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Abstract

This paper analyzes optimal monetary policy in a behavioral model where expectation forma-
tion is characterized by potential anchoring of expectations. Expectations are anchored when in an
adaptive learning setting, the private sector chooses a decreasing learning gain. Within the con-
text of an otherwise standard macro model with nominal rigidities and natural-rate and cost-push
shocks, I find that the anchoring mechanism introduces two new intertemporal tradeoffs: a sta-
bilization and a volatility tradeoff. Optimal policy is thus time-varying in two ways. First, the
anchoring expectation formation allows the central bank to postpone current intratemporal trade-
offs to the future. Second, while concerns for stabilization lead the central bank to seek to anchor
expectations in the long run, getting them anchored is costlier the more current expectations are
unanchored. Therefore optimal policy involves an aggressive interest rate response to any threat of
expectations unanchoring. As my estimate of the anchoring function shows, forecast errors over 1
percentage point are sufficient to unanchor expectations. For this reason, the bank raises the inter-
est rate by 8.77 pp for a positive forecast error of 1 pp. While the optimal policy improves social
welfare substantially, even switching to anchoring-model-specific optimal Taylor-rule coefficients
achieves a reduction in volatility cost of about 20%.
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1 Introduction

I must - and I do - take seriously the risk that inflation shortfalls that persist even in a robust
economy could precipitate a difficult-to-arrest downward drift in inflation expectations.
At the heart of [our] review is the evaluation of potential changes to our strategy designed
to strengthen the credibility of our [...] 2 percent inflation objective [such that] inflation
expectations [remain] well anchored.
Jerome Powell, Chairman of the Federal Reserve 1

In his opening remarks to the Federal Reserve’s recent review of its policy tools, Fed Chairman
Jerome Powell echoes the common sentiment among central bankers that anchoring inflation expecta-
tions is “at the heart” of monetary policy. Yet the leading macroeconomic models of monetary policy
are based on the assumption of model-consistent expectations. This assumption, often termed “ratio-
nal expectations” (RE), does not capture unanchored expectations because expectations of long-run
variables are by assumption equal to their steady state values - indeed, the steady state values “an-
chor” expectations.

But a look at the data reveals that expectations of long-run inflation move around a lot, and, in
particular, may not always be anchored at the steady state target of 2%.2 Fig. 1 portrays this series for
the last decade in the US. As the figure shows, long-run inflation expectations of the public, averaging
a little above the 2% target prior to 2015, display a marked downward drift since 2015.

Figure 1: Market-based inflation expectations, 10 year, average, %

Breakeven inflation, constructed as the difference between the yields of 10-year Treasuries and 10-year Treasury Inflation
Protected Securities (TIPS). For a discussion of a potential negative bias in this series, see App. A.

This paper addresses the need for a theory of optimal monetary policy in an environment where
expectations may become unanchored. In my behavioral model of expectation formation, the notion

1Federal Reserve “Conference on Monetary Policy Strategy, Tools, and Communications Practices,” June 4, 2019, Opening
Remarks.

2By “expectations of long-run inflation” I mean the private sector’s expectation of where inflation will be on average over
a longer period in the future. Therefore I also refer to this as “expected mean inflation.”
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of anchoring is the stability of the private sector’s expectations of mean inflation over the long run. As
in Carvalho et al. (2019), whether expectations are anchored or not depends on the size of the learning
gain, the weight that the public places on current forecast errors when updating its expectation of
mean inflation. Since the size of the gain depends on forecast errors, the central bank’s interest-rate
setting interacts with expectation formation, leading to anchoring or unanchoring of expectations.

The main contribution of the paper is to investigate how the anchoring expectation formation af-
fects the optimal conduct of monetary policy. For this end, I first infer the functional form of the
anchoring function - the relationship between forecasting errors and learning gain - from data. I sub-
sequently solve the Ramsey problem of the central bank in the model of anchoring to present the
properties of optimal monetary policy analytically. Due to the endogeneity of the gain, the problem
of finding the optimal interest rate setting of the central bank is nonlinear. I therefore rely on global
methods to solve for the optimal policy function numerically.

The key takeaway is that monetary policy faces an intertemporal volatility tradeoff due to the an-
choring mechanism which it resolves by being exceedingly aggressive on unanchored expectations
in the short run. Because of the positive feedback between expectations and observables, anchored
expectations yield lower economic volatility than unanchored ones do. But because long-run expec-
tations move more when expectations are unanchored, an aggressive interest rate response meant
to anchor expectations induces heightened short-run volatility. Therefore the central bank prefers to
avoid unanchoring expectations in the first place, and reacts aggressively to subdue any potential
unanchoring. For this reason, to an econometrician estimating central bank behavior using a Taylor-
type rule, optimal monetary policy in the anchoring model would appear as a rule with time-varying
coefficients.

Quantitatively, the estimation reveals that already forecast errors above 1 percentage point are
sufficient to unanchor expectations. Thus, for a positive forecast error of 1 pp, the optimal policy
involves raising the interest rate by 8.77 pp.

The remaining results can be summarized as follows. First, the analytical results show that the
optimal Ramsey policy follows a targeting rule that spells out how the intratemporal tradeoff between
inflation and unemployment is complimented by novel intertemporal tradeoffs due to the anchoring
expectation formation. The extent of these tradeoffs is determined by the current and expected future
stance of anchoring. Second, adhering to a Taylor rule is more costly in the anchoring model than it
is under rational expectations because a Taylor rule deprives policy from responding to fluctuations
in long-run expectations. Lastly, while the fully optimal policy can eliminate the bulk of costly fluc-
tuations, already a change to Taylor-rule coefficients that are optimal under an anchoring expectation
formation can reduce volatility costs by a little above 20%.

Overall, my work uncovers that in the presence of expectations that can become unanchored, the
monetary authority needs to monitor the evolution of long-run expectations and adjust its policy in-
strument in accordance with their stance. In particular, the central bank needs to act aggressively if
it perceives signs of potential unanchoring to foreclose long-run expectations drifting away from the
bank’s target. This way, it can maintain the low-volatility benefits of having anchored expectations.

The model I use to study the interaction between monetary policy and anchoring is a behavioral

3



version of the standard New Keynesian (NK) model of the type widely used for monetary policy anal-
ysis. Monetary policy in the rational expectations version of this model has been studied extensively,
for example in Clarida et al. (1999) or Woodford (2011), whose exposition I follow. The formulation of
a target criterion to implement optimal policy is in the tradition of Svensson (1999).

The behavioral part of the model is the departure from rational expectations on the part of the
public sector. Instead, I allow the public sector to form expectations via an adaptive learning scheme,
where the learning gain - the parameter governing the extent to which forecasting rules are updated -
is endogenous. The learning framework belongs to the statistical learning literature advocated in the
book by Evans and Honkapohja (2001). This literature replaces the rational expectations assumption
by postulating an ad-hoc forecasting rule, the perceived law of motion (PLM), as the expectation-
formation process. Agents use the PLM to form expectations and update it in every period using
recursive estimation techniques. My contribution to this literature is to study optimal monetary policy
in a learning model with an endogenous gain.

Adaptive learning is an attractive alternative to rational expectations for several reasons. The first
reason is that it is intuitive to think that individuals in the economy do not know the true underlying
model. Economists do not know the true model of the economy, so why should firms and households?
And just like an econometrician estimates statistical models to form forecasts of relevant variables, it is
reasonable to suppose that the private sector does so too. In fact, the anchoring expectation formation
in this paper allows the private sector not only to estimate a simple statistical model, but also to adapt
its forecasting model according to the volatility of the economic environment.

Secondly, many studies document the ability of adaptive learning models to match properties of
expectations data and of macro aggregates. First and foremost, Milani (2007) demonstrates that esti-
mated constant gain learning models match the persistence of inflation without recourse to backward-
looking elements in the Phillips curve. Eusepi and Preston (2011) show how a calibrated adaptive
learning version of the real business cycle (RBC) model outperforms the rational expectations ver-
sion. In particular, even with a small gain, the learning model leads to persistent and hump-shaped
responses to iid shocks, resolving the long-standing critique of RBC models of Cogley and Nason
(1993).

Having an endogenous gain improves the empirical properties of adaptive learning models fur-
ther. Milani (2014) documents that endogenous gain models can generate endogenous time-varying
volatility in models without any exogenous time-variance. Lastly, most related to my work is the pa-
per by Carvalho et al. (2019) that estimates the evolution of the endogenous gain for the last fifty years
in the US. Not only does the model display excellent out-of-sample forecasting performance in terms
of matching long-run expectations, but the gain time series invites a reinterpretation of the Great Infla-
tion as a period of unanchored expectations. Carvalho et al. (2019) thus provide empirical backing to
the ideas popularized by Sargent (1999) that the conquest of American inflation consisted of anchoring
inflation expectations.

The paper is structured as follows. Section 2 introduces the model. Section 3 describes the learning
framework and spells out the anchoring mechanism. Section 4 estimates the anchoring function. Sec-
tion 5 presents the results in four parts. First, Section 5.1 discusses an analytical characterization of the
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Ramsey policy. Second, Section 5.2 solves for the interest rate sequence that implements the optimal
Ramsey allocation using global methods. Third, Section 5.3 investigates the optimal choice of response
coefficients if monetary policy is restricted to follow a Taylor rule. Fourth, Section 5.4 investigates the
welfare gains of switching to the optimal policy under anchoring. Section 6 concludes.

2 The model

Apart from expectation formation, the model is a standard New Keynesian (NK) model with nominal
frictions à la Calvo (1983). The advantage of having a standard NK backbone to the model is that
one can neatly isolate the way the anchoring mechanism alters the behavior of the model. Since the
mechanics of the rational expectations version of this model are well understood, I only lay out the
model briefly and pinpoint the places where the assumption of nonrational expectations matters.3

2.1 Households

The representative household is infinitely-lived and maximizes expected discounted lifetime utility
from consumption net of the disutility of supplying labor hours:

Êt
∞∑
T=t

βT−t
[
U(CiT )−

∫ 1

0
v(hiT (j))dj

]
(1)

U(·) and v(·) denote the utility of consumption and disutility of labor respectively and β is the discount
factor of the household. hit(j) denotes the supply of labor hours of household i at time t to the produc-
tion of good j, and the household participates in the production of all goods j. Similarly, household
i’s consumption bundle at time t, Cit , is a Dixit-Stiglitz composite of all goods in the economy:

Cit =

[ ∫ 1

0
cit(j)

θ−1
θ dj

] θ
θ−1

(2)

θ > 1 is the elasticity of substitution between the varieties of consumption goods. Denoting by pt(j)
the time-t price of good j, the aggregate price level in the economy can then be written as

Pt =

[ ∫ 1

0
pt(j)

1−θdj

] 1
θ−1

(3)

The budget constraint of household i is given by

Bi
t ≤ (1 + it−1)Bi

t−1 +

∫ 1

0
wt(j)h

i
t(j) + Πi

t(j)dj − Tt − PtCit (4)

3For the specifics of the NK model the reader is referred to Woodford (2011).
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where Πi
t(j) denotes profits from firm j remitted to household i, Tt taxes, and Bi

t the riskless bond
purchases at time t.4

The only difference to the standard New Keynesian model is the expectations operator, Ê. This is
the subjective expectations operator that differs from its rational expectations counterpart, E, in that it
does not encompass knowledge of the model. In particular, households have no knowledge of the fact
that they are identical. By extension, they also do not internalize that they hold identical beliefs about
the evolution of the economy. As we will see in Section 2.3, this has implications for their forecasting
behavior and will result in decision rules that differ from those of the rational expectations version of
the model.

2.2 Firms

Firms are monopolistically competitive producers of the differentiated varieties yt(j). The production
technology of firm j is yt(j) = Atf(ht(j)), whose inverse, f−1(·), signifies the amount of labor input.
Noting that At is the level of technology and that wt(j) is the wage per labor hour, firm j profits at
time t can be written as

Πj
t = pt(j)yt(j)− wt(j)f−1(yt(j)/At) (5)

Firm j’s problem then is to set the price of the variety it produces, pt(j), to maximize the present
discounted value of profit streams

Êt
∞∑
T=t

αT−tQt,T

[
Πj
t (pt(j))

]
(6)

subject to the downward-sloping demand curve

yt(j) = Yt

(
pt(j)

Pt

)−θ
(7)

where
Qt,T = βT−t

PtUc(CT )

PTUc(Ct)
(8)

is the stochastic discount factor from households. Nominal frictions enter the model through the
parameter α in Equation (6). This is the Calvo probability that firm j is not able to adjust its price in a
given period.

Analogously to households, the setup of the production side of the economy is standard up to the
expectation operator. Also here the model-consistent expectations operator E has been replaced by the
subjective expectations operator Ê. This implies that firms, like households, do not know the model
equations and fail to internalize that they are identical. Thus their decision rules, just like those of the
households, will be distinct from their rational expectations counterparts.

4For ease of exposition I have suppressed potential money assets here. This has no bearing on the model implications
since it represents the cashless limit of an economy with explicit money balances.
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2.3 Aggregate laws of motion

The model solution procedure entails deriving first-order conditions, taking a loglinear approximation
around the nonstochastic steady state and imposing market clearing conditions to reduce the system
to two equations, the New Keynesian Phillips curve (NKPC) and IS curve (NKIS). The presence of
subjective expectations, however, implies that firms and households are not aware of the fact that
they are identical. Thus, as Preston (2005) points out, imposing market clearing conditions in the
expectations of agents is inconsistent with the assumed information structure.5

Instead, I prevent firms and households from internalizing market clearing conditions.6 As Preston
(2005) demonstrates, this leads to long-horizon forecasts showing up in firms’ and households’ first-
order conditions. As a consequence, instead of the familiar expressions, the NKIS and NKPC take the
following form:

xt = −σit + Êt
∞∑
T=t

βT−t
(
(1− β)xT+1 − σ(βiT+1 − πT+1) + σrnT

)
(9)

πt = κxt + Êt
∞∑
T=t

(αβ)T−t
(
καβxT+1 + (1− α)βπT+1 + uT

)
(10)

Here xt, πt and it are the log-deviations of the output gap, inflation and the nominal interest rate from
their steady state values, and σ is the intertemporal elasticity of substitution.7 The variables rnt and ut
are exogenous disturbances representing a natural rate shock and a cost-push shock respectively.

The laws of motion (9) and (10) are obtained by deriving individual firms’ and households’ de-
cision rules, which involve long-horizon expectations, and aggregating across the cross-section. Im-
portantly, agents in the economy have no knowledge of these relations since they do not know that
they are identical and thus are not able to impose market clearing conditions required to arrive at (9)
and (10). Thus, although the evolution of the observables (π, x) is governed by the exogenous state
variables (rn, u) and long-horizon expectations via these two equations, agents in the economy are
unaware of this. As I will spell out more formally in Section 3, it is indeed the equilibrium mapping
between states and jump variables the agents are attempting to learn.8

To simplify notation, I gather the exogenous state variables in the vector st and observables in the

5The target of Preston (2005)’s critique is the Euler-equation approach as exemplified for example by Bullard and Mitra
(2002). This approach involves writing down the loglinearized first-order conditions of the model, and simply replacing the
rational expectations operators with subjective ones. In a separate paper, I demonstrate that the Euler-equation approach is
not only inconsistent on conceptual grounds as Preston (2005) shows, but also delivers substantially different quantitative
dynamics in a simulated New Keynesian model. Thus relying on the Euler-equation approach when investigating the role of
learning is not only incorrect in terms of microfoundations, but also leads to mistaken quantitative inferences. In the context
of this model, the problem becomes more acute when expectations are unanchored.

6There are several ways of doing this. An alternative to Preston (2005)’s long-horizon approach pursued here is the
shadow price learning framework advocated by Evans and McGough (2009).

7I am using standard CRRA utility of the form U(ct) =
c1−σt
1−σ .

8The learning of (9) and (10) is complicated by the fact that the current stance of expectations figures into the equations,
resulting in the well-known positive feedback effects of learning.
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vector zt as

st =

r
n
t

īt

ut

 zt =

πtxt
it

 (11)

where īt is a shock to the interest rate that only shows up in the model for particular specifications of
monetary policy.9 This allows me to denote long-horizon expectations by

fa,t ≡ Êt
∞∑
T=t

(αβ)T−tzT+1 fb,t ≡ Êt
∞∑
T=t

(β)T−tzT+1 (12)

As detailed in App. B, one can use this notation to reformulate the laws of motion of jump variables
(Equations (9), (10) and (26)) compactly as

zt = Aafa,t +Abfb,t +Asst (13)

where the matrices Ai, i = {a, b, s} gather coefficients and are given in App. B. Assuming that ex-
ogenous variables evolve according to independent AR(1) processes, I write the state transition matrix
equation as

st = hst−1 + εt εt ∼ N (0,Σ) (14)

where h gathers the autoregressive coefficients ρj , εt the Gaussian innovations εjt , and η the standard
deviations σjt , for j = {r, i, u}. Σ = ηη′ is the variance-covariance matrix of disturbances.10

3 Learning with an anchoring mechanism

The informational assumption of the model is that agents have no knowledge of the equilibrium map-
ping between states and jumps in the model. Without knowing the form of the observation equation,
then, they are not able to form rational expectations forecasts. Instead, agents postulate an ad-hoc
forecasting relationship between states and jumps and seek to refine it in light of incoming data. In
other words, they act like an econometrician: they estimate a simple statistical model and attempt to
improve the fit of their model.

3.1 Perceived law of motion

I assume agents consider a forecasting model for jumps of the form

Êtzt+1 = at−1 + bt−1st (15)
9For generality, I treat the exogenous state vector as three-dimensional throughout the paper, even when the monetary

policy shock is absent.
10For the sake of conciseness, I have suppressed the expressions for these in the main text. See App. B.
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where a and b are estimated coefficients of dimensions 3× 1 and 3× 3 respectively. This perceived law
of motion (PLM) reflects the assumption that agents forecast jumps using a linear function of current
states and a constant, with last period’s estimated coefficients. Summarizing the estimated coefficients
as φt−1 ≡

[
at−1 bt−1

]
, here 3× 4, I can rewrite Equation (15) as

Êtzt+1 = φt−1

[
1

st

]
(16)

I also assume that
Êtφt+k = φt ∀ k ≥ 0 (17)

This assumption, known in the learning literature as anticipated utility (Kreps (1998)), means that
agents fail to internalize that they will update the forecasting rule in the future. This is the most be-
havioral element in the expectation-formation process since it postulates that agents think differently
about their own behavior than how they actually act. Clearly, this poses a higher level of irrationality
than not knowing the model and using statistical techniques to attempt to learn it. Because it has been
demonstrated not to alter the dynamics of the model (Sargent (1999)), anticipated utility has become a
standard assumption in the adaptive learning literature in order to simplify the algebra.

Assuming that agents know the evolution of states, that is they have knowledge of Equation (14)11,
the PLM together with anticipated utility implies that k-period ahead forecasts are constructed as

Êtzt+k = at−1 + bt−1h
k−1st ∀k ≥ 1 (18)

The timing assumptions of the model are as follows. In the beginning of period t, the current
state st is realized. Agents then form expectations according to (15) using last period’s estimate φt−1

and the current state st. Given exogenous states and expectations, today’s jump vector zt is realized.

This allows agents to evaluate the most recent forecast error fet|t−1 ≡ zt − φt−1

[
1

st−1

]
to update their

forecasting rule. The estimate is updated according to the following recursive least-squares algorithm:

φt =

(
φ′t−1 + ktR

−1
t

[
1

st−1

](
zt − φt−1

[
1

st−1

])′)′
(19)

Rt = Rt−1 + kt

([
1

st−1

] [
1 st−1

]
−Rt−1

)
(20)

whereRt is the 4×4 variance-covariance matrix of the regressors and kt is the learning gain, specifying
to what extent the updated estimate loads on the forecast error. Clearly, a high gain implies high
loadings and thus strong changes in the estimated coefficients φt. A low gain, by contrast, means that
the current forecast error only has a small effect on φt.

11This is another common simplifying assumption in studies of adaptive learning. In an extension, I relax this assumption
and find that it has similar implications as having agents learn the Taylor rule: initial responses to shocks lack intertemporal
expectation effects, but these reemerge as the evolution of state variables is learned.
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3.2 Endogenous gain as anchoring mechanism

The vast majority of the learning literature specifies the gain either as a constant, ḡ, or decreasing
with time, so that kt = (k−1

t−1 + 1)−1. Instead, to capture the notion of anchoring, I follow Carvalho
et al. (2019) to allow firms and households in the model to choose the value of the gain. I use the
following endogenous gain specification: let fet|t−1 denote the forecast error of time t variables given
information at t− 1. Then the gain evolves as

kt = g(kt−1, fet|t−1) (21)

where g(·) is a smooth, increasing function in both arguments that I refer to as the anchoring function.
App. D compares alternative specifications for g(·) and discusses the motivation behind using specific
functional forms.12. I let my choice of functional form for g(·) be guided by data, wherefore I start my
inquiry by estimating the anchoring function (see Section 4).

Having an endogenous gain has the interpretation of agents being able to adapt their forecasting
behavior to the volatility of their environment. For a given previous gain, if agents observe small fore-
cast errors, g(·) is small. Firms and households thus use a small gain to update their forecasting rule,
reflecting their belief that the underlying data-generating process (DGP) has not changed compared to
their earlier held beliefs. I refer to this case as anchored expectations because it captures the notion that
the private sector’s long-run expectations of the observables are stable.

By contrast, observing large forecast errors leads to g(·) being sufficiently large so that the gain
increases. This corresponds to assigning a higher weight to more recent observations than old ones.
Such a forecasting scheme outperforms a lower gain scheme when the environment is volatile, reflect-
ing a possible regime switch. If the previous DGP has been replaced by a new one, having a high
gain allows agents to discount old observations generated by the previous DGP, and rely more on the
newest observations that come from the current DGP. In this way, agents can learn the new DGP faster,
correcting their previously held long-run expectations. This is the case of unanchored expectations, and
it induces long-run expectations to drift away from their previous values.

It is intuitive why the central bank might care whether expectations are anchored or not. When
expectations are unanchored at time t, the private sector believes that the true DGP involves a different
mapping between states and jumps than they previously maintained. Private sector forecasts will
thus drift in the direction of the update, implying that the observables will also shift in the same
direction owing to the law of motion (13). From the perspective of the central bank, stabilization of the
observables therefore implies stabilization of expectations. However, it is not obvious that the central
bank prefers to anchor expectations at all points in time because regime shifts in model parameters
might warrant letting the private sector learn the new DGP fast. Indeed, the contribution of this
paper is to analyze formally the nature of the monetary policy problem when expectation formation
is characterized by the anchoring mechanism.

12Equation (21) nests decreasing gains or constant gains as special cases. In both cases, the derivative of the anchoring
function with respect to its second argument is 0, but a decreasing gain implies g(kt−1, fet|t−1) = (k−1

t−1 + 1)−1, while a
constant gain sets g(kt−1, fet|t−1) = ḡ.
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3.3 Actual law of motion

To complete the model, I now use the specifics of the anchoring expectation formation to characterize
the evolution of the jump variables under learning. Using the PLM from Equation (15), I write the
long-horizon expectations in (12) as

fa,t ≡
1

1− αβ
at−1 + bt−1(I3 − αβh)−1st fb,t ≡

1

1− β
at−1 + bt−1(I3 − βh)−1st (22)

Substituting these into the law of motion of observables (Equation (13)) yields the actual law of motion
(ALM):

zt = glt−1

[
1

st

]
(23)

where gl is a 3×4 matrix given in App. C. Thus, instead of the state-space solution of the RE version of
the model (Equations (14) and (C.1)), the state-space solution for the learning model is characterized
by the pair of equations (14) and (23).

4 Estimating the anchoring function

The numerical analysis of monetary policy requires a functional specification for the anchoring func-
tion g(·) of Equation (21). But one may be interested in the form of the anchoring function in its own
right because it carries the answer to a question crucial to central bankers: for what sign and size
forecast errors do expectations become unanchored?

Because the analytical results in Section 5.1 are based on a specification of the gain as a function of
forecast errors only, I here present estimation results for that restricted specification.13 Since the shape
of the anchoring function is meaningful, I employ a piecewise linear approximation of the form:

g(fet|t−1) = αb(fet|t−1) (24)

where b(·) is a second order spline basis and α is a vector of approximating coefficients. I estimate
α by simulated method of moments à la Lee and Ingram (1991), Duffie and Singleton (1990) and
Smith (1993). I target the autocovariance structure of CPI inflation from the Bureau of Labor Statistics
(BEA), the output gap, the federal funds rate from the Board of Governors of the Federal Reserve
System and 12-month-ahead inflation forecasts from the Survey of Professional Forecasters (SPF).14

The dataset is quarterly and ranges from 1980-Q3 to 2020-Q1. App. E contains a detailed description
of the estimation methodology.

Fig. 2 presents the estimated coefficients: α̂ = (0.3509;0.1427;0.0180;0.0005;0.0204;0.1406;0.3411).
The interpretation of the elements of α̂ is the value of the gain the private sector choses when it ob-
servers a forecast error of a particular magnitude. For example, a forecast error of -5 pp in inflation

13Estimates of the general functional form are available on request.
14The output gap measure is constructed as the difference between real GDP from the Bureau of Economic Analysis (BEA)

and the Congressional Budget Office’s (CBO) estimate of real potential output.
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Figure 2: Estimated α̂: kt as a function of fet|t−1

Estimates for 5 knots, cross-section of size N = 1000, imposing convexity with weight 100000

is associated with a gain of 0.35. Thus, the data suggest that small forecast errors in absolute value
are associated with a small gain, while larger ones with a more sizable gain. Negative forecast errors
imply slightly larger gains than positive ones of the same magnitude, but in general, the relationship
is symmetric.

What amounts to a large gain? In particular, what size of the gain should be considered as sig-
nifying unanchored expectations? The consensus in the literature on estimating learning gains lies
between 0.01-0.05. On the higher end, Branch and Evans (2006) estimate a constant gain on inflation of
0.062. Milani (2007) finds 0.0183. The estimates of the maximal value for endogenous gains lie some-
what higher, at 0.082 in Milani (2014) and at 0.145 in Carvalho et al. (2019). Calibrated models tend to
use the consensus values between 0.01-0.05. However, Eusepi and Preston (2011) find that the value
of 0.002 is sufficient to significantly alter the dynamic behavior of their RBC model.

An intuitive interpretation of the gain is that its inverse gives the number of past observations
the private sector uses to form its current forecasts. Eusepi and Preston (2011)’s number, 0.002, thus
implies that firms and households, if they see no forecast errors, rely on the last 125 years of data.15

By contrast, in my estimation, forecast errors of 5 pp in absolute value lead to a number around 0.35,
which means that agents discount any observations older than about 9 months.

So the unanchoring threshold is around a value of 0.02, which translates to discounting data older
than 12 years. That is not a long time horizon; for a household or firm using a gain of 0.02 today, this
would imply that the onset of the Great Recession is no longer in its dataset. As the estimation reveals,
forecast errors of 1 pp result in gains of approximately 0.02 pp. This allows me to interpret forecast
errors exceeding 1 pp as unanchoring expectations.

15The frequency of my model and data, like that of Eusepi and Preston (2011), is quarterly.
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5 Monetary policy and anchoring

This section sets up and solves the optimal monetary policy problem in the model with the anchor-
ing expectation formation. In Section 5.1, I begin by analyzing the Ramsey problem of determining
optimal paths for the endogenous variables that policy seeks to bring about. While the anchoring
mechanism introduces substantial nonlinearity into the model, it is possible to derive analytically an
optimal target criterion for the policymaker to follow. As we shall see, the optimal rule prescribes for
monetary policy to act conditionally on the stance of expectations, and will thus be time-varying. In
particular, whether expectations are anchored or not matters for the extent to which there is a tradeoff
between inflation and output gap stabilization, and also for the volatility cost of getting expectations
anchored.

I then turn to the question of how to implement optimal policy. Section 5.2 uses global methods
to solve for the interest rate sequence that implements the target criterion. The optimal sequence is
contrasted with a Taylor rule with standard parameters. I then discuss the properties that the optimal
interest rate policy should have.

Since history-dependence is not a feature of the optimal solution, purely forward-looking Taylor
rules are no longer excluded from the class of rules that can implement the Ramsey solution. In Section
5.3, I therefore restrict attention to Taylor-type feedback rules for the interest rate. I solve for the
optimal Taylor-rule coefficients numerically and investigate how the choice of Taylor-rule coefficients
affects the anchoring mechanism. As I expand upon further in Section 5.4, an identical Taylor rule
involves higher fluctuations in the anchoring model than under rational expectations because it does
not allow the central bank to respond to long-run expectations. For this reason, substantial welfare-
improvements are open to the policymaker ready to reconsider the current Taylor-rule coefficients or
the policy function more broadly.

5.1 The Ramsey policy under anchoring

I assume the monetary authority seeks to maximize welfare of the representative household under
commitment. As shown in Woodford (2011), a second-oder Taylor approximation of household utility
delivers a central bank loss function of the form

LCB = Et
∞∑
T=t

{π2
T + λx(xT − x∗)2 + λi(iT − i∗)} (25)

where λj j = {x, i} is the weight the central bank assigns to stabilizing variable j and j∗ is its target
value.16 The central bank’s problem, then, is to determine paths for inflation, the output gap and the
interest rate that minimize the loss in Equation (25), subject to the model equations (9) and (10), as well
as the evolution of long-horizon expectations, spelled out in Section 3. A second question is how to
implement the optimal allocation; that is, to find a response function for the policy instrument it that

16To be precise, the second-order approximation to household utility involves λi = 0. In practice, λi > 0 is often assumed
to avoid an optimal interest rate path with infinitely large fluctuations.
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implements the optimal sequences of the observables.
While for most of the paper I consider a general specification for monetary policy, in Section 5.3, I

will restrict attention to a standard Taylor rule:

it = ψπ(πt − π∗) + ψx(xt − x∗) + īt (26)

where ψπ and ψx represent the responsiveness of monetary policy to inflation and the output gap
respectively, π∗ and x∗ are the central bank’s targets. Lastly, īt is a monetary policy shock. I also
assume that when the Taylor rule is in effect, the central bank publicly announces this. Thus Equation
(26) is common knowledge and is therefore not the object of learning.17

5.1.1 Optimal Ramsey policy as a target criterion

Appendix F lays out the policy problem for a simplified version of the baseline model. It also depicts
how the endogeneity of the gain introduces nonlinearity into the model. This prevents an analyti-
cal solution to the Ramsey problem. Instead, I characterize the first-order conditions of the problem
analytically, and proceed in Section 5.2 to solve the full problem numerically.

To simplify the analytical treatment, I make three additional assumptions compared to the baseline
model. First, I assume that only the inflation process is learned; expectations about the output gap
and the interest rate are rational evaluations of the infinite sum of future expectations.18 Second, I
assume that only the constant of the inflation process is learned. Third, I consider a specification of the
anchoring function where the current gain depends on the most recent forecast error only:19

kt = g(fet|t−1) (27)

The solution of the Ramsey problem under these assumptions is stated in the following result.

Result 1. Target criterion in the anchoring model
The targeting rule in the simplified learning model with anchoring is given by

πt = −λx
κ
xt +

λx
κ

(1− α)β

1− αβ

(
kt + fet|t−1gπ,t

)(
Et
∞∑
i=1

xt+i

i−1∏
j=0

(1− kt+1+j − fet+j|t+j−1gπ̄,t+j)

)
(28)

with fet+j|t+j−1 = πt+1+j − π̄t+j − b1st+j

For the derivation, see Appendix F. For a general target criterion without assumption (27), see Appendix G.
Note the notation that

∏0
j=1 ≡ 1.

17In an extension I consider the case where the Taylor rule is not known (or not believed) by the public and therefore is
learned together with the relations (9) and (10). This dampens intertemporal expectation effects as long as the Taylor rule is
not learned; afterwards, the model dynamics are identical to those of the baseline.

18By “rational” I here mean the expectations that agents would hold in the rational expectations equilibrium (REE). Be-
cause the model is not in the REE, these “rational” expectations are not model-consistent.

19These assumptions are made for algebraic convenience only and do not alter the qualitative implications of the model.
For analytical results for the more general version of the anchoring function, see App. G.
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The interpretation of Equation (28) is that the intratemporal tradeoff between inflation and the out-
put gap due to cost-push shocks is complemented by two intertemporal tradeoffs: one due to learning
in general, and one due to anchoring in particular.

The first intertemporal effect comes from the current level of the gain, kt, which captures how far
learning is from converging to rational expectations. The second intertemporal tradeoff is manifest in
the derivative of the anchoring function today, gπ,t, as well as in all expected levels and changes in
the gain in the future in the expression (1 − kt+1+j − fet+j|t+j−1gπ̄,t+j) in the second bracket on the
right-hand side. These expressions say that the presence of anchoring amplifies the first intertemporal
tradeoff because now the degree and direction in which the gain changes today and is expected to
change in the future matter too. In other words, the central bank needs to consider whether its chosen
interest rate sequence contributes to anchoring expectations in future periods, or whether it actually
serves to unanchor them.

Let me investigate these channels in isolation. To see exactly what the role of anchoring is in the
target criterion, consider first the special case of exogenous gain adaptive learning, for simplicity with
a constant gain specification.20 In this case the anchoring function and the forecast error are irrelevant
(since gi = 0, i = π, π̄) and (28) boils down to

πt = −λx
κ
xt +

λx
κ

(1− α)β

1− αβ
k

( ∞∑
i=1

xt+i(1− k)i
)

(29)

which is the analogue of Gaspar et al. (2010)’s Equation (24).21 This result, found also by Molnár and
Santoro (2014), suggests that already the presence of learning introduces an intertemporal tradeoff
between inflation and output gap stabilization. However, the fact that the central bank now has future
output gaps as a margin of adjustment means that it does not have to face the full tradeoff in the
current period. Learning allows the central bank to improve the current output gap without sacrificing
inflation stability today; however, this results in a worsened tradeoff in the future. In other words,
adaptive learning by itself allows the central bank to postpone the current tradeoff to later periods.

Intuitively, this happens because adaptive expectations are slow in converging to rational expecta-
tions. In the transition, the private sector’s expectations do not adjust to fully internalize the intratem-
poral tradeoff. This gives the monetary authority room to transfer the tradeoff to the future.

Contrasting Equations (29) and (28) highlights the role of anchoring. With anchoring, the extent to
which policy can transfer the intratemporal tradeoff to future periods depends not only on the stance
of the learning process, as in (29), but also on whether expectations are anchored or not and in which
direction they are moving. In fact, not only the current stance and change of anchoring matters, but
also all expected future levels and changes.

Anchoring, however, complicates the possibility of transferring today’s tradeoff to the future. One
can see this in the fact that forecast errors and the derivatives of the anchoring function are able to flip

20The intuition is identical if the public were using a decreasing gain but the mathematics would not convey that same
intuition as cleanly.

21In their Handbook chapter, Gaspar et al. (2010) provide a parsimonious treatment of Molnár and Santoro (2014). I am
referring to their expression for the target criterion because Molnár and Santoro (2014) do not provide one explicitly.
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the sign of the second term in (28). This means that anchoring can alleviate or worsen the intertemporal
tradeoff. To see the intuition, consider the equation system of first-order conditions from solving the
Ramsey problem. While the full system is presented in App. F, I would like to focus on Equation (F.8),
the equation governing the dynamics of observables in the model:

2πt = −2
λx
κ
xt + ϕ5,tkt + ϕ6,tgπ,t (30)

The Lagrange multipliers ϕ5 ≥ 0 and ϕ6 ≥ 0 are the multipliers of the RLS updating and the anchoring
function respectively. This equation, upon substitution of the solutions for the two multipliers, yields
the target criterion. It is therefore easy to read off the intuition at a glance. First, since ϕ5,tkt > 0, one
immediately obtains the above-discussed conclusion that as long as the adaptive learning equation is
a constraint to the policymaker (ϕ5,t > 0), the central bank has more room to transfer the contempora-
neous tradeoff between inflation and the output gap to the future.22

However, whether the anchoring equation alleviates or exacerbates the inflation-output gap trade-
off depends on the sign of gπ,t. If the derivative is positive, the effect is the same as above, and the
central bank has more leeway to postpone the tradeoff to the future. By contrast, if the derivative is
negative, that is expectations are becoming anchored, the intratemporal tradeoff is worsened.

Why do unanchored expectations give the central bank the possibility to postpone its current
inflation-output gap tradeoff? The reason is that when expectations become unanchored, the learning
process is restarted. A not-yet converged learning process implies, as discussed above, that postpon-
ing the tradeoff is possible. Restarting the convergence process thus unlocks this possibility.

This does not imply that the central bank should prefer to have unanchored expectations. In fact,
the answer to whether expectations should be anchored from the viewpoint of the central bank de-
pends on the current stance of learning. Clearly, the central bank prefers to face a learning process that
on the one hand has not yet converged, and on the other is converging only slowly. A high gain under
unanchored expectations implies both a sizable distance from convergence as well as faster learning
and thus faster convergence. Therefore, ideally the central bank would like to have expectations an-
chored but the gain far from zero; a contradiction. Once the gain approaches zero, only unanchored
expectations can raise it again to restart the learning process. But once the gain is large, the only way
to slow down learning is to anchor expectations, that is, to lower the gain.

This reveals that unanchoring expectations can alleviate the stabilization tradeoff between inflation
and the output gap. Having unanchored expectations, however, is costly. As I demonstrate in Sections
5.2-5.3, unanchored expectations lead to more volatility in the observables due to more volatile forecast
errors in the wake of a higher gain. Moreover, getting unanchored expectations anchored again is also

22Strictly speaking, ϕ5 and ϕ6 are never zero in this model. The reason is that the anchoring model is a convex combination
of decreasing and constant gain learning. The former has the RE equilibrium as a limit, while the latter fluctuates around the
REE with bounded variance. In the anchoring setting, if expectations are anchored and there are no inflation surprises, the
gain converges to zero and the decreasing gain limit of discretionary RE obtains. However, exogenous disturbances induce
unforecastable variation, producing forecast errors that will unanchor expectations, restarting the learning process. This is
in stark contrast with Carvalho et al. (2019), where the anchoring function is the map between the PLM and the expected
ALM and thus only depends on the endogenous component of the forecast error. Therefore, in their model, absent regime
switches, expectations can never become unanchored once learning has converged.
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costly. Therefore heightened inflation and output gap volatility may be too high a price to pay for an
ameliorated inflation-output gap tradeoff.

5.1.2 Time-consistence of optimal plans under adaptive learning

Now simplify the target criterion further, assuming that learning has converged, kt = gπ = 0. We are
left with

πt = −λx
κ
xt (31)

which corresponds to the optimal discretionary solution for rational expectations in Clarida et al.
(1999). This is formalized in the following result.

Result 2. Coincidence of commitment and discretion under adaptive learning
In an adaptive learning model with exogenous or endogenous gain, the optimal Ramsey policies under com-
mitment and discretion coincide. The optimal Ramsey plan is more akin to discretion than to commitment
as it does not involve making promises about future policy actions. Optimal policy is thus not subject to the
time-inconsistency problem of Kydland and Prescott (1977).

To illustrate this result in a parsimonious manner, consider a simplified version of the model. The
planner chooses {πt, xt, ft, kt}∞t=t0 to minimize

L = Et0
∞∑
t=t0

βt−t0
{
π2
t + λx2

t + ϕ1,t(πt − κxt − βft + ut)

+ ϕ2,t(ft − ft−1 − kt(πt − ft−1)) + ϕ3,t(kt − g(πt − ft−1))

}
where the IS-curve, xt = Et xt+1+σft−σit+σrnt , is a non-binding constraint, and is therefore excluded
from the problem. ϕi are Lagrange-multipliers and Et xt+1 is rational.23 In this simplified setting, ft is
a stand-in variable capturing inflation expectations and evolves according to a recursive least squares
algorithm. The anchoring function g(·) specifies how the gain kt changes as a function of the current
forecast error according to assumption (27).24 Note that the problem involves commitment because
the monetary authority internalizes the effects of its actions both on the evolution of expectations and
on that of the gain.

After some manipulation, first-order conditions reduce to:

2πt + 2
λx
κ
xt − ϕ2,t(kt + gπ(πt − ft−1)) = 0 (32)

−2β
λx
κ
xt + ϕ2,t − ϕ2,t+1(1− kt+1 − gf (πt+1 − ft)) = 0 (33)

Inspection of this system reveals that, unlike the rational expectations case (ft = Et πt+1), the opti-
mal solution does not involve lagged multipliers.25 This implies that the monetary authority cannot

23Again, the use of the term “rational” in this context reflects corresponding to expectations in a REE.
24Here I maintain assumption (27) for presentational purposes. It has no bearing on the results.
25This echoes the findings of Molnár and Santoro (2014).
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condition the optimal time path of inflation and the output gap on the past; optimal policy is not
history-dependent.

The intuition for this result is easy to see if one compares rational expectations and learning in
an infinitely repeated game setting. Under rational expectations, the lagged multiplier appears in the
solution because expected inflation is a jump variable. This reflects that expectations fulfill a form of
optimality, rendering the private sector a strategic player. The adjustment of expectations under ratio-
nal expectations enables the central bank to make promises about future policy that are incorporated
into expectations.

Not so for adaptive expectations. Learning agents look exclusively to past data to form expecta-
tions. Their expectations thus cannot incorporate the policymaker’s promises about the future course
of policy. In fact, a private sector with adaptive expectations has a pre-specified, non-strategic expecta-
tion formation. Therefore, households and firms act as an automaton, leaving the central bank unable
to make promises that have any effect on expectations.26

Should we be surprised that adaptive learning involves no distinction between discretion and
commitment? Not at all if we recall that the rational expectations revolution had as one of its aims
to remedy this feature of expectations. The seminal Lucas-critique, for instance, emphasizes that
reduced-form regressions are not ideal guiding principles for policy precisely because they miss the
time-varying nature of estimated coefficients due to model-consistent expectations that incorporate
policy action (Lucas (1976)).

One might be concerned that a model of anchoring that is not immune to the Lucas-critique may
not be a desirable normative model for policy. But recall that the anchoring model is a description
of the economy in transition, not of one at its ergodic mean. It characterizes expectation formation
en route to becoming model-consistent as the private sector learns the underlying DGP. In the long
run, then, rational expectations offers a good characterization of the expectation formation of learning
agents. It is in the short run that the predictions of the two expectations schemes differ. Data suggest
that in terms of positive implications, learning models fare much better than rational expectations
models do. Since the seminal work by Coibion and Gorodnichenko (2015), rational expectations has
been rejected in numerous empirical papers. At the same time, the literature cited in the Introduction
demonstrates the success of learning models in fitting both the properties of expectations in the data
and in improving the business cycle dynamics of other model variables.

There are also avenues to address the Lucas-critique in learning models. One option is to rein-
troduce a sense of optimality to expectation formation directly, as in the literature on central bank
reputation. (See Cho and Matsui (1995) and Ireland (2000)). Another possible remedy is to retain a
sufficient degree of forward-looking expectations as in the finite-horizon planning approach advo-
cated by Woodford (2019). A third possibility is to model communication by the central bank in the
form of news shocks that enter the state vector, and thus show up in the information set of agents, as

26Mele et al. (2019) report a similar finding in a decreasing gain learning model. Their terminology of contrasting
“inflation-targeting” with “price-level targeting” policy rules renders the connection to commitment less immediate, but
it is helpful to recall that in the rational expectations NK model, optimal discretionary monetary policy involves inflation
stabilization, while optimal commitment entails full price-level stabilization.

18



in Dombeck (2017).

5.2 Implementing the Ramsey policy: the optimal interest rate sequence

Having a characterization of optimal policy in the anchoring model as a first-order condition, the
next relevant question is how the central bank should set its interest rate tool in order to implement
the target criterion in (28). In other words, we would like to know what time-path of interest rates
implements the optimal sequence of inflation and output gaps. As emphasized in Section 5.1, the
nonlinearity of the model does not admit an analytical answer to this question. I therefore solve for
the optimal interest rate policy numerically using global methods.

For the numerical approach I use the calibration of model parameters outlined in Table 1. Where
possible, I adopt standard parameters from the literature. In particular, for β, σ and other parameters
underlying κ, the slope of the Phillips curve, I rely on the parameterization of Chari et al. (2000),
advocated in Woodford (2011).27 The probability of not adjusting prices, α, is set to match an average
price duration of two quarters, which is a little below the numbers found in empirical studies.28 I set
λx to 0.05, the value estimated by Rotemberg and Woodford (1997). A low, nonzero value for λx is also
desirable because it implies that a concern for output gap stabilization is not the main driver of the
central bank’s actions, yet the right hand side of the target criterion in (28) is not trivial either.

The other motivation for the choice of some parameters is ease of interpretation. First, I restrict the
shocks to be iid. Second, in sections of the paper where I assume a Taylor rule, I set a zero coefficient
on the output gap, and unless otherwise specified, I set the inflation coefficient of the Taylor rule to
1.5, the value recommended by Taylor (1993). Note that the asterisks in Table 1 demarcate parameters
that pertain to the Taylor rule and thus only to sections of the paper which assume that a Taylor rule
is in effect.

I initialize the value of the gain at ḡ = 0.145, the value for the gain corresponding to unanchored
expectations estimated by Carvalho et al. (2019). If the anchoring function were discrete, as in Car-
valho et al. (2019), this parameter would have important implications for model dynamics because in
that case the gain is restricted to take on this value if it is nondecreasing.29 However, since I rely on
an approximation of a smooth anchoring function, ḡ does not have a strong bearing on model dynam-
ics. The target criterion (28) requires that the derivatives of the anchoring function exist, wherefore a
smooth specification makes sense. Moreover, in estimating the functional form of the anchoring rule,

27The composite parameter κ is given by κ = (1−α)(1−αβ)
α

ζ, where ζ is a measure of strategic complementarity in price
setting. Assuming specific factor markets, constant desired markups with respect to output levels and no intermediate
inputs, ζ = ω+σ−1

1+ωθ
. Here θ is the price elasticity of demand and ω is the elasticity of the marginal cost function with respect

to output. Chari et al. (2000)’s calibration involves θ = 10, σ = 1, ω = 1.25, β = 0.99, so that together with my choice of α, κ
is pinned down.

28The evidence on the average duration of prices can be summarized as follows. On the lower end, Bils and Klenow
(2004) find a mean duration of 4.3 months and Klenow and Malin (2010) find 6.9 months. Klenow and Kryvtsov (2008) and
Nakamura and Steinsson (2008) agree on between 7-9 months, while Eichenbaum et al. (2011)’s number is 10.6 months. This
averages to a little above 7 months. My number for α corresponds to 6 months. I choose the lower end of this spectrum in
order to allow the learning mechanism, and not price stickiness, to drive the bulk of the model’s persistence.

29See App. D for alternative specifications of the anchoring function, such as that of Carvalho et al. (2019).
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Table 1: Calibrated parameters

β 0.99 stochastic discount factor
σ 1 intertemporal elasticity of substitution
α 0.5 Calvo probability of not adjusting prices
κ 0.0842 slope of the Phillips curve
ψπ 1.5 coefficient of inflation in Taylor rule*
ψx 0 coefficient of the output gap in Taylor rule*
ḡ 0.145 initial value of the gain
ρr 0 persistence of natural rate shock
ρi 0 persistence of monetary policy shock*
ρu 0 persistence of cost-push shock
σr 1 standard deviation of natural rate shock
σi 1 standard deviation of monetary policy shock*
σu 1 standard deviation of cost-push shock
λx 0.05 weight on the output gap in central bank loss
λi 0 weight on the interest rate in central bank loss

*Parameters with an asterisk refer to sections of the paper where a Taylor rule is in effect.

I allow the data to speak on my calibration of approximating coefficients α̂, thereby avoiding arbitrary
numerical choices.30

App. H outlines my preferred solution procedure, the parameterized expectations approach, while
App. I gives the details of the parametric value function iteration approach I implement to back out
the optimal policy function. The main output of this procedure is an approximation of the optimal
interest rate policy as a function of the vector of state variables. Due to Assumption (27), the relevant
state variables are expected mean inflation and the exogenous states at time t and t− 1, rendering the
state vector is five-dimensional:31

Xt = (π̄t−1, r
n
t , ut, r

n
t−1, ut−1) (34)

As a first step, I plot how the approximated policy function depends on π̄t−1, while keeping all the
other states at their mean. One can thus interpret the result, depicted on Fig. 3, as a partial derivative
of the interest rate with respect to π̄t−1.

As illustrated by Fig. 3, optimal interest-rate setting responds linearly and very sensitively to the
stance of expectations, π̄t−1, approximately by a factor of 100. If expected mean inflation decreases by
0.1 pp, the interest rate drops by almost -10 pp!32

By how much should the central bank then raise or lower the interest rate when expectations be-

30To avoid confusion, I use the notation α̂ for the coefficients of the piecewise linear anchoring function, reserving α for
the Calvo probability parameter.

31In the general specification without Assumption (27), the lagged gain would also be a relevant state variable.
32This result is qualified in the general specification of the model where the public sector learns about all observables, not

just inflation. In particular, when the public sector can learn the evolution of the interest rate, then interest rate expectations
play a major role in determining forecasts of future inflation and thus add a stabilizing channel that is absent from the current
specification. In the more general case, then, smaller responses in the current interest rate are sufficient.

20



Figure 3: Comparative statics: optimal policy response as a function of changes in expected mean inflation, %

come unanchored? The estimation in Section 4 illustrated that expectations begin unanchoring when
the private sector observes forecast errors of 1 pp. Regressing π̄ on its lagged value, the gain and the
current forecast error in the simulation using the optimal policy yields a coefficient of 0.0877 for fore-
cast errors. Taken together, this implies that a positive (negative) forecast error raises (lowers) long-run
expectations by 0.0877 pp, which translates to raising (lowering) the interest rate by 8.77 pp.

This response is enormous. Clearly, optimal policy involves subduing unanchored expectations
by injecting massive negative feedback to the system. One may then wonder why optimal policy
is so aggressive on unanchored expectations when the analysis of the target criterion in Section 5.1
suggested that learning can alleviate the stabilization tradeoff between output and inflation.

The reason is that the anchoring expectation formation introduces another intertemporal tradeoff
to monetary policy: a volatility tradeoff. If expected mean inflation is anchored at the central bank’s
target, zero, then even for shocks hitting the economy, the monetary authority need not intervene
much because stable expectations lower the pass-through between shocks and observables. However,
sufficiently large shocks can unanchor expectations, enabling them to act as a positive feedback loop
between shocks and observables. Having unanchored expectations, then, comes at a volatility cost in
the central bank’s target variables. This volatility cost dictates that, in the long run, the central bank
wishes to have expectations anchored.

From the viewpoint of the central bank, this problem is amplified by the fact that anchoring expec-
tations itself comes at a convex volatility cost. Anchoring expectations requires an aggressive interest
response because by this means, the central bank can introduce negative feedback to the system. A
strong interest rate response initially increases forecast errors; the larger the gain, the larger the fore-
cast errors. Taken together with the fact that unanchored expectations involve a large gain, this leads
to sizable forecast errors oscillating with a high amplitude.33 Thus expectations fluctuate vastly, and

33As periodically noted in the adaptive learning literature, constant gain learning models have a tendency to produce
impulse responses that exhibit damped oscillations. Authors making explicit note of this phenomenon include Evans and
Honkapohja (2001), Evans et al. (2013) and Anufriev and Hommes (2012). The reason is that under an adaptive learning
framework, forecast errors following an impulse are oscillatory. In fact, the higher the learning gain, the higher the amplitude
of forecast error oscillations. App. J presents a simple illustration for why this is the case.
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observables become volatile.34

We can see from the policy function how optimal policy resolves this tradeoff: it reacts extremely
aggressively to forecast errors. This way, the central bank hopes to avoid even larger interventions
that would become necessary were expectations to unanchor further. To avoid having to pay so high
a price, the central bank is extra aggressive in the short run to prevent massive unanchoring from ever
materializing. Thus the optimal response to the volatility tradeoff is to temporarily increase volatility
in order to reduce it in the long-run.

The presence of this volatility tradeoff also implies that optimal policy aggressiveness is yet again
time-varying: the same shock involves a stronger interest rate response if expectations threaten to
unanchor than otherwise. This result emerges clearly if one considers another way to investigate opti-
mal policy in the model. I thus next compare the evolution of observables conditional on a particular
history of exogenous disturbances across two specifications of monetary policy: one that follows the
target criterion in (28) and one that follows a Taylor-rule with parameter values given in Table 1.35

Fig. 4 depicts the evolution of inflation, the output gap and the interest rate conditional on a se-
quence of exogenous disturbances. Panels (a) and (b) show the outcome achieved by adhering to
a publicly announced and internalized Taylor rule and the target criterion (28) respectively.36 One
clearly sees the features of optimal policy under anchoring compared to a standard Taylor-rule ap-
proach. Due to the low value of ψx here, the Taylor-rule-following central bank resolves the inflation-
output gap tradeoff by tracking inflation and allowing the output gap to fluctuate vastly. Instead,
optimal policy uses the interest rate tool much more aggressively because it responds to initially unan-
chored expectations. This way, it subdues inflation and output gap volatility simultaneously because
it brings inflation expectations under control. In particular early in the sample, the central bank is will-
ing to raise the interest rate massively in order to eliminate any potential of large-scale unanchoring.
As expectations become anchored, the interest rate can drop back down.37

Clearly, the main drawback of the Taylor rule is that it does not take the evolution of expectations
into account. Thus it misses the opportunity offered by the target criterion in Equation (28) to smooth
out the inflation-output tradeoff, and it also results in higher overall economic volatility than optimal
policy does. The key intuition is that the main driver of volatility in the model is the positive feed-
back loop between expectations and outcomes. By responding aggressively to long-run expectations,
optimal policy can dampen the positive feedback which the Taylor rule by design cannot. Section 5.4
quantifies the welfare loss that results from using Taylor rule instead of the optimal policy rule.

34App. K demonstrates the volatility cost of having unanchored expectations as well as of getting expectations anchored
by plotting impulse responses of the model following a monetary policy shock. It also discusses the relationship between
the model’s oscillatory impulse responses and Ball (1994)’s proposition of expansionary disinflations in NK models.

35Given that in my calibration the central bank does not attach any weight to interest rate stabilization (λi = 0), this choice
of Taylor-rule coefficients would not be optimal in the RE version of the model, since λi = 0 implies infinity as the optimal
choice for both ψπ and ψx. My choice of λi = 0 is motivated by keeping the interpretation as simple as possible.

36If the private sector does not know that a Taylor rule is in effect, the model displays explosive dynamics. The reason is
that since in this specification only the inflation intercept is learned, absent knowledge of the Taylor rule, the private sector’s
beliefs would not span the set of model-consistent ones. Therefore the figure displays a specification with a Taylor rule that
is assumed to be known by the public.

37As prescribed by the optimal policy function, the interest rate tracks long-run expectations of inflation, scaled up. As
discussed in Footnote 32, this feature is specific to the special case of the model where only inflation is learned.

22



Figure 4: Evolution of observables for policy following a Taylor rule against optimal policy

(a) Taylor rule in effect and common knowledge

(b) Optimal policy

5.3 Optimal Taylor rule under anchoring

Monetary policy is often formulated using a Taylor rule. Proponents of such a characterization, like
Taylor (1993) himself, emphasize the benefits of having a simple, time-invariant and easily verifiable
rule. Also in the anchoring model, a policymaker may thus be interested in using a Taylor-type ap-
proximation to optimal policy in order to combine the benefits of having a simple, yet near-optimal
rule.38 Therefore I now consider the restricted set of Taylor-type policy rules and ask what value of

38Recall from Woodford (2011) that even under rational expectations, a Taylor rule is not fully optimal. The reason is that
the optimal commitment rational expectations version of the targeting rule (28) takes the form of (31) with an additional xt−1
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the time-invariant Taylor-rule coefficient on inflation is optimal in the case of the anchoring model.39

I compute the optimal Taylor rule coefficient on inflation numerically by minimizing the central
bank’s expected loss in a cross-section of N = 100 simulations of both the rational expectations and
learning versions of the model. I continue to use the calibration of Table 1 and to parameterize the
anchoring function using the estimated α̂ from Section 4.

Table 2 presents an overview of the optimal Taylor rule coefficient ψπ for the rational expectations
and anchoring models. The table also compares the baseline parameterization with several alterna-
tives. One notices that if the central bank has no concern to stabilize the output gap (λx = 0) or the
nominal interest rate (λi = 0), ψπ is infinity for both the RE and anchoring models. This is because
if the central bank suffers no loss upon output variation, then the fact that the divine coincidence is
violated does not pose a problem. Similarly, if the monetary authority is willing to allow the nominal
interest rate to fluctuate vastly in order to stabilize inflation, this also allows the central bank to be
infinitely aggressive on inflation.

The main observation however is that in terms of optimal Taylor-coefficient on inflation, the dis-
tinction between the RE and anchoring models is the lack in the case of the anchoring model to control
the stance of expectations. This manifests itself in differences the speed with which optimal inflation
aggressiveness drops to 1 as one increases the weights on the output gap or interest rate volatility.
Increasing λx pushes ψ∗π to 1 faster in the anchoring model because high aggressiveness leads to high
volatility when the central bank cannot bring fluctuations in long-run expectation down.40 Increasing
λi, on the other hand, pushes ψ∗π to 1 slower in the anchoring model because the cost of interest rate
fluctuations is balanced by the benefit of lower fluctuations when expectations are anchored.

The message is that if policy is restricted to be time-invariant in the sense of always responding to
inflation by the same factor, then there is nothing that policy can do to take the anchoring expectation
formation into account. This is reinforced in Fig. 5 which plots the central bank’s loss in the RE and
anchoring models as a function of ψπ for various values of λx and λi. The figure makes clear that while
the central bank’s loss has the same first derivatives across the two models, the loss in the anchoring
model always exceeds that under rational expectations. As discussed in Section 5.2, this is because the
central bank adhering to a Taylor rule permits more volatility in the anchoring model than under RE.

It is also interesting to note that, unless λx = λi = 0, loss is increasing and convex in ψπ for the
rational expectations model. For the anchoring model, however, the loss becomes concave if λx = 1.
This is a reflection of the fact that, as we saw in Fig. 4, a Taylor rule in the anchoring model permits
much higher output gap volatility than optimal policy does. For this reason, the more the central
bank suffers disutility from output gap fluctuations, the more optimal policy would react strongly to
long-run expectations. Being restricted not to do so under a Taylor rule, monetary policy incurs higher
losses that can be dampened somewhat by raising ψπ. This renders the loss concave.

term. This lagged term renders the solution history-dependent, which in turn allows the central bank to reap the benefits
of commitment. Therefore, due to its purely forward-looking nature, a Taylor-type interest rate rule is only optimal in the
restricted set of fully forward-looking policy rules. Since Result 2 tells us that in the anchoring model there is no distinction
between commitment and discretion, this point may be less relevant here than for rational expectations.

39To simplify the exposition, I continue entertaining a Taylor-coefficient on the output gap of zero.
40See App. J for impulse responses of the anchoring model illustrating the relationship between ψπ and volatility.
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Table 2: Optimal coefficient on inflation, RE against anchoring for alternative parameters

ψ∗,REπ ψ∗,Anchoringπ

λx = 0, λi = 0 ∞ ∞
Baseline (λx = 0.05, λi = 0) 1.8581 1.034

λx = 1, λi = 0 1 1
λx = 0, λi = 1 1 1.029
λx = 1, λi = 1 1 1

Figure 5: Central bank loss as a function of ψπ

(a) λx = 0, λi = 0 (b) λx = 1, λi = 0

(c) λx = 0, λi = 1 (d) λx = 1, λi = 1

Sample length is T = 400 with a cross-section of N = 100.

Thus, if the central bank’s reaction function is restricted to a Taylor rule in the anchoring model,
the monetary authority always engineers higher losses than under RE. Nonetheless, it can still choose
an inflation-coefficient that would improve on the RE-optimal choice of ψπ,. This is, as shown in
Sections 5.1 and 5.2, because optimal policy is time-varying in order to take the stance of anchoring
into account. Thus it seems reasonable to expect that if the central bank were allowed to select time-
varying Taylor-rule coefficients, it would choose low coefficients when expectations are anchored and
high ones when expectations show signs of unanchoring. Such a central bank, as well as one following
the optimal policy would appear to the econometrician as time-varying, echoing the findings of Lubik
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and Matthes (2016).

5.4 Welfare gains from optimal policy

As depicted in the previous section, employing a Taylor rule as a monetary policy specification is much
costlier in terms of welfare in the anchoring model than under rational expectations. Here I therefore
turn to the question by how much welfare can be improved by implementing the optimal policy under
anchoring instead of an optimal Taylor rule.41 As an alternative, I also consider a Taylor rule with a
1.5 and 0 inflation and output gap coefficient, respectively. I continue to use the calibrated parameters
from Table 1 and α̂ from the estimation in Section 4.

Table 3: Loss, RE against anchoring for alternative specifications of monetary policy

RE Anchoring
Taylor rule with ψπ = 1.5, ψx = 0 46.7290 55.3100

RE-optimal* Taylor rule with ψπ = 1.8581, ψx = 0 46.5180 61.3064
Anchoring-optimal* Taylor rule with ψπ = 1.034, ψx = 0 47.7175 48.2510

Optimal policy na. ≈ 0.74 a

* “x-optimal” refers to a Taylor rule optimal under model x, rational expectations or anchoring, for baseline parameters.

aAn estimate based on a single evaluation of the loss function for a PEA-optimal simulation.

On average, using the same Taylor-rule specification incurs 1.17 times higher losses under the an-
choring model than under rational expectations. This corroborates the findings of Section 5.3 that
suggested that using a Taylor rule is in general costlier under anchoring than under RE. If a policy-
maker thus opts to conduct monetary policy via a Taylor rule, the coefficient on inflation should be
chosen in accordance with the true model of expectation formation. In particular, it is interesting to
compare the cases where the policymaker chooses the anchoring-optimal coefficient while the true
model is RE and vice versa. The welfare loss in these two cases is given by the numbers 47.7175 (the
policymaker chooses the coefficient that would be optimal in the anchoring model, but the true model
is RE) and 61.3064 (the policymaker chooses the RE-optimal coefficient but the true model is one of
anchoring). What is the welfare cost of such a mistake?

Referring to these two cases as Case 1 and Case 2 respectively, we can see that the mistake is not too
costly in Case 1, that is, if the policymaker mistakenly picks the anchoring-optimal coefficient. In this
case, the welfare loss 1.026 times higher than it would be had the policymaker chosen the RE-optimal
coefficient. In Case 2, however, the welfare loss is 1.271 times higher than it would have been for the
model-appropriate optimal inflation-aggressiveness. In other words, a policymaker committed to the
Taylor rule inflicts greater relative welfare losses if he mistakenly believes the model of expectation
formation to be RE than the other way around. Taken together with my estimates of the anchoring

41Here I use the optimal Taylor-rule coefficient for my baseline specification in Table 2.
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function that provide substantial evidence that short-run expectation formation is characterized by
anchoring, this implies that US monetary policy could achieve a decrease in loss of more than 20%
by simply switching to anchoring-optimal Taylor-rule coefficients. As the last row of Table 3 depicts,
even more substantial gains could be reached by switching to the fully optimal policy.

5.5 Discussion

The analytical and numerical analysis of monetary policy in the anchoring model has led to the follow-
ing conclusions. As seen in Result 2, optimal monetary policy is time-consistent and does not exhibit
history-dependence. Therefore, optimal responses to shocks feature intertemporal stabilization trade-
offs that allow the central bank to postpone the intratemporal tradeoff between inflation and output
gap stabilization to the future. Ironically, although the first-order conditions from the Ramsey problem
have the flavor of discretion due to the absence of lagged multipliers, the optimal response to shocks
prescribed by the target criterion (28) qualitatively resembles commitment as it spreads out the effect
of shocks over time.

The implementation of the target criterion calls for an interest rate policy function that is very re-
sponsive to the stance of expected mean inflation. As we saw in Section 5.2, an upward unanchoring
of expectations brought about by a positive forecast error of 1 pp induces the central bank to raise the
interest rate by 8.77 pp. The simulation in Section 5.2 also shows that, accordingly, the optimal interest
rate path is more volatile than a path generated by a standard Taylor rule, especially early in the sam-
ple. This comes from optimal policy responding aggressively to any sign of expectations threatening
to become unanchored; a phenomenon that is especially likely early in the learning process.

At the same time, as seen in Section 5.3, restricting the central bank to follow a Taylor rule and
choosing its response coefficients to minimize the central bank’s loss function does not deliver a good
approximation to optimal policy. This reflects that the time-varying nature of optimal policy allows the
central bank to appropriately deal with the intertemporal volatility tradeoff. A policymaker believing
the economy to be well-described by rational expectations inflicts much larger welfare losses under
anchoring than under RE.

Taken together, these results suggest that optimal policy aggressiveness should be time-varying:
the central bank should condition its tolerance of inflation on the stance of anchoring. The policy
function of Section 5.2 captures this notion as it expresses the interest rate choice as a function of
expected mean inflation. If a central bank is reluctant to employ a policy function other than a Taylor
rule, then my analysis underscores the conclusion of Lubik and Matthes (2016) that the optimal Taylor-
rule coefficients should be time-varying. Alternatively, a term capturing the stance of anchoring - the
gain or the private sector’s expected mean inflation - could be included in the Taylor rule. This allows
the central bank’s actions to reflect the stance of anchoring in the way the optimal policy rule of Section
5.2 prescribes.
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6 Conclusion

Central bankers frequently voice a concern to anchor expectations. Absent a behavioral theory of an-
chored expectations, it is difficult to understand how such a concern affects the conduct of monetary
policy. In this paper, I have laid out a simple theory of anchoring expectation formation based on
adaptive learning models with an endogenous gain. The estimation of the anchoring function and the
analysis of the Ramsey policy through analytical and numerical methods yields a number of differ-
ences compared to the rational expectations version of the model.

The main message is that policy is time-varying because it responds to the unanchoring of expec-
tations. The estimation shows that mistakes in the inflation forecast of about 1 pp begin to unanchor
expectations. In this case, policy raises/lowers the interest rate by 8.77 pp, depending on the sign of
the forecast error.

Optimal policy in the anchoring model is time-consistent, for which reason it can be expressed as
a purely forward-looking target criterion for the policymaker to follow. The target criterion prescribes
how the policymaker can exploit the learning mechanism to spread out the effect of shocks over time,
adding an intertemporal channel to the tradeoff between inflation and the output gap. The sensitivity
of the policy function to the stance of anchoring highlights, however, that there is no free lunch: the
monetary authority needs to dampen volatility at the same time as guard against the possibility of
unanchoring expectations. Thus optimal policy faces an intertemporal volatility tradeoff in which
long-run stability can only be achieved at the cost of short-run volatility.

Furthermore, while optimal policy involves substantial welfare gains, even small changes to the
Fed’s policy framework yield significant welfare improvements. In particular, adopting an anchoring-
optimal Taylor rule reduces volatility costs by more than 20%. Thus, my model corroborates Jerome
Powell’s assessment in the Introduction that ensuring that expectations are well anchored should in-
deed be “[at] the heart” of the Fed’s policy review.

A number of interesting questions emerge from the analysis of monetary policy and the anchoring
expectation formation. One may wonder whether the central bank can use tools other than its leading
interest rate to anchor expectations. Especially concerns around a binding zero lower bound would
motivate the use of alternative monetary policy tools. Thus the interaction between anchoring and
central bank communication, in particular forward guidance, would be worthwhile to examine. An
interesting avenue for future research, then, would be to make explicit the communication policy of
the central bank to investigate whether anchoring expectation formation could help to resolve the
forward guidance puzzle.

This, however, requires overcoming the implication of Result 2 that adaptive expectations are not
able to incorporate any information that is not embedded in the current state vector. One option is
to model central bank communication similarly to news shocks in the sense of Beaudry and Portier
(2006). In this case, the anchoring model is likely to deliver differing predictions regarding the effec-
tiveness of Delphic versus Odyssean forward guidance (Campbell et al. (2012)) because sharing the
central bank’s forecasts would not constitute a questioning of the interest rate reaction function, while
committing to a future interest rate path would.
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In general, extensions to the anchoring expectation formation proposed here would be of interest.
The choice of the gain could be endogenized using approaches that allow the private sector to choose
its forecasting behavior in an optimizing fashion, perhaps by selecting among competing forecasting
models as in Branch and Evans (2011) or by choosing the size of the gain to minimize the estimated
forecast error variance.

Lastly, a foray into the empirics of anchoring expectation formation is important to get a clearer
idea of the expectation formation process of the public. In practice, it is likely that this process is
heterogenous, not just across households and firms, but also within various demographic groups or
sectors of the economy. If so, then monetary policy would need to collect and monitor a host of long-
run expectations time series to manage the challenge of anchoring expectations.

29



References

Andreasen, M. M., J. H. Christensen, and S. Riddell (2018). The TIPS liquidity premium. Federal
Reserve Bank of San Francisco.

Anufriev, M. and C. Hommes (2012). Evolutionary selection of individual expectations and aggregate
outcomes in asset pricing experiments. American Economic Journal: Microeconomics 4(4), 35–64.

Ball, L. (1994). Credible disinflation with staggered price-setting. American Economic Review 84(1),
282–289.

Baxter, M. and R. G. King (1999). Measuring business cycles: approximate band-pass filters for eco-
nomic time series. Review of Economics and Statistics 81(4), 575–593.

Beaudry, P. and F. Portier (2006). Stock prices, news, and economic fluctuations. American Economic
Review 96(4), 1293–1307.

Bils, M. and P. J. Klenow (2004). Some evidence on the importance of sticky prices. Journal of Political
Economy 112(5), 947–985.

Branch, W. A. and G. W. Evans (2006). A simple recursive forecasting model. Economics Letters 91(2),
158–166.

Branch, W. A. and G. W. Evans (2011, Jun). Monetary policy and heterogeneous expectations. Economic
Theory 47(2), 365–393.

Brown, R. L., J. Durbin, and J. M. Evans (1975). Techniques for testing the constancy of regression
relationships over time. Journal of the Royal Statistical Society: Series B (Methodological) 37(2), 149–163.

Bullard, J. and K. Mitra (2002). Learning about monetary policy rules. Journal of Monetary Eco-
nomics 49(6), 1105–1129.

Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. Journal of Monetary Eco-
nomics 12(3), 383–398.

Campbell, J. R., C. L. Evans, J. D. M. Fisher, and A. Justiniano (2012). Macroeconomic effects of federal
reserve forward guidance [with comments and discussion]. Brookings Papers on Economic Activity,
1–80.

Carvalho, C., S. Eusepi, E. Moench, and B. Preston (2019). Anchored inflation expectations. Available
at SSRN 3018198.

Chari, V. V., P. J. Kehoe, and E. R. McGrattan (2000). Sticky price models of the business cycle: can the
contract multiplier solve the persistence problem? Econometrica 68(5), 1151–1179.

Cho, I.-K. and A. Matsui (1995). Induction and the Ramsey policy. Journal of Economic Dynamics and
Control 19(5-7), 1113–1140.

30



Christiano, L. J. and J. D. Fisher (2000). Algorithms for solving dynamic models with occasionally
binding constraints. Journal of Economic Dynamics and Control 24(8), 1179 – 1232.

Clarida, R., J. Gali, and M. Gertler (1999). The science of monetary policy: a new Keynesian perspec-
tive. Journal of Economic Literature 37(4), 1661–1707.

Cogley, T. and J. M. Nason (1993). Impulse dynamics and propagation mechanisms in a real business
cycle model. Economics Letters 43(1), 77–81.

Coibion, O. and Y. Gorodnichenko (2015). Information rigidity and the expectations formation process:
A simple framework and new facts. American Economic Review 105(8), 2644–78.

Dombeck, B. (2017). The effects of news shocks and bounded rationality on macroeconomic volatility.

Duffie, D. and K. J. Singleton (1990). Simulated moments estimation of markov models of asset prices.
Technical report, National Bureau of Economic Research.

Eichenbaum, M., N. Jaimovich, and S. Rebelo (2011). Reference prices, costs, and nominal rigidities.
American Economic Review 101(1), 234–62.

Eusepi, S. and B. Preston (2011). Expectations, learning, and business cycle fluctuations. American
Economic Review 101(6), 2844–72.

Evans, G. W. and S. Honkapohja (2001). Learning and Expectations in Macroeconomics. Princeton Uni-
versity Press.

Evans, G. W., S. Honkapohja, T. J. Sargent, and N. Williams (2013). Bayesian model averaging, learning
and model selection, Chapter 6, pp. 99–119. Oxford University Press Oxford.

Evans, G. W. and B. McGough (2009). Learning to optimize. Technical report, Citeseer.

Gaspar, V., F. Smets, and D. Vestin (2010). Inflation expectations, adaptive learning and optimal mon-
etary policy. In Handbook of Monetary Economics, Volume 3, pp. 1055–1095. Elsevier.

Gobbi, L., R. Mazzocchi, and R. Tamborini (2019). Monetary policy, de-anchoring of inflation expecta-
tions, and the “new normal”. Journal of Macroeconomics 61, 103070.

Ireland, P. N. (2000). Expectations, credibility, and time-consistent monetary policy. Macroeconomic
Dynamics 4(4), 448–466.

Judd, K. L. (1998). Numerical Methods in Economics. Number 0262100711 in MIT Press Books. The MIT
Press.

Klenow, P. J. and O. Kryvtsov (2008). State-dependent or time-dependent pricing: Does it matter for
recent US inflation? The Quarterly Journal of Economics 123(3), 863–904.

Klenow, P. J. and B. A. Malin (2010). Microeconomic evidence on price-setting. In Handbook of Monetary
Economics, Volume 3, pp. 231–284. Elsevier.

31



Kreps, D. M. (1998). Anticipated utility and dynamic choice. Econometric Society Monographs 29, 242–
274.

Kydland, F. E. and E. C. Prescott (1977). Rules rather than discretion: The inconsistency of optimal
plans. Journal of Political Economy 85(3), 473–491.

Lee, B.-S. and B. F. Ingram (1991). Simulation estimation of time-series models. Journal of Economet-
rics 47(2-3), 197–205.

Lubik, T. A. and C. Matthes (2016). Indeterminacy and learning: An analysis of monetary policy in the
Great Inflation. Journal of Monetary Economics 82, 85 – 106.

Lucas, R. E. (1976). Econometric policy evaluation: A critique. In Carnegie-Rochester conference series on
public policy, Volume 1, pp. 19–46.

Lütkepohl, H. (2013). Introduction to multiple time series analysis. Springer Science & Business Media.

Mele, A., K. Molnár, and S. Santoro (2019). On the perils of stabilizing prices when agents are learning.
Journal of Monetary Economics.

Milani, F. (2007). Expectations, learning and macroeconomic persistence. Journal of Monetary Eco-
nomics 54(7), 2065–2082.

Milani, F. (2014). Learning and time-varying macroeconomic volatility. Journal of Economic Dynamics
and Control 47, 94–114.

Molnár, K. and S. Santoro (2014). Optimal monetary policy when agents are learning. European Eco-
nomic Review 66, 39–62.

Nakamura, E. and J. Steinsson (2008). Five facts about prices: A reevaluation of menu cost models.
The Quarterly Journal of Economics 123(4), 1415–1464.

Preston, B. (2005). Learning about monetary policy rules when long-horizon expectations matter.
MPRA paper, University Library of Munich, Germany.

Rotemberg, J. J. and M. Woodford (1997). An optimization-based econometric framework for the
evaluation of monetary policy. NBER Macroeconomics Annual 12, 297–346.

Sargent, T. J. (1999). The Conquest of American Inflation. Princeton University Press.

Smith, A. A. (1993). Estimating nonlinear time-series models using simulated vector autoregressions.
Journal of Applied Econometrics 8, S63–S84.

Svensson, L. E. (1999). Inflation targeting as a monetary policy rule. Journal of Monetary Economics 43(3),
607–654.

Taylor, J. B. (1993). Discretion versus policy rules in practice. In Carnegie-Rochester conference series on
public policy, Volume 39, pp. 195–214. Elsevier.

32



Woodford, M. (2011). Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton University
Press.

Woodford, M. (2019). Monetary policy analysis when planning horizons are finite. NBER Macroeco-
nomics Annual 33(1), 1–50.

33



A Filtering out liquidity risk from TIPS

Some caution is needed when inferring inflation expectations from TIPS. The underlying idea is that
the difference between real (indexed to inflation) and nominal yields should be a good metric for the
market’s expectations of inflation on average for the duration of the particular maturity. But since
TIPS markets face liquidity issues, especially for seasoned securities, the TIPS yield also incorporates
a liquidity premium. The positive bias in the TIPS yield thus leads to a negative bias in expected
inflation.

To gauge the presence of liquidity risk in TIPS, I rely on Andreasen et al. (2018)’s estimation of
the liquidity premium. Since their series only covers the period between July 11,1997 - Dec 27, 2013, I
make use of the fact that they demonstrate a high correlation between liquidity risk and uncertainty. In
particular, a regression of their average TIPS liquidity premium measure on the VIX index and controls
yields an estimated coefficient of 0.85 (significant at the 1 percent level), with a constant of -5.21. Thus
I can use the VIX to back out a fitted Andreasen et al. (2018) estimate of the TIPS liquidity premium
after 2013. Doing so, I subtract this fitted liquidity premium series from the TIPS yields, allowing me
to construct an estimate of breakeven inflation corrected for the liquidity risk bias. Fig. 6 presents the
original breakeven inflation series, along with the bias-corrected estimate.

Figure 6: Market-based inflation expectations, 10 year, average, %

Breakeven inflation, constructed as the difference between the yields of 10-year Treasuries and 10-year TIPS (blue line),
difference between 10-year Treasury and 10-year TIPS, the latter cleaned from liquidity risk (red line).

In line with Andreasen et al. (2018)’s findings, I obtain a negative bias in the inflation expectations
series throughout the sample. This bias averages -0.0966 pp, which is sizable, but not as significant as
one might have suspected. Also in analogy with Andreasen et al. (2018)’s results, I find that liquidity
issues in the TIPS market pose a bigger problem in recessions, when the market worries more about
future TIPS becoming illiquid. In particular once the COVID-shock raises worries at the end of the
sample, the estimated liquidity premium hits its highest value of 0.6508 pp. Even this large upward
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correction in breakeven inflation does not change the overall picture, however. The conclusion that
long-run inflation expectations trend downward in the second half of the decade remains solid.

B Compact model notation

The A-matrices are given by

Aa =

 gπa

gxa

ψπgπa + ψxgxa

 Ab =

 gπb

gxb

ψπgπb + ψxgxb

 As =


gπs

gxs

ψπgπs + ψxgxs +
[
0 1 0

]
 (B.1)

gπa = (1− κσψπ
w

)
[
(1− α)β, καβ, 0

]
(B.2)

gxa =
−σψπ
w

[
(1− α)β, καβ, 0

]
(B.3)

gπb =
κ

w

[
σ(1− βψπ), (1− β − βσψx, 0

]
(B.4)

gxb =
1

w

[
σ(1− βψπ), (1− β − βσψx, 0

]
(B.5)

gπs = (1− κσψπ
w

)
[
0 0 1

]
(I3 − αβh)−1 − κσ

w

[
−1 1 0

]
(I3 − βh)−1 (B.6)

gxs =
−σψπ
w

[
0 0 1

]
(I3 − αβh)−1 − σ

w

[
−1 1 0

]
(I3 − βh)−1 (B.7)

w = 1 + σψx + κσψπ (B.8)

The matrices of the state transition equation (14) are

h ≡

ρr 0 0

0 ρi 0

0 0 ρu

 εt ≡

ε
r
t

εit
εut

 and η ≡

σr 0 0

0 σi 0

0 0 σu

 (B.9)

Note that this is the formulation for the case where a Taylor rule is in effect and is known by the private
sector. It is straightforward to remove any of these two assumptions.

C The observation matrix for learning

Instead of the matrix g in the rational expectations observation equation

zt = gst (C.1)

agents in the anchoring model use the estimated matrix gl

glt−1 =
[
Ft−1 Gt−1

]
(C.2)
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with

Ft−1 =

(
Aa

1

1− αβ
+Ab

1

1− β

)
at−1 (C.3)

Gt−1 = Aabt−1

(
I3 − αβh

)−1

+Abbt−1

(
I3 − βh

)−1

+As (C.4)

D Alternative specifications for the anchoring function

The general law of motion for the gain in the main text is given by Equation (21), reproduced here for
convenience:

kt = g(kt−1, fet|t−1) (D.1)

The baseline specification of the anchoring function g (Equation (24) in the main text) is

g = αb(fet|t−1) (D.2)

where b(fet|t−1) is the second order spline basis and α̂ are the coefficients estimated in Section 4.
To my knowledge, there are only two other papers that consider an endogenous gain as a model

for anchored expectations. The first one, more related to this paper, is Carvalho et al. (2019). In their
model, the anchoring function is a discrete choice function as follows. Let θt be a criterion to be
defined. Then, for a threshold value θ̃, the gain evolves according to

kt =

(kt−1 + 1)−1 if θt < θ̃

ḡ otherwise.
(D.3)

In other words, agents choose a decreasing gain when the criterion θt is lower than the threshold θ̃;
otherwise they choose a constant gain. The criterion employed by Carvalho et al. (2019) is computed as
the absolute difference between subjective and model-consistent expectations, scaled by the variance
of shocks:

θt = max |Σ−1(φt−1 −
[
Ft−1 Gt−1

]
)| (D.4)

where Σ is the VC matrix of shocks, φt−1 is the estimated matrix and [F,G] is the ALM (see App. C).
As a robustness check, Carvalho et al. (2019) also compute an alternative criterion.42 Let ωt denote

agents’ time t estimate of the forecast error variance and θt be a statistic evaluated by agents in every
period as

ωt = ωt−1 + κ̃kt−1(fet|t−1fe
′
t|t−1 − ωt−1) (D.5)

θt = θt−1 + κ̃kt−1(fe′t|t−1ω
−1
t fet|t−1 − θt−1) (D.6)

where κ̃ is a parameter that allows agents to scale the gain compared to the previous estimation and

42Note that for both criteria, I present the matrix generalizations of the scalar versions considered by Carvalho et al. (2019).
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fet|t−1 is the most recent forecast error, realized at time t. Indeed, this is a multivariate time series
version of the squared CUSUM test.43

It is interesting to compare the two discrete anchoring functions with my smooth specification. On
the one hand, the Carvalho et al. (2019)’s preferred specification requires the private sector to evaluate
model-consistent expectations, which runs counter to the maintained informational assumptions. It is
more consistent with the present model, then, to assume that firms and households employ a statistical
test of structural change, as is the case with the CUSUM-based and smooth functions. These are
therefore more appealing on conceptual grounds.

On the other hand, simulation of the model using the different anchoring specifications reveals that
Carvalho et al. (2019)’s preferred functional form leads to the opposite comparative statics of anchor-
ing with respect to monetary policy aggressiveness as the smooth or the CUSUM-based specifications.
In particular, while policy that is more aggressive on inflation (a higher ψπ in the Taylor rule) leads
to more anchoring in a model with the smooth or the CUSUM-inspired criterion. If one uses Car-
valho et al. (2019)’s criterion, the same comparative static involves less anchoring. This comes from
the fact that Carvalho et al. (2019)’s criterion endows the public sector with capabilities to disentangle
volatility due to the learning mechanism from that owing to exogenous disturbances. Thus agents in
the Carvalho et al. (2019) model are able to make more advanced inferences about the performance of
their forecasting rule and understand that a higher ψπ causes more learning-induced volatility. This
is however not possible for agents who process data in real time without knowledge of the model.
Therefore my smooth and the discrete CUSUM-inspired specifications are preferable both on concep-
tual and quantitative grounds.

Whether one relies on the discrete CUSUM or my smooth anchoring function, then, is a question
of application. The analytical analysis of this paper requires derivatives of the anchoring function to
exist. In such a case, the smooth specification is necessary. The discrete choice specification is easier to
work with when computing moments conditional whether expectations are anchored or not because
it only requires keeping track of two discrete cases.

The second paper with an anchoring function is Gobbi et al. (2019). In their model, which is a three-
equation New Keynesian model, firms and households entertain the possibility that the model may
switch from a “normal” regime to a liquidity trap regime that the authors name the “new normal.”
Expectations are a probability-weighted average of the regime-specific expectations. The concept of
unanchoring in the model is when p, the probability of the liquidity trap regime, rises significantly. The
function governing the evolution of p, which Gobbi et al. (2019) refer to as the deanchoring function
(DA), is the analogy to my anchoring function. The authors use the following logistic specification for
the DA function:

p = h(yt−1) = A+
BCe−Dyt−1

(Ce−Dyt−1 + 1)2
(D.7)

where yt−1 denotes the output gap and A,B,C and D are parameters.

43See Brown et al. (1975) and Lütkepohl (2013) for details.
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E Estimation procedure

The estimation of Section 4 is a simulated method of moments (SMM) exercise. As elaborated in the
main text, I target the autocovariances of CPI inflation, the output gap, the federal funds rate and
the 12-months ahead inflation forecasts coming from the Survey of Professional Forecasters. For the
autocovariances, I consider lags 0, . . . , 4. The target moment vector, Ω, is the vectorized autocovariance
matrices for the lags considered, 80× 1.

For each proposed coefficient vector α, the estimation procedure consists of simulating the model
conditional on α, the calibrated parameters θ and N different sequences of disturbances, computing
model-implied moments for each simulation, and lastly choosing α such that the squared distance
between the data- and model-implied mean moments is minimized. Thus

α̂ =

(
Ωdata − 1

N

N∑
n=1

Ωmodel(α, θ, {ent }Tt=1)

)′
W−1

(
Ωdata − 1

N

N∑
n=1

Ωmodel(α, θ, {ent }Tt=1)

)
(E.1)

where the observed data is of length T = 155 quarters. Here {ent }Tt=1 is a sequence of disturbances
of the same length as the data; note that I use a cross-section of N such sequences and take average
moments across the cross-section to wash out the effects of particular disturbances. Experimentation
with the number N led me to choose N = 1000, as estimates no longer change upon selecting larger
N .

Before computing moments, I filter both the observed and model-generated data using the Baxter
and King (1999) filter, with thresholds at 6 and 32 quarters and truncation at 12 lags, the recommended
values of the authors. As the weighting matrix of the quadratic form in the moments, I use the inverse
of the estimated variances of the target moments, W−1, computed from 10000 bootstrapped samples.

To improve identification, I also impose restrictions on the estimates. First, I require that the α-
coefficients be convex, that is, that larger forecast errors in absolute value be associated with higher
gains. Second, since forecast errors close to zero render the size of the gain irrelevant (cf. the learning
equation (19)), I impose that the coefficient associated with a zero forecast error should be zero. Both
restrictions are implemented with weights penalizing the loss function, and the weights are selected
by experimentation.

Both additional assumptions reflect properties that it is reasonable to expect the anchoring func-
tion to have. The convexity assumption captures the very notion that larger forecast errors in absolute
value suggest bigger changes to the forecasting procedure are necessary. This is thus a very natural
requirement. As for the zero gain for zero forecast error assumption, the idea here is to supply the es-
timation with information where it is lacking. Since the updating of learning coefficients corresponds
to gain times forecast error, as Equation (19) recalls, a zero forecast error supplies no information for
the value of the gain. To impose a zero value here also seems natural, given that since forecast errors
switch sign at zero, one would expect the zero forecast error point to be an inflection point in the an-
choring function. By the same token, Gobbi et al. (2019) also impose a related restriction when they
require that their deanchoring function should yield a zero value at the zero input. Lastly, the objective
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function does not deteriorate upon imposing either assumption, suggesting that they are not at odds
with the data.

Fig. 7 presents the autocovariances of the observed variables for the estimated coefficients.

Figure 7: Autocovariogram

Estimates for N = 1000, imposing convexity with weight 100K

F The policy problem in the simplified baseline model

Denote by gi,t ∈ (0, 1), i = π, π̄, the potentially time-varying derivatives of the anchoring function
g. In this simplified setting, π̄t = e1at, the estimated constant for the inflation process. ei is a selector
vector, selecting row i of the subsequent matrix. I also use the notation bi ≡ eib. The planner chooses
{πt, xt, fa,t, fb,t, π̄t, kt}∞t=t0 to minimize
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L = Et0
∞∑
t=t0

βt−t0
{

(π2
t + λxx

2
t ) (F.1)

+ ϕ1,t

(
πt − κxt − (1− α)βfa,t − καβb2(I3 − αβh)−1st − e3(I3 − αβh)−1st

)
(F.2)

+ ϕ2,t

(
xt + σit − σfb,t − (1− β)b2(I3 − βh)−1st + σβb3(I3 − βh)−1st − σe1(I3 − βh)−1st

))
(F.3)

+ ϕ3,t

(
fa,t −

1

1− αβ
π̄t−1 − b1(I3 − αβh)−1st

)
(F.4)

+ ϕ4,t

(
fb,t −

1

1− β
π̄t−1 − b1(I3 − βh)−1st

)
(F.5)

+ ϕ5,t

(
π̄t − π̄t−1 − kt

(
πt − (π̄t−1 + b1st−1)

))
(F.6)

+ ϕ6,t

(
kt − g(πt − π̄t−1 − b1st−1)

)}
(F.7)

where ρi are Lagrange-multipliers on the constraints. After a little bit of simplifying, the first-order
conditions boil down to the following three equations:

2πt + 2
λx
κ
xt − ϕ5,tkt − ϕ6,tgπ,t = 0 (F.8)

− 2(1− α)β

1− αβ
λx
κ
xt+1 + ϕ5,t − (1− kt)ϕ5,t+1 + gπ̄,tϕ6,t+1 = 0 (F.9)

ϕ6,t = (πt − π̄t−1 − b1st−1)ϕ5,t (F.10)

Note that Equation (F.8) is the analogue of Gaspar et al. (2010)’s Equation (22) (or, equivalently, of
Molnár and Santoro (2014)’s (16)), except that there is an additional multiplier, ϕ6. This multiplier
reflects the fact that in addition to the constraint coming from the expectation process itself, with
shadow value ϕ5, learning involves the gain equation as a constraint as well. One can also clearly
read off Result 2: when the learning process has converged such that neither expectations nor the
gain process are constraints (ϕ5 = ϕ6 = 0), the discretionary inflation-output gap tradeoff familiar
from Clarida et al. (1999) obtains. Combining the above three equations and solving for ϕ5,t, using the
notation that

∏0
j=1 ≡ 1, one obtains the target criterion (28).

The system of first-order conditions (32)-(33) and model equations for this simplified system also
reveal how the endogenous gain introduces nonlinearity to the equation system. In particular, no-
tice how in equations (32)-(33), the gain kt shows up multiplicatively with the Lagrange multiplier,
ϕ2,t. In fact, the origin of the problem is the recursive least squares learning equation for the learning
coefficient ft

ft = ft−1 + kt(πt − ft−1) (F.11)

where the first interaction terms between the gain and other endogenous variables show up. This
results in an equation system of nonlinear difference equations that does not admit an analytical solu-
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tion.
Considering equation (F.11) is instructive to see how it is indeed the endogeneity of the gain that

causes these troubles. Were we to specify a constant gain setup, kt would merely equal the constant
ḡ and the anchoring function g would trivially reduce to zero as well. In such a case, all interaction
terms would reduce to multiplication between endogenous variables and parameters; linearity would
be restored and a solution for the optimal time paths of endogenous variables would be obtainable.
Similarly, a decreasing gain specification would also be manageable since for all t, the gain would
simply be given by t−1, and the anchoring function would also be deterministic and exogenous.

G A target criterion for an anchoring mechanism specified in terms of gain
changes

Consider the general anchoring mechanism of Equation (21):

kt = ρkkt−1 + g(fet|t−1) (G.1)

With this assumption, the FOCs of the Ramsey problem are

2πt + 2
λx
κ
xt − ktϕ5,t − gπ,tϕ6,t = 0 (G.2)

cxt+1 + ϕ5,t − (1− kt)ϕ5,t+1 + gπ̄,tϕ6,t+1 = 0 (G.3)

ϕ6,t + ϕ6,t+1 = fet|t−1ϕ5,t (G.4)

where the red multiplier is the new element vis-à-vis the case where the anchoring function is specified
in levels (kt = g(fet|t−1)), and I’m using the shorthand notation

c = −2(1− α)β

1− αβ
λx
κ

(G.5)

fet|t−1 = πt − π̄t−1 − b1st−1 (G.6)

(F.8) says that in anchoring, the discretion tradeoff is complemented with tradeoffs coming from learn-
ing (ϕ5,t), which are more binding when expectations are unanchored (k−1

t high). Moreover, the
change in the anchoring of expectations imposes an additional constraint (ϕ6,t), which is more strongly
binding if the gain responds strongly to inflation (gπ,t is high in absolute value). One can simplify this
three-equation-system to:

ϕ6,t = −cfet|t−1xt+1 +

(
1 +

fet|t−1

fet+1|t
(1− k−1

t+1)− fet|t−1gπ̄,t

)
ϕ6,t+1 −

fet|t−1

fet+1|t
(1− k−1

t+1)ϕ6,t+2 (G.7)

0 = 2πt + 2
λx
κ
xt −

(
kt

fet|t−1
+ gπ,t

)
ϕ6,t +

kt
fet|t−1

ϕ6,t+1 (G.8)
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Thus a central bank that follows the target criterion has to compute ϕ6,t as the solution to (G.8), and
then evaluate (G.7) as a target criterion. The solution to (G.8) is given by:

ϕ6,t = −2Et
∞∑
i=0

(πt+i +
λx
κ
xt+i)

i−1∏
j=0

kt+j
fet+j|t

kt+j
fet+j|t

+ gπ,t+j
(G.9)

The interpretation of (G.9) is that the anchoring constraint is not binding (ϕ6,t = 0) if the central bank
always hits the target (πt+i + λx

κ xt+i = 0, ∀i); or expectations are always anchored (kt+j = 0, ∀j).

H Parameterized expectations algorithm (PEA)

The objective of the parameterized expectations algorithm is to solve for the sequence of interest rates
that solves the model equations including the target criterion, representing the first-order condition of
the Ramsey problem. For convenience, I list the model equations:

xt = −σit +
[
σ 1− β −σβ

]
fb,t + σ

[
1 0 0

]
(I3 − βh)−1st (H.1)

πt = κxt +
[
(1− α)β καβ 0

]
fa,t +

[
0 0 1

]
(I3 − αβh)−1st (H.2)

fa,t =
1

1− αβ
π̄t−1 + b(I3 − αβh)−1st (H.3)

fb,t =
1

1− β
π̄t−1 + b(I3 − βh)−1st (H.4)

fet|t−1 = πt − (π̄t−1 + b1st−1) (H.5)

k−1
t = γkfe

2
t|t−1 (H.6)

π̄t = π̄t−1 + ktfet|t−1 (H.7)

πt = −λx
κ

{
xt −

(1− α)β

1− αβ

(
kt + fet|t−1gπ,t

)(
Et
∞∑
i=1

xt+i

i−1∏
j=0

(1− k−1
t+1+j − (fet+1+j|t+j)gπ̄,t+j)

)}
(H.8)

Denote the expectation on the right hand side of (H.8) as Et. The idea of the PEA is to approxi-
mate this expectation and to solve model equations given the approximation Êt. The algorithm is as
follows:44

Objective: Obtain the sequence {it}Tt=1 that solves Equations (H.1) - (H.8) for a history of exogenous shocks
{st}Tt=1 of length T .

1. Conjecture an initial expectation Êt = β0s(Xt).
The expectation is approximated as a projection on a basis, s(Xt), where β0 are initial projection
coefficients, and Xt = (kt, π̄t−1, r

n
t , ut) is the state vector. I use a monomial basis consisting of the

first, second and third powers of Xt.

44For a thorough treatment of the PEA, the interested reader is referred to Christiano and Fisher (2000).

42



2. Solve model equations given conjectured Êt for a given sequence of shocks {st}Tt=1.
Compute residuals to the model equations (H.1) - (H.8) given {st}Tt=1 and {Êt}Tt=1. Obtain a
sequence {it}Tt=1 that sets the residuals to zero. The output of this step is {vt}Tt=1, the simulated
history of endogenous variables (Christiano and Fisher (2000) refer to this as “synthetic time
series”).

3. Compute realized analogues of {Et}Tt=1 given {vt}Tt=1.

4. Update β regressing the synthetic Et on s(Xt).
The coefficient update is βi+1 = (s(Xt)

′s(Xt))
−1s(Xt)

′Et. Then iterate until convergence by
evaluating at every step ||βi − βi+1||.

I Parametric value function iteration

This is an alternative approach I implement as a robustness check to the PEA. The objective is thus the
same: to obtain the interest rate sequence that solves the model equations. The general value iteration
approach is fairly standard, for which reason I refer to the Judd (1998) textbook for details. Specific
to my application is that the state vector is six-dimensional, Xt = (kt, π̄t−1, r

n
t , ut, r

n
t−1, ut−1), and I

approximate the value function using a cubic spline. Thus the output of the algorithm is a cubic spline
approximation of the value function and a policy function for each node on the grid of states. Next, I
interpolate the policy function using a cubic spline. As a last step I pass the state vector from the PEA
simulation, obtaining an interest rate sequence conditional on the history of states. Fig. ?? shows the
resulting interest rate sequence, obtained through the two approaches, conditional on two different
simulated sequences for the states.

J Oscillatory dynamics in adaptive learning models

Here I present an illustration for why adaptive learning models produce oscillatory impulse responses
if the gain is high enough. Consider a stylized adaptive learning model in two equations:

πt = βft + ut (J.1)

ft = ft−1 + k−1(πt − ft−1) (J.2)

The reader can recognize in (J.1) a simplified Phillips curve in which I am abstracting from output gaps
to keep the presentation as clear as possible. Like in the simple model of Section 5.1 in the main text,
ft represents the one-period inflation expectation Êtπt+1. (J.2), then, represents the simplest possible
recursive updating of the expectations ft. My notation of the gain as k−1 indicates a constant gain
specification, but the intuition remains unchanged for decreasing (or endogenous) gains.

Combining the two equations allows one to solve for the time series of expectations

ft =
1− k−1

1− k−1β
ft−1 +

k−1

1− k−1β
ut (J.3)
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Figure 8: Policy function for two particular histories of states, XPEA

(a) i(X1)

(b) i(X2)

which, for β close but smaller than 1, is a near-unit-root process. (In fact, if the gain were to go to zero,
this would be a unit root process.) Defining the forecast error as fet|t−1 ≡ πt − ft−1, one obtains

fet|t−1 = − 1− β
1− k−1β

ft−1 +
1

1− k−1β
ut (J.4)

Equation (J.4) shows that in this simple model, the forecast error loads on a near-unit-root process with
a coefficient that is negative and less than one in absolute value. Damped oscillations are the result.

Note that even if the gain would converge to zero, the coefficient on ft−1 would be negative and
less than one in absolute value. Thus even for decreasing gain learning, one obtains oscillations, but
the lower the gain, the more damped the oscillations become. This corroborates my findings in the
impulse responses of Fig. 9. But importantly, the opposite extreme, when k−1 → 1, results in a coeffi-
cient of exactly −1, giving perpetual oscillations. This clearly illustrates how the oscillatory behavior
of impulse responses comes from the oscillations in the forecast error that obtain when the gain is
sufficiently large.
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K Impulse responses in the anchoring model

This section illustrates the dynamics of the model conditional on whether expectations are anchored or
not. To cleanly separate these two cases, I here rely on the discrete CUSUM-based anchoring function
described in Appendix D. The CUSUM-specific parameters κ̃ = 0.8 and θ̃ = 2.5 are set by experimen-
tation to deliver simulated gain sequences that generally decrease over time, but periodically jump up.
All impulse responses are following a one-standard deviation contractionary monetary policy shock.
As opposed to the main text, I set a persistence parameter for the shock process to ρi = 0.6 in order
that the model dynamics become clearly visible.

Fig. 9 portrays the impulse responses of the model after a contractionary monetary policy shock.
The red dashed lines show the responses of the observables in the rational expectations version of
the model. The blue lines show the responses in the learning model, on panel (a) conditional on
expectations being anchored when the shock hits, on panel (b) being unanchored upon the arrival of
the shock.

Figure 9: Impulse responses after a contractionary monetary policy shock

(a) RE against anchoring, expectations anchored

(b) RE against anchoring, expectations unanchored

Shock imposed at t = 25 of a sample length of T = 400 (with 5 initial burn-in periods), cross-sectional average with a
cross-section size of N = 1000. For the anchoring model, the remark refers to whether expectations are anchored at the time
the shock hits.
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Not only do the impulse responses show the usual behavior of learning models - dampened re-
sponses and increased persistence. More importantly, responses differ strongly depending on whether
expectations are anchored or not when the shock hits. In particular, if expectations are anchored,
responses are closer to rational expectations than when expectations are unanchored. Moreover,
when expectations are unanchored, the endogenous responses of the observables become much more
volatile, indeed, oscillatory45. This makes intuitive sense: expectations being unanchored reflects the
fact that firms and households are confronted with an environment that does not line up with their
currently held perceived law of motion. They thus believe that a structural change has occurred and
are therefore revising their expectations. Expectations are therefore fluctuating strongly, and as they
feed back to the observables, the latter inherit their volatility.

Figure 10: Cross-sectional average gains for various values of ψπ

(a) ψπ = 1.01 (b) ψπ = 1.5

(c) ψπ = 2

Sample length is T = 400 (with 5 initial burn-in periods), cross-section size is N = 1000.

Fig. 10 shows the cross-sectional average of gains that result when ψπ takes on different values.
Clearly, a higher ψπ results in lower and decreasing gains.46 Thus a central bank aiming to anchor
expectations needs to employ a high ψπ.

Fig. 11 depicts the same impulse responses to a contractionary monetary policy shock as Fig. 9,
focusing however only on responses conditional on expectations being unanchored upon the shock.
It shows these responses for three different values of ψπ. As the figure shows, a high ψπ leads to

45See App. J for an explanation of how forecast errors are responsible for the oscillatory dynamics.
46As I remark in App. D, if one uses the anchoring function of Carvalho et al. (2019), this conclusion is overturned.
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Figure 11: Impulse responses for unanchored expectations for various values of ψπ

(a) ψπ = 1.01

(b) ψπ = 1.5

(c) ψπ = 2

Shock imposed at t = 25 of a sample length of T = 400 (with 5 initial burn-in periods), cross-sectional average with a
cross-section size of N = 1000.
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more volatility than a low one does. The intuition is a little subtle. Since expectations are unanchored,
they are also volatile because the gain is high. This implies that expected inflation far ahead in the
future fluctuates strongly. Since agents know the Taylor rule, this also means that they expect the
nominal interest rate far in the future to respond. The more aggressive the central bank, the stronger
an interest rate response will the agents expect. This however feeds back into current output gaps and
thus inflation. Higher overall volatility is the result.

The model dynamics here echo the predictions of Ball (1994) of expansionary disinflation. But
the underlying channels are quite different. Ball (1994) observes that, contrary to conventional wis-
dom, rational expectations New Keynesian models imply expansionary disinflations. To reconcile
this model feature with data pointing to the costliness of disinflations, he concludes that central bank
announcements must suffer from credibility issues.

Note that in the present context, when expectations are anchored (Panel (a) of Fig. 9), impulse
responses do not exhibit this feature. However, when expectations are unanchored (Panel (b) of Fig.
9), impulse responses look exactly as Ball (1994) predicts: we obtain an expansionary disinflation.

The reason this is happening is the above-mentioned fact that when agents know the Taylor rule,
long-horizon expectations of the interest rate move in tandem with the same expectations of inflation
in the far future. A current disinflation lowers long-horizon inflation expectations, leading the public
to expect low interest rates far out in the future. Through the NKIS-curve (Equation 9), this stimu-
lates current output.47 But the absence of the “Ball-effect” from the anchored expectations impulse
responses indicates that the channel is only operational when expectations are moving sufficiently.
Thus I arrive at a different conclusion than Ball (1994); instead of credibility issues, it is anchored ex-
pectations that are responsible for the absence of expansionary disinflations of the type seen on Fig 9,
Panel (b).

47The extension in which the public has to learn the Taylor rule is interesting in this regard. As expected, the Ball-type
disinflationary boom does not initially show up in impulses responses obtained in that extension. However, as the agents
are learning the Taylor rule, the expansionary disinflation slowly reemerges in the impulse responses.
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