

it as γ∗ = γ∑L
`=1 γ`p(z`,x)

so that
∑L

`=1 γ`p(z`, x) = 1. It can be shown that this normalization

does not affect the bounds obtained in (2.5) and (2.6).

If we assume the converse of Condition S1, we can calculate bounds on the QTE(0, x).

Condition S0. For arbitrary non-negative weight vectors (w1, ..., wL) and (w̃1, ..., w̃L) that

satisfy
∑L

`=1 w` =
∑L

`=1 w̃` = 1, if

L∑
`=1

w`P [Y0 ≤ ·|D = 0, Z = z`, X = x] ≤
L∑
`=1

w̃`P [Y0 ≤ ·|D = 0, Z = z`, X = x], (2.7)

then

L∑
`=1

w`P [Y1 ≤ ·|D = 0, Z = z`, X = x] ≤
L∑
`=1

w̃`P [Y1 ≤ ·|D = 0, Z = z`, X = x]. (2.8)

Theorem 2.2. Suppose that Assumption Z and Condition S0 hold. Fix x ∈ X . For γ ≡

(γ1, ..., γL) and γ̃ ≡ (γ̃1, ..., γ̃L) in Γ(x), suppose

P [Y ≤ ·|D = 0, X = x] ≤
L∑
`=1

γ`P [Y ≤ ·, D = 0|Z = z`, X = x], (2.9)

L∑
`=1

γ̃`P [Y ≤ ·, D = 0|Z = z`, X = x] ≤ P [Y ≤ ·|D = 0, X = x]. (2.10)

Then FY1|D,X(·|0, x) is bounded by

−
L∑
`=1

γ̃`P [Y ≤ ·, D = 1|Z = z`, X = x] (2.11)

≤ P [Y1 ≤ ·|D = 0, X = x]

≤ −
L∑
`=1

γ`P [Y ≤ ·, D = 1|Z = z`, X = x]. (2.12)

The proof of this theorem is analogous to that of Theorem 2.1. The bounds on QTEτ (0, x)

can be derived symmetrically as in the case of QTEτ (1, x) and thus are omitted. Notably,
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which treatment parameter we can obtain bounds for is determined by which identifying

condition we impose (i.e., Condition S1 or S0). In Section 3, we investigate this aspect within

economic structural models. Finally, in the Appendix, we introduce weaker conditions to

bound average treatment effects.

2.3 Understanding Key Conditions

We further explore Conditions S1 and S0 to give additional interpretation and discuss testa-

bility. Suppress X = x to simplify our discussions. Under Z ⊥ (Yd, Dz), the inequalities for

FOSD in Conditions S1 and S0 can be rewritten as

L∑
`=1

w`P [Yd ≤ y|Dz` = 1] ≤
L∑
`=1

w̃`P [Yd ≤ y|Dz` = 1]. (2.13)

Recall, Theorem 2.1 relies on the existence of a sequence γ = (γ1, ..., γL) satisfying
∑L

`=1 γ` =

0,
∑L

`=1 γ`p(z`, x) = 1, and the inequality (2.3), that is, P [Y ≤ y|D = 1] ≤
∑L

`=1 γ`P [Y ≤

y,D = 1|Z = z`] for all y. Note that (2.3) is a special case of (2.13) with d = 1, which

is the “if” part of Condition S1. Let p(z) ≡ (D = 1|Z = z). Only for the purpose of this

subsection, assume the generalized version of the LATE monotonicity introduced in Imbens

and Angrist (1994):

For ` 6= `′, either Dz` ≥ Dz`′
a.s. or Dz` ≤ Dz`′

a.s. (2.14)

Under (2.14), {Dz` = 1} in (2.13) are a mix of individuals who are compliers (C) and

always-takers (AT). For Z ∈ Z = {z1, ..., zL}, let (z`−1, z`)-compliers be compliers induced

by the change of Z from z`−1 to z`. When L = 3 and (z1, z2, z3) = (0, 1, 2), for exam-

ple, {(0, 1)-C} = {i : D0,i = 0, D1,i = D2,i = 1} is the set of eager compliers (E-C) and

{(1, 2)-C} = {i : D0,i = D1,i = 0, D2,i = 1} is the set of reluctant compliers (R-C), following

the language of Mogstad et al. (2021). Also, {AT} = {i : D0,i = D1,i = D2,i = 1} is the

set of always-takers. Let p` for ` = {2, ..., L} is the proportion of (z`−1, z`)-compliers and let
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p1 ≡ P [AT]. We show that (2.13) establishes the FOSD relationship between the mixtures

of observed distributions of Y conditional on various always-takers and compliers groups:

Lemma 2.1. Suppose (2.14) holds and Z ⊥ (Yd, Dz) and 0 < p(z`) < 1 for all `. (i) Then,

(2.13) is equivalent to

ω1P [Yd ≤ y|AT] +
L∑
`=2

ω`P [Yd ≤ y|(z`−1, z`)-C]

≤ ω̃1P [Yd ≤ y|AT] +
L∑
`=2

ω̃`P [Yd ≤ y|(z`−1, z`)-C]

for some non-negative ω` and ω̃` for ` = 1, ..., L. (ii) Moreover, suppose L ≥ 2 and w1 +

p1

∑L
`=2

w`
p(z`)

= w̃1 + p1

∑L
`=2

w̃`
p(z`)

. Then (2.13) with w 6= w̃ can be expressed as

L∑
`=2

ω`P [Yd ≤ y|(z`−1, z`)-C] ≤
L∑
`=2

ω̃`P [Yd ≤ y|(z`−1, z`)-C] (2.15)

for some non-negative ω` and ω̃` for ` = 2, ..., L.

To illustrate the intuition of Lemma 2.1(i), consider L = 3 and (z1, z2, z3) = (0, 1, 2).

Then,

{D1 = 1} = {D0 = 1, D1 = 1, D2 = 1} ∪ {D0 = 0, D1 = 1, D2 = 1} = {AT} ∪ {E-C},

because {D0 = 1, D1 = 1, D2 = 0} = ∅ and {D0 = 0, D1 = 1, D2 = 0} = ∅. Also,

{D2 = 1} = {AT} ∪ {E-C} ∪ {R-C} and {D0 = 1} = {AT}.

Lemma 2.1(ii) can be used as the basis to test (2.13) and thus Condition S1. The intuition

is as follows. With a binary IV, the marginal distributions of Y1 and Y0 are identified for

compliers (Abadie et al. (2002)). This result holds for any complier group defined by a

pair of instrument values, such as {(z`−1, z`)-C} in the lemma. Then, when L ≥ 2, we can

find vectors w and w̃ in RL
+ that assign zero weights to the distributions for AT and still

make (2.13) a non-trivial inequality where all the associated distributions for compliers are
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identified for all d = 1, 0.

Remark 2.2 (Conditions w.r.t. Compliance Types). Motivated from the discussion of this

section, we can rewrite Condition S1 (and all the relevant conditions) solely in terms of

compliance types. Let T ≡ {D(z1), ..., D(zL)} be a random vector that indicates a particular

compliance type with its realized value in {0, 1}L ≡ T̃ . For example, when L = 2 (i.e., binary

IV), T ≡ (D(0), D(1)) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} ≡ T̃ . Since D and Z are discrete, T is

naturally a discrete random vector. Note that this framework do not rely on any selection

models, and therefore T captures all possible compliance types given D and Z. Then Condition

S1 can be rewritten into the following slightly stringent one:

Fix x ∈ X . For arbitrary weight functions w : T̃ × X → R+ and w̃ : T̃ × X → R+ such

that
∑

t∈T̃ w(t, x) =
∑

t∈T̃ w̃(t, x) = 1, if

∑
t∈T̃

w(t, x)FY1|T,X(·|t, x) ≤
∑
t∈T̃

w̃(t, x)FY1|T,X(·|t, x),

then ∑
t∈T̃

w(t, x)FY0|T,X(·|t, x) ≤
∑
t∈T̃

w̃(t, x)FY0|T,X(·|t, x).

Then, the weighted sum in each inequality can be interpreted as the distribution of Yd

weighted across all compliance types.

3 Structural Models as Sufficient Conditions

We show that Conditions S1 and S0 can be justified in a range of nonparametric structural

models for the counterfactual outcomes. To this end, it is useful to first present a stronger

version of Condition S1 (labeled as S∗1). This version of the condition is motivated by the

discussion in Remark 2.2. To state this condition, we introduce a general model for treatment

selection:
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Assumption D. Assume that

D = h(Z,X, η), (3.1)

where η ∈ T can be an arbitrary vector.

Note that Assumption D permits a more general compliance behavior than what a weakly

separable model D = 1{η ≤ h(Z,X)} does (or equivalently, (2.14) as shown in Vytlacil

(2002)). Although Assumption D is not necessary for our main procedure, it is useful in

defining the types of compliance behavior (i.e., treatment selection mechanism) via the un-

observable η. Under this assumption, the following condition implies Condition S1.3 Let

FYd|η,X(y|t, x) ≡ P [Yd ≤ y|η = t,X = x].

Condition S∗1. Fix x ∈ X . For arbitrary weight functions w : T ×X → R+ and w̃ : T ×X →

R+ such that
∫
w(t, x)dt =

∫
w̃(t, x)dt = 1, if

∫
w(t, x)FY1|η,X(·|t, x)dt ≤

∫
w̃(t, x)FY1|η,X(·|t, x)dt,

then ∫
w(t, x)FY0|η,X(·|t, x)dt ≤

∫
w̃(t, x)FY0|η,X(·|t, x)dt.

Because w(·, x) is non-negative and
∫
w(t, x)dt = 1, note that

∫
w(t, x)FYd|η,X(·|t, x)dt

is a mixture of conditional CDFs (with w(·, x) being the mixture weight) and thus itself

a CDF. In other words, defining a type distribution Wx(t) =
∫ t
w(η, x)dη, we can write∫

w(t, x)FYd|η,X(·|t, x)dt =
∫
FYd|η,X(·|t, x)dWx(t).

4 Therefore, Condition S∗1 assumes that

the FOSD ordering of Y1 distributions conditional on η conforming to two different type

distributions (Wx(·) and W̃x(·)) is preserved in the ordering of Y0 distributions conditional

on the corresponding type distributions.

The following lemma establishes the sufficiency of Condition S∗1 for Condition S1.

3More precisely, it implies the condition in Remark 2.2, which in turn implies Condition S1.
4Since η has arbitrary dimensions, the integral with respect to t is understood to be a multivariate integral.
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Lemma 3.1. Under Assumption D, Condition S∗1 implies Condition S1.

Symmetrically, Condition S0 has a corresponding stronger condition, which is omitted.

Now, we relate the conditions with the structural models, which provide additional intu-

itions for the conditions. We present a leading model here and the rest in the Appendix. For

arbitrary r.v.’s A and Ã, let A
d
= Ã denote FA = FÃ.

Model 1. (i) Assumption D holds and

Y = q(D,X,UD), (3.2)

where q(d, x, ·) is continuous and monotone increasing and UD = DU1 + (1 − D)U0, (ii)

conditional on (η,X, Z), Ud
d
= U + ξd where ξd ⊥ (η, U), (iii) conditional on (X,Z), ξ0 is

(weakly) more or less noisy than ξ1, that is, ξ0
d
= ξ1 + V for some V independent of ξ1.

Note that U is the source of endogeneity in that it allowed to be dependent on η. Model

1(ii)–(iii) implies that U0
d
= U1 + V conditional on (η,X, Z). Importantly, Model 1 nests

the model in Chernozhukov and Hansen (2005) as a special case. This can be shown as

follows. First, they assume Model 1(i) and, conditional on (X,Z), either rank similarity

(FU0|η = FU1|η) or rank invariance (U0 = U1).5 Then, by taking ξd = 0 for all d in Model

1(ii), we have U0
d
= U1

d
= U conditional on (η,X, Z), which proves the claim.

Model 1(iii) assumes that the unobservable under the counterfactual status of being

treated are more (or less) dispersed than that under the counterfactually untreated sta-

tus. Although this may seem stringent, it is substantially weaker than rank similarity (or

invariance) and can be plausible in various scenarios. Before providing examples of these

scenarios, we first establish the connection between Model 1 and Condition S∗1 (and thus

Condition S1 by Lemma 3.1).

Theorem 3.1. Under Assumptions Z, Model 1 (with ξ0 being weakly more noisy than ξ1)

implies Condition S∗1 and thus Condition S1.

5Note that rank similarity and rank invariance are observationally equivalent under Model 1(i) in that
they produce the same distribution of observables (Chernozhukov and Hansen (2013)).
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Analogous to Theorem 3.1, one can readily show that Model 1 with ξ0 being weakly less

noisy than ξ1 implies Condition S0.

Now we provide examples that are consistent with Model 1.

Example 1 (Auction). Consider online and offline auctions. Let Y be the bid (which sub-

sequently forms revenue) and D be participating in an auction with different format (D = 1

if online and = 0 if offline). Let Ud
d
= U + ξd be the valuation of the item where U is the

common valuation (correlated with D) and ξd is format specific random shocks satisfying

ξd ⊥ (η, U). We assume that bidders have limited information on certain features of the

auction that affect valuation (e.g., they know the distribution of ξd but not its realization).

In this example, what would justify var(ξ0) > var(ξ1)? It may be the case that, in the offline

auction, bidders are more emotionally affected by other bidders, which makes their bids more

variable.

Example 2 (Insurance). We are interested in the effect of insurance on health outcomes. Let

Y be the health outcome and D be the decision of getting insurance (D = 1 being insured).

Let Ud
d
= U + ξd be underlying health conditions where U captures health conditions known

to participant (and thus correlated with D) while ξd is health conditions not fully known a

priori and thus random. In this example, var(ξ0) > var(ξ1) may hold because insurance by

definition ensures a certain level of health conditions.

Example 3 (Vaccination). Similar to Example 2, suppose that D is instead getting vacci-

nation (of an established vaccine). Again, Ud
d
= U + ξd is health conditions where U cap-

tures conditions known to participant (and correlated with D) and ξd is vaccination-status-

specific health conditions, which are not fully known a priori. Then, similarly as before

var(ξ0) > var(ξ1) may hold because, when not vaccinated, one is exposed to the risk of a

serious illness, while vaccination ensures a certain level of immunity.

The scenarios in Examples 1–3 justify Condition S1 via Theorem 3.1. Then, under Condi-

tion S1, Theorem 2.1 and Corollary 2.1 yield bounds on QTEτ (1, x), the effects of treatment

for those who take the treatment. The final example illustrates the converse case.
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Example 4 (Medical Trial). In contrast to Example 3, suppose the treatment itself is risky.

That is, let D be participating in a frontier medical trial (D = 1 being participation). In this

case, var(ξ0) < var(ξ1) is more plausible because, with a newly developed medicine, there is

the high risk of unknown side effects.

The scenario in Example 4 justifies Condition S0, under which bounds on QTEτ (0, x),

the effects of treatment for those who abstain from it, can be obtained.

Model 1 and these examples show how a certain treatment parameter may be more rel-

evant for policy than others depending on the plausibility of assumptions. Consider the

problem of a policymaker. Assume that the policymaker concerns risk-averse individuals,

which are typically the majority. For this policymaker, a candidate policy would aim at

providing “insurance,” which can be either literally insurance or policies that serve as insur-

ance (e.g., vaccination, subsidies). Therefore, she would be interested in understanding the

treatment effects for the target individuals that are risk-averse. Our procedure provides a

statistical tool for such a policymaker. That is, under Model 1, our procedure has the ability

to bound the treatment effects for individuals with D = d such that var(ξd) < var(ξ1−d).

This is a unique feature of our setting: the plausibility of assumptions dictates the parameters

of interest, which then can be terms as assumption-driven treatment parameters.

A remaining question one might have is as follows. How much Condition S1 has to

be strengthened to be equivalent to rank similarity? To answer this question, recall that

Condition S∗1 is stronger than Condition S1 (by Lemma 3.1). We strengthen Condition S∗1

further by making it an “if and only if” condition:

Condition S∗. Fix x ∈ X . For arbitrary weight functions w : T ×X → R+ and w̃ : T ×X →

R+ such that
∫
w(t, x)dt =

∫
w̃(t, x) = 1, it holds that

∫
w(t, x)FY1|η,X(·|t, x)dt ≤

∫
w̃(t, x)FY1|η,X(·|t, x)dt
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if and only if ∫
w(t, x)FY0|η,X(·|t, x)dt ≤

∫
w̃(t, x)FY0|η,X(·|t, x)dt.

It turns out that we can establish the following result.

Theorem 3.2. Model 1(i) with FU0|η,X,Z = FU1|η,X,Z (i.e., rank similarity) implies Condition

S∗.

This theorem highlights the stringency of rank similarity relative to Condition S1, which

is used in our bound analysis. The proof is trivial so omitted. It is worth noting that the

converse of Theorem 3.2 is not true. Here is a counter-example for the converse statement.

Definition 3.1 (Rank Linearity). Assume Model 1(i) and

FY0|η,X,Z(·|t, x, z) = λ(·, x)FY1|η,X,Z(ψ(·, x)|t, x, z) (3.3)

for every t ∈ T , x ∈ X and z ∈ Z, where ψ(·, x) : Y → Y, a one-to-one and onto mapping,

is strictly increasing, and λ(·, x) : Y → R+ is consistent with FYd|η,X,Z being a proper CDF.

This rank linearity implies Condition S∗, which is trivial to show. However, rank linearity

is weaker than rank similarity as the latter is a special case of the former. To see this,

conditional on Z = z (and suppressing X), (3.3) with Model 1(i) yields FU0|η(q
−1(0, y)|t) =

λ(y)FU1|η(q
−1(1, ψ(y))|t). Then, by choosing λ(y) = 1 and ψ(y) = φ(y) ≡ q(1, q−1(0, y))

(i.e., the counterfactual mapping (Vuong and Xu (2017))), we have FU0|η(·|t) = FU1|η(·|t).6

In general, while the ranks between Y0 and Y1 should have the same distribution under rank

similarity, their distributions can be different under rank linearity because of the multiplying

term λ(·) in FU0|η(u|t) = λ(q(0, u))FU1|η(u|t). However, note that the the difference cannot be

entirely arbitrary as λ(·) does not depend on t, and thus rank linearity still poses substantive

restrictions.

6Alternatively, rank similarity can be equivalently stated as FY0|η(y|t) = FY1|η(φ(y)|t) (where φ(y) is
strictly increasing), which can be derived from (3.3) by choosing λ(y) = 1 and ψ(y) = φ(y).
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Interestingly, rank linearity is equivalent to Condition S∗. The following theorem is one

of the main contributions of this paper. Suppress (Z,X) for simplicity.

Theorem 3.3. Suppose for any CDF F1(·) supported on R, there always exists a function

c : T → R such that

Fd(·) =

∫
c(t)FYd|η(·|t)dt. (3.4)

Then Condition S∗ holds if and only if there exits some ψ(·) that is strictly increasing and

λ(·) > 0 such that

FY0|η(·|t) = λ(·)FY1|η(ψ(·)|t) for t ∈ T . (3.5)

We prove this equivalence in the Appendix. The proof with continuous Yd is more involved

than that with discrete Yd; we recommend that the interested reader reads the latter first.

The condition (3.4) is only introduced in this theorem to establish the relationship between

rank linearity (and hence rank similarity) and the range of identifying conditions of this

paper, and it is not necessary for our bound analysis. This condition would be violated when

there is no endogeneity (i.e., Yd ⊥ η), which is not our focus.

Condition S∗ is crucial in bounding QTEτ (x) = QY1|X(τ |x) − QY0|X(τ |x) unconditional

with respect to D = d. The “only if” part (i.e., Condition S1) will bound QY0|D=1(τ) and

thus QY0(τ) by Theorem 2.1, while the “if” part (i.e., Condition S0) will bound QY1|D=0(τ)

and thus QY1(τ) by the symmetric version of Theorem 2.1. The fact that Condition S∗ is

weaker than rank similarity illustrates the importance of rank similarity in the identification

of the QTE and ATE.

Remark 3.1 (Testability of the Conditions). It is immediate from Lemma 2.1(ii) that Con-

dition S∗ can be tested from the data when L ≥ 2 and under the LATE monotonicity assump-

tion. Given the established connection between Condition S∗ and rank similarity (Theorem

3.2), when Condition S∗ is refuted from the data, rank similarity can be refuted. This result

relates to the testability of rank similarity under LATE monotonicity (Dong and Shen (2018),

Kim and Park (2022)).
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Remark 3.2 (Conditions w.r.t. Compliance Types, continued). Continuing the discussion

in Remark 2.2, FU1|T,Z = FU0|T,Z (where T ≡ (D(0), D(1)) and X is suppressed) can be

viewed as an alternative rank similarity assumption. Because σ(T ) ⊂ σ(η) where σ(A) is a

σ-field generated by a random vector A, FU1|η,Z = FU0|η,Z implies FU1|T,Z = FU0|T,Z. Then

Chernozhukov and Hansen (2005)’s main testable implication ((2.6) in Theorem 1 of their

paper) can be equally derived under FU1|T,Z = FU0|T,Z, which clarifies the role of selection

mechanism in their analysis. To see this, let t ≡ (t0, t1) be the realization of T ≡ (D(0), D(1))

and assume Model 1(i). We have

P [Y ≤ q(D, τ)|Z = z] = P [q(D,UD) ≤ q(D, τ)|Z = z]

= P [UD ≤ τ |Z = z]

=
∑
t∈T̃

P [UD(z) ≤ τ |Z = z, T = t]P [T = t|Z = z]

but

∑
t∈T̃

P [UD(z) ≤ τ |Z = z, T = t]P [T = t|Z = z] =
∑
t∈T̃

P [Utz ≤ τ |Z = z, T = t]P [T = t|Z = z]

=
∑
t∈T̃

P [U0 ≤ τ |Z = z, T = t]P [T = t|Z = z]

= P [U0 ≤ τ |Z = z]

= τ,

where FU1|T,Z = FU0|T,Z is used in the second equality and U0 ⊥ Z (imposed in their paper) is

used in the last equality.

Note that a slightly weaker version of Condition S∗ can be stated by replacing η with T

and the integral with a summation. Then, analogous to Theorem 3.2, one can readily show

that FU1|T,Z = FU0|T,Z implies such a condition.
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4 Systematic Calculation of Bounds

In Theorem 2.1, there can be many γ’s that satisfy the condition (2.3) (and γ̃ for (2.4)),

especially with L ≥ 3. This motivates the use of optimization in calculating the bounds via

Corollary 2.1. We only focus on the upper bound and suppress X henceforth for brevity.

4.1 Semi-Infinite Programming

To simplify notation, let p(y, d) ≡ (p(y, d|z1), ..., p(y, d|zL))′ where p(y, d|z`) ≡ P [Y ≤ y,D =

d|Z = z`] and p(y|d) ≡ P [Y ≤ y|D = d]. Also, let 1 ≡ (1, ..., 1)′ and p ≡ (p(z1), ..., p(zL))′

with p(z) ≡ P [D = 1|Z = z] so that

Γ = {γ : γ′[ 1 p ] = [ 0 1 ]} ⊂ RL.

Consider the following linear semi-infinite programming for the upper bound on P [Y0 ≤

ȳ|D = 1]:

UB(ȳ) = min
γ∈Γp
−p(ȳ, 0)′γ (4.1)

s.t. p(y, 1)′γ ≥ p(y|1), ∀y ∈ Y (4.2)

Note that the condition (2.3) guarantees the feasible set is non-empty. Also note that this

condition is allowed to satisfy only almost everywhere (a.e.), which we suppress for simplicity.

This program is infeasible to solve in practice as there are infinitely many constraints. We

propose two approaches to approximate it with a linear program (LP).

4.2 Linear Program with Randomized Constraints

One approach to the semi-infinite program (4.1)–(4.2) is to approximate (4.2) using an i.i.d.

simulated sample {Yi}sni=1 as is done in the literature (e.g., Calafiore and Campi (2005)). An

obvious candidate of this sample would be {Yi}ni=1 with sn = n. Consider a sampled LP of
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the following:

UBn(ȳ) = min
γ∈Γ
−p(ȳ, 0)′γ (4.3)

s.t. p(Yi, 1)′γ ≥ p(Yi|1). ∀i = 1, ..., n (4.4)

In Section D of the Appendix, we show that the probability of violating the original con-

straints (4.2) by using (4.4) can be bounded by O(1/n).

4.3 Dual Program and Sieve Approximation

Another approach to the semi-infinite program (4.1)–(4.2) is to invoke its dual and approx-

imate the Lagrangian measure using sieve. With the constraint p(y|1) − p(y, 1)′γ ≤ 0, the

Lagrangian for (4.1)–(4.2) can be written as

L(γ,Λ, λ) = −p(ȳ, 0)′γ +

∫
Y

[p(y|1)− p(y, 1)′γ]dΛ(y) + λ′([ 1 p ]′γ − [ 0 1 ]′)

=

∫
Y
p(y|1)dΛ(y)− [ 0 1 ]λ+ (λ′[ 1 p ]′ −

∫
Y
p(y, 1)′dΛ(y)− p(ȳ, 0)′)γ

and

UB(ȳ) = min
γ∈RL

sup
Λ�0,λ∈R2

L(γ,Λ, λ),

where Λ is a non-negative (not necessarily probability) measure (i.e., Λ � 0) that assigns

weights to binding constraints. Therefore, we have the following dual problem:

Lemma 4.1. The dual problem of the primal problem of (4.1)–(4.2) is given by

ŨB(ȳ) = sup
Λ�0,λ∈R2

∫
Y
p(y|1)dΛ(y)− [ 0 1 ]λ (4.5)

s.t. [ 1 p ]λ−
∫
Y
p(y, 1)dΛ(y)− p(ȳ, 0) = 0. (4.6)
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Note that (4.6) has a finite number of constraints (i.e., L constraints). It is trivial to

show weak duality, ŨB(ȳ) ≤ UB(ȳ).7 Strong duality also holds because of the structure of

the problem (i.e., linearity in γ, continuity of p(·, d) and p(·|d)). We establish this in the

following theorem.

Assumption C. Y is compact.

Theorem 4.1. Suppose Assumption C holds and there is γ∗ ∈ {y : p(y, 1)′γ ≥ p(y|1)} such

that p(y, 1)′γ∗ > p(y|1). Then, if the primal solution UB(ȳ) is finite, then ŨB(ȳ) = UB(ȳ).

Note that Λ(y) is smooth as the feasible set of the primal problem is smooth due to

the smoothness of p(y|d) and p(y, d), which are CDFs. This motivates us to use sieve

approximation for Λ(y) to turn the dual into a linear programming problem. The smoothness

class for Λ(y) will be determined by the smoothness class of CDFs. Let Y is normalized to

be [0, 1] and λ(y) ≡ dΛ(y)/dy. Consider the following sieve approximation:

λ(y) ≈
J∑
j=1

θjbj(y),

where bj(y) ≡ bj,J(y) ≡

 J

j

 yj(1− y)J−j is a Bernstein basis function. Then, the LP can

be written as

ŨBJ(ȳ) = max
θ∈RJ+,λ∈R2

J∑
j=1

θjb
1
j − [ 0 1 ]λ

s.t. [ 1 p ]λ−
J∑
j=1

θjb1,j − p(ȳ, 0) = 0,

7This is because, by (4.1)–(4.2) and (4.5)–(4.6), we have

−p(ȳ, 0)′γ =

{∫
Y
p(y, 1)dΛ(y)− [ 1 p ]λ

}′

γ =

∫
Y
p(y, 1)′γdΛ(y)− λ′[ 1 p ]′γ

≥
∫
Y
p(y|1)dΛ(y)− λ′[ 0 1 ]′.
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or equivalently,

ŨBJ(ȳ) = max
θ∈RJ+,λ∈R2

θ′b1 − [ 0 1 ]λ (4.7)

s.t. [ 1 p ]λ−B1θ − p(ȳ, 0) = 0, (4.8)

where θ ≡ (θ1, ..., θJ)′, bd ≡ (bd1, ..., b
d
J)′ with bdj ≡

∫
Y bj(y)p(y|d)dy, bd,j ≡ (bd,j,1, ..., bd,j,L)′

with bd,j,` ≡
∫
Y bj(y)p(y, d|z`)dy, and Bd ≡ [ bd,1 · · · bd,J ] is an L × J matrix. Using

Bernstein polynomials to approximate infinite-dimensional decision variables is also used in

Han and Yang (2023).

Remark 4.1 (Local Approximation). The LP (4.7)–(4.8) may be more stable than the LP

(4.3)–(4.4). In terms of dual, the latter approach is equivalent to having
∑n

i=1 p(Yi|1)λi as an

approximation for
∫
Y p(y|1)λ(y)dy. This can be viewed as a crude local approximation that

involves a uniform kernel.

5 Numerical Studies

To illustrate the importance of multiple IVs and the informativeness of resulting bounds, we

conduct numerical exercises. We generate the data so that they are consistent with Model

1 and hence satisfy Condition S∗1. The variables (Y,D,Z) are generated in the following

fashion:

• Yd = q(d, Ud) = 1− d+ (d+ 1)Ud for Y = R, that is, Y1 = 2U1 and Y0 = 1 + U0

• (U, η) ∼ BV N((0, 0)′,Σ)

• V ∼ N(0, σ2
V ) and ξ1 ∼ N(0, σ2

ξ )

• ξ0 = ξ1 + V

• Ud = U + ξd

24



• Z ∼ Bin(L− 1, p)/(L− 1) ∈ [0, 1] with L ∈ {2, 3, 4, 5, 6, 7, 8}

• D = 1{π0 + π1Z ≥ η}

• Y = DY1 + (1−D)Y0

Here, Z is normalized so that the endpoints of the support are invariant regardless of the

value of L. This is intended to understand the role of the number of values Z takes while

fixing the role of instrument strength. Figures 1–3 presents the bounds on Pr[Y0 ≤ y|D = 1]

while varying L. The bounds are calculated using the approach proposed in Section 4.2. We

only report L ∈ {2, 5, 6} for succinctness. In these figures, the black solid line indicates the

true value of Pr[Y0 ≤ y|D = 1] and the red and blue crosses depict the upper and lower

bounds. Although the upper bound is a trivial upper bound for the CDF when L = 2,

it quickly becomes informative as L increases beyond 5. To put this in a context, this

corresponds to the number of instrument values that three binary IVs can easily surpass or

a single continuous IV.
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Figure 1: Bounds on Pr[Y0 ≤ y|D = 1] When L = 2

Figure 2: Bounds on Pr[Y0 ≤ y|D = 1] When L = 5

Figure 3: Bounds on Pr[Y0 ≤ y|D = 1] When L = 6
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A Point Identification

Point identification of QTEτ (d, x) and ATE(d, x) can be achieved as long as the stochastic

dominance ordering is preserved (i.e., Condition S1 or S0) and instruments have sufficient

variation in a specific sense. As is clear below, however, we do not require p(z) → 1 or

0 (i.e., instruments with large support). In this sense, our approach to point identification

complements the approach of identification at infinity (e.g., Heckman (1990)). To see this,

consider the following theorem.

Theorem A.1. Suppose that Assumption Z and Condition S1 hold. Fix x ∈ X . For γ ≡

(γ1, ..., γL) in Γ(x), suppose

P [Y ≤ ·|D = 1, X = x] =
L∑
`=1

γ`P [Y ≤ ·, D = 1|Z = z`, X = x]. (A.1)

Then FY0|D,X(·|1, x) is identified as

P [Y0 ≤ ·|D = 1, X = x] = −
L∑
`=1

γ`P [Y ≤ ·, D = 0|Z = z`, X = x] (A.2)

The key for this point identification result is that there exists γ such that (A.1) holds,

which is a stronger requirement than the inequality version (2.3). The equation (A.1) is more

likely to hold when L is large, that is, when instruments take more values. In particular, when

L→∞ (e.g., continuous Z), we may view that P [Y ≤ y|D = 1, X = x] is approximated as

P [Y ≤ y|D = 1, X = x] = lim
L→∞

L∑
`=1

γ`,Lp(z`, x)P [Y ≤ y|D = 1, Z = z`, X = x],

where
∑L

`=1 γ`,L = 0. Note that, although this does not demand an infinite support for

Z, it implicitly assumes that Z sufficiently influences the distribution of Y conditional on

(D,X) = (1, x) in a way that the resulting functions, P [Y ≤ y|D = 1, Z = z`, X = x],

generate P [Y ≤ y|D = 1, X = x]. Importantly, whether this is possible or not can be
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confirmed from the data.

Given Theorem A.1, we identify QTEτ (1, x) = QY |D,X(τ |1, x) − QY0|D,X(τ |1, x) where

QY0|D,X(τ |1, x) is a solution to τ = −
∑L

`=1 γ`P [Y ≤ ·, D = 0|Z = z`, X = x]. Similarly,

under Condition S0, we can identify FY0|D,X(·|1, x) and thus QTEτ (0, x). We omit this result

for succinctness.

It is worth comparing the point identification result with that in Chernozhukov and

Hansen (2005). The latter point identifies QTEτ (x) with a binary instrument by assuming

rank similarity. The result of this section suggests that the identification of QTEτ (x) can

alternatively be achieved when Conditions S1 and S0 both hold and the IVs satisfy (A.1).

To see the connection to rank similarity, note that rank similarity implies Condition S∗

(by Theorem 3.2), but the latter implies Conditions S1 and S0 that identify QTEτ (1, x)

and QTEτ (0, x), respectively, and thus QTEτ (x) jointly. In this way, the two approaches

enjoy different levels of the trade-off between restrictions on the heterogeneity and exogenous

variation.

B Conditions for Average Treatment Effects

To calculate bounds on ATE(1, x) and ATE(0, x), we introduce conditions that are weaker

that Conditions S1 and S0.

Condition S′1. For arbitrary non-negative weight vectors (w1, ..., wL) and (w̃1, ..., w̃L) that

satisfy
∑L

`=1 w` =
∑L

`=1 w̃` = 1, if

L∑
`=1

w`P [Y1 ≤ ·|D = 1, Z = z`, X = x] ≤
L∑
`=1

w̃`P [Y1 ≤ ·|D = 1, Z = z`, X = x], (B.1)

then

L∑
`=1

w`E[Y0|D = 1, Z = z`, X = x] ≤
L∑
`=1

w̃`E[Y0|D = 1, Z = z`, X = x]. (B.2)
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Condition S′1 can be used to bound the ATE(1, x). An analogous condition can be

imposed to bound ATE(0, x).

Condition S′0. For arbitrary non-negative weight vectors (w1, ..., wL) and (w̃1, ..., w̃L) that

satisfy
∑L

`=1 w` =
∑L

`=1 w̃` = 1, if

L∑
`=1

w`P [Y0 ≤ ·|D = 1, Z = z`, X = x] ≤
L∑
`=1

w̃`P [Y0 ≤ ·|D = 1, Z = z`, X = x], (B.3)

then

L∑
`=1

w`E[Y1|D = 1, Z = z`, X = x] ≤
L∑
`=1

w̃`E[Y1|D = 1, Z = z`, X = x]. (B.4)

C Other Structural Models as Sufficient Conditions

We present two more structural models that are not nested to Model 1 in the text. Model1(i)

are maintained in these models, that is, Y = q(D,X,UD) where q(d, x, ·) is continuous and

monotone increasing and D = h(Z,X, η).

Model 2. (ii) U0
d
= φ(U1, V ) conditional on (η,X) where V ⊥ (U1, η)|X and φ(·, v) is strictly

increasing for all v.

Model 2(ii) defines that U0 is “noisier” than U1. Therefore, Model 2 is weaker than the

model in Chernozhukov and Hansen (2005). Model 2 and Model 1 are not nested because,

in U0 = U1 + V of Model 1, V is not independent of U1. We show below that Model 2

implies Condition S1. Interestingly, Model 2(ii) with U0 = φ(U1, V ) (instead of “
d
=”) is a

generalization of the definition that U0 is “noisier” than U1 if U0 = U1 + V with U1 ⊥ V in

Pomatto et al. (2020, p. 1880).

Model 3. (ii) U0
d
= max{φ(U1), V } conditional on (η,X) where V ⊥ (U1, η)|X and φ(·) is

strictly increasing.
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We show below that Model 3 implies rank linearity. Model 3 can alternatively be defined

as follows: Y0
d
= max{φ(Y1), V } conditional on (η,X) where V ⊥ (Y1, η)|X and φ(·) is strictly

increasing. Then, this model also implies rank linearity with ψ(·) = φ−1(·) because

Pr[Y0 ≤ y|η,X] = Pr[φ(Y1) ≤ y, V ≤ y|η,X] = Pr[Y1 ≤ φ−1(y)|η,X] Pr[V ≤ y|X].

This model provides another interpretation of an insurance policy (D = 1) as Y1 = max{Y0, V }

guarantees at least Y0. Models 2 and 3 are not nested.

Lemma C.1. (i) Model 2 implies Condition S∗1; (ii) Model 3 implies rank linearity.

The proof of this lemma is contained in Section E.

D Bounding Violation Probability in Linear Program

with Randomized Constraints

Let h(γ, y) ≡ p(y|1) − p(y, 1)′γ. Following Calafiore and Campi (2005), define a violation

probability and a robustly feasible solution.

Definition D.1 (Violation probability). Let γ ∈ Γ be a candidate solution for (4.1)–(4.4).

The probability of violation of γ is defined as

V (γ) = P{Y ∈ Y : h(γ, Y ) > 0},

where {Y ∈ Y : h(γ, Y ) > 0} is assumed to be measurable.

Note that V (γ∗) = 0 where γ∗ is the solution to (4.1)–(4.4).

Definition D.2 (ε-level solution). For ε ∈ [0, 1], γ ∈ Γ is an ε-level robustly feasible solution

if V (γ) ≤ ε.

Then, we can show that the violation probability at the solution, denoted as γ̄n, to (4.3)–

(4.4) is on average bounded by 1/n.
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Proposition D.1. Let γ̄n be the solution to (4.3)–(4.4). Then,

EPn [V (γ̄n)] ≤ 1

n+ 1
,

where P n is the probability measure in the space Yn of the multi-sample extraction Y1, ..., Yn.

Corollary D.1. Fix ε ∈ [0, 1] and β ∈ [0, 1] and let

n ≥ 1

εβ
− 1.

Then, with probability no smaller than 1− β, the sampled LP (4.3)–(4.4) returns an optimal

solution γ̂n which is ε-level robustly feasible.

The above results implicitly assume a particular rule of tie-breaking when there are mul-

tiple solutions in the sampled LP (see Theorem 3 in Calafiore and Campi (2005)). There is

also discussions on no solution in the paper.

E Proofs

E.1 Proof of Lemma 3.1

Let p(z, x) ≡ P [D = 1|Z = z,X = x] and let H(z, x) ≡ {η : h(z, x, η) = 1} be a level set.

Then,

∑
`

w`P [Y1 ≤ y|D = 1, Z = z`, X = x] =
∑
`

w`P [Y1 ≤ y|η ∈ H(z`, x), X = x]

=

∫ ∑
`w`1[t ∈ H(z`, x)]

p(z`, x)
P [Y1 ≤ y|η = t,X = x]dt.

Take w(t, x) =
∑
` w`1[t∈H(z`,x)]

p(z`,x)
. Then, w(t, x) satisfies

∫ ∑
`w`1[t ∈ H(z`, x)]

p(z`, x)
dt = 1.
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The same argument applies to w̃ and w̃(t, x), and also for the distribution of Y0. �

E.2 Proof of Theorem 2.1

We suppress X for simplicity and prove the upper bound; the lower bound can be analogously

derived. Without loss of generality, for some `∗ ≤ L, let γ` ≤ 0 for ` ≤ `∗ and γ` > 0 for

` > `∗. Let q(z`) ≡ P [Z = z`|D = 1]. Then, (2.3) can be rewritten as

L∑
`=1

q(z`)× P [Y ≤ y|D = 1, Z = z`]−
`∗∑
`=1

γ`p(z`)× P [Y ≤ y|D = 1, Z = z`]

≤
L∑

`=`∗+1

γ`p(z`)× P [Y ≤ y|D = 1, Z = z`].

Let a ≡ 1−
∑`∗

`=1 γ`p(z`). By definition and that
∑L

`=1 γ`p(z`) = 1, we have a =
∑L

`=`∗+1 γ`p(z`).

Therefore, we have

`∗∑
`=1

q(z`)− γ`p(z`)
a

× P [Y1 ≤ y|D = 1, Z = z`] +
L∑

`=`∗+1

q(z`)

a
× P [Y1 ≤ y|D = 1, Z = z`]

≤
L∑

`=`∗+1

γ`p(z`)

a
× P [Y1 ≤ y|D = 1, Z = z`],

where
∑`∗

`=1
q(z`)−γ`p(z`)

a
+
∑L

`=`∗+1
q(z`)
a

= 1 and
∑L

`=`∗+1
γ`p(z`)
a

= 1. Therefore, by Condition

S1, we have

k∑
`=1

q(z`)− γ`p(z`)
a

× P [Y0 ≤ y|D = 1, Z = z`] +
L∑

`=`∗+1

q(z`)

a
× P [Y0 ≤ y|D = 1, Z = z`]

≤
L∑

`=`∗+1

γ`p(z`)

a
× P [Y0 ≤ y|D = 1, Z = z`].
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Equivalently, we have

P [Y0 ≤ y|D = 1] ≤
L∑
`=1

γ` × P [Y0 ≤ y,D = 1|Z = z`]

=
L∑
`=1

γ` × {P [Y0 ≤ y|Z = z`]− P [Y0 ≤ y,D = 0|Z = z`]}

=
L∑
`=1

γ`P [Y0 ≤ y|Z = z`]−
L∑
`=1

γ` × P [Y0 ≤ y,D = 0|Z = z`]

= P [Y0 ≤ y]×
L∑
`=1

γ` −
L∑
`=1

γ` × P [Y ≤ y,D = 0|Z = z`]

= −
L∑
`=1

γ` × P [Y ≤ y,D = 0|Z = z`],

where the last equality is by
∑L

`=1 γ` = 0. �

E.3 Proof of Lemma 2.1

Note that P [Yd ≤ y|Dz1 = 1] = P [Yd ≤ y|AT] and, for ` = {2, ..., L},

P [Yd ≤ y|Dz` = 1] =
1

p(z`)
P

[
Yd ≤ y, {AT} ∪

⋃̀
`′=2

{(z`′−1, z`′)-C}

]

by Assumption ?? and p(z`) = P [Dz` = 1]. Then, in (2.13),

L∑
`=1

w`P [Yd ≤ y|Dz` = 1]

= w1P [Yd ≤ y|AT] +
L∑
`=2

w`
p(z`)

(
p1P [Yd ≤ y|AT] +

∑̀
`′=2

p`′P [Yd ≤ y|(z`′−1, z`′)-C]

)

33



and similarly for the right-hand side of (2.13). This proves (i). To remove the distributions

for AT in the expressions, we set

w1 + p1

L∑
`=2

w`
p(z`)

= w̃1 + p1

L∑
`=2

w̃`
p(z`)

. (E.1)

Then, note that when L ≥ 2, w 6= w̃ even if w and w̃ satisfy (E.1). Therefore, the resulting

(2.13) is the dominance between the two distinct weight sums of P [Yd ≤ y|(z`′−1, z`′)-C]’s:

L∑
`=2

w`∑`
`′=1 p`′

∑̀
`′=2

p`′P [Yd ≤ y|(z`′−1, z`′)-C] ≤
L∑
`=2

w̃`∑`
`′=1 p`′

∑̀
`′=2

p`′P [Yd ≤ y|(z`′−1, z`′)-C],

which can be simplified as (2.15) in (ii). �

E.4 Proof of Theorem 3.1

We suppress X for simplicity. For an arbitrary r.v. A, let Fw
A (·) ≡

∫
w(t)FA|η(·|t)dt, which

itself is a CDF. By (3.2) in Model 1(i), Fw
Yd
≤ F w̃

Yd
if and only if Fw

Ud
≤ F w̃

Ud
. So it suffices to

show that, if Fw
U1
≤ F w̃

U1
, then Fw

U0
≤ F w̃

U0
.

Let G(·) be an arbitrary monotone increasing function and g(·) ≡ G′(·). Note that

∫
GdFw

U0
−
∫
GdF w̃

U0
=

∫
[

∫
w̃(t)FU0|η(u|t)dt−

∫
w(t)FU0|η(u|t)dt]g(u)du

=

∫
[

∫
w̃(t)

∫
FU |η(u− s|t)fξ0(s)dsdt−

∫
w(t)

∫
FU |η(u− s|t)fξ0(s)dsdt]g(u)du

=

∫ ∫ ∫
[w̃(t)− w(t)]FU |η(u|t)fξ0(s)g(u+ s)dudsdt,

where the first eq. is due to the integration by part, the second eq. is by FUd|η(u|t) =∫
FU |η(u − s|t)fξ0|η(s|t)ds =

∫
FU |η(u − s|t)fξ0(s)ds under Model 1(ii), and the last eq. is

by change of variables. By Model 1(iii), fξ0(s) =
∫
fξ1(s− v)fV (v)dv =

∫
fξ1(v)fV (s− v)dv
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where fA(·) is the PDF of an arbitrary r.v. A. Therefore,

∫
GdFw

U0
−
∫
GdF w̃

U0

=

∫ ∫ ∫
[w̃(t)− w(t)]FU |η(u|t)

∫
fξ1(v)fV (s− v)g(u+ s)dvdudsdt

=

∫ ∫
[w̃(t)− w(t)]FU |η(u|t)

∫
fξ1(v)[

∫
fV (s)g(u+ s+ v)ds]dvdudt.

Let ψ(s) ≡
∫
fV (t)g(t+ s)dt. By definition, ψ ≥ 0 since g ≥ 0. Therefore,

∫
GdFw

U0
−
∫
GdF w̃

U0

=

∫ ∫
[w̃(t)− w(t)]FU |η(u|t)

∫
fξ1(v)ψ(u+ v)dvdudt

=

∫ ∫
[w̃(t)− w(t)]

∫
FU |η(u− v|t)fξ1(v)dvψ(u)dudt

=

∫ ∫
[w̃(t)− w(t)]

∫
FU1|η(u|t)ψ(u)dudt

=

∫
[

∫
w̃(t)FU1|η(u|t)dt−

∫
w(t)FU1|η(u|t)dt]ψ(u)du ≥ 0,

where the last ineq. is by Fw
U1
≤ F w̃

U1
. Because G(·) is arbitrary, then Fw

U0
is first order

stochastic dominant over F w̃
U0

. �

E.5 Proof of Theorem 3.3: Equivalence Between Rank Linearity

and Condition S∗

The “if” part is trivial. We prove “only if” part. Suppress (Z,X) for simplicity. Suppose

Condition S∗ holds. Let Y∞ ≡ {yk ∈ R : k = 1, · · · ,∞} be a sequence that is dense on

R. Denote Yn ≡ {yk ∈ R : k = 1, · · · , n}. Because Y∞ is dense in R and CDFs are

right-continuous, it suffices to show the existence of λ(·) and ψ(·) on Y∞ such that

FY0|η(ψ(y)|t) = λ(y)FY1|η(y|t) (E.2)
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holds for all t ∈ T and y ∈ Y∞.

Fix n ∈ N. Let G1,k : R→ {0, 1} be a simple function defined as G1,k(·) ≡ 1{yk ≤ ·} for

k = 1, · · · , n. By the full rank condition (3.4), for each 1 ≤ k ≤ n, there exists a function

ck : T → R such that

G1,k(·) =

∫
ck(t)FY1|η(·|t)dt.

Define G0,k : R→ [0, 1] as

G0,k(·) ≡
∫
ck(t)FY0|η(·|t)dt.

Note that G0,k is a proper CDF. Now, for any vectors π ≡ (π1, · · · , πn) and π̃ ≡ (π̃1, · · · , π̃n)

such that
∑n

k=1 πk =
∑n

k=1 π̃k = 1, suppose

n∑
k=1

πkG1,k(·) ≤
n∑
k=1

π̃kG1,k(·).

It follows that ∫
bn(t)FY1|η(·|t)dt ≤

∫
b̃n(t)FY1|η(·|t)dt,

where bn(t) ≡
∑n

k=1 πkck(t) and b̃n(t) ≡
∑n

k=1 π̃kck(t). Let b+
n (t) = max{bn(t), 0} and b−n (t) =

min{bn(t), 0} and similarly define b̃+
n (t) and b̃−n (t). Then, the above inequality can be written

as ∫
{b+
n (t)− b̃−n (t)}FY1|η(·|t)dt ≤

∫
{b̃+
n (t)− b−n (t)}FY1|η(·|t)dt,

where the resulting weight functions on both sides are non-negative. Then, by Condition S∗,

we have
n∑
k=1

πkG0,k(·) ≤
n∑
k=1

π̃kG0,k(·)

By a similar argument, the converse is also true and thus we have

n∑
k=1

πkG1,k(·) ≤
n∑
k=1

π̃kG1,k(·).
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if and only if
n∑
k=1

πkG0,k(·) ≤
n∑
k=1

π̃kG0,k(·)

for any non-negative weights π and π̃. Therefore, it follows that

n∑
k=1

δkG1,k(·) ≤ 0 if and only if
n∑
k=1

δkG0,k(·) ≤ 0 (E.3)

for any n-dimensional vector δ ≡ (δ1, · · · , δn) that satisfies
∑n

k=1 δk = 0.

For d ∈ {0, 1}, define

∆G
d ≡

{
δ ∈ Rn :

n∑
k=1

δkGd,k(y) ≤ 0 ∀y ∈ R;
n∑
k=1

δk = 0

}
.

Note that {
(
G1,1(y), · · · , G1,n(y)

)
: y ∈ R} = {

(
G1,1(y), · · · , G1,n(y)

)
: y ∈ Yn} by definition.

Therefore, ∆G
1 is a finite cone and its dimension is n − 1. Define the polar cone of ∆G

d as

∆G∗
d ≡ {Gd ∈ Rn : G′dδ ≤ 0,∀δ ∈ ∆G

d }. Note that by definition,
(
G1,1(y), · · · , G1,n(y)

)
for

y ∈ Yn/{yn} are n − 1 linearly independent vectors and therefore generate extreme rays of

∆G∗
1 . Also note that any element in ∆G∗

0 is written as
(
G0,1(y), · · · , G0,n(y)

)
for some y ∈ R,

and so is a vector that generates its extreme ray. But by (E.3), we have that ∆G
1 = ∆G

0 and

thus ∆G∗
1 = ∆G∗

0 , and therefore, for each yk ∈ Yn/{yn}, there exists y∗k ∈ R and λn(·) > 0

such that (
G0,1(y∗k), · · · , G0,n(y∗k)

)
= λn(yk)×

(
G1,1(yk), · · · , G1,n(yk)

)
. (E.4)

If there exists multiple values of y∗k satisfying (E.4), we define y∗k as the infimum of {ỹ∗k :(
G0,1(ỹ∗k), · · · , G0,n(ỹ∗k)

)
= λn(yk) ×

(
G1,1(yk), · · · , G1,n(yk)

)
}. Because CDFs are right-

continuous function, the infimum should also satisfy (E.4).

For any j, k = 1, ..., n, if G1,j(yk) = 0 then G0,j(y
∗
k) = 0 by (E.4), which further implies

that G0,j(y
∗) = 0 for all y∗ ≤ y∗k because G0,j(·) is monotone increasing. Let {j1, · · · , jn} be

a permutation of {1, · · · , n} such that yj1 < yj2 < · · · < yjn . Note that G1,j1(yj1) is the only

non-zero component in the set {G1,k(yj1) : k = 1, · · · , n}. Then, by (E.4), G0,j1(y
∗
j1

) 6= 0 and
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G0,jk(y
∗
j1

) = 0 for k ≥ 2. Similarly, there are two elements of {G0,k(y
∗
j2

) : k = 1, · · · , n} which

are non-zero, namely, G0,j1(y
∗
j2

) and G0,j2(y
∗
j2

). Therefore, by G0,j2(y
∗
j1

) = 0 and G0,j2(y
∗
j2

) 6= 0

and the fact that G0,j2(·) is monotone increasing, we can conclude y∗j1 < y∗j2 . Continuing this

argument, we can conclude that

y∗j1 < y∗j2 < · · · < y∗jn .

Define a function ψn : yk 7→ y∗k for k = 1, · · · , n. By the above analysis, ψn(·) is a monotone

increasing function. Note that the support of ψn is Yn, which we extend to R as follows: for

any y ∈ R,

ψn(y) =

 max{ψn(yk) : yk ≤ y, k = 1, · · · , n} if y ≥ min{y1, · · · , yn}

−∞ otherwise

Then, ψn : R→ R is still a monotone increasing function.

We now consider increasing n to n + 1. By a similar argument, there exists a sequence

{y†1, · · · , y†n, y
†
n+1} and λn+1(·) > 0 such that for k = 1, · · · , n+ 1, we have

(
G0,1(y†k), · · · , G0,n(y†k), G0,n+1(y†k)

)
= λn+1(yk)×

(
G1,1(yk), · · · , G1,n(yk), G1,n+1(yk)

)
, (E.5)

If there exists multiple values of y†k, we define y†k as the infimum of them. Note that, by (E.5)

and (E.4), y†k is one of the candidates ỹ∗k’s that make
(
G0,1(ỹ∗k), · · · , G0,n(ỹ∗k)

)
proportional

to
(
G1,1(yk), · · · , G1,n(yk)

)
satisfy (E.4). While y∗k is the infimum of those candidates, y†k

cannot reach that infimum because it has to satisfies the additional restriction, G0,n+1(y†k) =

λn+1(yk)G1,n+1(yk). Therefore, we can conclude that y†k ≥ y∗k for k = 1, · · · , n. Using

{y1, · · · , yn, yn+1} and {y†1, · · · , y†n, y
†
n+1}, define ψn+1(·) analogous to ψn(·) above. Then,

ψn+1(yk) = y†k ≥ y∗k = ψn(yk) for k = 1, · · · , n. Furthermore, by definition, ψn+1(yn+1) ≥
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ψn(yn+1) regardless of the rank order of yn+1 in Yn+1. Therefore, for any y ∈ R,

ψn+1(y) ≥ ψn(y),

and thus the limit of the sequence of functions ψn(·) exists as n → ∞, which we denote as

ψ∞(·). Recall each ψn(·) is weakly increasing. It is easy to prove by contradiction that ψ∞(·)

is strictly increasing. Fix yk ∈ Y∞. For any n ≥ k,
(
G0,1(ψ∞(yk)), · · · , G0,n(ψ∞(yk))

)
is

proportional to
(
G1,1(yk), · · · , G1,n(yk)

)
and therefore there exists λ∞(yk) such that

(
G0,1(ψ∞(yk)), · · · , G0,n(ψ∞(yk))

)
= λ∞(yk)×

(
G1,1(yk), · · · , G1,n(yk)

)
(E.6)

for any n ∈ N. Moreover, because Y∞ is dense in R and ψ∞ and Gd,k are right-continuous

functions, the above condition holds for all y ∈ R.

Note {G1,k(·) : k = 1, · · · ,∞} is a class of simple functions. Therefore, any FY1|η(·|t) can

be written as

FY1|η(·|t) = lim
K→∞

K∑
k=1

aK,k(t)G1,k(·)

for some triangular array {aKk(t) : 1 ≤ k ≤ K,K = 1, 2, · · · ,∞}. By the definition of

G1,k(·), it follows that

FY1|η(·|t) = lim
K→∞

K∑
k=1

aK,k(t)

∫
wk(s)FY1|η(·|s)ds =

∫
lim
K→∞

K∑
k=1

aK,k(t)wk(s)FY1|η(·|s)ds

≡
∫
κ(t, s)FY1|η(·|s)ds, (E.7)

where κ(t, s) ≡ limK→∞
∑K

k=1 aK,k(t)wk(s) serves as a Dirac delta function. Because FY1|η(·|t) =∫
κ(t, s)FY1|η(·|s)ds if and only if FY1|η(·|t) ≤

∫
κ(t, s)FY1|η(·|s)ds and FY1|η(·|t) ≥

∫
κ(t, s)FY1|η(·|s)ds,

we have, by Condition S∗,

FY0|η(·|t) =

∫
κ(t, s)FY0|η(·|s)ds = lim

K→∞

K∑
k=1

aK,k(t)G0,k(·) (E.8)
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using the definition of G0,k(·). Combining (E.7), (E.8) and (E.6), for any y ∈ R and t ∈ T ,

we have

FY0|η(ψ∞(y)|t) = lim
K→∞

K∑
k=1

aK,k(t)G0,k(ψ∞(y)) = lim
K→∞

K∑
k=1

aK,k(t)λ∞(y)G1,k(y)

= λ∞(y)FY1|η(y|t),

which completes the proof. �

E.6 Equivalence Between Rank Linearity and Condition S∗: Dis-

crete Yd

For d ∈ {0, 1}, suppose Yd and η are discretely distributed. Specifically, let Yd ≡
{
yd,1, · · · , yd,Kd

}
and T ≡ {t1, · · · , tKη} be the support of Yd and η, respectively. Note that even with K0 = K1,

we allow that Y0 and Y1 have different supports (i.e., allowing for a “drift”). Suppress (Z,X)

for simplicity.

Condition E.1. For arbitrary non-negative weights {w1, · · · , wKη} and {w̃1, · · · , w̃Kη} such

that
∑Kη

k=1wk = 1 and
∑Kη

k=1 w̃k = 1, it holds that

Kη∑
k=1

wkFY1|η(·|tk) ≤
Kη∑
k=1

w̃kFY1|η(·|tk)

if and only if
Kη∑
k=1

wkFY0|η(·|tk) ≤
Kη∑
k=1

w̃kFY0|η(·|tk).

This condition can be motivated by the discussion in Remark 2.2.

Theorem E.1. For any probability distribution function F̃d supported on Yd ≡ {yd,1, · · · , yd,Kd},

suppose there always exists a sequence {cd,1, · · · , cd,Kη} such that

F̃d(·) =

kη∑
k=1

cd,kFYd|η(·|tk), (E.9)
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Then, Condition E.1 holds if and only if (i) K0 = K1 and (ii) for some strictly increasing

mapping ψ : {y0,1, · · · , y0,K0} → {y1,1, · · · , y1,K1} and some λ : {y0,1, · · · , y0,K0} → R+,

FY0|η(y|tk) = λ(y)FY1|η(ψ(y)|tk), for y ∈ Y0, k = 1, · · · , Kη. (E.10)

The condition (E.9) is a rank condition as the rank of matrix {FYd|η(yd,j|tj′) : j =

1, ..., Kd, j′ = 1, · · · , kη} should be no smaller than Kd. A necessary condition is Kη ≥ Kd,

namely, the support of η is no coarser than the support of Yd. The rank condition would

be violated when there is no endogeneity (i.e., Yd ⊥ η), which is not our focus. Again, the

rank condition is only introduced in this theorem to establish the relationship between rank

linearity (and hence rank similarity) and the range of identifying conditions of this paper,

and it is not necessary for our bound analysis.

Proof. By Condition E.1, we have

Kη∑
k=1

δkFY1|η(·|tk) ≤ 0 if and only if

Kη∑
k=1

δkFY0|η(·|tk) ≤ 0 (E.11)

for any Kη-dimensional vector δ ≡ (δ1, · · · , δn) that satisfies
∑Kη

k=1 δk = 0.

Note that
(
FY1|η(y|t1), · · · , (FY1|η(y|tKη)

)
for each y ∈ Y1/{yK1} generates an extreme ray

of the (Kη − 1)-dimensional polar cone of a cone

{
δ ∈ Rn :

Kη∑
k=1

δkFY1|η(·|tk) ≤ 0;

Kη∑
k=1

δk = 0

}
.

A similar argument holds for
(
FY0|η(·|t1), · · · , (FY0|η(·|tKη)

)
. By (E.11), these two polar cones

are the same. Therefore, for each yk ∈ Y1/{yK1}, there exists a y∗k ∈ Y0/{yK0} such that

(
FY0|η(y

∗
k|t1), · · · , FY0|η(y∗k|tK0))

)
= λ(yk)×

(
FY1|η(yk|t1), · · · , FY1|η(yk|tK1))

)
.

Finally it is easy to show that if yk < yk′ then y∗k < y∗k′ and thus ψ(yk) = y∗k is a strictly
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increasing function.

E.7 Proof of Theorem A.1

We suppress X for simplicity. The proof is analogous to that of Theorem 2.1. Using the

same notation as the earlier proof, (A.1) can be rewritten as

`∗∑
`=1

q(z`)− γ`p(z`)
a

× P [Y1 ≤ y|D = 1, Z = z`] +
L∑

`=`∗+1

q(z`)

a
× P [Y1 ≤ y|D = 1, Z = z`]

=
L∑

`=`∗+1

γ`p(z`)

a
× P [Y1 ≤ y|D = 1, Z = z`].

The above equation being satisfied as equality can be viewed as being satisfied as inequalities

“≤” and “≥.” Therefore, by Condition S1 applied for both inequalities, we have

k∑
`=1

q(z`)− γ`p(z`)
a

× P [Y0 ≤ y|D = 1, Z = z`] +
L∑

`=`∗+1

q(z`)

a
× P [Y0 ≤ y|D = 1, Z = z`]

=
L∑

`=`∗+1

γ`p(z`)

a
× P [Y0 ≤ y|D = 1, Z = z`].

Equivalently, we have

P [Y0 ≤ y|D = 1] = P [Y0 ≤ y]×
L∑
`=1

γ` −
L∑
`=1

γ` × P [Y ≤ y,D = 0|Z = z`]

= −
L∑
`=1

γ` × P [Y ≤ y,D = 0|Z = z`]

by
∑L

`=1 γ` = 0. �
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E.8 Proof of Lemma C.1

Part (i) can be shown analogous to the proof of Theorem 3.1. Suppose

∫
w(t, x)FY1|η,X(·|t, x)dt ≤

∫
w̃(t, x)FY1|η,X(·|t, x)dt

holds for some w and w̃. We want to show that

∫
w(t, x)FY0|η,X(·|t, x)dt ≤

∫
w̃(t, x)FY0|η,X(·|t, x)dt.

First, because of the strict monotonicity of q(d, x, ·), we have

∫
w(t, x)FU1|η,X(·|t, x)dt ≤

∫
w̃(t, x)FU1|η,X(·|t, x)dt

and it suffices to show

∫
w(t, x)FU0|η,X(·|t, x)dt ≤

∫
w̃(t, x)FU0|η,X(·|t, x)dt.

Second, for any v ∈ Supp(V |X = x), because of the strict monotonicity of φ(·, v), we have

1(U1 ≤ u1)
a.s.
= 1(φ(U1, v) ≤ φ(u1, v)). Because V⊥(U1, η)|X, we have

∫
w(t, x)Fφ(U1,V )|η,X,V (φ(·, v)|t, x, v)dt ≤

∫
w̃(t, x)Fφ(U1,V )|η,X,V (φ(·, v)|t, x, v)dt

and thus,

∫
w(t, x)FU0|η,X,V (φ(·, v)|t, x, v)dt ≤

∫
w̃(t, x)FU0|η,X,V (φ(·, v)|t, x, v)dt.
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Conditional on (η,X, V ), Supp(φ(U1, v)) = Supp(φ(U1, V )) = Supp(U0). Therefore, for u0 in

that support,

∫
w(t, x)FU0|η,X,V (u0|t, x, v)dt ≤

∫
w̃(t, x)FU0|η,X,V (u0|t, x, v)dt.

It follows that

∫ ∫
w(t, x)FU0|η,X,V (u0|t, x, v)fV |X(v|x)dtdv

≤
∫ ∫

w̃(t, x)FU0|η,X,V (u0|t, x, v)fV |X(v|x)dtdv

Note that fV |X = fV |η,X . Then, by the law of iterated expectation, we have

∫
w(t, x)FU0|η,X(u0|t, x)dt ≤

∫
w̃(t, x)FU0|η,X(u0|t, x)dt.

Next, we prove part (ii) by first noting that

Pr[U0 ≤ u|η,X] = Pr[φ(U1) ≤ u, V ≤ u|η,X] = Pr[φ(U1) ≤ u|η,X] Pr[V ≤ u|X].

Therefore,

FY0|η,X(y|t, x) = Pr[g(0, x, U0) ≤ y|η = t,X = x] = Pr[U0 ≤ g−1(0, x, y)|η = t,X = x]

= Pr[φ(U1) ≤ g−1(0, x, y)|η = t,X = x] Pr[V ≤ g−1(0, x, y)]

= Pr[Y1 ≤ g(1, x, φ−1(g−1(0, x, y)))|η = t,X = x] Pr[V ≤ g−1(0, x, y)]

= FY1|η,X(ψ(y, x)|t, x)λ(y, x),

where ψ(y, x) ≡ g(1, x, φ−1(g−1(0, x, y))) and λ(y, x) ≡ FV (g−1(0, x, y)). �
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E.9 Proof of Theorem 4.1

The proof is immediate by applying Theorem 6.9 in Hettich and Kortanek (1993). This is

because (i) the primal problem is superconsistent as both p(y, 1) and p(y|1) are continuous

on compact Y and (ii) γ∗ ∈ {y : p(y, 1)′γ ≥ p(y|1)} such that p(y, 1)′γ∗ > p(y|1). �
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