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Abstract

Physical capital takes time to build. Yet, the measurement of time to build and of its
response to firm behavior remain scant. We fill this gap using project-level data from
India. We first document new facts about time to build. Industry heterogeneity accounts
for 30% of its variation; and time to build increases on average by 0.18% for each 1%
increase in project cost. We exploit quasi-experimental variation in credit supply to doc-
ument that firms have control over time to build. When credit dries up, the conditional
probability of completing a project over the following quarter rises by 6%, consistent with
firms accelerating project development. In turn, new project starts fall by 7.5%. To ratio-
nalize our findings, we introduce a model of endogenous time to build. A credit crunch
increases firm appetite for immediate cash flows relative to delayed cash flows. Firms
then accelerate existing, closer to completion projects and postpone unbegun projects.
Such a mechanism is borne out in the data: projects proxied to be more mature are sped
up the most. We quantify our model to match our causal estimates, and the joint distri-
bution of project-level costs and gestation lags. Moving from exogenous to endogenous
time to build amplifies the response of investment to shocks, increasing its volatility by
up to 30%; and generates state-dependence on the distribution of projects along comple-
tion stages. Endogenous time to build is policy relevant. Contractionary monetary policy
faces headwinds when the distribution of projects skews towards mature projects. Fiscal
policy, in turn, can flexibly reshuffle investment expenditures over time with tax credits.
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1 Introduction

Physical capital takes time to build. Anecdotal evidence abounds: ships, power plants,
roads, factories, sewers, the list goes on. More than an anecdotal fact, time to build is a
defining feature of capital formation. It is entwined with investment decisions. A firm expe-
riencing a period of high demand may benefit from building a new plant. Whether to invest
depends on whether demand will remain high by the time the plant is finished. Time to
build shapes investment. But what if the firm was already building a plant when demand
picked up? Could the firm choose to speed up construction, even if costly, to take advantage
of good times? Or is time to build an exogenously given technological constant that firms
must simply accept?

The central assertion – and empirical finding – of this paper is that time to build is an
endogenous choice of firms. Investment shapes time to build. We study the resulting conse-
quences for capital budgeting, investment fluctuations and economic policy.

Despite its economic importance, there is relatively little work measuring time to build.
Earlier work leveraged small samples or aggregated data. Our first contribution is to fill this
gap. We measure time to build in a wide cross-section of projects using microdata from India
and provide a battery of novel stylized facts.

Our second contribution is to provide causal evidence that time to build is a choice vari-
able. We show that firm-level discount rate shocks affect how quickly firms complete ongo-
ing projects. Under plausible assumptions, our findings refute an ubiquitous assumption of
investment models: that time to build is a purely exogenous, technological primitive.

Our third contribution is to revisit investment theory with endogenous time to build. We
build a structural model where firms choose project gestation lags. The model delivers analyt-
ical insights on optimal capital budgeting, and rationalizes our empirical findings. Chiefly, it
yields an additional empirical prediction: projects react more to a discount rate shock as they
approach completion. We test and find support for such prediction in the data. Using our
measurements and estimated casual effects, we taken the model to the data. Quantitatively,
investment dynamics become more responsive to shocks, and thus more volatile; and differ
sharply across discount rate versus cash flow shocks.

Our fourth contribution is to study stabilization policies when time to build is endoge-
nous. The effects of policy on investment become state-dependent. Since later-stage projects
may be accelerated in response to interest rate hikes, contractionary monetary policy faces
headwinds when the distribution of projects along their construction cycle skews towards
mature projects. Second, temporary investment tax credits front-load investment flows, al-
lowing fiscal policy to flexibly reshuffle aggregate demand over time.

We start with measurement. Our data on large capital expenditure projects comes from
CapexDx (CMIE, 2023a). Projects in our data include steel plants, irrigation canals, airport
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terminals, office and residential buildings, among other structures. The data covers projects
in India above 10 million rupees;1 and focuses on new capacity creation. In contrast with
prior work, we observe microdata on both public and private projects, across a wide cross-
section of end-user industries, and over different points of project lifecycle.2

A project’s event history allows us to measure its time to build. The distribution has long
right tails: the median (average) time to completion is 2.5 (3.5) years, the 90th percentile is
10 years, and the 95th percentile is over 15 years. The aggregate distribution masks sizable
heterogeneity. We decompose the variation in time to build: industry accounts for 30% of the
variation; firm heterogeneity accounts for 50% at most. We thus take industry as a parsimo-
nious proxy for shared technological primitives across projects, aware of the sizable residual
variation within industry. Project size does not account for much additional variance, but
is tightly linked to gestation lags: a 1% increase in project size increases a project’s time to
build by 0.18%. Though the slope varies across industry and ownership cells, the log-linear
relationship is consistent across and within-cells.

Saving notable exceptions (Lewis and Bajari, 2011, 2014), prior work assumed time to
build was an exogenous constraint that project sponsors had to accept. A competing hy-
pothesis is that firms partially control how fast they build projects. We causally establish
that the latter view is borne out in the data. We explore a setting where a firm suffers a shock
that is plausibly orthogonal to the daily affairs of project construction. Under a sharp null of
exogenous time to build, the firm-level shock should have no bearing on project completion.

We study a shock to credit supply that arguably raised firm discount rates. Following
large-scale audits by the Reserve Bank of India starting in 2015, commercial banks had to
set aside more provisions for non-performing assets, potentially reducing lending capital.
We use loan-level data from the Indian Ministry of Corporate Affairs to confirm that the
banking shock reduced outstanding credit (Chopra et al., 2020). Controlling for demand-side
confounders, firms relying on more exposed banks borrowed less. We take firm exposure to
the credit supply disruption as our firm-level shock; and link projects to their sponsoring
firms using data from Prowess(CMIE, 2023b).

We embed our shift-share design into a discrete-time duration model. Identification relies
on exogeneity of the bank-level shocks relative to project and firm-level unobservables, con-
ditional on controls (Borusyak et al., 2021; Chodorow-Reich et al., 2021). Previous evidence
supports quasi-randomness of the shock. We further rely on a detailed set of fixed effects and
firm-level controls to minimize confounding concerns. Our main finding is that firms more

1This amounts to 150 to 300 thousand USD depending on the foreign exchange rate. The rupee experienced a
pronounced devaluation over the sample years.

2Fixed capital investment is particularly crucial for developing and emerging market economies, but project-
level measurement exercises with such wide-coverage as ours are non-existent for such countries, to the best of
our knowledge. Moreover, India has been and will continue to be a global powerhouse of capital formation and
economic growth (Economist 2023).
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exposed to the shock speed up ongoing projects relative to firms less exposed to the shock.
The intensive margin result is consistent with the view that time to build is an endogenous
choice. On the extensive margin, we find that firms start fewer projects following the shock,
consistent with standard investment theory. To be precise, a one-standard deviation increase
in firm-level exposure raises the completion hazard by 6% and lowers project starts by 7.5%
in our preferred specification.

To move beyond local elasticities, we write down a model of a firm that dynamically in-
vests in a collection of heterogeneous, irreversible projects. Each project takes time to build,
and only generates cash flows once fully completed. Crucially, time to build is endogenous:
firms can speed up project completion, but incur ever increasing acceleration costs to do so.
At each point in time, firms optimally choose how much to invest on ongoing projects; and
whether to start new projects. Firms benefit from completing projects faster because they
discount future cash flows. Optimal investment in ongoing projects equates the marginal
returns from earlier completion to the marginal costs of acceleration. This intensive mar-
gin tradeoff pins down a project’s remaining time to build. On the extensive margin, firms
start new projects with positive net present values, internalizing optimal gestation lags. The
model is minimalist and portable, lending itself to further applications and extensions.

How does the model match our empirical findings? We first take an analytical approach.
We map the banking shock (data) to an increase in firm discount rates (model). Up to first
order, we show that projects close to completion are unambiguously sped up, whereas just
started projects tend to be slowed down relative to steady state.

We first show that changes in project values following the discount rate shock are given
by a duration formula, a familiar fixed-income concept. Intuitively, duration gives us how
long it will take to reap back the cash flows of the project. As project value changes, so does
investment. We then show that this investment response is proportional to the marginal
value of advancing the project, which in turn is given by how much duration falls as projects
mature. Intuitively, reducing duration is akin to reaping positive cash flows earlier.

So how do incentives to invest change after an increase in discount rates? There are
two opposing effects. First, investors become more impatient, pushing them to accelerate
projects. Second, as discount rates rise, project values fall, since we discount future cash
flows more heavily. Intuitively, however, we show that the latter effect becomes dominated
as the project approaches completion: its duration is smaller, because there is “less time”
for the discount rate to reduce its NPV. For mature projects, investor impatience dominates
and projects are sped up. As residual time to build increases, so does project duration. Such
long-lived projects suffer dramatically from increases in discount rates. The duration effect
becomes meaningful, and might even overweight the impatience effect, in which case it be-
comes optimal to slow down the project.

Our theory provides an additional, testable prediction: following the discount rate shock,
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mature projects should be sped up, whereas fledgling projects should be slowed up. Evi-
dence of such heterogeneous effects would provide strong support for the theory. Indeed,
effect heterogeneity is borne out in the data: projects proxied to be closer to completion are
sped up, whereas just-begun projects are slowed down. These sharper reduced form tests
thus back up the model’s central mechanism.

The opposing intensive and extensive margin results qualify the standard intuition that
capital expenditures necessarily decrease following adverse shocks to firm financial health.
The project-level effect depends on how close the project is to completion. At the micro
level, capital formation may very well rise. In turn, aggregation shapes the total effect, as we
average the positive effects on near-completed projects and the negative effects on nascent
or unbegun projects. The distribution of projects over their completion stages matters for
aggregate investment.

We take the model to the data. We introduce heterogeneity in project returns, sizes, and
construction technologies; and match our causal estimates by computing model counterparts
to our intensive and extensive margin regressions. We combine all steps to jointly estimate
model parameters.

We use our quantitative model to dissect investment dynamics. We feed discount rate
shocks into our model, and compare fluctuations under endogenous versus exogenous time
to build, keeping other prices fixed (partial equilibrium). Endogenous time to build makes
investment dynamics more responsive to shocks, and thus more volatile: moving from ex-
ogenous to endogenous time to build increases investment volatility by 30%. The total effect
hides sizable compositional effects. When time to build is exogenous, investment volatility
results exclusively from variation in project starts. When time to build is endogenous, dy-
namics are instead driven primarily by adjustments in time to build, with a more limited role
for project starts.

Endogenous time to build generates state-dependence: the distribution of projects along
completion stages affects the aggregate investment response. Since more mature projects
react more to shocks, the aggregate response is stronger when the distribution is shifted
towards such later-stage projects. We thus propose a novel source of state-dependence in the
effects of monetary policy – one operating through the investment channel and, in particular,
through the distribution of projects along their lifecycle; but with the opposite effect that we
normally ascribe to discount rate shocks.

Last, we study cash flow shocks. When returns to completion temporarily rise, invest-
ment on ongoing projects spike, as firms race to reach a mean-reverting jackpot. Fiscal policy
instead frequently relies on longer-lived investment tax credits. We study such policies by
introducing a temporary investment subsidy. Following the introduction of a tax credit, a
standard model with exogenous TTB predicts an increase in investment only due to the in-
crease in deployment of new projects, what we call the extensive margin channel. The model

5



with endogenous TTB, on the other hand, introduces an intensive margin channel, corre-
sponding to the front-loading of investments before the expiration of the tax credit. From a
stabilization perspective, investment tax credits shuffle expenditure intertemporally, thereby
providing flexibility to the stabilization toolkit. Beyond stabilization policy, investment sub-
sidies encourage entry, generating long-lived positive effects on the capital stock. They can
thus be valuable policies to speed up structural change, such as the green transition.

Taking stock, our quantitative results suggest that models relying on ad hoc aggregate
adjustment costs are subject to a Lucas critique. Discount rate and cash flow shocks generate
impulses of different shapes, so that adjustment costs become shock-dependent. The effect
of these shocks in turn vary with the underlying distribution of projects, which depends –
even in steady state – on policy stances (e.g. the interest rate set by the monetary authority).
Adjustment costs thus become state-dependent. Counterfactual policy statements arising from
models with ad hoc adjustment costs may therefore yield inappropriate conclusions. In turn,
endogenous time to build provides an empirically plausible microfoundation for such costs,
and can be readily embedded in models of firm, industry, or aggregate dynamics.

Relation to Literature. Our paper contributes to four strands of literature. First, a small
body of work measures time to build, but relies on either small samples (Mayer, 1960; Brooks,
2000) or aggregated data (Montgomery, 1995). We contribute to this literature by (i) relying
on microdata from a wide cross-section of industries, sponsors, project sizes, and (ii) study-
ing an emerging market.

Second, we add to the literature on time to build and investment. Closest to us are (Lewis
and Bajari, 2011, 2014), who document that contractors accelerate road construction to avoid
procurement penalties. We are unaware of any other paper with econometric evidence of
endogenous time to build. Kalouptsidi (2014), Greenwood and Hanson (2014), and Oh and
Yoon (2020) study how exogenous gestation lags drive entry decisions, return predictabil-
ity, and boom-bust dynamics in specific industries. Relative to such work, we (i) provide
causal evidence on endogenous time to build in a wide cross-section of industries, thereby
bolstering external validity of the mechanism; and provide a portable, microfounded model
of optimal gestation lags, building on the neoclassical synthesis of Abel and Eberly (1994).3

Third, we relate to the vast literature on real effects of credit supply disruptions.4 We

3Majd and Pindyck (1987) study the role of time to build in a real options problem a la McDonald and Siegel
(1986), showing that time to build strengthens “wait-and-see” effects in numerical examples. We innovate on
multiple fronts. Our formulation of time to build nests theirs. While we abstract from risk, we analytically prove
how changes in discount rates (or, more broadly, opportunity costs of funds) and in future cash flows shape the
optimal path of project value and investment. Moreover, we work with a distribution of heterogeneous projects
and study aggregate effects.

4Methodologically, we borrow from Khwaja and Mian (2008), Chodorow-Reich (2013) and Chopra et al.
(2020). Thematically, a flood of evidence documents that real activity contracts following credit supply shocks.
A non-exhaustive list includes earlier work by Bernanke and Gertler (1995), Peek and Rosengren (2000), and

6



are unaware of papers documenting a causal effect on gestation lags as we do. Further,
we qualify the conventional wisdom that tighter credit necessarily reduces investment: the
level of aggregation and the degree of project completion crucially influence such prediction.
We buttress econometric evidence with a theoretical model that carries practical lessons for
optimal capital budgeting, upending conventional prescriptions.

Last, we converse with a long intellectual history of time to build in theories of macroeco-
nomic fluctuations.5 Whether gestation lags matter for fluctuations has been made salient by
Kydland and Prescott (1982).6 Lucca (2007) proved that a specific formulation of exogenous
time to build was first-order equivalent to the investment adjustment costs of Christiano et al.
(2005) – an ubiquitous ingredient of monetary DSGE models that is essential to (i) match the
effects of monetary shocks on aggregate investment, (ii) explain the pervasive lagged invest-
ment effect of Eberly et al. (2012), and (iii) match the causal evidence of Bloesch and Weber
(2023) on the response of R&D investment to monetary shocks.7 We push this literature in a
new direction. We emphasize that endogenous time to build and the ensuing distribution of
projects over their completion lifecycle reshape investment dynamics; and provide lessons
for both fiscal and monetary policy.8

The rest of the paper elaborates on our discussion so far. Section 2 describes the data;
section 3 contains our measurement exercises; section 4 presents the econometric method-
ology and reduced-form results; section 5 details our model and analytical results; Section
6 explains our calibration; Section 7 studies investment dynamics and policy implications;
Section 8 concludes.

Ashcraft (2005); and more recent work by Pinardon-Touati (2023).
5The hypothesis that time to build is endogenous to the economic environment dates back to Böhm-Bawerk

(1889), and has been resurrected by Antras (2023) in the context of global value chains. Pigou (1920), Aftalion
(1927) and Kalecki (1935) proposed that time to build was an essential ingredient for theories of investment fluc-
tuations. Hall (1977) and Taylor et al. (1982) spoke for time to build as a microfoundation for ad hoc adjustment
costs or acceleration mechanisms. Asea and Zak (1999) proved that the neoclassical growth model with exoge-
nous time to build predicted oscillatory fluctuations around a steady state, in line with early-century theories.

6Rouwenhorst (1991) showed that time to build did not matter for the results in Kydland and Prescott (1982),
concluding that it was inessential to explain fluctuations. Casares (2006), Edge (2007) and Lucca (2007) disproved
such conclusion. These papers show that if time to build differs across heterogeneous, complementary capital
stocks, it has strong quantitative implications for monetary transmission.

7Beyond fluctuations, Meier (2020) argues that time-series variation in time to build due to supply chain
disruptions yields GDP and TFP losses. Liu and Tsyvinski (2023) show that adjustment costs for intermediate
inputs in a dynamic input-output network model are first-order equivalent to exogenous time to build. Both
papers measure time to build with the backlog ratio. Such measure is appropriate for inventories, intermediate
inputs, or smaller equipments, but inadequately captures time to build for large structures. We interpret their
work as informative on the role of backlogs in intermediate inputs rather than time to build in capital formation.

8In a similar vein, Leeper et al. (2010) and Ramey (2020) show that the potency of fiscal multipliers varies
with gestation lags of public investment.
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2 Data

We obtain data on large capital expenditure projects from CapexDx, a dataset collected and
maintained by the Center for Monitoring of the Indian Economy (CMIE). The data provider
defines a project as a construction enterprise where “there is reasonable clarity on the ca-
pacity being created”. Examples of projects include steel plants, irrigation canals, airport
terminals, office and residential buildings, etc. In the parlor of National Income Account
systems, projects in our data are “structures”.9

CapexDx collects data on project name, cost, geographical location, and industry. Cru-
cially, it tracks the lifecycle of projects within a rich event-level dataset. To quote CMIE,
CapexDx “is a monitoring machinery that records the various events that a project goes
through in its life-cycle.” A project’s event history allows us to measure time to build. We
observe when the sponsor announced the project; when it started or stalled implementation;
and, in most cases, when it completed or abandoned the project. For some projects, histories
are censored: we do not know what becomes of the project. We will leverage econometric
methods that account for right-censoring. Further, the data provider tracks its monitoring
efforts and follows transparent rules when discontinuing project coverage. We elaborate on
project definition rules and data collection in appendix A.1.

CMIE has collected data on projects since its inception in 1976, but has systematized its
efforts from the mid-1990s onwards. Accordingly, the bulk of our projects started in the latter
period. The data covers projects above 10 million rupees (150-300 thousand USD, depending
on the foreign exchange rate over our sample period); and focuses on new capacity creation,
with some cases of substantial expansions or modernizations of existing structures. In con-
trast with prior work using project-level data (Mayer, 1960; Brooks, 2000), we observe both
public and private projects,10 across a wide cross-section of end-user industries, and over
different points of project lifecycle.

Another differentiating feature of CapexDx is the ability to link projects to sponsoring
firms. We use CMIE’s ProwessDx to obtain information on firms and their banking partners,
mostly financial statements. The data is sourced from regulatory filings with the Indian
government and is not restricted to private, publicly-traded companies. Alfaro and Chari
(2014) (among other papers) provide extensive descriptions of the data.

Last, we collect loan-level data from the Indian Ministry of Corporate Affairs (MCA)

9Systems of National Accounts usually divide “fixed assets” (the K of macroeconomic models) into struc-
tures, equipment, and, more recently, intellectual property. Our data covers structures. We do not observe
replacements or maintenance of existing equipments (e.g. computers), as in the ACES data collected by the U.S.
Census Bureau; nor do we observe capacity or capacity utilization, as in the ASM data collected by the U.S.
Census Bureau.

10Sponsors in our data include government entities, foreign and Indian private firms, and (minority or major-
ity) state-owned enterprises. Therefore, not all projects in our data are sponsored by firms. We will use the terms
promoter, sponsor and firms interchangeably.
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website. We observe secured loans registered by lenders with the MCA. The regulatory
framework incentivizes lenders to register charges against secured loans, as failing to reg-
ister may result in material adverse consequences.11 The data thus approximates a credit
registry for secured loans, and allows us to link the financial health of firms’ banks to the
performance of firms’ projects. For each loan, we observe the amount borrowed, the date
of the transaction, as well as borrower and lender name. We do not observe interest rates,
contractual maturity, covenants, or any other contractual details on the loan.

We link borrowers in the loan-level data to CMIE datasets by using the unique Company
Identification Number of a firm. These identifiers are present in both datasets, and are as-
signed by the Indian government, facilitating the matching process. Linking lenders to the
CMIE data is more challenging. We can only rely on lender names, which are often mis-
spelled. Using a combination of fuzzy matching algorithms and extensive manual checks,
we create a crosswalk between lender names in the MCA data and company names and
identifiers in the CMIE data. We are able to match over 90% of our loans (both in terms of
loan volume and number of charges) to a Prowess company, thereby identifying the majority
of entities lending to project sponsors.

3 Deconstructing Time to Build: Novel Facts

We first describe the data. Panel A of Table 1 presents summary statistics on the cross-section
of projects. We observe over 100,000 projects sponsored by over 30,000 entities. Many firms
sponsor more than one project, with the distribution featuring heavy right tails. The average
project was first observed in 2010, with the earliest projects entering the sample in the mid-
1990s. We observe cost data for 70% of projects. The distribution of costs is right-skewed:
while the median project costs 503 million rupees, the average project costs over 6 billion
rupees, and projects above the 90th percentile cost at least 10 billion rupees.12 Projects in our
data are thus sizable construction enterprises.

A distinctive feature of the data is its broad coverage across industries, geographies and
sponsors. We compute HHI indexes to measure whether projects seem to be concentrated
in particular industries or states, but find median HHIs of 0.02 and 0.07 at the industry- and
state-levels. Public sponsors account for almost 40% of the projects.13 Importantly, projects

11In cases of borrower restructuring, a secured lender with a registered charge gets priority over a secured
lender who failed to register a charge. In cases of borrower liquidation, unregistered secured lenders are treated
as unsecured lenders. Failing to register a secured loan effectively nullifies the benefits of secured lending,
thereby incentivizing creditors to register their charges. See Chopra et al. (2020) for further details.

12The median (average) project costs 7 million (86 million) USD, and the right tail features projects over 140
million USD. We assume a nominal exchange rate of 70 rupees per dollar. Given the large nominal devaluation
of the rupee since the GFC, these numbers likely provide a conservative estimate of project costs in USD.

13An important feature of the Indian economy is the presence of (partially or fully) state-owned enterprises.
Public sponsors thus do not correspond exclusively to government enterprises.
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Table 1: Summary Statistics: All Projects

Mean SD 10th 25th 50th 75th 90th

Panel A: Cross-Sectional Characteristics

Projects per Sponsor 113.05 257.90 1.00 2.00 11.00 77.00 366.00
Year Started 2010 8 1997 2005 2011 2017 2020
Last Observed 2014 8 2001 2009 2016 2021 2022
Cost (Rs. Million) 6428.76 40583.47 46.00 125.70 503.30 2500.00 10000.00
Missing Cost 0.29 0.45
HHI: Section 0.19 0.11 0.02 0.07 0.23 0.31 0.31
HHI: Industry 0.04 0.04 0.00 0.01 0.02 0.04 0.12
HHI: State 0.09 0.07 0.01 0.03 0.07 0.13 0.20
New Unit 0.81 0.39
Large Expansion 0.15 0.35
Private 0.57 0.50
Public 0.38 0.49

Panel B: Lifecycle Dynamics

Ever in Status
Under Imp 0.71 0.46
Stalled 0.06 0.23
Completed 0.40 0.49
Shelved or Abandoned 0.05 0.21
No Information 0.31 0.46

Time in Status (Qtrs)
Announced 6.35 9.41 0.04 0.92 3.32 8.10 15.78
Under Imp 8.74 13.13 0.00 0.00 4.51 12.12 23.62
Stalled 0.69 4.34 0.00 0.00 0.00 0.00 0.00

Number of projects 106626
Number of firms 32456

Notes: This table reports summary statistics on all projects available in the March 2022 vintage of CapexDx. Panel A reports
cross-sectional characteristics. HHIs are computed within a particular sector, industry, or state, and then assigned to projects.
Panel B reports lifecycle characteristics. To do so, we leverage our panel dataset tracking project histories. “Ever in Status”
variables are dummies that take value 1 if the project was ever in that stage. They need not sum to one, as a project may
transit through multiple stages over its lifecycle. “Time in Status” variables measure the total amount of time spent in a
particular stage over the project’s entire observable history. We only include non-terminal stages, i.e. we exclude completion,
abandonment, and loss to follow-up.
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in our sample are either new units (81%), large expansions (15%) or modernizations (4%) of
existing units. They are not simply acquisitions or other forms of secondary market transac-
tions. We thus measure actual time to build, not measures of shipping time or backlog.

Panel B provides an overview of projects’ lifecycles. To do so, we construct project his-
tories from event-level data.14 All projects in our data start when they are announced. The
median project spends 3 quarters in this phase. Most projects (70%) move to implementation,
but, rarely, some are stalled or abandoned even before implementation begins.

Stalling is a temporary state: the project is put on hold, but there is the intent to continue
the project after some period. Abandonments are terminal stages: the sponsor decisively
states it has no intention of continuing the project.15 We find that stallments or abandon-
ments are rare in our data: 6% of projects are ever stalled, and 5% of projects are ever aban-
doned. Further, most projects do not remain stalled for over a quarter.

The median project spends 4.5 quarters under implementation. At any point during its
construction, a project may be stalled, abandoned, or completed. The latter account for 40%
of all projects in our data (and roughly 60% of projects that move into implementation). This
figure might seem striking given the low number of abandonments. What is happening to
the other projects? Some projects are just still under implementation to this day. Our data
ends in March 2022, so these projects are just right-censored observations. The same can be
said about projects that were recently announced, but had not moved to implementation as
of March 2022.

For 30% of all projects in the data, we simply do not know what has become of them. To
borrow from the epidemiology literature, they are “lost to follow-up”, right-censored obser-
vations.16 Reassuringly, we understand part of the data generating process for censoring —
at least that under the discretion of CMIE. CapexDx discloses it stops tracking projects “if

14Our diary dataset records multiple events that happen over a project’s lifecycle. Often, more than one event
is recorded in a given date. For instance, there might be three entries in a particular date – (i) sponsor contacted
successfully, (ii) construction commenced, and (iii) foundation stone laid. Event (i) is informative that the project
is being actively monitored, but does not provide us any information about the project’s ongoing construction.
It is simply an informational marker. Events (ii) and (iii), however, provide critical information on the project’s
lifecycle. We learn that the project moved into implementation. Multiple difficulties arise in providing a con-
sistent reconstruction of a project lifecycle from event-level data, but it is essential to check that project histories
are “sensible”, and hence that our time to build and hazard regression estimates are not driven by measurement
error. We elaborate on our extensive data cleaning in Appendix A.1.

15In some exceedingly rare cases, shelved or abandoned projects are “resuscitated”. These zombie projects are
special cases where a sponsor decisively states that it has abandoned or shelved a project. But later defaults on
its previous statement and resuscitates the project. CapexDx records such events as abandonments, despite their
temporary nature. For expositional purposes, we group them with stalled projects. Our results are insensitive to
such grouping.

16The nature of the term originates from medical studies, where patients are often seen for a number of visits,
but then drop out of the study. The parallel is that we always observe a project start, and often observe some
intermediate events, but eventually cannot “follow-up” with the project. This right-censoring is conceptually
different in nature from administrative censoring, as in the case of projects for which we don’t know what happen
simply because data collection stops on March 2022.
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they are stalled or shelved or abandoned or information regarding them is not available for
over 30 months in the case of manufacturing projects and for over 36 months in the case of
infrastructure projects.” 17

Appendix Table A1 tabulates the frequency of transitions across different stages, exclud-
ing no transition events. Most announced projects move into implementation, and most
projects under implementation are eventually completed. About 20% of announced projects,
6% of stalled projects, and 27% of projects under implementation are lost to follow-up. Ap-
pendix Table A2 instead estimates quarterly transition probabilities between stages includ-
ing transitions to itself, and shows that intermediate stages are persistent.

Measuring Time to Build We take a broad view of time to build, and measure a project’s
time to build from its announcement to its eventual completion. For such, we restrict the
analysis to projects that are eventually completed. Our results should thus be interpreted un-
der the possibility that completed projects systematically differ from abandoned or censored
projects along predictable dimensions; but this potential selection bias does not invalidate
our efforts to provide a first estimate of time to build.

Figure 1 plots the distribution of time to build for all projects in our data. The median
project takes 2.5 years to be completed. The distribution is notably right-skewed. While
most projects are completed in a few years, a sizable share of projects takes over 15 years
to be completed (the plot winsorizes the histogram for visualization). To the best of our
knowledge, we are the first to provide such a comprehensive, microdata-based estimate of
time to build; and the first to provide any estimates of time to build for emerging economies.

The aggregate distribution hides considerable cross-sectional heterogeneity. Three key
drivers of heterogeneity come to mind. First, structures vary by industry. Building a railway,
a warehouse for a retailer, a manufacturing plant, or a sewage system are each very differ-
ent endeavors. Second, certain projects are more likely to be undertaken by private firms,
while others rely on public sponsorship. Third, projects differ in size, and larger projects
presumably take longer to build.

Panel (a) of Figure 2 breaks down the distribution at the sector-level. To facilitate visual-
ization, we only mark the median gestation lag with interquartile range bands; and exclude
water and sanitation, an outlier with longer time to build.18 The usual suspects come up on
top: transportation, construction, and other infrastructure-related sectors feature the longest

17Right-censoring is not a one-way street: CMIE resumes tracking previously censored projects if it manages
to obtain reliable information on project status from the public domain. In short, the combination of intense
monitoring and transparent censoring schemes bolsters data reliability. The 30% figure we report is after we
clean project histories to exclude periods of temporary loss to follow-up.

18Since the means are precisely estimated, we do not plot standard error bands – it’s easy to pairwise reject
equality of means across many sectors.
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Figure 1: Distribution of Gestation Lags – Completed Projects
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    42691 projects with mean (median) duration of 14.37 (10.00) quarters.

Notes: the figure plots the histogram of gestation lags for all completed projects in the Mar 2022 CapexDx vintage. We measure
a gestation lag from the first date that a project appears in the data (their announcement date) to its eventual completion.
We winsorize the distribution at the 1st and 99th percentile for visualization (but report the mean and median of the raw
distribution).

time to build. In turn, retail, information technology, and manufacturing feature the shortest
time to build.

Panel (b) of Figure 2 in turn summarizes time to build based on whether the sponsor is a
public entity, a private Indian entity, or a foreign private entity. The differences are striking:
public sponsors build projects with longer time to build. This is partly driven by industrial
composition: the public sector frequently sponsors heavy infrastructure projects, for which
social returns are higher than private returns. For example, Indian Railways is the largest
public enterprise in India, and railways have notoriously long time to build. Consistent
with this view, we will see that public sponsorship explains little variation in gestation lags
once we account for a project’s end user industry. We cannot claim a causal effect of public
sponsorship on longer gestation lags.

Last, we investigate the relationship between project size and gestation lag. We proxy
for size with the cost of the project. This strategy is admittedly imperfect: projects that
get delayed might be the ones incurring unexpected cost overruns; or projects built quickly
might be those for which accelerating the project was crucial, regardless of the high costs
incurred to ensure fast completion. Despite these limitations, monetary cost provides a com-
mon metric to compare projects across different “size” definitions. That is, while it’s feasible
to compare two residential buildings based on how many floors are being built, it’s not as
straightforward to compare railways to irrigation canals. Total cost provide a common met-
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Figure 2: Disaggregating the Time to Build Distribution
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(b) Distribution of Gestation Lags by Sponsors
Notes: the figures disaggregate the distribution of gestation lags across sectors (panel a) and public vs private ownership
(panel b). Panel (a) plots median and interquartile ranges for gestation lags by sector. Sectors are based on a slightly aggre-
gated version of India’s NIC-defined sectors, and excludes water, sanitation and sewage (longest median gestation lags) for
visualization purposes. Panel (b) plots histograms by private, foreign or public ownership. Distributions are winsorized at the
1st and 99th percentile for visualization purposes. Public ownership includes sponsorship by central, state, or local govern-
ments, as well as state-owned enterprises (i.e. public sector is majority shareholder). Private ownership includes any private
Indian sponsors.

ric across fundamentally different structures.
Figure 3 plots binned scatter plots of log time to build on log cost. Panel (a) plots a bivari-

ate relationship, while panel (b) residualizes by industry fixed effects. There is a remarkable
linear relationship in log space between gestation lags and costs. That is, the elasticity be-
tween size and gestation lags appears robustly constant. A 1% increase in costs is associated
with a 0.18% increase in completion time; including industry fixed effects – and therefore
averaging multiple within-industry correlations – barely moves the elasticity, from 0.18% to
0.15%. Appendix Table A3 collects estimates from the regression specifications.19

Decomposing Variation in Time to Build A takeaway from our measurement is that time
to build exhibits considerable variation. Towards a systematic accounting of such variance,
we decompose it using fixed effects. We aim to only include “exogenous” predictors of
gestation lags, as we want to explore the view that time to build is determined purely by
technological factors. Table 2 collects estimates.

Column (1) shows that project sector accounts for 24% of the variation. Moving from a
dozen sector bins to over a hundred industry bins in column (2) marginally increases the
explained variance to 30%. Column (3) removes industry as a predictor and includes only

19Appendix Figure A3 documents that the constant elasticity pattern holds well within particular sectors and
ownership groups.
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Figure 3: Cost-Time Schedules
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(b) Within-Industry Correlation
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Notes: the figures plot binned scatterplots of (log) time to completion on (log) costs. The sample is restricted to all completed
projects in the CapexDx data with non-missing cost data. Panel (a) plots the bivariate non-parametric relationship. Panel (b)
first residualizes by industry dummies.

the year the project was started. The year dummies account for 28% of the variance. In
column (4), we include sector and year started fixed effects, and explain about 40% of the
variation in time to build.

Admittedly, sector or industry, and particularly year started, may fail to proxy exclu-
sively for exogenous, technological factors. Some industries might face particular contrac-
tual arrangements that shape economic incentives to complete projects faster or slower.
Some years may pose particularly favorable conditions to start projects (e.g. low input
costs across sectors). A stricter approach would obtain characteristics based on engineering
blueprints, construction processes, and other purely technical factors. We find this approach
promising, but refrain from pursuing it. Project descriptions in our data are not detailed
enough to determine precisely such technical details. Further, we want to reduce the di-
mensionality of our predictor set. Exploiting progressively detailed information is bound to
improve explanatory power, but at the cost of less interpretability.

In columns (5) to (8), we keep sector and year started fixed effects throughout. We then
include other fixed effects to assess their additional explanatory power. Column (5) adds
state fixed effects; column (6) adds dummies for whether the sponsor is public, private, or
foreign; column (7) adds dummies for whether the project was a new unit; and column (8)
includes all the preceding variables. Geography, ownership and unit type add little explana-
tory power relative to sector and year. Last, in column (9), we explicitly abandon dimen-
sionality reduction and instead include sponsor and year started fixed effects. We manage
to account for 58% of the variation.20 In short, there is considerable within-sector (or even,

20The increase in explanatory power is not driven solely by further granularity. In results available upon
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Table 2: Cross-Sectional Variance Decompositions: Time to Completion

(1) (2) (3) (4) (5) (6) (7) (8) (9)
R2 0.239 0.302 0.285 0.395 0.406 0.410 0.396 0.439 0.579
Unc. Var 0.011 0.015 0.001 0.044
Partial R2 0.018 0.024 0.002 0.072
Ownership FE X X
State FE X X
Sector FE X X � � � �
Industry FE X
Year Started FE X X � � � � X
Type of unit FE X X
Firm FE X

Notes: the table provides a variance accounting for completed projects. The first row reports the R2 of a linear regression
of gestation lags on the fixed effects indicated by X in the bottom part of the table. In columns (5)-(8), all regressions include
sector and year started fixed effects (marked by�); and the additional explanatory power of the added fixed effects (marked by
X) is presented with uncorrelated variance shares (the difference between the R2 to the R2 in column 4) and the partial R2 (the
uncorrelated variance share divided by the unexplained variance share in column 4). Lower values of the uncorrelated variance
share indicate that the additional predictors have low additional explanatory powers relative to the predictors included in the
baseline model (column 4). Lower values of the partial R2 indicate that the additional predictors have low explanatory power
for the residual variation left from the baseline model (column 4). Type of Unit captures whether the project is a new structure,
a substantial renovation, or a modernization of an existing structure; and type of ownership captures private (Indian), foreign
or public sponsorship.

within-firm) variation in gestation lags.
On the one hand, there is room for optimism: construction is known to be an unpre-

dictable endeavor (Bajari and Tadelis, 2001). Yet, we managed to account for over half of the
variation in time to build. On the other hand, the glass is not half full: better explanatory
power comes from abandoning parsimony. By shackling ourselves to low-dimensionality
and interpretability, we can learn at most about 30% of the variation in construction times,
primarily by looking at industry, and perhaps a tad more by considering other easily ob-
served covariates.

4 Testing for Endogenous Time to Build

We now turn to the main empirical exercise. Are gestation lags purely exogenous constraints
that firms must accept? Or do firms have some control over how fast they build projects?

Testing whether firms can speed up projects requires us to devise an experiment where
we do not alter the natural progression of project completion, but shock the conditions faced
by the project sponsor. Consider a scenario where time to build was purely exogenous. At
project onset, firms chose an idealized builder; made payments upfront; and once the con-

request, we show adjusted R2. Even penalizing the number of included predictors, the specification with sponsor
dummies features greater explanatory power.
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tract was signed, could not make changes to the construction process. In turn, the builder
consistently worked in the project. In the absence of any unforeseen disturbances, time to
build would be perfectly known. Whether the firm experienced distress — weak sales, ex-
traordinary expenses, cash shortages, or cuts in credit lines – would have no bearing on the
eventual completion of a project. Ex post shocks could cause early or late deliveries by the
idealized contractor, but those would be unrelated to any decisions taken by the firm. This is
what we mean by “natural progression” of a project. We would not be able to reliably detect
any relationships between shocks to firms and project completion times in the data, as only
unobserved, project-level disruptions would generate variation in completion hazards.

We contrast this sharp null hypothesis against an alternative scenario where firms do
have some control over how quickly to finish projects. If sales were exceptional and ca-
pacity expansion was desirable, firms could speed up completion of an ongoing manufac-
turing plant. Conversely, in times of weak performance, firms could stall existing projects
and shelve new projects queued on their capex pipeline. In the absence of project-specific
disturbances that are correlated with the firm-level disturbance, such episodes would offer
encouraging evidence. Firms reacted to the shock by actively managing the portfolio of cap-
ital expenditure projects, changing how quickly they completed ongoing projects, a feature
we name “endogenous time to build”.

Our empirical strategy systematizes the thought experiments above. The key difficulty
is to find a shock that affects the firm, but is plausibly unrelated to the daily affairs of project
construction. If projects derail because their sponsors are bad firms, it is hard to argue that
firms explicitly had some control over the derailment. It could be that bad firms consistently
choose projects with worse technological factors, and bad outcomes are likelier to happen to
bad firms. That an adverse shock hit the firm at the same time that its project derailed would
thus be uninformative about whether the firm could alter time to build.

We circumvent this identification challenge by considering a setting where firms face a
contraction in credit supply because their banks get in trouble. Both good and bad firms have
relationships with the troubled banks, and we can control for how good a firm is on average.
Importantly, firms are differentially exposed to the troubled banks; and we will provide
evidence that more exposed firms did not differ much from less exposed firms before the
banks got in trouble. If the remaining reasons for potential project disruptions are just noise,
we can compare what happens to projects of more exposed firms relative to projects of less
exposed firms. If the former suffer greater disruptions than the latter, we can conclude that
a firm-level shock unrelated to the natural progression of a project was responsible for the
project disruption.
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4.1 A Credit Supply Shock: the Indian Asset Quality Review

Our quasi-experimental setting is the Indian Asset Quality Review, a widespread audit of
Indian commercial banks. This bank clean-up exercise was a preemptive measure taken
by the Reserve Bank of India (RBI) during a noncrisis period: the RBI did not structure
capital infusions or backstops, and relied on market forces to recapitalize troubled banks.
We summarize the main features of this setting, and refer readers interested in details to
previous work that shares our setting and describes the intervention at length.21

Before the Global Financial Crisis, Indian banks had to automatically reclassify restruc-
tured loans into non-performing assets, and set aside corresponding provisions. On August
27, 2008, the RBI suspended automatic reclassification given global turmoil in financial mar-
kets. No additional provisions had to be set for restructured loans, so long as borrowers met
restructuring terms. This regime lasted until April 1 2015, despite concerns of evergreening
in the banking sector.22 The Asset Quality Review was the RBI response to these concerns. It
was at first a special audit of scheduled commercial banks conducted between August and
December of 2015. Following this first inspection, the RBI conducted annual audits under
the same guidelines. RBI auditors estimated the amount of non-performing assets in each
bank’s portfolio, required provisions to be set aside, and mandated that banks disclose au-
dit results in their financial statements.23 The audits uncovered sizable under-provisioning
across systemic banks and thus had the potential to reduce bank lending.

The key identification challenge is to disentangle credit demand from credit supply. That
is, did borrowers want to borrow, but banks lent less because of the shock? Or did the
shock also decrease borrower appetite for credit? The standard strategy is to control for
credit demand (Khwaja and Mian, 2008) by including borrower or borrower-by-time fixed
effects. This is possible because banks extend loans to multiple borrowers, while borrowers
tend to borrow from multiple banks. The fixed effects estimator then identifies the effect of
the shock on equilibrium loan amounts by comparing more and less exposed banks holding
credit demand fixed. The inclusion of lender fixed effects guarantees that our estimator is not
capturing time-invariant heterogeneity across banks. That is, our estimates do not compare

21See Chari et al. (2021), Flanagan and Purnanandam (2023), Kulkarni et al. (2021). Our summary closely
follows Chopra et al. (2020).

22Loan loss provisions reduce lending capital and therefore loan profits (Freixas and Rochet, 2008). Banking
regulation imposes such policies to align privately optimal bank risk-taking with the ensuing externalities, i.e.
increases in systemic risk (Freixas et al., 2015). Consistent with RBI concerns and with the cited theories, Chopra
et al. (2020) documented sizable increases in restructurings, but no increases in non-performing assets during
the forbearance period.

23The reporting requirement was binding either if the additions to provisions exceeded 15% of bank’s net
profits; or if additions to gross non-performing assets flagged by auditors exceeded 15% of yearly additions to
gross non-performing assets flagged by the bank. Chopra et al. (2020) documents that these requirements were
mostly binding; that additional provisions and gross non-performing assets were sizable relative to previous net
profits and incremental gross NPAs; and that reporting (and thereby troubled) banks accounted for a large share
of the overall secured loan volume in the MCA charge registry.
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banks that systematically make good or bad loans. Rather, the estimator asks whether banks
more exposed to the shock differentially cut loans to a particular borrower in a given year,
relative to its usual proclivity to extend loans.24

We construct a lender-borrower-year dataset from our MCA data. First, we isolate all
outstanding loans between 2013 and 2015, roughly three years before the first special audit;
and collect all borrower-lender pairs by summing over different charges. For each pair, we
create observations for years 2013-2019. If a pair had an outstanding loan in a given year, we
assign it the total outstanding loan amount in that given year. If the pair had no outstanding
loans in a given year, we assign it a value of zero. The procedure gives us a balanced panel
of firm-bank relationships over the sample period, fixing the composition of relationships
prior to the audits.

We measure how exposed a bank b is to the audit shock at time t as the difference in
provisions resulting from the yearly audit, scaled by total bank assets

Bank Shockbt =

(
Provisions Required by the RBI Post-Audit− Provisions Pre-Audit

Total Assets

)
bt

The measure is intuitive: banks who must post more provisions experience larger reduc-
tions in lending capital. In turn, less lending capital should translate into fewer loans. We
normalize by bank assets to avoid spuriously comparing large and small banks.25 We then
regress total loans outstanding between lender b and borrower f in year t using a Poisson
pseudo-maximum likelihood (PPML) estimator26

Loansb f t = exp
(
γ× Bank Shockbt + λ f t + ωb + Xb f tΓ

)
εb f t

where λ f t are firm-by-year fixed effects that absorb unobservable credit demand shocks, ωb

are bank fixed effects that absorb permanent heterogeneity across banks, and Xb f t collect
other controls. We are interested in γ, the semi-elasticity of equilibrium loan amounts to the

24Note that we use the terms bank and lender interchangeably. Similarly, we refer to sponsors as firms or
borrowers. The terminology facilitates parallels with previous work in the empirical macro-finance literature.

25The shock is set to zero if the lender is not a scheduled commercial bank. We include non-SCBs in the sample
as borrowers may substitute towards them following the information shock hitting SCBs. The shock also takes
value zero for years prior to the start of the special audits. These years provide information on lending dynamics
for the affected institutions before the information shock.

26A growing literature advocates for pseudo-Poisson maximum likelihood methods in settings where the de-
pendent variable is characterized by a distribution with non-negative support and a large mass of zeros. Gourier-
oux et al. (1984) proved that validity of a Poisson regression extended beyond count outcomes, relying instead
on a correct specification of the conditional mean. Silva and Tenreyro (2006) applied PPML to gravity equations,
highlighting large discrepancies between log-linear specifications estimated by OLS with log(1 + Y) as depen-
dent variables and the corresponding Poisson specifications. Cohn et al. (2022) documented similar pitfalls in
empirical corporate finance. Chen and Roth (2022) proved that log(1 + Y) specifications estimated by OLS are
not invariant to the scaling of the outcome variable Y, and that one can recover arbitrarily-sized treatment effects
by appropriately rescaling the outcome. They explicitly recommend the use of Poisson methods instead.
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bank shock. We cluster standard errors at the lender level.
Table 3 presents the results. Column (1) provides a baseline specification with lender and

borrower-by-year fixed effects. A one-standard deviation increase in bank exposure reduces
outstanding credit in the average pair by 5.1%. Importantly, the inclusion of firm-year fixed
effects control for time-varying demand confounders. The reduction thus represents a rela-
tive reduction in credit supply among more versus less affected banks. Column (2) relaxes
the control set by including borrower and year fixed effects. Hence, we control for aggregate
demand shocks or systematic heterogeneity in firm credit demand, but not for time-varying
credit demand shocks. Reassuringly, the point estimates are economically indistinguishable.
Column (3) confirms the limited role for time-varying credit demand confounders by adding
time-varying firm-level controls to the specification in column (2).

Not all firms in the merged MCA-Prowess sample sponsor projects in Capex. If the latter
are better insulated from the audit shock, perhaps by banking mostly with foreign institu-
tions, our quasi-experimental setup would be of little use. We thus restrict the sample in
columns (4)-(6) to borrowers for whom we observe projects in the Capex dataset, and whose
projects are included in our project-level regressions. First, the audit shock resulted in a 4.9%
average contraction of credit supply among this subsample, a reassuringly similar magni-
tude. Second, we once again find little role for time-varying credit demand confounders
relative to potential aggregate or firm-specific confounders.27

4.2 From Banks to Projects: Estimation and Identification

Having established that the audit shock has bite, we move to our main results. We need
to map the banking shock to firms. Projects are exposed to the banking shock if so is their
sponsor. If a firm is more exposed to troubled banks, it potentially faces starker credit dis-
ruptions. We model exposure for firm f by aggregating bank-level exposures to the audits,
weighting each bank b by its lagged share of total borrowing (Chodorow-Reich, 2013)

Firm Exposure f t = ∑
b∈B f ,t−1

wb, f ,t−1Bank Shockbt (1)

wb, f ,t−1 =
Outstanding Loansb, f ,t−1

∑b∈B f ,t−1
Outstanding Loansb, f ,t−1

(2)

27Another sensible specification omits lender fixed effects and estimates a linear model in first-differences.
Appendix Table A4 reports results from such specification. Although our results are slightly weaker in the
broader sample, we still find evidence of a credit supply contraction. Moreover, the semi-elasticities obtained
by dividing the coefficients by the mean of the outcome are similar in magnitude to those estimated in Table
3. This specification suggests a greater role for time-varying demand confounders, but the control set included
in the regressions with only borrower and year effects approximate well the estimates from the more saturated
specifications.
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Table 3: Effects of Asset Quality Review on Credit Supply

(1) (2) (3) (4) (5) (6)
Exposure -0.0517∗∗∗ -0.0508∗∗∗ -0.0513∗∗∗ -0.0497∗∗∗ -0.0485∗∗∗ -0.0491∗∗∗

(0.0106) (0.0119) (0.0120) (0.0122) (0.0130) (0.0131)

Outc Mean 2497.20 2497.47 2497.47 4450.34 4450.34 4450.34
Obs 268858 268827 268827 109929 109929 109929
Full Sample X X X
Hazard Sample X X X
Lender FE X X X X X X
Borrower by Year FE X X
Borrower and Year FE X X X X
Firm Controls X X

Notes: the table reports PPML estimates of the semi-elasticity of outstanding loans within a borrower-lender pair in a given
year to lender exposure to the Asset Quality Review. The sample consists of a balanced panel of firm-bank relationships for
2013-2019, conditional on an existing relationship (positive outstanding loans) in the 2013-2015 period. Exposure is defined as
the difference between required provision after the audit and the original provisions, scaled by total bank assets. Coefficient
estimates are read as the percent effect on the outcome for a one standard-deviation increase in lender exposure. For example,
column (1) reports that moving from the lender with average exposure to a lender with one-standard deviation higher exposure
decreases outstanding loans by 5.08%. In columns (1)-(3), the sample comprises all borrower-lender pairs in our MCA-Prowess
merged sample. In columns (4)-(6), the sample is restricted to firms for which we eventually observe projects in our hazard
regressions (see model (3) and table 4). Columns (1) and (4) include lender and borrower-by-year fixed effects. Columns (2)
and (5) include lender, borrower, and year fixed effects. Columns (3) and (6) add firm controls. Firm controls include sales,
sales growth, profitability, debt over equity, book leverage, equity issuances, cash over liquid assets, and debt over EBITDA. All
firm controls are winsorized at the 1st and 99th percentile, and then standardized. All firm controls are lagged by one-period.
Standard errors are clustered at the lender level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at
the 10%, 5% and 1% levels, respectively.
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To quantify the effect of shock exposure on project completion hazards, we estimate a gener-
alized linear model

φ(Completedp f t) = β× Firm Exposure f t + Xp f tΓ + υp f t (3)

where p refers to a project, f refers to the project’s sponsor (or, firm), t refers to calendar
time, and φ(·) is a link function (eg. affine φ yields linear regression). Xp f t collects control
variables, and υp f t denotes residuals. The effect of interest is β. We cluster standard errors at
the firm level (Abadie et al., 2022).

Our specification borrows from (discrete-time) survival analysis (Singer and Willett, 1993).
OLS estimation in our setting is misspecified due to right-censoring. Restricting our attention
to projects for which we observe full histories – a “complete case analysis” – runs into selec-
tion issues: completed projects may systematically differ from censored projects. Survival
analysis – also known as duration models in econometrics (Van Den Berg, 2001) – explicitly
accounts for right-censoring, allowing us to use all projects in the data. The methodology
thus circumvents these selection issues.

We organize the data into a quarterly panel of projects.28 The outcome Completedp f t is
zero in all periods before project completion, and one in the completion period. If a project
is right-censored, either because CapexDx loses track of or because the project is ongoing,
Completedp f t takes value zero in all time periods.

Different choices for the link function φ yield likelihood functions that match or approx-
imate underlying continuous-time models. The choice of link function is mostly guided by
the underlying data generating process for project completion. On the one hand, Allison
(1982) shows that a discrete-time model for hazards yields a likelihood that coincides with
the likelihood for a logistic regression model. On the other hand, logistic regressions can run
into incidental parameter problems (Neyman and Scott, 1948). This is a real concern, since
we will include high-dimensional fixed effects motivated by identification concerns.

Instead, we take the view that we are grouping the underlying continuous-time process
into discrete periods; and opt for a log link φ(x) = log(x). Formally, the log link implies a
semi-parametric, piece-wise exponential model for hazards. Intuitively, it assumes that con-
ditional on surviving up to period t, completion arrives at a Poisson rate that depends on the
covariates included in the RHS of (3). We find it reasonable: our outcome is binary (therefore
a count) and captures the arrival of a rare event (the unconditional probability of completion
is 4%). Alternatively, one can relax the the Poisson assumption, and interpret our choice as
specifying a log-linear hazard function with multiplicative error structure (Silva and Ten-
reyro, 2006). In this case, under weak assumptions, the model can be estimated by Poisson

28We opt for a quarterly panel, despite exposure varying at the yearly level. Since completion times are small
in yearly scale, we would not account well for age effects in an yearly panel; and would not disentangle well the
role of project age from shocks to firms, except for firms with the largest project portfolios.
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pseudo-maximum likelihood methods, which only require the conditional expectation func-
tion to be correctly specified (Gourieroux et al., 1984).29

Proper identification of β requires satisfying a non-linear GMM moment condition

E
[
υp f tExposure f t|Xp f t

]
= 0 (4)

Leveraging recent results in the econometrics of exposure designs, it is sufficient that bank
shocks are (conditionally) uncorrelated with (loan-weighted) project-level unobservables.
Identification leverages exogenous variation in the shocks. Correlation of the shares wb, f ,t−1

with unobservables and with the outcome do not invalidate the design (Borusyak et al.,
2021). Instead, we should be worried if (1) there are other factors that influence project com-
pletion and are correlated with the credit supply shock; and (2) we fail to control for such
confounders.

Previous research has accumulated convincing evidence on the exogeneity of the credit
shock (Chopra et al., 2020, and references therein). We safeguard our analyses by intuiting
potential confounders that could threaten a causal interpretation. Whenever possible, we
include the appropriate controls into Xp f t. First, some firms may systematically perform
poorly, build projects slowly30, and build relationships with unhealthy banks who are more
likely to underreport non-performing assets. Firm fixed effects address this problem under
the assumption that this sorting does not vary over time.

Second, projects in our sample are immobile, which makes them susceptible to time-
varying geographical shocks. Political instability may disrupt project timelines (e.g. military
tensions in the Northeast relative to Southern India, or idiosyncratic changes in construction
regulations). Variation in economic slack (e.g. local unemployment, construction labor sup-
ply or wages) may alter incentives to hire workers and thus change gestation lags. These
factors threaten our design if banks cut credit by internalizing them. We include state-by-
year fixed effects to absorb these time-varying regional confounders.

Third, aggregate (e.g. a recession) or industry-level (e.g. supply chain disruptions)
shocks may delay project completion regardless of firm actions; and may lead bank loans
to perform poorly, induce banks to hide losses, and thereby increase divergences in pro-
visions. We include year fixed effects or sector-by-year fixed effects to mitigate these con-

29Conveniently, including high-dimensional fixed effects in Poisson pseudo-maximum likelihood models with
large datasets is feasible due to novel existence results and fast estimation routines (Correia et al., 2020, 2021).

30For instance, they may have access to better construction technologies or better relationships with bureau-
crats; and banks might differentially cut credit supply due to these characteristics. For firms with a single project
in the sample, inclusion of firm effects implies that the estimator compares project-level outcomes before and
after exposure; for firms with multiple projects, we rely on within-firm rather than within-project variation. This
allows us to strike a compromise between identification and sample size for estimation. Including project-level
effects would drop too many observations due to separation concerns arising from the high-dimensional fixed
effects. Firm-level fixed effects allow us to absorb substantial confounding variation, while simultaneously al-
lowing to include other fixed effects that control for project-level confounders.
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cerns.31 Fourth, we include a cubic spline on project age, which removes baseline hazards
and allow us to (semi-parametrically) compare projects of similar ages.

In our most conservative specifications, we further include controls related to recent firm
performance in product markets (e.g. sales growth) and firm financial solvency (e.g. lever-
age, cash-to-assets, debt-to-gross profits, etc.) Even in the absence of confounding concerns,
these controls improve precision of our estimates. For the more skeptical readers, these con-
trols attempt to span the space of time-varying firm-level confounders that influenced both
project completion likelihood and bank’s propensity to hide losses. Suppose that periods of
low sales growth led firms to start projects with ex ante lower expected time to build; and
that low sales growth of individual firms led to defaults, impaired a sizable chunk of bank
advances, and encouraged banks to hide these losses. In that case, failing to control for past
sales growth could confound our effect of interest. However, we find hard to concoct sto-
ries where time-varying idiosyncratic characteristics of specific firms would generate sizable
distortions in bank’s propensities to hide losses. This could only be the case if either these
firms were tremendously granular as to shape behavior of the entire banking sector, which
we find unlikely; or if the empirical distribution of charges was characterized by dispersed
lending through many small banks, which is not the case.

Table 4 presents estimates of model (3). Column (1) starts by estimating a simple bivari-
ate specification, only controlling for baseline hazards. Taken at face value, a one-standard
deviation increase in project-level exposure to the audit shock increases hazards contempo-
raneously by 11.5%. The effect is statistically significant at conventional levels, but potential
confounders abound. Column (2) tightens identification by including firm fixed effects and
project state-by-year fixed effects. A one-standard deviation in project-level exposure now
raises hazards by 7%, a statistically significant effect at conventional levels.

Column (3) shows the results are unaffected by the inclusion of firm-year controls. Col-
umn (4) adds NIC sector-by-year fixed effects. The effect size drops to 6.2%, but remains
significant. Column (5) is our preferred specification. The additional firm-level controls
barely moves the point estimate: hazards increase by 6%, a significant effect at conventional
levels. Last, columns (6) and (7) replace sector-by-year with industry-by-year fixed effects. If
anything, the tighter specifications yield larger completion effects.

Perhaps lagged measures of firm real and financial performance are insufficient to con-
trol for all possible time-varying unobservable shocks. Including firm-year effects would
eliminate this concern. In the bank-firm level regressions, that was our strategy to isolate
the supply shock from other potential confounding shocks. However, firm-year effects are

31Throughout, we use “financial year” fixed effects. The financial year in India runs from April 1st to March
31st of the subsequent year. All financial data, and thereby bank exposure data is measured at this frequency.
Even many official macroeconomic series are released based on financial year rather than calendar year denom-
inations.
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Table 4: Effects of Firm-Level Credit Supply Shocks on Project Completion Hazards

(1) (2) (3) (4) (5) (6) (7)

Exposure 0.1154∗∗∗ 0.0701∗∗ 0.0681∗∗ 0.0623∗∗ 0.0600∗∗ 0.0758∗∗∗ 0.0750∗∗∗

(0.0278) (0.0273) (0.0275) (0.0265) (0.0268) (0.0271) (0.0273)

DepVar Mean 0.0392 0.0392 0.0392 0.0392 0.0392 0.0409 0.0409
Observations 123857 123857 123857 123857 123857 118314 118314
Age Splines X X X X X X X
Firm FE X X X X X X
State x Year FE X X X X X X
Sector x Year FE X X
Industry x Year FE X X
Firm Controls X X X

Notes: the table reports PPML estimates of the semi-elasticity of project-level hazards to firm exposure to the Asset Quality
Review (see model (3)). The sample consists of projects observed quarterly between 2013-2019. Firm exposure is defined as
the weighted-average of lender exposure, where weights correspond to outstanding loans in the previous year. Coefficient
estimates are interpreted as the percent effect on the outcome for a one standard-deviation increase in firm exposure. For
example, column (1) reports that moving from a firm with average exposure to a firm with one-standard deviation higher
exposure increases the hazard by 11.54%. Age splines refer to cubic splines on a project’s age (measured in quarters). Firm
controls include sales, sales growth, profitability, debt over equity, book leverage, equity issuances, cash over liquid assets, and
debt over EBITDA. All firm controls are winsorized at the 1st and 99th percentile, and then standardized. All firm controls
are lagged by one-period. The reduction in sample size from columns (5) to columns (6) and (7) results from separation of
additional observations by the more granular industry-by-year fixed effects relative to the sector-by-year fixed effects. Standard
errors are clustered at the firm level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the 10%, 5%
and 1% levels, respectively.
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not a feasible strategy in our project-level or firm-level regressions. Exposure varies at the
firm-year level, so including firm-year effects would absorb all the variation and preclude
identification of our coefficient of interest.

The question then is: how well does our control set span the space of time-varying firm-
level confounders? We follow Khwaja and Mian (2008) and Chodorow-Reich (2013) and use
the results from our credit regressions as suggestive evidence on the absence of unobservable
firm-year confounders that would violate (4). In Table 3, moving from borrower-year to
borrower and year fixed effects barely changed our results. If borrower-year unobservables
were the chief sources of confounding, we would have expected that relaxing the control
set would change point estimates considerably. Instead, firm and year effects approximated
well the information set spanned by the full suite of firm-year effects. Given we include firm
and year fixed effects in our preferred specifications, we do not believe our results are driven
by unobservable firm-year confounders.

We provide a battery of robustness exercises in Appendix C. Table A5 shows that our
choice of weights for aggregating the bank shocks is conservative. Using pre-period weights
instead of lagged, time-varying weights strengthens the results. Table A6 shows results from
linear models estimated in the same sample as the PPML regressions. The semi-elasticities
obtained by dividing point estimates by dependent variable means are similar to those in
Table 4, which reassures our results are not driven by the choice of estimator.

4.3 Extensive Margin Results

Firms discount future cash flows, so accelerating completion increases the project’s net present
value. If it was costless to speed up, firms would always do so. By revealed preference,
speeding up must be costly. But our results document that firms are engaging in costlier
investment behavior in times of low credit supply, precisely when we would expect firms to
cut down on capital expenditures. Though puzzling at first, our results are consistent with
a potential decline in investment. Firms also start new projects. If speeding up ongoing
projects is costly, and firms can cut down investment on other margins, we would expect to
see a decline in new project starts.

We test for this extensive margin channel by collapsing the data to the firm-year level and
estimating by PPML

New Project Starts f t = exp
(

β× Firm Exposure f t + X f tΓ
)

ν f t (5)

where ν f t is a residual and X f t collects firm fixed effects, year fixed effects, and time-varying
firm-level controls. We cluster standard errors at the firm level.

Table 5 collects results. In a bivariate specification (column 1), a one-standard deviation
increase in firm-level exposure reduces new project starts by 7.7%. Adding firm and year
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Table 5: Effects of Firm-Level Credit Supply Shocks on Project Starts

(1) (2) (3) (4) (5) (6) (7)

Exposure -0.0775∗∗∗ -0.0698∗∗ -0.0670∗∗ -0.0806∗∗ -0.0763∗∗ -0.0584∗ -0.0588∗∗

(0.0286) (0.0325) (0.0322) (0.0316) (0.0314) (0.0299) (0.0296)

DepVar Mean 0.8362 0.8362 0.8362 0.8362 0.8362 0.8326 0.8326
Observations 8994 8994 8994 8994 8994 8869 8869
Firm FE X X X X X X
Year FE X X
Section x Year FE X X
Division x Year FE X X
Firm Controls X X X

Notes: the table reports PPML estimates of the semi-elasticity of firm-level project starts to firm exposure to the Asset Quality
Review (see model (5)). The sample consists of the Capex-Prowess matched sample of firms observed yearly between 2013-
2019. Firm exposure is defined as the weighted-average of lender exposure, where weights correspond to outstanding loans
in the previous year. Coefficient estimates are interpreted as the percent effect on the outcome for a one standard-deviation
increase in firm exposure. For example, column (1) reports that moving from a firm with average exposure to a firm with one-
standard deviation higher exposure reduces project starts by 7.75%. NIC Section and Division classifications are constructed
from NIC codes and categorizations. Firm controls include sales, sales growth, profitability, debt over equity, book leverage,
equity issuances, cash over liquid assets, and debt over EBITDA. All firm controls are winsorized at the 1st and 99th percentile,
and then standardized. All firm controls are lagged by one-period. The reduction in sample size from columns (5) to columns
(6) and (7) results from separation of additional observations by the more granular division-by-year fixed effects relative to the
section-by-year fixed effects. Standard errors are clustered at the firm level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote
statistical significance at the 10%, 5% and 1% levels, respectively.

fixed effects (column 2) reduces the point estimates to 7%. Further adding time-varying
firm controls barely moves the point estimates. In columns (4) and (5), we replace year fixed
effects by NIC sector x year fixed effects to control for sector-specific shocks. In our preferred
specification (column 5), a one-standard deviation increase in exposure reduces new project
starts by 7.6%. Replacing sector-by-year with division-by-year effects slightly reduces the
point estimates to 5.8%. All effects are significant at conventional levels. Reassuringly, the
magnitudes are stable across specifications.

Appendix C collects a battery of robustness checks. Table A7 shows that our choice of
weights for aggregating the bank shocks is conservative. Using pre-period weights instead
of lagged, time-varying weights strengthens our results. Table A6 shows results from linear
models estimated in the same sample as the PPML regressions. The semi-elasticities obtained
by dividing point estimates by dependent variable means are similar to those in Table 5,
reassuring our results are not driven by the choice of estimator.

4.4 Other Threats to Identification

Our empirical design is valid if the control set ensures that the identification condition (4)
holds. Confounding would result if, conditional on the set of included observables, there ex-
isted factors that (i) influence project completion and correlate with the credit supply shock;
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(ii) and that we fail to control for.
A first concern is the absence of firm-time effects in a world where effects are instead

driven by some unobservable firm-year confounder. That is, we can imagine a world where
there was no causal effect of the audit shock on project completion or firm starts. Rather,
the effects were driven by some unobservable characteristic that (i) banks internalized and
conditioned on when reducing credit, and (ii) made firms less willing to start projects, but,
somehow, more willing to complete ongoing projects. For example, loan officers could con-
dition on some private information that we are not privy to as econometricians. They could
cut loans to firms they knew were temporarily going through hard times. This scenario
would threaten our results if our control set did not approximate well the information set
that loan officers used when differentially reducing credit. To borrow from Chodorow-Reich
(2013), the identifying assumption would be violated if there was no “‘as good as random’
matching of banks and borrowers conditional on observables”.

We attempt to address these concerns by first presenting balance tables. If our exposure
measure predicted pre-audit firm characteristics, we would be concerned that banks were
differentially cutting credit on these observables. Exposure would fail to be quasi-random.
Further, the effects we estimate could be driven by such observables if they were relevant for
predicting our outcomes of interest. For example, some firms could be experiencing weak
sales growth around the time of the audits. This weak performance could drive firms to cut
on their project pipeline; and could reasonably lead banks to cut credit to these firms by more
relative to healthier firms.

Appendix Table A10 ameliorates these concerns. We regress one-period lagged firm char-
acteristics on a contemporaneous measure of exposure, including firm and year effects. We
thus test for predictability in trends, since we rely on within-firm time-series variation in
our design. We detect predictability for profitability and cash over assets, but fail to detect
predictability among other covariates.32

A second, more subtle concern, is that the shock could change the ability of the data
provider to collect data on projects. This possibility opens up space for a delicate form of
selection bias: the sample of projects collected after the shock may differ from the sample of
projects before the shock. We would not be able to make causal statements if the treatment
induced such differential censoring.

In Appendix D, we provide two analyses to soothe these concerns. First, we restrict our
completion analyses to projects that were in data vintages prior to the first audits. Even if
the data collection process changed across treated and untreated units following the shocks,

32We also run cross-sectional balance tests. In column (3) of Table A9, we regress pre-audit firm characteristics
on average exposure ex post. We detect cross-sectional predictability in sales and equity issuance, but fail to
detect predictability otherwise. Note that this test is more stringent that what’s required by our identification
assumption, but is overall encouraging.
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projects in vintages prior to the shock would not have been affected by these changes. The
sample is thus immune to the selection concern. Second, we test a direct implication of
differential censoring due to differential backfilling across treatment groups. If CapexDx had
become less able to backfill data on treated relative to untreated projects, we should observe
a downward trend in the number of treated projects relative to untreated projects before the
shock. We thus test whether exposure predicts differential pre-trends in firm-level project
stocks. Across the two tests, we find no evidence that our results are driven by differential
censoring.

5 A Theory of Investment with Endogenous Time to Build

Our reduced form results may appear puzzling at first. Firms are experiencing an adverse
shock. Expectedly, they are cutting down on new projects, consistent with standard invest-
ment theory. However, they are speeding up existing projects. By revealed preference, this
must be a costly action. How can we reconcile the intensive and extensive margin results?

We rationalize our empirical findings in an investment model with endogenous time to
build. By endogenous, we mean that the firm chooses time to build, rather than treating
it as an exogenous primitive. Our model is minimalist. It allows us to make analytical
statements that cleanly spell out the intuition for our results. Yet, it lends itself to quantitative
applications. With some further enrichments, we can take the model to the data and perform
counterfactuals, which we defer to section 6.

Setup Time is continuous and indexed by t. A firm manages a collection of capital
investment projects.33 Each period, a continuum of projects become available. Completing a
project requires investing an amount x̄. After the project is finished, say at time T, the firm
obtains z units of capital. Project output z is drawn at project inception from a p.d.f. f (z).
Capital is valued at a common price p, so that project returns are pz. Firms take p as given.34

Our setting incorporates project heterogeneity in returns rather than size, an assumption we
later relax. Project returns only accrue upon project completion. The firm’s discount rate is
given by r > 0. We focus first on a partial equilibrium setting.

Let i(t) be how much the firm spends on the project in period t. Normalize the start time

33The model’s interpretation is the same whether projects are managed by a single firm or by many firms shar-
ing the same structural primitives. Alternatively, one can think of a firm being a project, and use the framework
to study industry (Kalouptsidi, 2014) or macroeconomic dynamics.

34For now, firms will take terminal payoffs as fixed. When we do first-order dynamics below, p will not
respond to changes in discount rates. We relax this assumption and prove that our analytical results hold in
appendix F.4.
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of the project at t = 0. The project is then completed at the time T that satisfies

ˆ T

0
i(t)dt = x̄ (6)

Equation (6) states projects are completed when investment flows add up to total size. Sup-
pose p, z and r are constant (ie. as in a steady state). The firm chooses a sequence of in-
vestment flows i(t) and a completion time T to maximize the net present value (NPV) of the
project subject to (6)

max
i(t),T

e−rT pz−
ˆ T

0
e−rti(t)dt s.t.

ˆ T

0
i(t)dt = x̄

In the absence of frictions, the solution is trivial: build positive NPV projects instanta-
neously, and discard negative NPV projects. To see why, note that for any fixed T, the firm
minimizes the NPV of construction costs. Since r > 0, it is optimal to invest x̄ immediately
before T, and nothing at all other times. Discounted profits are then given by e−rT(pz− x̄),
which are maximized at T = 0 so long as pz > x̄. If pz < x̄, the firm does not build the
project.

But physical capital is not built in a day – our measurement exercises reject zero time to
build. We introduce frictions into the construction process, modeled as additional costs κ(i),
assumed to be weakly increasing and weakly convex. The firm problem becomes

max
i(t),T

e−rT pz−
ˆ T

0
e−rt [i(t) + κ(i(t))] dt s.t.

ˆ T

0
i(t)dt = x̄ (7)

The frictional costs κ(i) do not contribute to installed capacity, i.e. they are deadweight
losses. Whenever necessary (i.e. in quantitative exercises), we assume that κ(i) has the fol-
lowing functional form (none of our analytical results rely on the functional form):

κ(i) =

0 , i ≤ i
κ
2 (i− i)2 , i > i

The firm can invest without incurring any additional costs up to some upper threshold ī.
We interpret ī as a natural rate of project completion. Beyond this point, accelerating incurs
a quadratic cost parametrized by κ. Our model nests one with exogenous time to build as
κ → ∞, in which case all projects are completed in T = x̄/ī periods.35 The exogenous case

35The exogenous TTB formulation is inconsistent with our empirical findings under the assumption of opti-
mizing firms. If firms speed up, they increase i following the shock. This would require that they were investing
i < i at the time of the shock, increasing their investment to i = i at the time of the shock. But then, firms would
not have been optimizing. This model is consistent with the data only if the credit supply shock increases the
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illustrates how κ(·) can stand for a technological constraints on the rate at which the project
can be completed.

The convex element captures many other complexities of construction. For instance, κ

can capture congestion costs: building a factory is faster if more workers are putting up
walls and laying down wires, but workers eventually start to bump heads. κ could also
stand for moral hazard concerns. Suppose it is costly for contractors to exert effort; and that
effort is not contractible (or, if so, not verifiable). In a second-best world, costs unrelated
to capacity installation arise, since workers must be incentivized to exert effort. Additional
stories for κ are plenty: costs associated with renegotiating contracts, with speeding up de-
liveries, with facing a convex labor supply curve for construction workers, or with many
other frictions that characterize the construction industry. Bajari and Tadelis (2001) provide
a comprehensive account of such issues.

Optimal Investment Towards a recursive representation, let x(t) denote the state of the
project

x(t) =
ˆ t

0
i(s)ds (8)

Projects are heterogeneous with respect to project stage x and project-specific returns z. We
write the firm problem as a Hamilton-Jacobi-Bellman (HJB) equation with state x

rv(x, z) = max
i≥0
−i− κ(i) + i

∂v(x, z)
∂x

(9)

and terminal condition
v(x̄, z) = pz (10)

The HJB characterizes optimal firm behavior. The flow value of a project to the firm is
rv(x, z). When the firm behaves optimally, it trades off the costs and benefits of investment.
Costs are born today: placing i units towards the project costs i + κ(i). Benefits accrue only
when projects are completed. But projects close to completion are more valuable, since the
firm is closer to reaping returns. More investment today thus raises the future value of the
project. When time intervals are small, the marginal benefit of investing i is given by ∂v(x,z)/∂x,
so that the increment to the project’s continuation value is i∂v(x,z)/∂x. The terminal condition
restates that a completed project returns pz.

Since κ(i) is differentiable, the necessary condition for an optimum is

1 + κ′(i) =
∂v(x, z)

∂x
(11)

technological primitive i. We find this explanation unlikely.
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so the firm invests up to the point that the marginal cost of investment inclusive of acceler-
ation costs equals the marginal benefit of moving the project forward. With slight abuse of
notation, we denote by i(x, z) the resulting policy in the state space. We solve the HJB (9)
numerically using finite-difference methods (Achdou et al., 2021).

Optimal Entry Firms optimally start new projects. For any drawn z, the firm can compute
the NPV v(0, z). If the NPV is positive, the firm will start the project. This pins down a rule
for optimal entry:36 start all projects with high enough return z > z̄, where the break-even
point z̄ satisfies

v(0, z̄) = 0 (12)

Distribution of Projects Firms manage multiple projects. As firms invest, project stages
change. The distribution of projects over stages thus evolves over time. Let g(x, z) denote
the steady state distribution. It satisfies a Kolmogorov Forward Equation (KFE)

∀(x, z),
∂

∂x
[i(x, z)g(x, z)] = 0 (13)

The intuition for the KFE is simple.37 The investment policy i(x, z) is the speed according
to which firms move along the x dimension. The flow of firms through a given point x is,
therefore, i(x, z)g(x, z): the product of the density of firms at this point and the velocity
with which they travel. In steady state, the flow of firms through any given point must be
constant, which is equivalent to equation (13).

Now recall that a a constant flow f (z) · 1{z ≥ z̄} of projects with productivity z enters the
economy at each instant.38 This implies that, in steady state, we must have g(x, z)i(x, z) =

f (z) · 1{z ≥ z̄}, which gives us

∀(x, z), g(x, z) =
f (z) · 1{z ≥ z̄}

i(x, z)
(14)

36Soon, we will linearize the model and study first-order dynamics around a steady state. To do so while
preserving an extensive margin, we introduce stochastic fixed costs of entry. The firm pays an entry cost dis-
tributed uniformly on [0, ε]. The distribution allows us to convexify the problem and proceed with differentiable
methods. We set ε to be small, so the fixed cost has insignificant effects on the steady state.

37A heuristic derivation of the KFE is as follows. Suppose we are in a steady state. A project (x, z) will receive
an investment i(x, z) in the next infinitesimal span of time ∂t. The “mass” of these projects is g(x, z). Total
investment is thus i(x, z)g(x, z). Consider now two stages x0 = x− ε and x1 = x + ε in the vicinity of x. During
the ∂t time span, projects in stage x0 will move to stage x – a flow i(x0, z)g(x0, z) into stage x. In turn, projects
in stage x will move to stage x1 – a flow i(x1, z)g(x1, z) out of stage x. If we difference inflows from outflows,
we would obtain by how much the measure of projects in stage x changes during a time span ∂t. As we bring x0
and x1 closer to x by letting ε → 0, the difference i(x0, z)g(x0, z)− i(x1, z)g(x1, z) becomes − ∂

∂x [i(x, z)g(x, z)].
But this infinitesimal change in the mass of projects at stage x in time span ∂t has to be zero, because we are in a
steady state. This is what the KFE (13) states.

38Note that the total mass of ongoing projects is not required to be 1 and is later going to vary over time
following shocks.
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Completion Times Optimal investment i(x, z) tells us how quickly we are installing capac-
ity. We also know how much more capacity we must install to complete the project. There-
fore, we can compute how much time remains until project completion, which we denote
T(x, z). Solving the steady state Kolmogorov Backward Equation (see Appendix F) with an
appropriate terminal condition T(x̄, z) = 0 yields

T(x, z) =
ˆ x̄

x

1
i(y, z)

dy (15)

An analogy to classical mechanics helps here. In a small time interval dt, a firm increases
its project state by dx = i(x, z)dt. The time necessary to move dx units in the x dimension
is, then, dx/i(x,z). The total time until completion adds up these small time intervals until the
projects reaches x̄. (15) states this formally.

Steady State Solution Figure 4 shows steady state objects as a function of project stage
(100× x/x̄) for z = 2 and z = 8, and illustrative parameter values. Panel (a) shows the value
function. It is monotonically increasing and reaches the terminal value pz at x = x̄. Panel (b)
shows optimal investment relative to ī. We can see that optimal investment is endogenously
higher for more productive projects, reflecting the higher payoff at completion. Panel (c)
shows the stationary distribution normalized by the flow of entrants, g(x,z)/ f (z), which is
simply 1/i(x,z). There is a larger mass of active projects, given by the area below the curve,
for lower values of z (relative to the flow of entrants f (z)), reflecting the fact that projects
with lower z take longer to be completed. Finally, panel (d) shows the time until completion
T(x, z), which is higher for low-productivity projects until reaching zero at x = x̄.

5.1 First-Order Dynamics

To map our model to the empirical results in sections 4.2 and 4.3, we characterize the re-
sponse of optimal investment policies to a credit shock. We model the banking shock from
our empirical exercises as an increase in the discount rate r. Intuitively, as firms see them-
selves in a harder position to borrow, they raise their internal discount rates.

We model this shock as a perfect-foresight path for discount rates, i.e. r(t) = r+ se−ρt. Let
V(x, z, s, t) and I(x, z, s, t) be the value function and investment policy following the shock,
respectively, which depend on the shock size s and calendar time t. We have the following
result:

Lemma 1. The first-order responses of the value function and investment policy to the shock are
given by

V(x, z, s, t) = v(x, z) + se−ρtv̂(x, z) + o(s)
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Figure 4: Steady state objects as functions of project stage
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Note: the figures plot the steady state solution of the model. Panel (a) plots the value function v(x, z), panel (b)
plots the investment policy i(x, z)/ī, panel (c) plots the stationary distribution g(x, z)/ f (z), and panel (d) plots
the time to completion distribution T(x, z). The x-axis is the project stage, defined as 100× x/x̄. Solid green lines
represent low output projects (z = 2); black dashed lines represent high output projects (z = 8). Parameters are
set at the median values obtained in our calibration in section 6.1: r = 0.01, p = 1, x̄ = 1, ī = 0.083, κ = 30.1.
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I(x, z, s, t) = i(x, z) + se−ρt î(x, z) + o(s),

where
v̂(x, z) =

∂V
∂s

∣∣∣∣
t,s=0

î(x, z) =
∂I
∂s

∣∣∣∣
t,s=0

,

and v(x, z) and i(x, z) are the steady state value function and investment policy, respectively.

Proof. See appendix F for all proofs.

Lemma 1 allows us to characterize value functions and investment policies analytically
following the shock up to first-order as deviations from steady state. Analytical tractability
stems from separating the time-dependent terms (e−ρt) from terms related to project stage x
and productivity z. We start by characterizing the response of the project’s value.

Proposition 2. The first order response of project value is given by

v̂(x, z) = −
(

1− e−ρT(x)

ρ

)
e−rT(x)pz +

T(x)ˆ

0

(
1− e−ρτ

ρ

)
e−rτ [i(y(τ), z) + κ (i(y(τ), z))] dτ,

(16)
and, as ρ→ 0,

lim
ρ→0

v̂(x, z) = −T(x)e−rT(x)pz +

T(x)ˆ

0

τe−rτ [i(y(τ), z) + κ (i(y(τ), z))] dτ,

where y(τ) is the stage of a project that starts in x after τ periods, i.e.

ẏ(τ) = i(y(τ), z), subject to y(0) = x.

The limiting case of a one-time shock to discount-rates (ρ → 0) is particularly illustra-
tive. Project value changes by its duration. This is a familiar object to first-year MBAs,
capital budgeting specialists, fixed income investors, and readers of asset pricing textbooks.
To compute the change in project value, we take a weighted sum of time periods over the
remaining life of the project. We weigh each time period by the NPV of cash flows accruing
in the time period.39 We use the steady state investment flows and remaining time to build
to compute duration.

39An analogy with classical mechanics once again helps with the notation. Define τ = T(x)− T(y), so that
dτ = dy/i(y,z). From our discussion on expected completion times, we can interpret dτ as how long it takes to
install dy units of capital when we are optimally installing capital at a rate i(y, z). Note that τ = 0 corresponds
to stage x. And given optimal investment, can define the stage y where the project will be in τ periods as
ẏ(τ) = i(y(τ), z), where y(0) = x. Without defying any laws of physics, we have just renormalized space and
time. Suppose we start counting time when the project is at stage x, and normalize that instant to τ = 0 . The
project will be in stage y(τ) after τ periods. How quickly does it get there? At an optimum, the velocity of
completion is given by i(y(τ), z) at each point y(τ).
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Intuitively, duration gives us how long it will take to reap back the cash flows of the
project. Different from standard fixed income securities, a project requires outlays over its
lifetime in order to yield a large terminal payoff. Similar to many fixed-income instruments,
the cash flow paid at maturity is large relative to near-term coupons. As interest rates rise,
project values fall. But they fall more for projects whose cash flows will only be received fur-
ther out in the future. Just like longer duration bonds suffer more from interest rate increases,
longer time to build projects suffer more from increases in discount rates.

Duration is a crucial input for understanding the response of investment to discount rate
shocks, as the following proposition illustrates.

Proposition 3. The first order response of the optimal investment policy is given by

î(x, z) =
1

κ′′(i(x, z))
· ∂

∂x
v̂(x, z), (17)

where

∂

∂x
v̂(x, z) =

1
i(x, z)

[v(x, z) + (r + ρ)v̂(x, z)] (18)

Proposition 3 characterizes how to re-optimize investment plans following a change in
discount rates. Equation (17) simply equates the marginal cost to the marginal value of
reducing the project’s duration, which in turn captures the marginal value of bringing the
project closer to completion. How does this change alter the discount rate shock? Equation
(18) shows two opposing effects. First, investors become more impatient, and therefore value
receiving cash flows earlier. This effect is positive, and captured by v(x, z). Second, there is
a negative effect arising from revaluing future cash flows at the higher discount rate. This
is standard asset pricing: as discount rates rise, project values fall.40 The following corollary
shows that the latter effect becomes negligible as projects approach completion.

Corollary 4. For x sufficiently close to x̄, î(x, z) > 0.

Proof. Note that v̂(x, z) becomes arbitrarily small as x approaches x̄, as it is the integral of a
bounded function over a vanishingly small interval (i.e. T(x) → 0 as x → x̄). On the other

40Equation (18) additionally provides a simple capital-budgeting rule: is the marginal dollar worth more inside
or outside the project? Note that the proportional change in project value following the shock is v̂(x,z)/v(x,z). It
is the return an equityholder would obtain by investing the marginal dollar into the project. The firm is not
constrained to invest this marginal dollar into the project. Instead, it could invest in some corporate savings
account, or simply return the marginal dollar to its equityholder. The return on this outside option −(r + ρ)−1.
If this exceeds the return on the project, the firm should invest less in the project and reallocate towards the
outside option. In our setup, the outside option is a fixed-income perpetuity. We can interpret it in multiple
ways. It could stand for a corporate cash account earning the riskless rate; it could also stand for the safe returns
an equityholder would have earned on a marginal dividend payment; it could stand for the return on the market
in a setting with aggregate risk, where we then interpret r as a riskless return under the risk-neutral measure. In
any case, what matters is that this outside option provides the firm with a benchmark, risk-adjusted opportunity
cost of investing the marginal dollar on the project.
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hand, v(x, z) approaches pz > 0. Therefore, it follows from (18) that î(x, z) must eventually
be positive.

Corollary (4) rationalizes our intensive margin results. For projects close to completion,
the firm increases investment following a discount rate shock. The intuition is simple: re-
maining time to build is small, and a big payoff awaits the firm if it speeds up the project.
Equation (18) then shows it is optimal to invest more in the project. For projects with long
time to build, the negative effect from large duration dominates, and it might become opti-
mal to slow down the project.41

Corollary (4) also qualifies the standard intuition that increases in discount rates neces-
sarily cause investment to fall. At the project-level, investment may very well rise – a result
that upends conventional capital budgeting theory (or, at least, what is taught in MBA pro-
grams). How long it takes for the project to yield cash flows matters crucially. This depends
on how quickly the firm is building the project; and on how costly it is to accelerate – hence
the denominator in (17) and (18). Where the project currently is in its lifecycle (x) summarizes
these considerations.

Our results borrow intuition from concepts in fixed income pricing. In Appendix F.2, we
demonstrate that this is not a loose mapping. The underlying economics between accelerat-
ing project investments and accelerating bond coupons is quite similar, and reflects a more
general insight: changes in the time value of money incentivize agents to shift cash flows (or,
more broadly, actions) over time.

Figure 5 illustrates our propositions by showing the impact responses of the value func-
tion v̂(x, z) and optimal investment î(x, z) to the shock. Panel (a) shows v̂(x, z). Note that
it is strictly negative for x < x̄, as the payoff upon project completion is more strongly dis-
counted after the shock. In short, all projects fall in value. But project value falls by more for
projects that are further away from completion, illustrating the duration intuition of Proposi-
tion 2. Panel (b) shows î(x, z). For low levels of z, projects are accelerated if they are beyond a
threshold stage (around 30-35% of total construction). For high levels of z, it may be optimal
to increase investment not only for x close to x̄, but even for newly started projects.

To understand changes in firm-level investment, we have to further account for the distri-
bution of projects over their completion stages g(x, z); as well as potential changes in this dis-
tribution over time following the shock, including entry effects. Proposition (3) only speaks
to ongoing projects. It qualitatively rationalizes our intensive margin results, but it is silent
on extensive margin effects. Our next result addresses this gap.

41In appendix F.4, we extend this result to the case that the firm must operate the project following its com-
pletion. p then corresponds to the future value of operating cash flows, which falls as discount rates rise. Even
then, we show that so long as cash flows depreciate at a positive rate, it is still optimal to accelerate completion
for sufficiently mature projects.
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Figure 5: Responses of the value function and optimal investment to discount rate shock, as
functions of project stage
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(a) Response of the value function v̂(x, z)
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(b) Response of optimal investment î(x, z)

Note: the figure plots the first-order responses of the value function v̂(x, z) (panel a, left) and of the invest-
ment policy î(x, z) (panel b, right) following a shock to the discount rate. By definition, the y-axis is read as
percent-deviations from steady state values. The x-axis is the project stage, defined as 100× x/x̄. Solid green
lines represent low output projects (z = 2); black dashed lines represent high output projects (z = 8). Shock
persistence is set at ρ = 0.17 and shock size is set at s = 0.02, as in appendix table A16. Remaining parameters
are set at the same values as in figure 4.

Proposition 5. Let
Z̄(t, s) = z̄ + se−ρt ẑ + o(s),

where

ẑ =
∂Z̄
∂s

∣∣∣∣
t,s=0

.

The first-order response of the entry threshold z̄ to the shock is given by

e−rT(0,z̄) × pẑ = −v̂(0, z̄) (19)

Proposition (5) states that the change in the threshold follows a standard NPV logic.
Given the rise in discount rates, the value of unbegun projects falls by v̂(0, z̄). Projects at
z̄ are no longer positive NPV. To select projects with positive NPV, we need to raise our
hurdle by ẑ. We raise it such that the cash flows pẑ on the marginal projects (z̄, z̄ + ẑ], once
discounted properly, makes up for the lost value v̂(0, z̄). To discount cash flows, we use the
original discount rate r; and take the time to build of these marginal projects as the relevant
time horizon for receiving the cash flows. Importantly, note that ẑ > 0, and so the flow of
newly started projects decreases after the increase in discount rates, in line with our empirical
results (and with standard investment theory).
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5.2 Aggregation

Towards quantifying the implications of endogenous time to build to firm-level investment,
we describe how we aggregate across projects.

The law of motion for the capital stock K is

K̇(t) = IK(t)− δK(t)

where instead of accounting investment, the gross increment in productive capacity is given
by fixed capital formation IK(t). We have

IK(t) =
ˆ

z︸︷︷︸
capital output

· g(x, z, t) · i(x, z, t)︸ ︷︷ ︸
flow of finished projects yielding z units of capital

dz

that is, productive capital grows because more projects are completed. Since projects can
differ in their output of capital, we aggregate across the distribution of output.42 Accounting
investment, in turn, is given by aggregating investment flows across all ongoing projects

Iacc(t) =
ˆ ˆ

g(x, z, t) · i(x, z, t) dzdx

6 Taking the Model to the Data

6.1 Quantifying Endogenous Time to Build

Our reduced form exercises are inconsistent with exogenous gestation lags, but are silent be-
yond local causal estimands. However, many pressing questions require quantifying coun-
terfactuals. What if contractual arrangements became so stiff that time to build indeed be-
came an exogenous constraint on capital formation? Is investment more or less volatile once
firms have the option to accelerate projects? What are the implications of endogenous time
to build for stabilization policy?

Answering these questions requires a quantitative model. Fortunately, the structure we
built up above is up to the task, once sufficiently enriched. We calibrate the model to match
our measurements from Section (3) and the estimated elasticities from Section (4). First,
we confront the sizable heterogeneity in project costs and gestation lags. To do so, we let

42In steady state, equation (14) implies that accounting investment is independent of time to build. In turn,
fixed capital formation depends on time to build via its effect on the entry threshold for projects. Formally, letting
M =

´
f (z)dz be the total mass of entrants, we have Iacc

ss = M · x̄. In turn, since only projects with z above z̄
enter, we have

IK
ss = E [z|z ≥ z] P(z ≥ z)
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projects be heterogeneous in their sizes x̄. We assume project sizes are drawn according to
log x̄ ∼ N

(
µx̄, σ2

x̄
)
. We set the parameters of the lognormal distribution to match the 10th,

25th, 50th, 75th, and 90th percentiles of the empirical distribution of log costs.
To match the relationship between project size and time to build, we postulate that each

project’s costless rate of completion ī is drawn according to log ī ∼ N
(

βī
0 + βī

1 log x̄, σ2
ī

)
.

This parametrization assumes that mean investment rates depend log-linearly in project
sizes, but the standard deviation of investment rates is homoscedastic. Higher draws of ī
for any fixed x̄ imply a quicker time to completion. For instance, if time to build was purely
exogenous, a project’s (random) gestation lag would be uniquely determined as T̄ = x̄/ī.
We set the parameters of the ī distribution to match the average log time to build within each
log size quintile. Figure A15a shows our results.

For analytical convenience, we parametrize the distribution of project returns f (z) as a
Pareto distribution with minimum draw zmin and tail exponent α. We use accounting data
on firm revenue to proxy for project gross returns. We trim 1% of the revenue distribution
to remove outliers, and run log-rank regressions on the n largest firms following Gabaix and
Ibragimov (2011) to obtain the Pareto exponent α. Figure A15b shows our results.

We use the intensive and extensive margin semi-elasticities (βint, βext) estimated in sec-
tions 4.2 and 4.3 to calibrate how endogenous time to build is.43 The chief difficulty is how to
map the reduced form regression exercise to the theoretical framework. Introducing banks,
bank relationships, and banking shocks would significantly increase model complexity, with
questionable gains. Instead, following our earlier theoretical results, we map the banking
shock to an increase in firm’s discount rates. But how can we map the quantitative magni-
tudes of the shock size across data and model?

Our solution is to interpret the size of the model shock as a parameter to be estimated. For
any shock size s and persistence ρ, we can obtain the model-based semi-elasticities for project
completion hazards and project starts. We estimate ρ by running panel autoregressions of
Exposure f t on its first lag, including firm and year fixed effects. To circumvent Nickell (1981)
bias, we run a battery of different dynamic panel data estimators: OLS without fixed effects,
the Han and Phillips (2010) GMM estimator, and several variations of the system GMM
estimators of Arellano and Bover (1995) and Blundell and Bond (1998). Reassuringly, we
find similar estimates across all models; and convert them into quarterly figures to arrive at
our estimate of ρ. Figure A15c shows our results.

We are left with two parameters: the shock size s and the time-to-build endogeneity
parameter κ. For any pair of values (s, κ), we can obtain values for the semi-elasticities
in the model, so we can set these parameters to match our empirical results using a stan-
dard minimum distance routine. Though all moments are matched jointly, the intuition for

43To be precise, we use the point estimates in columns (5) of Tables 4 and 5.
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identification is as follows. βext is uninformative about κ, but informative about s. In turn,
βint is informative about both parameters; but βext and βint move in opposite directions as
we change s. The opposing responses to the shock and the differential informativeness of
each regression coefficient to κ thus drive identification. Appendix Table A16 collects our
calibrated parameters. We estimate a shock size s = 2%, and a acceleration cost κ = 3.
Appendix Table A17 reports that the model calibrated model fits well the targeted moments.

6.2 A Sharper Test: Heterogeneous Effects

The model lends itself to an additional, sharper test: the effect of discount rate shocks on
investment is heterogeneous, depending on the stage of the project at the time of the shock.

Consider Panel (b) of Figure 5. The plot shows that investment rises when discount rates
rise for either (i) sufficiently high output projects, or (ii) sufficiently late-stage projects. But
the same plot reveals more. Fixing a project, the effect of the shock would have been greater
had the project been at a later stage relative to an earlier stage. This holds for any z, and thus
provides a sharper test of the model’s mechanism.

Testing for heterogeneous treatment effects of this sort runs into two challenges. First, we
do not observe a project’s value put in place (the empirical counterpart of the model stage
x). To add insult to injury, we further run into the fundamental problem of causal inference.
At the time the shock hits, the project cannot simultaneously be in two distinct stages. We
cannot observe counterfactual stages beyond the measured stage at the time of the shock.

Despite the econometric challenges, we attempt to provide the sharper test. We address
the measurement challenge by constructing a proxy measure of project stage. We define the
proxy stage as the project’s age when entering the hazard regression sample44, relative to an
ex ante, predicted measure of its time to build

Stagep =
Initial Agep

Predicted Time to Buildp

The intuition is that, fixing a project’s expected time to build, older projects are expected to
be at a more advanced stage; conversely, fixing a project’s age, projects with shorter average
time to build are expected to be at a more advanced stage.

Since we do not observe expected time to build, we predict it in a preliminary step. We
isolate all completed projects in CapexDx that are not included in the regression sample.
For these projects, we regress time to build on exogenous predictors. We estimate different

44We prefer to use age when entering the hazard regression over age at the time of shock. Some projects
may enter and leave the sample entirely before or after the start of the asset quality review audits; therefore we
cannot define age at time of the shock for these projects, but we can always define the age at the time it enters the
sample. Moreover, since we include initial age and year fixed effects in the regressions below, one can always
partly “reconstruct” what would have been age at the time of the shock.
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regressions, and compare them by assessing their R2 in our regression sample. We pick
the model with highest out-of-sample R2, which turns out to be a model including industry
dummies. Appendix Table A11 and Appendix Figure A11 expand on the prediction exercise.

Having estimated the proxy stage variable, we standardize it and include it along with its
interaction with the firm exposure variable in model (3). Table 6 collects results. Across spec-
ifications, the results are supportive of the model’s predictions. For the project at the mean
proxy stage, a one-standard deviation increase in exposure raises the hazard by roughly 10%.
If the project stage had been one standard deviation above (below) the mean, the effect would
have been increased (reduced) by roughly 6.5%, so the total effect of the should would have
been 16.5% (3.5%). In Appendix Table A12, we find similar results if we don’t scale initial
age by predicted time to build, suggesting our results are not driven by the prediction step.45

How does the model fare relative to the data? Figure 6 plots the results. The red dashed
line plots the cumulative distribution of the proxy stage variable in the model.46 The blue
solid line plots the impact change in completion probability by the proxy stage variable. The
results are quite encouraging: the effect is a linear function of the proxy stage, consistent
with our regression specification. Quantitatively, a unit-increase in proxied stage increases
the hazard by 8%. Qualitatively, we interpret the result as suggestive evidence that data and
model speak to each other well when it comes to heterogeneous effects by project stage.

7 Endogenous Time to Build and Investment Fluctuations

Equipped with our calibrated model, we study the implications of endogenous time-to-build
for investment dynamics.

7.1 Partial Equilibrium

We first examine the response of firm-level investment to a shock in discount rates (as in
our empirical setup) and to a shock in future cash flows. We do so first for our preferred
calibration. Then, we consider an extreme setting where time to build becomes completely
exogenous. Formally, we let κ → ∞, a world in which contractual arrangements are com-
pletely stiff or technological constraints on construction are severe.

45The effects are significant at conventional levels regardless of the proxy we use for project stage, but we must
be cautious interpreting the inferential step when scaling by predicted time to build given we do not account for
sampling uncertainty in the prediction step. The fact that the estimates remain significant in Appendix Table A12
suggests that ignoring the noise introduced by the prediction step is not substantially compromising inference.

46We use the unconditional expected time to build in the model. The reason is that the model is minimalist
relative to the data. In the model, conditioning on ī, x̄ or z would strip out most of the variation. In the data, how-
ever, the predictive step is much noisier. Even predicting with industry bins, there remains sizable unexplained
variation. The unconditional distribution thus provides a better match to the noisy reality of the data.
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Table 6: Effects of Exposure by Proxied Stage

(1) (2) (3) (4)
Exposure 0.099∗∗∗ 0.095∗∗∗ 0.106∗∗∗ 0.104∗∗∗

(0.026) (0.026) (0.025) (0.025)

Stage x Exposure 0.063∗∗∗ 0.065∗∗∗ 0.070∗∗∗ 0.071∗∗∗

(0.022) (0.022) (0.023) (0.023)

Initial Age FE X X X X
Firm FE X X X X
State x Year FE X X X X
Sector x Year FE X X
Industry x Year FE X X
Firm Controls X X

Notes: the table reports PPML estimates of the semi-elasticity of project-level hazards to firm exposure to the Asset Quality
Review. The sample consists of projects observed quarterly between 2013-2019. Firm exposure is defined as the weighted-
average of lender exposure, where weights correspond to outstanding loans in the previous year. The proxy for stage is
constructed as age of the project when first observed in the sample divided by its predicted time to build. This measure is
winsorized at the 1st and 99th percentile, and then standardized before being included in the regression model. See the main
text and Appendix Table A11 for details on the prediction step. The coefficient on exposure is interpreted as the percent effect
on the outcome for a one standard-deviation increase in firm exposure for the project with mean proxy stage. The coefficient
on the interaction is interpreted as the change in the main effect resulting from a one-standard deviation level change in proxy
stage. For example, the first row in column (1) reports that moving from a firm with average exposure to a firm with one-
standard deviation higher exposure increases the hazard by 9.9% for the project at the mean proxy stage. The second row in
column (1) reports that if the project had been one standard deviation above (below) the mean stage at the time of the shock, the
effect would have incresed (declined) by 6.3%, for a total effect of 16.2% (3.6%). In order to avoid strong collinearity concerns
between the age spline, initial age, and the time fixed effects, we omit the age spline, control non-parameterically for the initial
age, and further include dummies for quartiles of the proxy stage. Firm controls include sales, sales growth, profitability, debt
over equity, book leverage, equity issuances, cash over liquid assets, and debt over EBITDA. All firm controls are winsorized
at the 1st and 99th percentile, and then standardized. All firm controls are lagged by one-period. The reduction in sample
size from columns (1) and (2) to columns (3) and (4) results from separation of additional observations by the more granular
industry-by-year fixed effects relative to the sector-by-year fixed effects. Standard errors are clustered at the firm level and
reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels, respectively.

Figure 6: Heterogeneous Effects in the Model
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Notes: the figure plots the cumulative distribution of the proxy stage variable in the model (red dashed line) and the het-
erogeneous effects of a discount rate shock on hazards by the proxy stage variable (blue solid line). Expected TTB is the
cross-sectional average gestation lag across all model projects, i.e. averaging over the joint distribution of (x̄, ī, z). Age is
measured in quarters. All parameter values, including shock size and persistence, are as in appendix table A16.
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Figure 7: Impulse response functions of investment to discount rate shock.
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Note: the figure plots (quarterly) impulse response functions (IRFs) of aggregate investment to a discount rate
shock in partial equilibrium (i.e. fixing p to its steady state level following the shock). The y-axis measures
percent-deviations from steady state values. Panel (a) plots the IRFs for the exogenous time to build model (red
solid line) and for the endogenous time to build model (black dashed line). Panel (b) decomposes the total IRF
(black solid line) from the endogenous time to build model into the extensive margin (green dashed line) and the
intensive margin (blue dot-dashed line). Shock persistence, shock size, and remaining parameters as in appendix
table A16.

Figure 7 illustrates our results for a discount rate shock, holding fixed p. In panel (a),
we plot the response of investment when time to build is endogenous (black dashed line)
versus exogenous (red solid line). In a world with exogenous time to build, investment falls,
reaches a trough 12-16 quarters later, and then returns to steady state, generating a hump-
shaped impulse response function (IRF). The dynamics are driven exclusively by entry. Since
investment flows are constant conditional on project entry, there is no impact (i.e. time 0)
effect on investment. Higher discount rates lower the value of all projects and raise the
threshold for a project to be positive NPV. Firms thus start fewer projects today. But fewer
projects started today mean lower future investment on ongoing projects. This drives the
downward-sloping section of the IRF. Eventually, the discount rate shock starts to revert,
and entry starts to return to its normal level. This drives the upward-sloping section of the
IRF. Previous theoretical work corroborates this result: to first-order, exogenous TTB is first-
order equivalent to investment adjustment costs (Lucca, 2007; Bloesch and Weber, 2023).

In a world with endogenous time to build, investment initially rises. The intuition follows
from Proposition 3 and Corollary 4. There is a mass of projects close to completion when the
shock hits. They are sped up, which leads to an upsurge in investment flows. The extensive
margin component is also present, but is zero at impact. Hence, for the first few quarters, we
only have the acceleration effects taking place. The net effect is the short-lived investment
spike after the rise in discount rates.
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Investment collapses shortly after impact. Two reinforcing mechanisms drive the de-
cline. The first is the extensive margin response. The mechanism is the same described
in the exogenous time to build case. The second is the intensive margin effect, which be-
comes negative. To decompose effects, panel (b) splits the endogenous time to build IRF
into an intensive margin IRF and an extensive margin IRF. The former fixes the composition
of projects and accounts only for changes in investment rates of ongoing projects; the latter
only accounts for entering projects and their subsequent investment flows.

To understand the reversal in the intensive margin effects, recall from proposition (3)
that while some investments may be sped up, some might be slowed down. As projects
close to maturity are completed, the distribution of remaining projects becomes skews to-
wards early-stage projects, for which lower investment is optimal even in steady state – see
Figure 4. The distributional change thus drives the drop in investment. The intensive and
extensive margins add to each other and generate a steeper fall in investment in the model
with endogenous time to build.

Endogenous time to build also delivers faster convergence to the original steady state.
The effect is partly driven by the intensive margin reverting back faster than the extensive
margin; but partly driven by the intensive margin becoming positive later on. Investment
in ongoing projects quickly booms, shortly collapses, and then overshoots relative to steady
state. These boom-bust dynamics are reminiscent of the oscillatory behavior present in in-
vestment accelerator theories (Kalecki, 1935; Samuelson, 1939). While they are hardwired in
these earlier models, they are microfounded by optimal investor behavior in our setting.

The rebound in the intensive margin results again from compositional changes over time.
As the discount rate shock fades away, investment flows return to their steady state levels.
Over time, the distribution of project shifts again towards later-stage projects – if there were
no entry, all projects would eventually be completed. Even in steady state, it’s optimal to
invest more in these projects. Overall investment in ongoing projects eventually rises above
the steady state level as the distribution shifts towards later-stage projects.

Figure 8 moves to an increase in terminal payoffs p, holding fixed discount rates. Once
again, we consider an AR(1) perfect-foresight shock.47 In the exogenous world, the IRF is
analogous to the case of discount rate shocks, except the positive payoff shock raises entry. In
the endogenous world, there is a short-run spike in investment. As projects are completed,
the distribution skews to earlier-stage projects with smaller steady state investment. The
intensive margin effect thus drops below zero, until it converges back to steady state. The
resulting effect is a short-run boom followed by a long-lived mild slump.

Given investment is more sensitive to shocks in a world with endogenous time to build,
casual intuition suggests it should also be more volatile. That is indeed the case: moving

47One can interpret the price shock as a productivity shock under a competitive market structure and constant
returns to scale.
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Figure 8: Impulse response functions of investment to price shock.
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(b) Decomposition of endogenous time to build IRF be-
tween intensive and extensive margins

Note: the figure plots (quarterly) impulse response functions (IRFs) of aggregate investment to a price shock
in partial equilibrium (i.e. fixing r to its steady state level following the shock). The y-axis measures percent-
deviations from steady state values. Panel (a) plots the IRFs for the exogenous time to build model (red solid line)
and for the endogenous time to build model (black dashed line). Panel (b) decomposes the total IRF (black solid
line) from the endogenous time to build model into the extensive margin (green dashed line) and the intensive
margin (blue dot-dashed line). Shock persistence, shock size, and remaining parameters as in appendix table
A16.

from exogenous to endogenous time to build increases investment volatility by 30%. En-
dogenous time to build allows models to account for investment volatility not by appealing
to volatile or large shocks, but rather by generating endogenous amplification. The following
proposition provides a lens to interpret the increased responsiveness:

Proposition 6. Fix any z > z̄. For a sufficiently small and temporary shock, the cumulative effect
on the intensive margin of investment is zero.

Proposition (6) shows that the intensive margin IRF has no cumulative effects. The state-
ment is quite general: it holds for any shock, so long as the disturbance does not prevent
the distribution from returning to its steady state. Endogenous time to build allows firms to
reshuffle investment flows over time. It adds time series variation around a null cumulative
effect. Therein lies the source of higher volatility.

Figures 7 and 8 highlight that our quasi-experimental setup is particularly well-suited
to disentangle endogenous and exogenous time to build settings. Discount rate shocks gen-
erate positive effects on the intensive margin, but negative effects on the extensive margin.
This underpins our an empirical test based on reduced-form exercises. Further, it facilitates
calibrating the degree of endogenous time to build. If the extensive and intensive margin
effects went in the same direction – as in a price shock – we would only be able to pin down
the degree of endogenous time to build from the relative effect of these margins, rather than
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the direction of the effects given a shock size.

7.2 State-Dependent Monetary Policy

Recall from Figure 6 that the effects of a discount rate shock on investment flows are hetero-
geneous. Projects that are closer to (farther from) completion are sped up (slowed down) –
a central model prediction that is borne out in the data. Consequently, the distribution of
projects at the time of the shock determines the aggregate effect. What if the economy had
recently experienced an influx of new projects? Or what if the economy had been recovering
from a period of sluggish starts, with the distribution being skewed towards older projects?

Figure 9 studies these settings. In Panel (a), we plot three distributions of projects over
stages. The first is the steady state distribution (black solid line). The IRF in Figure 7 reflects
the impulse starting from this distribution. We then consider two alternative scenarios. In
the first, the economy has experienced a sharp influx of new projects, skewing the distribu-
tion towards less mature projects (green dashed line). In the second, the economy instead
has experienced a prolonged period of no starts, with the distribution skewing towards old
projects as a result (blue dot-dashed line).

Panel (b) plots the response of aggregate investment to the discount rate shock of Figure
7, but starting from each of the skewed distributions. When the economy starts filled with
mature projects, the initial investment spike is larger. In turn, when the economy starts filled
with fledgling projects, the impact response turns negative. The distributional dependence
is so strong that the effect on impact can even flip signs depending on initial conditions.

Figure 9 carries lessons for monetary policy. The effects of interest rate changes on invest-
ment are state-dependent – an effect also documented in the context of mortgage refinancing
(Berger et al., 2021; Eichenbaum et al., 2022) and durables purchases (McKay and Wieland,
2021). Interest rate hikes (cuts) will be less contractionary (expansionary) on impact when
the distribution is skewed towards more mature projects. In short, the investment channel
of monetary policy may face headwinds, which are absent when time to build is exogenous.
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Figure 9: Endogenous Time to Build and State-Dependent Monetary Policy
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Note: the figure illustrates the state-dependent effects of monetary policy in a world of endogenous time to build.
Panel (a) plots the steady state distribution (black solid line), and two “counterfactual” distributions at the time
of the shock: one skewed towards younger projects (green dashed line), and one skewed towards older projects
(blue dot-dashed line). Panel (b) plots (quarterly) impulse response functions (IRFs) of aggregate investment to
a discount rate shock in partial equilibrium (i.e. fixing p to its steady state level following the shock). The y-axis
measures percent-deviations from steady state values. The green dashed line plots the IRF when the distribution
is skewed towards younger projects at the time of the shock. The blue dot-dashed line plots the IRF when the
distribution is skewed towards older projects at the time to the shock. The IRF for the steady state distribution
is the black dashed line in Panel (a) of Figure 7. Shock persistence, shock size, and remaining parameters as in
appendix table A16.

7.3 Fiscal Policy: Reshuffling Aggregate Demand over Time

If monetary policy can affect investment by changing discount rates, fiscal policy can pull its
weight by changing cash flows. Indeed, investment tax credits are a widely used policy lever
in recessions. They primarily spur investment by creating a tax shield, effectively generating
a positive cash flow shock relative to the counterfactual world in which the tax credit had
not been in place. But when gestation lags are endogenous, investment responses to cash
flow shocks depend not only on whether projects are close or far from completion; but also
on the time profile of the shocks. Motivated by these observations, we study the effects of
introducing an unanticipated investment tax credit. Firms know once the policy is in place
that it will last for 10 quarters. Figure 10 shows the resulting IRFs of accounting investment
and productive capital.

In panel (a), the red dashed line plots the IRF of accounting investment in the exogenous
time to build model. The positive cash flow shock induces project entry. Investment slowly
rises as firms build nascent projects. As the tax credit expires, investment starts to returns to
steady state. The long-lived effects of the shock result from distributional dynamics: since
projects were started, the IRF accounts for cash flows that will be spent on these projects,
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Figure 10: Endogenous Time to Build and Investment Tax Credits
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(c) IRF Decomposition: Iacc
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(d) IRF Decomposition: K

Note: the figure plots (quarterly) impulse response functions (IRFs) of aggregate investment (panels a and c) and
aggregate capital stock (panels b and d) to the (unanticipated) introduction of an investment tax credit at t = 0
lasting for 10 quarters in general equilibrium (i.e. allowing p(t) to vary following the change in policy). The
y-axis measures percent-deviations from steady state values. In panels a and b, the solid black line plots the total
IRF for the endogenous TTB model; and the red dashed line plots the total IRF for the exogenous TTB model. In
panels c and d, the black dashed line reproduces the total IRF from panels a and b; the green dashed line plots
the extensive margin component of the IRF (i.e. fixing investment policies to steady state levels, but allowing
entry to respond to the shock); and the blue dot-dashed line plots the intensive margin component of the IRF
(i.e. shutting down entry, but allowing investment rates to respond to the shock). Remaining parameters are as
in appendix table A16.
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even after the tax credit is long gone. Only as they are completed, investment returns to
steady state.

The black dashed line turns to the endogenous time to build case. The striking feature of
the IRF is its shape: investment rises on impact, keeps rising, but then collapses at the time
that the credit expires. Investment continues to decline back to steady state, and eventually
runs into negative territory. The IRF behave “as if” the tax credit had reallocated investment
flows across time, front-loading them to periods when the credit was in place.

Panel (c) decomposes the total IRF into its extensive and intensive margins. The extensive
margin accounts for the exogenous case. The intensive margin explains the reshuffling of
investment flows over time. It is entirely responsible for the impact effect: investment flows
rise for all ongoing projects. Investment keeps rising slightly as the tax credit is still in place,
which follows from distributional dynamics: projects become more mature over time, and
it’s optimal – even in steady state – to invest more in these projects. When the credit expires,
investment in ongoing projects collapses. Firms front-load investment to periods when it’s
cheaper to build.

The intensive margin slump reflects distributional dynamics. Though investment rises
for projects across the stage distribution, more mature projects respond by more. As projects
are completed, the distribution skews towards younger projects. It is optimal to invest less
in these projects – even in steady state. When the credit expires, the distribution is skewed
towards younger projects, resulting in the bust. As these projects age, investment flows pick
up, and the aggregate impulse returns to steady state.

Panels (b) and (d) illustrate the implications for productive capital. It accumulates more
quickly in the endogenous case, which reflects the front-loading of investment flows, partic-
ularly so for projects that are closer to completion.

The investment IRFs highlight our first policy takeaway. The cumulative response of
investment to tax credits comes from project starts. To first order, temporary tax credits
just imply an intertemporal reshuffling of expenditures. This is not to say that investment
tax credits are useless. Quite on the contrary, our results suggest they provide incredible
flexibility to policymakers. If aggregate demand is currently low, we can spur investment
today by borrowing it from the future. The duration and the size of the tax credit provide
two levers for policy makers to control this intertemporal reshuffling of aggregate demand.

Our second policy takeaway is that investment tax credits are a particularly flexible tool
to spur investment relative to monetary policy. While changes in discount rates affect the
entire path of cash flows accruing to a project, changes in tax policy can more flexibly target
the “short-end” of the cash flow curve relative to the “long-end”.48 Fiscal policy does share

48The results in Figure 8 suggest that the partial equilibrium effects of monetary policy must contend with
general equilibrium headwinds – at least if capital prices are sufficiently sensitive to changes in the capital stock.
In our model, these headwinds are much weaker for fiscal policy. Therein lies a potential third policy takeaway,
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one commonality with monetary policy: its effects are state-dependent. If the distribution of
projects had been skewed towards later-stage projects when the investment tax credit was
introduced, we would have observed stronger intertemporal reshuffling of investment flows
and therefore a stronger short-term investment boom. Conversely, had the distribution been
skewed towards earlier stage projects, the aggregate effects would have been muted.

We have restricted our attention to investment tax credits as a tool for stabilization policy.
Investment subsidies additionally speed up project completion. For example, targeted sub-
sidies can accelerate the green transition or infrastructure development more broadly. Tax
policy can be a powerful lever to speed up structural change. We leave exploration of these
policies for future research.

7.4 General Equilibrium

Our estimated causal elasticities are informative about partial equilibrium responses: the in-
clusion of state-by-year and sector-by-year fixed effects absorb effects from changes in local-
level prices for construction inputs, sector-level prices for finished or secondary structures,
or aggregate-level movements in real rates or factor prices. On the one hand, the partial
equilibrium analysis better reconstructs our empirical setting and cleanly spells out the the-
oretical mechanisms behind the reduced form results. On the other hand, they are not infor-
mative about general equilibrium responses to these shocks. We cannot escape the “missing
intercept” problem.

We can, however, embed the partial equilibrium model into a general equilibrium setting,
and therein address counterfactual questions. Our exercise is minimalist by design. Parsi-
mony isolates the key effects arising from feedback effects from prices, and illustrates how
the baseline setup can be embedded into richer models of industry or aggregate dynamics.

Given a capital stock K(t), we assume that final goods are produced according to

Y(t) = A(t)K(t)α

where α ∈ (0, 1] indexes returns to scale, and A(t) stands for stochastic productivity. The
price of the final good is normalized to one. The final goods producer buys the aggregate
capital bundle K(t) in competitive markets.

Standard profit maximization implies that capital prices reflect future marginal products
of capital

p(t) =

∞̂

0

e−(r+δ)s MPK(t + s)ds

where MPK(t) = αA(t)K(t)α−1. When α = 1, production of final goods features constant

though admittedly suggestive relative to the other two.
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returns to scale, so any partial equilibrium analysis taking as given a price sequence can be
recast as a general equilibrium analysis with a particular path of productivity disturbances
A(t). When α < 1, production of final goods incurs decreasing returns to scale. As more
capital is built, the marginal product of capital falls. Capital prices drop, and so does in-
vestment. Under decreasing returns, general equilibrium forces dampen partial equilibrium
responses.

The structure above suffices to endogenize capital prices and understand the joint behav-
ior of returns on capital and investment fluctuations (e.g. as in industry equilibrium models
such as Kalouptsidi 2014 or Greenwood and Hanson 2014). In many macroeconomic mod-
els, further assumptions would pin down discount rates r(t). We opt for simplicity, and
retain exogenous discount rates. This can be micro-founded either by retaining a neoclas-
sical interpretation and assuming a representative household with linear preferences; or by
assuming that interest rates are determined outside of the model, either by a monetary au-
thority (e.g. as in a New Keynesian model) or by global capital markets (e.g. as in a small
open economy).49 Within this minimalist setup, we can entertain aggregate counterfactuals.

Proposition 7. Let hatted variables denote linearized deviations from steady state. Suppose we an-
nounce paths Â(t) and r̂(t) for aggregate productivity and real interest rates. Then, to first-order, the
response of capital prices is given by

p̂(t)
p

= (r + δ)

∞̂

0

e−(r+δ)s

[
Â(t + s)

A
− (1− α)

K̂(t + s)
K

− r̂(t + s)
r + δ

]
ds (20)

Proposition 7 highlights three channels by which fluctuations in productivity and inter-
est rates change capital prices. First, there is the direct effect of productivity shocks on the
marginal product of capital. When productivity is higher, marginal products of capital are
higher, holding fixed a future path K̂(t) for the capital stock. Since capital is more productive,
final goods producers are willing to pay more for it, raising p(t). Second, there is a direct
effect of interest rate shocks on the discounting of future marginal products of capital, again
holding fixed future paths for the capital stock.50 As discount rates rise, future marginal

49It is now well-understood that standard specifications of household preferences tend to undo the partial
equilibrium responses of investment to shocks in general equilibrium. The task of “taming” the interest-rate
sensitivity of investment in fully-fledged DSGE models with concave preferences (as in Winberry, 2021) is im-
portant, but outside the scope of this paper.

50In our partial equilibrium analysis, terminal payoffs did not respond to changes in idiosyncratic discount
rates. Firms could lower their valuation p in partial equilibrium if e.g. high capital specificity implied the
firm must hold the project. This intermediate case would look like a combination of our partial and general
equilibrium results. While aggregate investment in partial equilibrium might then fall on impact following the
increase in discount rates, none of our other results related to intensive margin investment would be affected.
That is, we would still find project acceleration among close to completion projects, state-dependent responses
to interest rates, front-loading of expenditures due to tax credits, and the ensuing consequence for shock- and
state-dependence of adjustment costs.
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Figure 11: Impulse response functions to discount rate shocks in GE
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Note: the figure plots (quarterly) impulse response functions (IRFs) of aggregate investment (panel a) and aggre-
gate capital stock (panel b) to a discount rate shock in general equilibrium (i.e. allowing p(t) to vary following the
shock as in (20), but shutting down productivity shocks). The y-axis measures percent-deviations from steady
state values. The solid black line plots the IRF for the endogenous TTB model. The red dashed line plots the
IRF for the exogenous TTB model. The gray dot-dashed line plots the response for a convex adjustment costs
of installation model with no TTB. Shock persistence, shock size, and remaining parameters are as in appendix
table A16.

products of capital are discounted more heavily. As future cash flows are discounted more
heavily, p(t) falls.

The key general equilibrium feedback effect between the stock of capital and capital
prices is embedded in the K̂(t+s)/K terms. As productivity or discount rates change, firms
revise their investment plans, thereby altering future capital stocks and marginal products
of capital. In equilibrium, changes in capital prices are consistent with revisions in firms’
investment plans and future capital stocks.

Figure 11 plots the impulse response function of accounting investment (panel a) and
the fixed capital stock (panel b) to a shock in discount rates, holding fixed productivity. The
magnitude of the shock is the same as in the partial equilibrium exercise (figure 7). The
response of accounting investment in the exogenous time to build model is similar to the
partial equilibrium response. The effects are more pronounced since the rise in discount
rates lowers capital prices in general equilibrium, further discouraging project entry. As a
result, productive capital falls. Notably, endogenous gestation lags generate persistent falls
in productive capital, despite short-lived shocks.

The model with endogenous time to build now predicts a sharp contraction in investment
on impact. Relative to the exogenous time to build IRF, firm’s ability to alter project maturity
now contributes to a bust rather than a boom in investment. The reason is two-fold. First,
there is the direct impact of the discount rate shock on capital prices, which lowers project
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returns and thereby discourages investment. Second, there is an effect on marginal product
of capital. Projects that are sufficiently close to completion are accelerated, generating the
upward bump in the IRF for productive capital and downward pressure in the marginal
product of capital, further depressing investment incentives.

The bust in productive capital is stronger and more persistent in a world with endoge-
nous time to build. Slower project completion drags down the capital stock relative to what
we would have observed absent the shock. The result is a persistent slump. Note that this
result holds despite no apparent differences in the speed of convergence of accounting in-
vestment back to steady state across the exogenous and endogenous time to build models.
We conclude that the latter can generate sizable and persistent disruptions in capital supply
even for modest contractions in investment.

Figure 12 decomposes the IRF for the endogenous time to build model into intensive and
extensive margin IRFs. The first takeaway is that intensive margin effects are large and short-
lived. They drive the short-run response of investment to discount rate shocks. Extensive
margin effects instead generate sizable, but delayed investment responses; and drive the
long-lived dynamics of the aggregate IRF.

The second takeaway is that the boom-bust investment dynamics generated by intensive
margin effects survive in general equilibrium. The intuition is exactly as in the partial equi-
librium dynamics. As the discount rate shock fades away, investment flows return to their
steady state levels. Since the distribution of project shifts towards later-stage projects, invest-
ment in ongoing projects rises above the steady state level. Changes in capital prices do not
undo these mechanisms.

A Comment on Counterfactual Policy Analysis. We return to Figure 11 and compare the
results from time to build models with a comparable model featuring convex adjustment
costs of installation (see Appendix G). Understanding departures from this standard formu-
lation illustrates what time to build brings to the table. The model with convex installation
costs predicts a sharp, short-lived contraction in investment, with no hump-shaped dynam-
ics. Productive capital falls by more and more quickly, but converges faster to the original
steady state. Time-to-build can generate hump-shaped investment dynamics and, in partic-
ular if endogenous, more persistent slumps in capital supply.

Adjustment costs at the level of the aggregate capital stock or investment can be seen as
reduced-form devices to capture gestation lags (Taylor et al., 1982). They might perform well
when matching particular evidence, e.g. the smoothness of investment impulses to interest
rate shocks (Christiano et al., 2018). They might fail to match other features of investment
dynamics. Should we be concerned?

In a world with endogenous time to build, discount rate and cash flow shocks generate
impulses of different shapes, so that adjustment costs become shock-dependent. The effect of
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Figure 12: Decomposition of IRFs in Endogenous Time to Build Model
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Note: the figure plots (quarterly) impulse response functions (IRFs) of aggregate investment (panel a) and aggre-
gate capital stock (panel b) to a discount rate shock in general equilibrium (i.e. allowing p(t) to vary following
the shock as in (20), but shutting down productivity shocks). The y-axis measures percent-deviations from steady
state values. The solid black line plots the total IRF for the endogenous TTB model. The green dashed line plots
the extensive margin component of the IRF (i.e. fixing investment policies to steady state levels, but allowing
entry to respond to the shock). The blue dot-dashed line plots the intensive margin component of the IRF (i.e.
shutting down entry, but allowing investment rates to respond to the shock). Shock persistence, shock size, and
remaining parameters are as in appendix table A16.

these shocks in turn vary with the underlying distribution of projects, which depends – even
in steady state – on policy stances (e.g. the interest rate set by the monetary authority, or tax
policy set by the fiscal authority). Adjustment costs thus become state-dependent. Counter-
factual policy statements arising from models with ad hoc adjustment costs may therefore
yield inappropriate conclusions.

We have provided two illustrations. In the context of monetary policy, the strength (and,
in partial equilibrium, sign) of the impact investment response relied crucially on the distri-
bution of projects along their completion stages. In the context of fiscal policy, the short-run
effects of investment tax credits were stronger, and would also be state-dependent. Endoge-
nous time to build provides an empirically plausible microfoundation for adjustment costs,
and can be readily embedded in models of firm, industry, or aggregate dynamics.51

51That is not to say that our model is immune to a Lucas-type critique. We parametrized our acceleration costs
and used data to discipline it. Our approach is econometrically no different from using IRFs of aggregate invest-
ment to discipline adjustment costs in DSGE models. But it provides a considerable methodological difference.
We rely on microeconomic responses to identify the microeconomic primitives. Our work relies on the under-
standing that data at more disaggregated levels (e.g. project- or structure-level data) allows for more precise
microeconomic measurement and thereby better microfounded models of capital formation.
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8 Conclusion

Physical capital takes time to build. Leveraging detailed project histories of large capital
expenditure projects in India, we moved beyond anecdotal evidence. Time to build is a per-
vasive microeconomic feature of fixed capital formation across industries, sponsor types,
time periods, and project sizes. It is not exclusively an exogenous constraint that firms must
accept. We provided causal evidence that firms have control over gestation lags; and ra-
tionalized our findings in a simple neoclassical investment model with a single new twist:
endogenous time to build. We showed that this endogeneity has distinctive implications for
the economics of capital investment and formation. Investment becomes more responsive
to shocks, and thereby more volatile. More mature projects react more strongly relative to
fledgling projects – a key model prediction that is borne out in the data. As a result, the dis-
tribution of projects along their completion lifecycle shapes aggregate dynamics. Monetary
policy becomes state-dependent: the distribution of projects at the time of the interest rate
change determines impact effects. The implications are not restricted to discount rate shocks.
Investment in ongoing projects is extremely responsive to variations in cash flows, opening
up space for time-varying investment credits to flexibly reshuffle aggregate demand across
expansions and recessions; and suggesting novel roles for investment subsidies as structural
policies to accelerate infrastructure development, such as the green transition.

Data at more disaggregated levels (e.g. project- or structure-level data) allows for further
measurement and thereby better microfounded models of capital formation. We have pro-
vided a minimal setup that captures key economic forces, but is portable to other settings
(e.g. managing a collection of workers or tasks) and invites extensions (e.g. time-varying
project returns). But there is more to build. Questions are not in short supply. Can we
structure project financing practices that internalize the resulting incentive effects in gesta-
tion lags? Do firms internalize gestation lags of their competitors when expanding capacity,
and how does that shape industry dynamics? Do short-termist politicians speed up project
and overrun budgets to claim credit for successful completion before their tenure ends, and
can such incentives explain the political investment cycles? How much can targeted subsi-
dies speed up infrastructure development in laggard economies or a global green transition?
Can our insights from fixed capital formation be generalized to breakthrough innovations or
other intangible forms of capital (e.g. job training as in Bloesch and Weber 2023)? Our future
research will continue to tease out further implications of endogenous time to build.

56



References

Abadie, A., Athey, S., Imbens, G. W., and Wooldridge, J. M. (2022). When Should You Adjust
Standard Errors for Clustering? The Quarterly Journal of Economics, 138(1):1–35.

Abel, A. B. and Eberly, J. C. (1994). A unified model of investment under uncertainty. The
American Economic Review, 84(5):1369–1384.

Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L., and Moll, B. (2021). Income and Wealth Distri-
bution in Macroeconomics: A Continuous-Time Approach. The Review of Economic Studies,
89(1):45–86.

Aftalion, A. (1927). The theory of economic cycles based on the capitalistic technique of
production. The Review of Economics and Statistics, 9(4):165–170.

Alfaro, L. and Chari, A. (2014). Deregulation, Misallocation, and Size: Evidence from India.
Journal of Law and Economics, 57(4):897–936.

Allison, P. D. (1982). Discrete-time methods for the analysis of event histories. Sociological
Methodology, 13:61–98.

Antras, P. (2023). An ’Austrian’ Model of Global Value Chains. NBER Working Papers 30901,
National Bureau of Economic Research, Inc.

Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation of
error-components models. Journal of Econometrics, 68(1):29–51.

Asea, P. K. and Zak, P. (1999). Time-to-build and cycles. Journal of Economic Dynamics and
Control, 23(8):1155–1175.

Ashcraft, A. B. (2005). Are banks really special? new evidence from the fdic-induced failure
of healthy banks. American Economic Review, 95(5):1712–1730.

Bajari, P. and Tadelis, S. (2001). Incentives versus transaction costs: A theory of procurement
contracts. The RAND Journal of Economics, 32(3):387–407.

Berger, D., Milbradt, K., Tourre, F., and Vavra, J. (2021). Mortgage prepayment and path-
dependent effects of monetary policy. American Economic Review, 111(9):2829–78.

Bernanke, B. S. and Gertler, M. (1995). Inside the black box: The credit channel of monetary
policy transmission. Journal of Economic Perspectives, 9(4):27–48.

Bloesch, J. and Weber, J. (2023). Congestion in onboarding workers and sticky r&d. techre-
port.

57



Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel
data models. Journal of Econometrics, 87(1):115–143.

Borusyak, K., Hull, P., and Jaravel, X. (2021). Quasi-Experimental Shift-Share Research De-
signs. The Review of Economic Studies, 89(1):181–213.

Brooks, P. K. (2000). The facts about time-to-build. IMF Working Papers 2000/138, Interna-
tional Monetary Fund.

BÃ¶hm-Bawerk, E. (1889). The Positive Theory of Capital. Macmillan.

Casares, M. (2006). Time-to-build, monetary shocks, and aggregate fluctuations. Journal of
Monetary Economics, 53(6):1161–1176.

Chari, A., Jain, L., and Kulkarni, N. (2021). The unholy trinity: Regulatory forbearance,
stressed banks and zombie firms. Working Paper 28435, National Bureau of Economic
Research.

Chen, J. and Roth, J. (2022). Logs with zeros? Some problems and solutions. Papers
2212.06080, arXiv.org.

Chodorow-Reich, G. (2013). The Employment Effects of Credit Market Disruptions: Firm-
level Evidence from the 2008-9 Financial Crisis *. The Quarterly Journal of Economics,
129(1):1–59.

Chodorow-Reich, G., Nenov, P. T., and Simsek, A. (2021). Stock market wealth and the real
economy: A local labor market approach. American Economic Review, 111(5):1613–57.

Chopra, Y., Subramanian, K., and Tantri, P. L. (2020). Bank Cleanups, Capitalization, and
Lending: Evidence from India. The Review of Financial Studies, 34(9):4132–4176.

Christiano, L., Eichenbaum, M., and Evans, C. (2005). Nominal rigidities and the dynamic
effects of a shock to monetary policy. Journal of Political Economy, 113(1):1–45.

Christiano, L. J., Eichenbaum, M. S., and Trabandt, M. (2018). On dsge models. Journal of
Economic Perspectives, 32(3):113–40.

CMIE (2023a). Capexdx: Database of the life cycle of new investments. Last Accessed: 2023-
09-01.

CMIE (2023b). Prowessdx: Database of financial performance of indian companies. Last
Accessed: 2023-09-01.

Cohn, J. B., Liu, Z., and Wardlaw, M. I. (2022). Count (and count-like) data in finance. Journal
of Financial Economics, 146(2):529–551.

58



Correia, S., Guimarães, P., and Zylkin, T. (2020). Fast poisson estimation with high-
dimensional fixed effects. The Stata Journal, 20(1):95–115.

Correia, S., Guimarães, P., and Zylkin, T. (2021). Verifying the existence of maximum likeli-
hood estimates for generalized linear models.

Eberly, J., Rebelo, S., and Vincent, N. (2012). What explains the lagged-investment effect?
Journal of Monetary Economics, 59(4):370–380.

Edge, R. M. (2007). Time-to-build, time-to-plan, habit-persistence, and the liquidity effect.
Journal of Monetary Economics, 54(6):1644–1669.

Eichenbaum, M., Rebelo, S., and Wong, A. (2022). State-dependent effects of monetary pol-
icy: The refinancing channel. American Economic Review, 112(3):721–61.

Flanagan, T. and Purnanandam, A. (2023). Why do banks hide losses? Working paper.

Freixas, X., Peydro, J.-L., and Laeven, L. (2015). "Systemic Risk, Crises, and Macroprudential
Regulation". The MIT Press.

Freixas, X. and Rochet, J.-C. (2008). Microeconomics of Banking, 2nd Edition, volume 1 of MIT
Press Books. The MIT Press.

Gabaix, X. and Ibragimov, R. (2011). Rank1/2: A simple way to improve the ols estimation
of tail exponents. Journal of Business & Economic Statistics, 29(1):24–39.

Gourieroux, C., Monfort, A., and Trognon, A. (1984). Pseudo maximum likelihood methods:
Theory. Econometrica, 52(3):681–700.

Greenwood, R. and Hanson, S. G. (2014). Waves in Ship Prices and Investment *. The
Quarterly Journal of Economics, 130(1):55–109.

Hall, R. (1977). Investment, interest rates, and the effects of stabilization policies. Brookings
Papers on Economic Activity, 8(1):61–122.

Han, C. and Phillips, P. C. B. (2010). Gmm estimation for dynamic panels with fixed effects
and strong instruments at unity. Econometric Theory, 26(1):119–151.

Kalecki, M. (1935). A macrodynamic theory of business cycles. Econometrica, 3(3):327–344.

Kalouptsidi, M. (2014). Time to build and fluctuations in bulk shipping. American Economic
Review, 104(2):564–608.

Khwaja, A. I. and Mian, A. (2008). Tracing the impact of bank liquidity shocks: Evidence
from an emerging market. American Economic Review, 98(4):1413–42.

59



Kulkarni, N., Ritadhi, S., Vij, S., and Waldock, K. (2021). Unearthing zombies. Working
paper, Georgetown McDonough School of Business.

Kydland, F. E. and Prescott, E. C. (1982). Time to build and aggregate fluctuations. Economet-
rica, 50(6):1345–1370.

Leeper, E. M., Walker, T. B., and Yang, S.-C. S. (2010). Government investment and fiscal
stimulus. Journal of Monetary Economics, 57(8):1000–1012.

Lewis, G. and Bajari, P. (2011). Procurement contracting with time incentives: Theory and
evidence. The Quarterly Journal of Economics, 126(3):1173–1211.

Lewis, G. and Bajari, P. (2014). Moral Hazard, Incentive Contracts, and Risk: Evidence from
Procurement. The Review of Economic Studies, 81(3):1201–1228.

Liu, E. and Tsyvinski, A. (2023). A dynamic model of input-output networks. Review of
Economic Studies.

Lucca, D. O. (2007). Resuscitating Time-to-Build. 2007 Meeting Papers 909, Society for Eco-
nomic Dynamics.

Majd, S. and Pindyck, R. S. (1987). Time to build, option value, and investment decisions.
Journal of Financial Economics, 18(1):7–27.

Mayer, T. (1960). Plant and equiptment lead times. The Journal of Business, 33(2):127–132.

McDonald, R. and Siegel, D. (1986). The value of waiting to invest. The Quarterly Journal of
Economics, 101(4):707–727.

McKay, A. and Wieland, J. F. (2021). Lumpy durable consumption demand and the limited
ammunition of monetary policy. Econometrica, 89(6):2717–2749.

Meier, M. (2020). Supply Chain Disruptions, Time to Build, and the Business Cycle. Crc tr
224 discussion paper series.

Montgomery, M. R. (1995). Time-to-build completion patterns for nonresidential structures,
1961-1991. Economics Letters, 48(2):155–163.

Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent obser-
vations. Econometrica, 16(1):1–32.

Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6):1417–1426.

Oh, H. and Yoon, C. (2020). Time to build and the real-options channel of residential invest-
ment. Journal of Financial Economics, 135(1):255–269.

60



Peek, J. and Rosengren, E. S. (2000). Collateral damage: Effects of the japanese bank crisis on
real activity in the united states. American Economic Review, 90(1):30–45.

Pigou, A. (1920). The Economics of Welfare. Macmillan.

Pinardon-Touati, N. (2023). The crowding out effect of local government debt: Micro and
macro-estimates. Technical report, Columbia University.

Ramey, V. (2020). The macroeconomic consequences of infrastructure investment. NBER
Working Papers 27625, National Bureau of Economic Research, Inc.

Rouwenhorst, K. (1991). Time to build and aggregate fluctuations: A reconsideration. Journal
of Monetary Economics, 27(2):241–254.

Samuelson, P. A. (1939). Interactions between the multiplier analysis and the principle of
acceleration. The Review of Economics and Statistics, 21(2):75–78.

Silva, J. M. C. S. and Tenreyro, S. (2006). The Log of Gravity. The Review of Economics and
Statistics, 88(4):641–658.

Singer, J. D. and Willett, J. B. (1993). It’s about time: Using discrete-time survival analysis to
study duration and the timing of events. Journal of Educational Statistics, 18(2):155–195.

Taylor, J. B., Baily, M. N., and Fischer, S. (1982). The swedish investment funds system as a
stabilization policy rule. Brookings Papers on Economic Activity, 1982(1):57–106.

Van Den Berg, G. J. (2001). Chapter 55 - duration models: Specification, identification and
multiple durations. volume 5 of Handbook of Econometrics, pages 3381–3460. Elsevier.

Winberry, T. (2021). Lumpy investment, business cycles, and stimulus policy. American
Economic Review, 111(1):364–96.

61



A Data Appendix

A.1 CapexDx

We provide additional information on data collection, definitions, and limitations for our
project-level data.

Defining Projects CMIE defines a project when it can assess the capacity that will be cre-
ated. They illustrate the definition as follows. Suppose a sponsor decides to invest a hundred
million rupees in India. This does not constitute a project: we don’t know the capacity that is
being created (i.e. whether it is a factory, a road, a school building, etc). Suppose further that
the sponsor specified that it would invest in the glass industry. Again, it is not clear what
capacity is being created. Is it a factory to produce glass? Or is it a warehouse to store glass?
Perhaps it could be a new headquarter building for the sponsor.

Suppose then that the conglomerate specifies that it will invest a hundred million rupees
in a glass manufacturing plant in Chennai. Now, there is clarity on the capacity that will be
created. To quote the documentation, “Although the company has not categorically stated
so, it does imply the creation of additional capacity, unless the context or circumstances
suggest otherwise.” CMIE therefore tracks the project. Importantly, CMIE would not track
the project if the sponsor was just acquiring an already existing glass manufacturing plant,
rather than developing the structure.

Some projects are multi-faceted and complex. They might combine several smaller projects.
In that case, CMIE recognizes “the smaller logical components as independent projects if the
cost for each of them is available separately and if the implementation is clearly separate”.
Consider the glass manufacturing example above. If the sponsor specified that there would
be four plants in the complex, each costing 25 million rupees, with plants being simultane-
ously built and with equal capacity, then CMIE would track each plant individually. The
exception would be if the sponsor explicitly states that it considers all sub-components of
the larger project as a single, integrated structure. CMIE then follows the sponsor and de-
fines a single project, despite detailed information on sub-components. In that case, or in
the absence of such granular information on project sub-components, we would observe our
example in the data as “Glass Manufacturing Project” with a total cost of 100 rupees located
in Chennai.

Data Collection CMIE builds Capex by combing publicly available sources and by actively
contacting sponsors via emails and phone calls. This detective work reflects the lack of sys-
tematic sources of project-level data. There is no universal standard of disclosure that spon-
sors must follow, either in company reports (i.e. disclosures of materially relevant informa-
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tion for investors in the case of public companies) or in government forms. CMIE therefore
collects the data from any and all credible sources.

To quote CMIE, their “long experience in building and maintaining such a database and
in applying it in its own research ensures the utility of the database.” Indeed, many players
in industry, government and academia rely on CMIE products to obtain reliable data on the
Indian economy. Capex is no exception. Practitioners we spoke to suggest they actively used
Capex to either track existing projects or make strategic decisions regarding future capacity
creation.

Our conversations with the data provider further alleviates data quality concerns. First,
monitoring is regular, as all projects “are touched for updates once in a quarter.” Second,
CMIE recognizes the need to validate sponsor information. To quote a conversation we had
with the Capex team: “Media, government websites are also source of capturing of events
that measure the progress of implementation of the project. If these are the sources of infor-
mation then we do not rely for the company to disclose the same progress.” Third, CMIE
actively checks for outdated information in their tracking. Suppose CMIE learns after con-
tacting promoters that implementation for a particular project happened one month before
what CMIE had as the original implementation start date. In that case, CMIE checks the
veracity of the sponsors’ claims against other sources it has used previously, such as public
disclosures by government sources or media outlets. If CMIE finds corroborating evidence
in the public domain for the sponsors’ claims, it then updates the outdated information to
the most recent news.

Dating of events reflects data collection. In many cases, the date of an event is the date
when the information was available to CMIE. For example, announcement dates correspond
to the first time that the project is mentioned in the public domain; implementation start
dates mark the first time that CMIE learns that an implementation-related event has taken
place, either from public domain sources or from project sponsors.

Despite intense monitoring, CMIE may fail to follow a project’s full history. While we
observe announcement dates for all projects, we do not always know what eventually hap-
pened to a project. In short, some observations are right-censored. We deal with this feature
of the data in two different ways. In some exercises, we restrict analyses to non-censored
projects or exclusively to completed projects. In the parlor of survival analyses, we perform
“complete case” analyses, aware we cannot circumvent sample selection concerns depend-
ing on our outcome of interest. In other exercises, we leverage econometric methods that
take into account the right-censored nature of the data, thereby allowing us to maximize the
number of observations we can learn from.

Reassuringly, we understand part of the data generating process for censoring — at least
that under the discretion of CMIE. CapexDx discloses it stops tracking projects “if they are
stalled or shelved or abandoned or information regarding them is not available for over 30

63



months in the case of manufacturing projects and for over 36 months in the case of infrastruc-
ture projects.” Right-censoring is not a one-way street: CMIE resumes tracking previously
censored projects if it manages to obtain reliable information on project status from the public
domain. In short, the combination of intense monitoring and transparent censoring schemes
bolsters data reliability.
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B Additional Measurement Exercises

Table A1: Transitions Across Project Stages

Announced Completed No Information Abandoned Stalled Under Imp
Announced 0.00 6.52 20.49 2.47 2.45 68.07
Stalled 10.63 1.31 6.35 22.85 0.00 58.86
Under Imp 0.00 62.15 27.55 3.26 7.04 0.00

Notes: This table constructs a transition matrix across project stages for all projects available in the March 2022 vintage of
CapexDx. Rows represent departing states. We only include non-terminal stages, i.e. we exclude completion, abandon-
ment, and loss to follow-up. Columns denote arriving states, which include terminal stages. We only include transitions for
which the departing and arriving stage differ. Each entry is the fraction of transitions from the row stage to the column stage
(multiplied by 100). For example, 68.07% of all transitions starting from “announced” correspond to transitions into “under
implementation”.

Table A2: Quarterly Transition Probabilities

Announced Completed No Information Abandoned Stalled Under Imp
Announced 87.92 0.79 2.48 0.30 0.30 8.22
Abandoned 0.66 0.17 0.00 97.98 0.00 1.20
Stalled 0.63 0.08 0.38 1.36 94.05 3.50
Under Imp 0.00 4.02 1.78 0.21 0.46 93.53

Notes: This table constructs a transition matrix across project stages for all projects available in the March 2022 vintage of
CapexDx. Rows represent departing states. We only include non-terminal stages, i.e. we exclude completion, abandonment,
and loss to follow-up. In some cases, abandoned projects returns to activity. Since these are exceedingly rare events, we
consider abandonment as terminal in all other results in the paper. Columns denote arriving states, which include terminal
stages. We include all quarterly transitions. Each entry is the fraction of transitions from the row stage to the column stage
(multiplied by 100). For example, 87.92% of all transitions starting from “announced” remain “announced”, while 8.22% move
into implementation.

Table A3: Cost-Time Schedules

(1) (2) (3) (4) (5)
Log Cost 0.178 0.163 0.162 0.152 0.155

(0.015) (0.013) (0.013) (0.011) (0.011)
Obs. 29988 29988 29983 29987 29982

Sector X X
Industry X X
Start Year X X

Notes: This table reports correlations between log time to build and log costs estimated with linear regression from the micro-
data underlying the binned scatter plots of figure 3. The sample consists of completed projects for which cost data is available.
Column (1) reports the bivariate relationship. Column (2) includes sector fixed effects, and column (3) adds year started fixed
effects. Columns (4) and (5) replace sector fixed effects by industry fixed effects. Standard errors are clustered at the industry
level and reported in parentheses.
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Figure A3: Cost-Time Schedule by Subgroups

(a) By Ownership
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(b) By Sector
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Notes: The figure disaggregates the binned scatter plots of log time to build on log costs (see panel a of figure 3) by sponsorship
(panel a) and sectors (panels b and c, split for the sake of visualization).
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C Additional Empirical Results

Table A4: Effects of Asset Quality Review on Credit Supply

(1) (2) (3) (4) (5) (6)
Exposure -0.0021 -0.0069∗∗∗ -0.0027∗ -0.0046∗ -0.0085∗∗∗ -0.0051∗∗

(0.0015) (0.0018) (0.0015) (0.0024) (0.0028) (0.0024)

Outc Mean -0.08 -0.08 -0.08 -0.10 -0.10 -0.10
Obs 194072 194072 194072 78827 78827 78827
Full Sample X X X
Hazard Sample X X X
Borrower + Year FE X X X X
Borrower x Year FE X X
Firm Controls X X

Notes: the table reports estimates of β from the following model:

∆Loansb f t = Firm-Year f t + β× Bank Shockbt + εb f t

where ∆Loansb f t is the growth rate of loans between t− 1 and t, constructed as in Davis and Haltiwanger (1992). The sample
consists of firm-bank relationships for 2013-2019, conditional on an existing relationship (positive outstanding loans) in the
2013-2015 period. Exposure is defined as the difference between required provision after the audit and the original provisions,
scaled by total bank assets. Coefficient estimates are read as the effect on the outcome for a one standard-deviation increase in
lender exposure. For example, column (1) reports that moving from the lender with average exposure to a lender with one-
standard deviation higher exposure decreases outstanding loans by -0.21 percentage points, relative to a mean growth rate of 8
percentage points. In columns (1)-(3), the sample comprises all borrower-lender pairs in our MCA-Prowess merged sample. In
columns (4)-(6), the sample is restricted to firms for which we eventually observe projects in our hazard regressions (see model
(3) and table 4). Columns (2) and (5) include borrower-by-year fixed effects. Columns (1) and (3) include borrower, and year
fixed effects. Columns (3) and (6) add firm controls. Firm controls include sales, sales growth, profitability, debt over equity,
book leverage, equity issuances, cash over liquid assets, and debt over EBITDA. All firm controls are winsorized at the 1st and
99th percentile, and then standardized. All firm controls are lagged by one-period. Standard errors are clustered at the lender
level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels, respectively.
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Table A5: Effects of Firm-Level Credit Supply Shocks on Project Completion Hazards

(1) (2) (3) (4) (5) (6) (7)

Exposure (Pre) 0.1092∗∗∗ 0.0803∗∗∗ 0.0807∗∗∗ 0.0778∗∗∗ 0.0782∗∗∗ 0.0873∗∗∗ 0.0884∗∗∗

(0.0283) (0.0283) (0.0281) (0.0276) (0.0276) (0.0274) (0.0275)

Exposure (2015) 0.1102∗∗∗ 0.0728∗∗∗ 0.0734∗∗∗ 0.0705∗∗∗ 0.0713∗∗∗ 0.0842∗∗∗ 0.0858∗∗∗

(0.0281) (0.0278) (0.0277) (0.0270) (0.0270) (0.0274) (0.0275)

DepVar Mean 0.0392 0.0392 0.0392 0.0392 0.0392 0.0409 0.0409
Observations 123857 123857 123857 123857 123857 118314 118314
Age Splines X X X X X X X
Firm FE X X X X X X
State x Year FE X X X X X X
Sector x Year FE X X
Industry x Year FE X X
Firm Controls X X X

Notes: the table reports PPML estimates of the semi-elasticity of project-level hazards to firm exposure to the Asset Quality
Review (see model (3)). The sample consists of projects observed quarterly between 2013-2019. Each row corresponds to
a measure of firm exposure. Firm exposure is defined as the weighted-average of lender exposure, where weights vary by
row. “(Pre)” indicates weights are constructed as average outstanding loans between 2013-2015 for a borrower-lender pair
relative to average outstanding loans between 2013-2015 for a given borrower. “(2015)” indicates weights are constructed as
outstanding loans in 2015 between a borrower-lender pair relative to outstanding loans in 2015 for a given borrower. Coefficient
estimates are interpreted as the percent effect on the outcome for a one standard-deviation increase in firm exposure. For
example, column (1) reports that moving from a firm with average exposure to a firm with one-standard deviation higher
exposure increases the hazard by 10.92%. Age splines refer to cubic splines on a project’s age (measured in quarters). Firm
controls include sales, sales growth, profitability, debt over equity, book leverage, equity issuances, cash over liquid assets, and
debt over EBITDA. All firm controls are winsorized at the 1st and 99th percentile, and then standardized. All firm controls
are lagged by one-period. The reduction in sample size from columns (5) to columns (6) and (7) results from separation of
additional observations by the more granular industry-by-year fixed effects relative to the sector-by-year fixed effects. Standard
errors are clustered at the firm level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the 10%, 5%
and 1% levels, respectively.
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Table A6: Effects of Firm-Level Credit Supply Shocks on Project Completion Hazards

(1) (2) (3) (4) (5) (6) (7)

Exposure 0.0061∗∗∗ 0.0033∗∗∗ 0.0033∗∗∗ 0.0031∗∗∗ 0.0031∗∗ 0.0033∗∗∗ 0.0033∗∗∗

(0.0018) (0.0013) (0.0013) (0.0012) (0.0012) (0.0011) (0.0011)

DepVar Mean 0.0392 0.0392 0.0392 0.0392 0.0392 0.0391 0.0391
Observation 123857 123857 123857 123857 123857 123835 123835
Age Splines X X X X X X X
Firm FE X X X X X X
State x Year FE X X X X X X
Sector x Year FE X X
Industry x Year FE X X
Firm Controls X X X

Notes: the table reports linear regression estimates of the effect of firm exposure to the Asset Quality Review on project haz-
ards (see model (3)). The sample consists of projects observed quarterly between 2013-2019. Firm exposure is defined as the
weighted-average of lender exposure, where weights correspond to outstanding loans in the previous year. Coefficient esti-
mates are interpreted as the level effect on the outcome for a one standard-deviation increase in firm exposure. For example,
column (1) reports that moving from a firm with average exposure to a firm with one-standard deviation higher exposure
increases the hazard by 0.61 percentage points, relative to an unconditional completion probability of 3.92 percentage points.
Age splines refer to cubic splines on a project’s age (measured in quarters). Firm controls include sales, sales growth, prof-
itability, debt over equity, book leverage, equity issuances, cash over liquid assets, and debt over EBITDA. All firm controls are
winsorized at the 1st and 99th percentile, and then standardized. All firm controls are lagged by one-period. The reduction in
sample size from columns (5) to columns (6) and (7) results from separation of additional observations by the more granular
industry-by-year fixed effects relative to the sector-by-year fixed effects. Standard errors are clustered at the firm level and
reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels, respectively.
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Table A7: Effects of Firm-Level Credit Supply Shocks on Project Starts

(1) (2) (3) (4) (5) (6) (7)

Exposure (Pre) -0.0740∗∗∗ -0.0708∗∗ -0.0673∗∗ -0.0808∗∗ -0.0753∗∗ -0.0562∗ -0.0556∗

(0.0278) (0.0324) (0.0321) (0.0321) (0.0319) (0.0305) (0.0303)

Exposure (2015) -0.0755∗∗∗ -0.0711∗∗ -0.0676∗∗ -0.0818∗∗∗ -0.0765∗∗ -0.0577∗ -0.0572∗

(0.0280) (0.0321) (0.0319) (0.0317) (0.0315) (0.0298) (0.0296)

DepVar Mean 0.8362 0.8362 0.8362 0.8362 0.8362 0.8326 0.8326
Observation 8994 8994 8994 8994 8994 8869 8869
Firm FE X X X X X X
Year FE X X
NIC Section x Year FE X X
NIC Division x Year FE X X
Firm Controls X X X

Notes: the table reports PPML estimates of the semi-elasticity of firm-level project starts to firm exposure to the Asset Quality
Review (see model (5)). The sample consists of the Capex-Prowess matched sample of firms observed yearly between 2013-
2019. Each row corresponds to a measure of firm exposure. Firm exposure is defined as the weighted-average of lender expo-
sure, where weights vary by row. “(Pre)” indicates weights are constructed as average outstanding loans between 2013-2015
for a borrower-lender pair relative to average outstanding loans between 2013-2015 for a given borrower. “(2015)” indicates
weights are constructed as outstanding loans in 2015 between a borrower-lender pair relative to outstanding loans in 2015 for a
given borrower. Coefficient estimates are interpreted as the percent effect on the outcome for a one standard-deviation increase
in firm exposure. For example, column (1) reports that moving from a firm with average exposure to a firm with one-standard
deviation higher exposure reduces project starts by 7.4%. NIC Section and Division classifications are constructed from NIC
codes and categorizations. Firm controls include sales, sales growth, profitability, debt over equity, book leverage, equity is-
suances, cash over liquid assets, and debt over EBITDA. All firm controls are winsorized at the 1st and 99th percentile, and
then standardized. All firm controls are lagged by one-period. The reduction in sample size from columns (5) to columns (6)
and (7) results from separation of additional observations by the more granular division-by-year fixed effects relative to the
section-by-year fixed effects. Standard errors are clustered at the firm level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote
statistical significance at the 10%, 5% and 1% levels, respectively.
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Table A8: Effects of Firm-Level Credit Supply Shocks on Project Starts

(1) (2) (3) (4) (5) (6) (7)

Exposure -0.0560∗∗∗ -0.0534∗∗ -0.0520∗∗ -0.0574∗∗ -0.0562∗∗ -0.0471∗∗ -0.0462∗∗

(0.0195) (0.0226) (0.0223) (0.0226) (0.0223) (0.0218) (0.0215)

DepVar Mean 0.8362 0.8362 0.8362 0.8362 0.8362 0.8281 0.8281
Observation 8994 8994 8994 8994 8994 8941 8941
Firm FE X X X X X X
Year FE X X
NIC Section x Year FE X X
NIC Division x Year FE X X
Firm Controls X X X

Notes: the table reports linear regression estimates of the effect of firm exposure to the Asset Quality Review on firm-level
project starts (see model (5)). The sample consists of the Capex-Prowess matched sample of firms observed yearly between
2013-2019. Each row corresponds to a measure of firm exposure. Firm exposure is defined as the weighted-average of lender
exposure, where weights correspond to outstanding loans in the previous year. Coefficient estimates are interpreted as the
level effect on the outcome for a one standard-deviation increase in firm exposure. For example, column (1) reports that
moving from a firm with average exposure to a firm with one-standard deviation higher exposure reduces project starts by
0.056 projects relative to an unconditional mean of 0.8362 projects. NIC Section and Division classifications are constructed
from NIC codes and categorizations. Firm controls include sales, sales growth, profitability, debt over equity, book leverage,
equity issuances, cash over liquid assets, and debt over EBITDA. All firm controls are winsorized at the 1st and 99th percentile,
and then standardized. All firm controls are lagged by one-period. The reduction in sample size from columns (5) to columns
(6) and (7) results from separation of additional observations by the more granular division-by-year fixed effects relative to the
section-by-year fixed effects. Standard errors are clustered at the firm level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote
statistical significance at the 10%, 5% and 1% levels, respectively.
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Table A9: Balance Tests: Cross-Section

(1) (2) (3)
Log Sales 3.644 3.967 -0.1998∗∗

(0.0826)
Sales Growth 0.040 0.043 -0.0002

(0.0525)
Profitability (EBIT) 0.052 0.062 -0.0149

(0.0325)
EBIT < 0 0.157 0.117 0.0419

(0.0402)
Debt/Equity 57.100 42.253 -1.9474

(4.5947)
Book Leverage 35.800 28.777 1.6844

(3.1223)
Equity Issuance -0.020 0.134 -0.2403∗∗

(0.1041)
Cash/Liquid Assets 0.156 0.111 0.0150

(0.0116)
Debt/EBIT 0.103 2.566 -3.6173

(2.8500)

Notes: the table reports linear regression estimates of covariate balance across sponsor exposure to the Asset Quality Review.
In particular, we regress firm-level characteristics averaged over 2013-2015 X f on average firm exposure over the 2016-2019
period Expo f , where firm exposure is defined as the weighted-average of lender exposure and weights correspond to out-
standing loans in the previous year. Each row corresponds to one of our firm controls. Columns (1) and (2) report raw means
conditional on a binary exposure indicator. Column (3) reports the coefficient on the exposure variable in the cross-sectional
linear regression model. All outcomes are winsorized at the 2.5th and 97.5th percentile, and then standardized. Standard
errors are heteroscedasticity-robust and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the 10%, 5%
and 1% levels, respectively.
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Table A10: Balance Tests: Panel

(1) (2) (3)
Log Sales 2.849 3.838 -0.3798

(0.4663)
Sales Growth 0.085 0.045 -0.1046

(0.0782)
Profitability (EBIT) 0.016 0.074 -0.2861∗∗

(0.1177)
EBIT < 0 0.179 0.119 0.0906

(0.0644)
Debt/Equity 85.557 46.410 -23.0500

(46.1865)
Book Leverage 51.422 30.764 -17.9970

(24.3064)
Equity Issuance 0.108 -0.104 -0.1340

(0.1350)
Cash/Liquid Assets 0.225 0.140 -0.0710∗

(0.0377)
Debt/EBIT -6.070 2.478 0.2829

(5.7189)

Notes: the table reports linear regression estimates of covariate balance across sponsor exposure to the Asset Quality Review.
The sample consists of the Capex-Prowess matched sample of firms observed yearly between 2013-2019. In particular, we
regress lagged firm-level characteristics X f ,t−1 on contemporaneous firm exposure Expo f ,t. Each row corresponds to one of our
firm controls. Firm exposure is defined as the weighted-average of lender exposure, where weights correspond to outstanding
loans in the previous year. Columns (1) and (2) report raw means conditional on a binary exposure indicator. Column (3)
reports the coefficient on the exposure variable in the panel linear regression model, including firm and year fixed effects. All
outcomes are winsorized at the 2.5th and 97.5th percentile, and then standardized. Standard errors are clustered at the firm
level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels, respectively.
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Table A11: Predicting TTB: Model Comparison

Time to Build Log Time to Build
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: RMSE

Out-of-Sample 13.719 13.402 13.590 13.571 0.861 0.825 0.851 0.858
In-Sample 11.209 10.728 11.768 10.652 0.820 0.785 0.792 0.780

Panel B: R-Squared

Out-of-Sample 0.124 0.164 0.141 0.143 0.111 0.184 0.132 0.117
In-Sample 0.368 0.421 0.304 0.430 0.139 0.211 0.197 0.221

Panel C: OLS

Slope 1.069 1.083∗ 1.214∗∗∗ 0.946 1.316∗∗∗ 1.194∗∗∗ 0.997 0.954∗∗∗

(0.058) (0.047) (0.035) (0.042) (0.023) (0.017) (0.015) (0.016)
Constant 1.559∗∗ 1.580∗∗∗ -1.036∗∗ 3.033∗∗∗ -0.558∗∗∗ -0.303∗∗∗ 0.122∗∗∗ 0.237∗∗∗

(0.717) (0.570) (0.434) (0.518) (0.052) (0.039) (0.034) (0.035)

Sector FE X X X X
Industry FE X X X X
State FE X X X X
Ownership FE X X X X
Type of Unit FE X X X X

Notes: the table compares the predictive ability of different models for time to build. Each column correspond to a different
(linear) predictive model including (non-parametrically) the covariates marked by X in the bottom panel of the table. Panel
A reports root-mean squared errors and Panel B reports R2 of each model for both the estimating sample (“In-sample”) and
for the hazard regression sample (“Out-of-Sample”). Panel C reports OLS estimates a linear regression of observed gestation
lags on predicted gestation lags for the hazard regression sample (i.e. the target sample of interest). Slope values closer to one
and constant values closer to zero indicate more proximity to the 45 degree line. Standard errors are clustered at the firm level
and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels, respectively. In Panel
C, the null hypothesis is that the slope is equal to 1, and that the constant is equal to zero. Tests for slope and constant are
conducted separately rather than jointly. Our preferred model is that of column (2). It provides the second-best out-of-sample
predictive power as measured by R2, being outperformed only by the model in column (6); we pick it over the latter since it
provides a closer fit to the 45 degree line.
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Table A12: Heterogeneous Effects by Initial Age

(1) (2) (3) (4)
Exposure 0.101∗∗∗ 0.098∗∗∗ 0.110∗∗∗ 0.109∗∗∗

(0.026) (0.027) (0.026) (0.026)

Age x Exposure 0.055∗∗ 0.058∗∗ 0.058∗∗ 0.060∗∗

(0.024) (0.024) (0.025) (0.026)

Initial Age FE X X X X
Firm FE X X X X
State x Year FE X X X X
Sector x Year FE X X
Industry x Year FE X X
Firm Controls X X

Notes: the table reports PPML estimates of the semi-elasticity of project-level hazards to sponsor exposure to the Asset Quality
Review. The sample consists of projects observed quarterly between 2013-2019. Firm exposure is defined as the weighted-
average of lender exposure, where weights correspond to outstanding loans in the previous year. The proxy for stage is Initial
Age, constructed as age of the project when first observed in the sample. This measure is winsorized at the 1st and 99th
percentile, and then standardized before being included in the regression model. The coefficient on exposure is interpreted as
the percent effect on the outcome for a one standard-deviation increase in firm exposure for the project with mean proxy stage.
The coefficient on the interaction is interpreted as the change in the main effect resulting from a one-standard deviation level
change in proxy stage. For example, the first row in column (1) reports that moving from a sponsor with average exposure to
a sponsor with one-standard deviation higher exposure increases the hazard by 10.1% for the project at the mean proxy stage.
The second row in column (1) reports that if the project had been one standard deviation above (below) the mean stage at
the time of the shock, the effect would have incresed (declined) by 5.5%, for a total effect of 15.6% (4.6%). In order to avoid
strong collinearity concerns between the age spline, initial age, and the time fixed effects, we omit the age spline, and control
non-parameterically for the initial age. Firm controls include sales, sales growth, profitability, debt over equity, book leverage,
equity issuances, cash over liquid assets, and debt over EBITDA. All firm controls are winsorized at the 1st and 99th percentile,
and then standardized. All firm controls are lagged by one-period. The reduction in sample size from columns (1) and (2)
to columns (3) and (4) results from separation of additional observations by the more granular industry-by-year fixed effects
relative to the sector-by-year fixed effects. Standard errors are clustered at the firm level and reported in parentheses. ∗, ∗∗,
and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels, respectively.
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D Backfilling, Censoring, and Selection

CapexDx strives to provide maximal coverage, despite the non-administrative nature of the
data collection process. As a result, some project histories are backfilled. Once CapexDx ob-
tains information on an already ongoing project, it reconstructs the project history by active
research on the public domain and contact with project sponsors.

On the one hand, such retroactive filling improves coverage. On the other hand, it in-
troduces a potential threat to our empirical strategy. The concern is that the RBI audits –
and their resulting firm-level disruptions – alter the data collection process. For example,
CapexDx could become less likely to find data on projects. This opens up space for a delicate
form of selection bias: the sample of projects collected after the shock may differ from the
sample of projects before the shock.52

If the resulting selection into sample is balanced across the treated and untreated group, it
is independent of treatment. Our estimates will have a causal interpretation within the selected
sample (Hernan and Robins, 2023). That is, we can still identify the effect of exposing units
to the shock relative to a counterfactual of no exposure; but we can only speak to the effect
on the units that eventually make it into our dataset. The causal effect on censored units is
not identified from observational data. This concern is present in any study for which data
collection might be affected by the treatment of interest (e.g. studies leveraging survey data).

We would not be able to make causal statements, even within the noncensored sample, if
the treatment induced differential censoring. To be concrete, let’s suppose then that CapexDx
becomes less able to obtain data on treated relative to untreated projects. Perhaps, firms more
exposed to the banking shock stop sharing information about their projects on the public
domain or taking the time to respond to CapexDx inquiries. Let’s further suppose there is
no backfilling, so any new projects for which CapexDx obtains data are always recent starts.

The concern then is that the observed sample would be skewed towards fewer early
projects among the treated group. Moreover, since older projects are more likely to be com-
pleted, comparing treated and untreated projects within the uncensored sample incurs a
sample selection bias. That is, we may observe an association between completion and treat-
ment, even if treatment does not influence completion. The observed association results
simply from the missing early projects among the treated. If such projects had been included
in the data, we might have been able to recover the true null causal effect of treatment on
project completions. In a nutshell, there is no causal effect of treatment on completion, but
only a causal effect of treatment on selection into the data. Matters are further complicated
by the presence of backfilling. Projects entering in any given vintage of the data may have

52Such form of censoring can be pervasive in retrospective studies. Duration models allow us to learn from
right-censored observations under the assumption of noninformative censoring (conditional on the model’s co-
variates), but are not immune to the selective censoring concerns we highlight here.
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been started in the more distant past. But the general concern remains: we worry that fewer
young projects enter the sample for the treated group after the shock.

We provide two analyses to soothe concerns that our results are driven by sample selec-
tion bias due to differential changes in the data collection process for treated versus untreated
projects. First, we restrict our completion analyses to projects that were in data vintages prior
to the first audits. Even if the data collection process differentially changed following the
shocks, projects in vintages prior to the shock would not have been affected by such changes.
This sample is thus immune to the selection concerns. Second, we test a direct implication
of differential censoring due to differential backfilling. If CapexDx had become less able to
backfill data on treated relative to untreated projects, we should observe a downward trend
in the number of treated projects relative to untreated projects before the shock. We thus test
whether exposure predicts differential pre-trends in firm-level project stocks.

Figure A12: Total and incremental counts of projects by vintage
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(b) Incremental
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Notes: The figure plots the total (panel a) or incremental (panel b) number of projects for each available vintage of the CapexDx
dataset. The x-axis indicates the vintage by its release date. Within a given vintage, we plot counts for three samples. The blue
(left-most) bar corresponds to all projects. The red (middle) bar corresponds to projects in the MCA-Prowess-Capex matched
dataset. The green (left-most) bar corresponds to projects in the 2013-2019 window around adoption of the Asset Quality
Review.

For our first analysis, we collect previous vintages of CapexDx. The first vintage was re-
leased on December 31st, 2014. It thus predates the first Asset Quality Review audit. Further
vintages were released yearly on March 31st starting in 2016, hence after the first audits had
been carried out. Figure A12 plots the total number of projects in each vintage, as well as the
number of projects added in each vintage. We split projects in three groups: all projects in
the CapexDx data, projects with sponsors in the MCA-Prowess-Capex matched sample, and
projects in the estimating sample for the completion regressions.

Most projects in our sample are already in the 2014 vintage, which allows us to reestimate
the completion regressions in this subsample. Table A13 reports results from such exercise.
In the first row, the firm-level exposure variable aggregates bank-level shocks using lagged,
time-varying weights (LTVW). The point estimates are quantitatively similar to those ob-
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Table A13: Effect on Completion Hazards: Subset of First Vintage Projects: Panel

(1) (2) (3) (4) (5) (6) (7)

Exposure (LTV) 0.0235 0.0742∗ 0.0738∗ 0.0621 0.0624 0.0577 0.0560
(0.0305) (0.0409) (0.0407) (0.0416) (0.0416) (0.0454) (0.0462)

Exposure (Pre) 0.0254 0.0979∗∗ 0.0997∗∗ 0.0898∗∗ 0.0932∗∗ 0.0976∗∗ 0.1016∗∗

(0.0312) (0.0410) (0.0410) (0.0413) (0.0414) (0.0415) (0.0416)

Exposure (2015) 0.0240 0.0951∗∗ 0.0984∗∗ 0.0880∗∗ 0.0922∗∗ 0.0936∗∗ 0.0985∗∗

(0.0304) (0.0393) (0.0392) (0.0395) (0.0394) (0.0398) (0.0399)

DepVar Mean 0.0379 0.0379 0.0379 0.0379 0.0379 0.0401 0.0401
Observation 54733 54733 54733 54733 54733 51245 51245
Age Splines X X X X X X X
Firm FE X X X X X X
State x Year FE X X X X X X
Sector x Year FE X X
Industry x Year FE X X
Firm Controls X X X

Notes: the table reports PPML estimates of the semi-elasticity of project-level hazards to firm exposure to the Asset Quality
Review (see model (3)). The sample consists of projects observed quarterly between 2013-2019; and is further restricted to
projects that were present in the data as of the first vintage (Dec 31, 2014), thereby preceding the first Asset Quality Review.
Firm exposure is defined as the weighted-average of lender exposure and weights vary by row. “(LTV)” indicates lagged, time-
varying weights, as in our baseline results. “(Pre)” indicates weights are constructed as average outstanding loans between
2013-2015 for a borrower-lender pair relative to average outstanding loans between 2013-2015 for a given borrower. “(2015)”
indicates weights are constructed as outstanding loans in 2015 between a borrower-lender pair relative to outstanding loans
in 2015 for a given borrower. Coefficient estimates are interpreted as the percent effect on the outcome for a one standard-
deviation increase in firm exposure. For example, row 1 of column (1) reports that moving from a firm with average exposure
to a firm with one-standard deviation higher exposure increases the hazard by 2.35%. Age splines refer to cubic splines on a
project’s age (measured in quarters). Firm controls include sales, sales growth, profitability, debt over equity, book leverage,
equity issuances, cash over liquid assets, and debt over EBITDA. All firm controls are winsorized at the 1st and 99th percentile,
and then standardized. All firm controls are lagged by one-period. The reduction in sample size from columns (5) to columns
(6) and (7) results from separation of additional observations by the more granular industry-by-year fixed effects relative to the
sector-by-year fixed effects. Standard errors are clustered at the firm level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote
statistical significance at the 10%, 5% and 1% levels, respectively.
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Table A14: Cross-Sectional Balance Tests: Project Stocks

Mean | Exp = 0 Mean | Exp > 0 Mean | Exp
(1) (2) (3)

Active Projects 2.441 4.185 -3.3262∗∗∗

(1.1054)
Projects Started 0.504 0.683 -0.5060∗∗

(0.2276)
Projects Completed 0.233 0.342 -0.4336∗∗∗

(0.0998)
Projects Abandoned 0.043 0.075 -0.0377

(0.0415)
Projects Censored 0.100 0.192 -0.0240

(0.0779)
Projects Under Implementation 1.428 2.415 -1.9943∗∗∗

(0.6739)
Projects Announced 0.976 1.599 -1.3409∗∗∗

(0.4452)
Projects Stalled 0.176 0.355 0.0812

(0.1501)
Exposure X

Notes: the table reports linear regression estimates of covariate balance across firm exposure to the Asset Quality Review. In
particular, we regress firm-level outcomes averaged over 2013-2015 Yf on average firm exposure over the 2016-2019 period
Expo f , where firm exposure is defined as the weighted-average of lender exposure, where weights correspond to outstanding
loans in the previous year. Each row corresponds to either a stock (active, announced, under implementation, or stalled) or
flow (completed, censored, abandoned, started) of projects. Columns (1) and (2) report raw means conditional on a binary
exposure indicator. Column (3) reports the coefficient on the exposure variable in the cross-sectional linear regression model.
Standard errors are heteroscedasticity-robust and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the
10%, 5% and 1% levels, respectively.

tained without restricting the sample. The standard errors are admittedly larger, which is
unsurprising given the sample size is effectively halved by the vintage restriction. Despite
the reduced power, we are content by the similar point estimates between the two specifica-
tions: if bias was a concern, we would have expected point estimates to change considerably
between the two exercises.

In the second and third rows, the firm-level exposure variables weigh bank shocks by
pre-audit exposures. The second row averages outstanding loans between 2013 and 2015
(PreW), whereas the third row simply takes the 2015 outstanding loan amounts (2015W).
The standard errors are indistinguishable from those in the first row, but the point estimates
are larger and statistically significant at conventional levels. This increase in point estimates
might appear puzzling at first, but would be consistent with later-year weights becoming
smaller if firms substituted away from more exposed banks.

The results in Table A13 corroborate that our main results are not driven by treatment
inducing differential sample selection into later vintages. It does not, however, speak to
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the possibility of such differential censoring being present in the data. An implication of
such selection would be differential pre-trends in the number of projects among treated and
untreated firms. We test for this possibility as follows. First, we ask whether firms on average
more exposed to the shock exhibit fewer projects or fewer starts before the audits ever began.
The last column in table A14 shows that higher average exposure ex post predicts ex ante
differences in firms’ project stocks (each row corresponds to a different dependent variable).
Prior to the shock, more exposed firms have on average fewer projects, start fewer projects,
and complete fewer projects.

Table A14 performs a cross-sectional balance test. Such balance in levels would be reas-
suring, but is far more stringent than what’s implied by the differential selection story (and
than what’s required by our identifying assumption). Level differences could be driven, for
instance, by permanent differences in the set of firms that are eventually exposed or not. Our
panel regressions control non-parametrically for such possibility with firm fixed effects; but
firm-level regressions – as in table A14 cannot. We thus move to a panel regression, and test
whether contemporaneous exposure predicts a decline in lagged number of projects.

Table A15 collects the results. The last two columns both regress lagged variables on con-
temporaneous treatments. The third column does not include any fixed effects. Consistent
with table A14 , we cannot rule out differences in levels. But we can rule out differential
pre-trends. Including firm and time effects in the last column, the predictability vanishes;
point estimates become small in magnitude and economically insignificant. The results for
number of projects is at odds with the predictions of differential selection.

Admittedly, our evidence directly ruling out differential backfilling by treatment status
is suggestive. It reflects a fundamental data limitation. Nonetheless, we are reassured by
the two robustness checks we started with. First, restricting the sample to projects already
present in the 2014 vintage does not substantially alters the results from our completion
regressions. Such robustness makes it unlikely that our main results are driven by sam-
ple selection concerns arising from differential changes in data collection after the shock for
treated relative to untreated firms. Second, we fail to reject equal pre-trends on the num-
ber of started projects for treated versus untreated projects. Such evidence weighs against a
direct implication of the differential censoring concern.
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Table A15: Panel Balance Tests: Project Stocks

Mean | Exp = 0 Mean | Exp > 0 Mean | Exp Mean | Exp
(1) (2) (3) (4)

L1 Active Projects 2.987 3.408 -2.0376∗∗∗ -0.1223
(0.5203) (0.2349)

L1 Projects Started 0.473 0.649 0.0162 -0.1163
(0.1167) (0.1217)

L1 Projects Completed 0.255 0.332 -0.0630 0.0410
(0.0730) (0.0749)

L1 Projects Abandoned 0.042 0.032 -0.0510∗∗∗ 0.0292
(0.0174) (0.0242)

L1 Projects Censored 0.124 0.174 -0.0013 -0.0368
(0.0414) (0.0583)

L1 Projects Under Implementation 1.768 2.038 -1.3085∗∗∗ -0.1103
(0.3334) (0.1944)

L1 Projects Announced 1.104 1.241 -0.6835∗∗∗ -0.0655
(0.2054) (0.1568)

L1 Projects Stalled 0.228 0.259 -0.1360∗∗ -0.0042
(0.0572) (0.0481)

Exposure X X
Firm + Year FE X

Notes: the table reports linear regression estimates of covariate balance across firm exposure to the Asset Quality Review. The
sample consists of the Capex-Prowess matched sample of firms observed yearly between 2013-2019. In particular, we regress
lagged firm outcomes Yf ,t−1 on contemporaneous firm exposure Expo f ,t. Each row corresponds to either a stock (active,
announced, under implementation, or stalled) or flow (completed, censored, abandoned, started) of projects. Firm exposure
is defined as the weighted-average of lender exposure, where weights correspond to outstanding loans in the previous year.
Columns (1) and (2) report raw means conditional on a binary exposure indicator. Column (3) reports the coefficient on the
exposure variable in the panel linear regression model (balance in levels). Column (4) adds firm and time fixed effects (balance
in within-unit trends). Standard errors are clustered at the firm level and reported in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote
statistical significance at the 10%, 5% and 1% levels, respectively.
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E Additional Quantitative Results

Figure A15: Calibration Exercises
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Notes: The figure plots the results of our calibration exercises. Subfigure A15a plots the joint distribution of costs and time
to build in the model (green, solid) and in the data (black, dashed). We leverage such moments to calibrate the parameters
related to the distributions of x̄ and ī. Subfigure A15b plots the results from estimating log-rank regressions. The x-axis plots
the number of (top) firms included in the estimation. The y-axis plots the resulting coefficient of a regression of log sales on firm
rank, which corresponds to an estimate of the Pareto exponent. We choose a midpoint of 3. Subfigure A15c plots coefficient
estimates of multiple panel autoregressive models used to estimate the persistence of the discount rate shock ρ. We regress
firm exposure on its first lag, clustering at the firm level. Each bin in the x-axis corresponds to a distinct estimator. From left
to right, we report estimates from OLS without fixed effects, the Han-Phillips GMM estimator, and multiple variations of the
Arellano-Bover-Blundell-Bond system GMM estimator (“Fwd” indicates taking forward deviations, and “2-Step” indicates use
of two-step GMM with optimal covariance matrix). Blue dots plot estimates (and 95% confidence bands) in the sample of all
firm-years in the MCA-Prowess matched data. Red dots restrict the sample to firms in our hazard regressions.
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Table A16: Calibration Results: Parameter Estimates

Parameter Value Interpretation Source

r 0.01 Real Rate Post-1990 Time Series Average
p 1 Price of K

Normalization
µx̄ 0 Avg Project Size
σ2

x̄ 2.12 SD Project Size

Cost-TTB Distribution
βī

0 −2.47 Mean ī: intercept
βī

1 0.82 Mean ī: slope
σ2

ī 0.88 SD ī
ρ 0.17 Shock Persistence Panel Autoregressions
α 3 Pareto Tail Log-Rank Regressions
s 0.2 Shock Size

Reduced Form Regressions
κ 3.09 Accel. Cost

Notes: the table reports parameter estimates from our calibration exercise. See the notes to figure A15 and the main text for
detailed explanations of the calibration strategy.

Table A17: Calibration Results: Targeted Moments

Moment Model Data

Avg Log Size (Q1) −2.68 −2.58
Avg Log Size (Q2) −1.42 −1.57
Avg Log Size (Q3) 0.01 −0.18
Avg Log Size (Q4) 1.45 1.42
Avg Log Size (Q5) 2.77 2.80

SD Log Size 0.91 0.90
Avg Log TTB (Q1) 1.96 2.02
Avg Log TTB (Q2) 2.30 2.21
Avg Log TTB (Q3) 2.53 2.48
Avg Log TTB (Q4) 2.88 2.95

Hazard Regression β 0.06 0.06
Starts Regression β −0.08 −0.08

Notes: the table reports values for the targeted moments in our calibration exercise. See the notes to figure A15 and the main
text for detailed explanations of the calibration strategy.
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F Proofs and Additional Theoretical Results

F.1 Time to Completion and the Kolmogorov Backward Equation

Let T(x, t) denote the time remaining until completion for a project in stage x at time t. In a
time span ∆t, to first-order, we have

T(x, t) ≈ ∆t + T(x + i(x)∆t, t + ∆t)

Rearranging, we obtain

0 ≈ 1 +
T(x + i(x)∆t, t + ∆t)− T(x, t)

∆t

For i(x)∆t small,

T(x + i(x)∆t, t + ∆t) ≈ T(x, t + ∆t) + i(x)∆t
∂

∂x
T(x, t)

Note further that
T(x, t + ∆t)− T(x, t)

∆t
→ ∂

∂t
T(x, t)

Hence, as ∆t→ 0, we obtain a Kolmogorov Backward Equation

0 = 1 + i(x, t)
∂

∂x
T(x, t) +

∂

∂t
T(x, t) (21)

with terminal condition
T(x, t) = 0 (22)

In steady state, we have ∂
∂t T(x, t) = 0, which yields the T′(x) = −1/i(x).

Proposition 8. In steady state, completion times are uniformly distributed.

Proof. The distribution of completion times is

FT(t) = Prob(T(x) ≤ t) =
ˆ x̄

T−1(t)
g(x)dx

i.e. the mass of projects being completed up to time t is just the mass of projects about to be
completed (close to x̄) down to projects in stages such that after t periods, the project will be
completed. Note that g(x) does not integrate to 1, but this is not a serious concern.

Using Leibniz’s rule, we differentiate the cumulative to obtain the density

fT(t) = −g(T−1(t))× (T−1)′(t)
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Recall that the derivative of the inverse function is given by

(T−1)′(t) =
1

T′(T−1(t))
,

but T′(x) = −1/i(x) and g(x) = f/i(x), so for x = T−1(t), we obtain

fT(t) =
(
− f

i(T−1(t))

)
×
(
− 1

1/i(T−1(t))

)
= f

F.2 Parallel to Bond Pricing

The results in Section 5 capture a broad economic mechanism related to (changes in) the time
value of money. We illustrate this point by returning to standard fixed income pricing.

Setup Consider a bond paying coupons c(t) and with face value F. All cash flows are
discounted at a rate r. The remaining time to maturity is T. The value of the bond is

V =

ˆ T

0
e−rtc(t)dt + e−rT F

Recall that when interest rate changes, the change in the bond price is given by the bond’s
duration

∂V
∂r

= −
ˆ T

0
te−rtc(t)dt− e−rT F · T = −Dur(V)

This formulation maps to Section 5 as follows. The coupons are just the investment flows
required to complete the project. The face value, in turn, is the return to completing the
project, given by pz in the notation of Section 5. The bond price (or, value) V is akin to the
project value v(x, z), in which case the maturity of the project is instead the remaining time
to project completion T(x, z). The duration expression parallels Proposition 2, so that the
∂V
∂r is akin to v̂(x, z). The key difference is that we optimally choose investment flows for

projects in Section 5. In turn, bond investors don’t choose the path of coupons accruing to
bonds (when they are not the issuers, at least).

“Accelerating” Bond Cash Flows Consider the following experiment. Suppose we “accel-
erate” the cash flows of the bond. To be precise, we shift all cash flows backwards in time by
∆. The last coupon is c(T), which is now received at T− ∆. The face value is also received at
T − ∆. At date 0, the coupon is now c(∆) rather than c(0). That is, the bond holder forfeits
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all coupon payments in the time interval [0, ∆]. The value of this (new) bond is

V(∆) =
ˆ T−∆

0
e−rtc(t + ∆)dt + e−r(T−∆)F

where ∆ = 0 corresponds to the original bond. Consider a marginal change in the time shift
∆. We have,

∂V(∆)
∂∆

=

ˆ T−∆

0
e−rt ∂c(t + ∆)

∂∆
dt− e−r(T−∆)c(T) + re−r(T−∆)F (23)

To build intuition about (23), consider first the last two terms. We have

e−r(T−∆) (−c(T) + rF) = −∂V(∆)
∂T

so that the last two terms correspond to the case where we just exogenously reduce the
maturity of the bond, but do not shift any of the other cash flows. In that case, we lose the
terminal coupon c(T), but we get the face value quicker, which we value at rF. We then
discount the cash flows to today to obtain the marginal change in the bond value. For most
bonds, coupon payments are small relative to face values, so that ∂V(∆)/∂T is positive. That
is, bond prices should rise if maturities exogenously fell.

The first term of (23) reflects the fact that we are shifting all cash flows over time, not just
the terminal cash flows. The cash flow that would have been received in period t + ∆ is now
received at time t. Rather than being discounted by e−r(t+∆), it is now discounted by e−rt.
Consequently, the value of the bond must change to reflect this new path of discount rates.

Note that
∂c(t + ∆)

∂∆
=

∂c(t + ∆)
∂t

,

which follows from the fact that we are uniformly shifting cash flows over time. Using this
result, we can integrate the first term in (23) by parts

ˆ T−∆

0
e−rt ∂c(t + ∆)

∂∆
dt =

[
e−rtc(t)

]T−∆
0 −

[ˆ T−∆

0
−re−rtc(t + ∆)dt

]

= e−r(T−∆)c(T − ∆)− c(∆) + r
ˆ T−∆

0
e−rtc(t + ∆)dt

Bringing all together and rearranging, we find

∂V(∆)
∂∆

= −c(∆) + rV(∆) (24)

Expression (24) is a key object. When we shift all cash flows by ∆, we lose the marginal
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coupon today. What we gain is the flow value from holding a new bond without that coupon,
but with a shorter maturity and the original cash flows. In bond markets, we see securities
with the same coupons, but with different residual maturities being traded at the same time.
For example, we might observe two sovereign bonds with equal coupons, but one has T days
remaining until maturity while the other has T−∆ days remaining. For a bond investor with
fixed discount rate r, how much would the investor value swapping the former for the latter?
Since one bond is just an intertemporal shift of the cash flows of the other, exactly as in our
experiment, expression (24) provides the answer.

Suppose now that the bond investor could pay κ(∆) today to accelerate cash flows by
∆.53 We assume κ is differentiable and increasing. The necessary condition for an optimal
choice of “acceleration” is

κ′(∆∗) =
∂V(∆∗)

∂∆
(25)

We assume that an interior solution exists. A priori ∆∗ could be positive or negative. An
investor could prefer to shift cash flows further into the future if it was expecting a coupon
in the next ∆∗ that was really large relative to the remaining cash flows accruing to the bond.
For most bonds, however, we think that coupons are small relative to face values. That is, for
must bonds, we tend to think that the capital gains accruing from receiving a large payoff
earlier outweighs the lost coupons. Formally, (24) is positive and therefore ∆∗ > 0.

A notable feature of (25) is that it carries the same economic content as (11), the FOC for
the investment problem with endogenous time to build. Both equate the marginal cost of
accelerating cash flows to the marginal benefits of doing so. While expression (11) is written
in stage space, expression (25) is written in time space. However, we know that dx = idt, so
that (11) can be rewritten in time space and yield a parallel expression to (25). In short, the
underlying economics carries across the bond and the project settings.

Suppose now that discount rates change, as in our empirical exercise. The value of “ac-
celerating” cash flows changes, resulting in a change in ∆∗. From (25), it follows that

∂∆∗

∂r
=

∂2V(r,∆∗)
∂r∂∆

κ′′(∆∗)− ∂2V(r,∆∗)
∂∆2

∝
∂2V(r, ∆∗)

∂∆∂r
(26)

which again bears a striking resemblance to (17), the expression characterizing the impact ef-
fect of a discount rate shock on investment flows.54 Assuming convexity of κ, bond (project)

53One way to think about κ is to model the supply side of a bond market where broker-dealers must be
compensated for supplying identical bonds of differential maturities to investors that would like to do such
swaps. They must manage such inventory and charge a fee depending on the maturity swap.

54The only difference is that instead of just having the second derivative of the acceleration cost in the denom-
inator, we also have ∂2V(r,∆∗)/∂∆2. For a bond with constant coupons, it’s easy to show that this second derivative
is always positive for any bond of finite maturity. Since the denominator is the second-order condition for a
maximum, we assume it holds for simplicity, anchoring on the results for constant coupon bonds. The reason
why only the second derivative of the acceleration cost appears in our expressions for the full model follows
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investors prefer to speed up cash (investment) flows if the increase in discount rate increases
the marginal benefit of speeding up cash (investment) flows. This corresponds to the first
equality in expression (26). By Fubini’s theorem, an equivalent interpretation is that bond
(project) investors speed up cash (investment) flows if doing so reduces the bond (project)
duration. This is precisely the intuition we emphasized in the main text.

Differentiating (24) with respect to r yields

∂V(r, ∆)
∂r∂∆

=
∂

∂r
(rV(r, ∆)) = V(r, ∆)︸ ︷︷ ︸

Impatience(+)

−r ·Dur(V(r, ∆))︸ ︷︷ ︸
Discounting(−)

(27)

Expression (27) spells out the economic forces determining whether cash flows are sped up
or slowed down. A first effect, which we call “impatience”, is mechanical. Holding fixed
the value of the asset, higher discount rates means investors are more impatient for cash
flows. This effect is always positive. The second effect, which we call “discounting”, comes
from the fact that as we change discount rates, we change the NPV of future cash flows
and therefore revalue the asset. To first-order, the changes in asset value are summarized
by its duration. The total effect adds both terms, and is given by the NPV of all cash flows
weighted by (1− rt).

Expression (27) immediately implies that the effect of discount rate shocks vary across
similar bonds with different residual maturities. For bonds (projects) close to maturity (com-
pletion), duration is small, implying that it is optimal to speed up cash (investment) flows,
consistent with Corollary (4). In turn, for bonds (projects) with large residual maturity (time
to build), duration is large, implying it might even be optimal to slow down the pace of
coupons (investments).

The parallel between bond pricing and project development is admittedly not one-to-one.
Two key differences exist. First, we optimally choose the “coupons” (investment flows) of
the project and therefore its residual “maturity” (time to build). Second, the project requires
a fixed amount of investment to be paid in order to reap the terminal payoff. In turn, the
bond pays the face value at maturity regardless of the path of coupons beforehand. In that
sense, an experiment where we shift all of the bonds’ cash flows, but do not require the
remaining coupons to “add up” in value to the value of the coupons before the shift is not a
perfect parallel to the project investment case. But even without the additional complications
of designing a variational path for coupons that preserved their sum, we obtained the same
intuition for the decision to speed up cash flows. All in all, while the parallel between bond
pricing and project development is not perfect, it illustrates how the key forces driving the
responses in both cases relate to the time value of money, and how changes in the price

from the fact that the value function is defined directly as a function of states only, and not of controls, while
the value of the bond V(r, ∆) depends on both states and controls (very much like an arbitrary utility or profit
function).
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of cash flows today versus tomorrow have differing implications for long-lived assets with
differing residual maturities.

F.3 First-Order Dynamics: Terminal Payoff Shocks

In the main text, we restricted attention to the first-order dynamics of the value function and
of investment following a AR(1) shock to discount rates. It is feasible (and easier) to derive
similar dynamics in the case of a shock to the terminal payoff of the project, i.e. a shock of
the form

p(t) = p(1 + se−ρt)

We leverage the results from Lemma 1, which generalizes straightforwardly to p-shocks.
With a slight abuse of notation, we again use “hatted”, lower-case variables to denote the
partial derivatives of a function with respect to the shock size s, evaluated at the steady
state.

Proposition 9. The first order response of project value to a AR(1) shock to terminal payoff is given
by

v̂(x, z) = pze−(r+ρ)T(x,z), (28)

and the first order response of investment flows to the same shock is given by

î(x, z) =
1

κ′′(i(x, z))
∂v̂(x, z)

∂x
(29)

Proof. The time-dependent HJB is given by

rV(x, z, s, t) = −I(x, z, t, s)− κ(I(x, z, t, s)) + I(x, z, t, s)
∂

∂x
V(x, z, t, s) +

∂

∂t
V(x, z, t, s)

with terminal condition
V(x̄, z, s, t) = pz(1 + se−ρt)

and where I(x, t, s) solves

1 + κ′(I(x, z, t, s)) =
∂

∂x
V(x, z, t, s)

Differentiate the HJB and the terminal condition with respect to s using the Envelope
Theorem

r
∂

∂s
V(x, z, s, t) = I(x, z, t, s)

∂

∂s
∂

∂x
V(x, t, s) +

∂

∂s
∂

∂t
V(x, z, t, s)

∂

∂s
V(x̄, z, s, t) = pze−ρt
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Define the steady-state gradients

v̂(x, z, t) :=
∂

∂s
V(x, z, s, t)

∣∣∣∣
s=0

and evaluate the HJB at the steady state, after switching the order of differentiation

rv̂(x, z, t) = i(x, z)
∂

∂x
v̂(x, z, t) +

∂

∂t
v̂(x, z, t)

Define v̂(x, z) := ∂
∂sV(x, z, s, t)

∣∣∣
s,t=0

and conjecture v̂(x, z, t) = e−ρtv̂(x, z). Then, the HJB

becomes
(r + ρ)v̂(x, z) = i(x, z)

∂

∂x
v̂(x, z)

which is an ODE on v̂(x, z) with terminal condition v̂(x) = pz. Recalling ∂T(x,z)/∂x = −1/i(x,z)

in steady state, we can solve the ODE subject to the terminal condition and obtain (28).
Moving towards investment, differentiate the FOC with respect to s

κ′′(I(x, z, t, s))
∂

∂s
I(x, z, t, s) =

∂

∂s
∂

∂x
V(x, z, t, s)

Switching the order of differentiation and evaluating at a steady state, we obtain

κ′′(i(x, z))î(x, z, t) =
∂

∂x
v̂(x, z, t)

where we defined î(x, z, t) := ∂
∂sI(x, z, s, t)

∣∣∣
s=0

. Once again, we conjecture î(x, z, t) = e−ρt î(x, z)

(and analogously for v̂(x, z, t)), where as before î(x, z) := ∂
∂sI(x, z, s, t)

∣∣∣
s,t=0

. Cancelling the

exponential term, we readily obtain (29).

Proposition 9 states that we can obtain a sense of the change in project value simply by
discounting the terminal payoff. If the terminal payoff rises (falls), value rises (falls). The
actual insight of the proposition is to tell us the correct discount factor and the correct time
length for the discounting exercise. Since the shock in the terminal payoff is persistent, the
discount rate rises from r to r + ρ. In the limit of a permanent change in terminal payoffs, the
discount rate is just r. When ρ < 1, the shock is temporary, so we raise the discount factor to
account for the fading dynamics.

Most crucially, we relevant time frame for discounting is just given by the steady state
remaining time to build T(x, z). Fledgling projects respond less to price shocks relative to
mature projects. For any fixed discount rate, their terminal cash flows are far away. Dis-
counting pushes their value downwards. Unless the shock is very persistent, it is unlikely
that the firm will be able to capture the benefits of the shock. Granted, since our shock is a
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AR(1) shock, it only completely dies out in the limit of t→ ∞, so even projects that have just
been started still have some reaction to the shock. But the benefits that will accrue to such
young projects are smaller, for it will take longer to reach completion.

Turning to the second result of Proposition 9, we find that investment rises (falls) follow-
ing a positive (negative) shock to terminal payoffs – the acceleration costs are assumed to be
convex and ∂

∂x v̂(x, z) > 0. In the case where κ is quadratic, as in our quantitative exercises,
the model makes an unconditional prediction that investment in more mature projects reacts
more to shocks to terminal payoffs. The intuition falls off from the result that such mature
projects have greater changes in value following the shock. When convexity depends on the
level of investment, whether such monotonicity on project stage holds relies on quantitative
exploration. Since steady state investment is increasing in project stage, the total effect de-
pends on the relative magnitudes of valuation gains versus acceleration costs, both of which
become increasing in project stage.

Last, we turn to the extensive margin. Proposition 10 shows that a positive terminal
payoff shock lowers the entry threshold and therefore boosts project starts, consistent with
standard investment theory.

Proposition 10. The first-order response of the entry threshold z̄ to an AR(1) terminal payoff shock
is given by

ẑ = −z̄e−ρT(0,z̄) (30)

Proof. We can follow the same steps as in the proof of Proposition 5. Using (28) and (40), we
find

ẑ =
∂z̄
∂s

:= −
∂v(x,z)/∂x

∂v(x,z)/∂z

∣∣∣∣
(x,z)=(0,z̄)

= − pz̄e−(r+ρ)T(0,z̄)

pe−rT(0,z̄)
= −z̄e−ρT(0,z̄)

F.4 Endogenous p

In our baseline model, we restricted attention to an exogenous terminal payoff pz. This is
consistent with the benchmark neoclassical framework with frictionless rental markets or
secondary markets for capital resales. We can also think of p as a contractually stipulated
payoff that cannot be renegotiated. This meant that p was independent of changes in r. We
now relax this assumption and show that our main analytical results still hold.

If the plant must be operated after construction, the cash flows accruing to the project
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after its completion should also respond to changes in discount rates. Suppose that the com-
pleted project depreciates at a constant rate δ > 0 and generates exogenous cash flows c > 0.
The present value of operating the project is given by

p(t) =
ˆ ∞

t
ce
´ τ

t (r(u)+δ)dudτ

so that p = c/(r+δ) in steady state. We normalize cash flows c such that, for any price p and
steady state discount rate r, we have c = p(r + δ).

Consider again a perfect foresight, AR(1) discount rate shock r(t) = r + se−ρt. The fol-
lowing lemma computes the change in p(t) resulting from this shock.

Lemma 11. The first-order response of the present value of operating the project is given by

p̂(t)
p

= − e−ρt

r + δ + ρ
(31)

Proof. After the interest rate shock,

p(t) = c

∞̂

t

exp

−
r + δ + s

τˆ

t

e−ρudu

 dτ

= c

∞̂

t

exp
[
−
(

r + δ + s
1
ρ
(e−ρt − e−ρτ)

)]
dτ

Taking the derivative with respect to s and evaluating at s = 0, we obtain

p̂(t) = −c

∞̂

t

1
ρ
(e−ρt − e−ρτ)e−(r+δ)(τ−t)dτ

= − c
ρ

e−ρt

∞̂

t

(
e−(r+δ)(τ−t) − e−(r+δ+ρ)(τ−t)

)
dτ

= − c
ρ

e−ρt
(

1
r + δ

− 1
r + δ + ρ

)
= − c

(r + δ)︸ ︷︷ ︸
=p

e−ρt

(r + δ + ρ)

With this result, we can extend 3 to the case where p depends directly on r
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Proposition 12. The first order response of the optimal investment policy is given by

î(x, z) =
1

i(x, z) · κ′′(i(x, z))
·

v(x, z) + (r + ρ)v̂(x, z)︸ ︷︷ ︸
Fixed p

− r + ρ

r + δ + ρ
e−(r+ρ)T(x)pz︸ ︷︷ ︸

Price Response

 , (32)

Proof. As p now depends on r, we have, by the chain rule,

î(x, z) = îr(x, z) + îp(x, z) · p̂

We have already computed all these derivatives. First, îr(x, z) is the response of investment
with respect to r keeping p fixed, which is given by (17) and (18) in Proposition 3. Second,
îp(x, z) is the response of investment with respect to p keeping r fixed, which is given by
(29) in Proposition 9. Last, p̂ is given by (31) in Lemma 11. Substituting all expressions and
simplifying yields the result.

Expression 32 is composed of two terms. The first, “Fixed p”, is the marginal value of
accelerating the project, or reducing the project’s duration, in the case where p is independent
of r, i.e. 18. The second, “Price Response”, captures the change in the value of operating the
project due to changes in the discount rate. As discounting rises, future cash flows are less
valuable, which reduces the incentives to complete the project and therefore pushes towards
delaying project completion. Even with these headwinds, we can still prove that acceleration
is optimal for projects sufficiently close to completion.

Corollary 13. For x sufficiently close to x̄, we have

lim
x→x̄

î(x, z) =
1

i(x̄, z) · κ′′(i(x̄, z))
δ

r + δ + ρ
pz > 0 (33)

Proof. Note that T(x) → 0 as x → x̄. From the proof of Corollary 4, we know v̂(x, z) → 0
and v(x, z)→ pz. Simplifying yields the result.

Therefore, when discount rates rise, it remains optimal to accelerate the pace of comple-
tion for projects sufficiently close to completion, so long as the project depreciates at a positive
rate. The incentives to accelerate shrink, however, by a factor δ/r+ρ+δ ∈ (0, 1).

F.5 Proofs from Main Text

F.5.1 Proof of Lemma 1 and Proposition 2

We omit z from the derivations to lighten notation. The results hold pointwise along the
distribution of z.
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Step 1. Linearizing the HJB (Proof of Lemma 1) The time-dependent HJB is given by

(r + se−ρt)V(x, s, t) = −I(x, t, s)− κ(I(x, t, s)) + I(x, t, s)
∂

∂x
V(x, t, s) +

∂

∂t
V(x, t, s)

with terminal condition
V(x̄, s, t) = pz

and where I(x, t, s) solves

1 + κ′(I(x, t, s)) =
∂

∂x
V(x, t, s)

Differentiate the time-dependent HJB with respect to the shock size s

r
∂

∂s
V(x, s, t) + e−ρtV(x, s, t) = −

(
1 + κ′(I(x, t, s))

) ∂

∂s
I(x, s, t)

+
∂

∂s
I(x, s, t) · ∂

∂x
V(x, t, s)

+ I(x, t, s)
∂

∂s
∂

∂x
V(x, t, s) +

∂

∂s
∂

∂t
V(x, t, s)

and from the FOC, a standard Envelope condition arises, yielding

r
∂

∂s
V(x, s, t) + e−ρtV(x, s, t) = I(x, t, s)

∂

∂x
∂

∂s
V(x, t, s) +

∂

∂t
∂

∂s
V(x, t, s) (34)

where we switched the order of differentiation in the last terms.
We define the steady-state gradients

v̂(x, t) :=
∂

∂s
V(x, s, t)

∣∣∣∣
s=0

so evaluating (34) at the steady state,

rv̂(x, t) + e−ρtv(x) = i(x)
∂

∂x
v̂(x, t) +

∂

∂t
v̂(x, t)

where v(x) and i(x) are the steady state value and policy functions, respectively.
We conjecture

v̂(x, t) = e−ρtv̂(x)

v̂(x) :=
∂

∂s
V(x, s, t)

∣∣∣∣
s=0,t=0
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so that
re−ρtv̂(x) + e−ρtv(x) = i(x)e−ρt d

dx
v̂(x)− ρe−ρtv̂(x)

Cancelling the e−ρt terms and rearranging, we obtain

(r + ρ)v̂(x) + v(x) = i(x)
d

dx
v̂(x)

Differentiating the terminal condition with respect to s gives us

∂

∂s
V(x̄, s, t) = 0

Evaluating at the steady state yields
v̂(x̄, t) = 0

and given our conjecture, we obtain
v̂(x̄) = 0

Hence, we obtain an ordinary differential equation in v̂(x) with associated terminal con-
dition

(r + ρ)v̂(x) + v(x) = i(x)
d

dx
v̂(x) (35)

v̂(x) = 0

Step 2. Solving the ODE for v̂(x) We rearrange (35) to obtain

d
dx

v̂(x)− r + ρ

i(x)
v̂(x) =

1
i(x)

v(x)

Multiplying by the integrating factor e(r+ρ)T(x), we have

e(r+ρ)T(x) d
dx

v̂(x)− r + ρ

i(x)
e(r+ρ)T(x)v̂(x) =

e(r+ρ)T(x)

i(x)
v(x)

And recall that T′(x) = −1/i(x), so

d
dx

[
e(r+ρ)T(x)v̂(x)

]
=

e(r+ρ)T(x)

i(x)
v(x)

Integrating from x to x̄ and using the fundamental theorem of calculus, we have

e(r+ρ)T(x̄)v̂(x̄)− e(r+ρ)T(x)v̂(x) =

xˆ

x

e(r+ρ)T(y)

i(y)
v(y)dy
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where we have changed the running variable for integration on the RHS from x to y. Now,
from the terminal condition

−e(r+ρ)T(x)v̂(x) =

xˆ

x

e(r+ρ)T(y)

i(y)
v(y)dy

⇒ v̂(x) = −
xˆ

x

e−(r+ρ)(T(x)−T(y))

i(y)
v(y)dy (36)

Step 3. Changes of Variables The key step in simplifying expression (36) is to move the
right-hand side integral from stage space to time space. Let

τ = T(x)− T(y)

⇒ dτ =
dy

i(y)

Note further that y = x ⇔ τ = 0 and y = x̄ ⇔ τ = T(x), so changing the integration
bounds, we find

v̂(x) = −
T(x)ˆ

0

e−(r+ρ)τv(y(τ))dτ (37)

where y(τ) is defined as the position of the project that starts at x at τ = 0 and evolves
according to dy = i(y)dτ.

Consider in turn the sequence formulation of the firm problem. Instead of summing cash
flows over time, we can sum cash flows over the states that the project will go through until
its eventual completion. Formally,

v(y) = −
x̄ˆ

y

e−r[T(y)−T(u)]

i(u)
[i(u) + κ (i(u))] du + e−rT(y)pz (38)

The left-hand side is the value of a project starting in stage y. After T(y) periods, it will
be completed and yield pz. At each stage u until it reaches completion, the firm spends
i(u) + κ(i(u)). Converting the sum from a time summation to a summation over positions
follows from the same change of variables considered above: each time step becomes du/i(u),
and we renormalize time to run from the time at which we are in stage y onwards. The
bounds of the integral follow directly from the fact that the project starts at y and is finished
once it reaches x̄.
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Substituting (38) into (37), we obtain

v̂(x) = −
xˆ

x

e−(r+ρ)(T(x)−T(y))

i(y)

− x̄ˆ

y

e−r[T(y)−T(u)]

i(u)
[i(u) + κ (i(u))] du + e−rT(y)pz

 dy

=

xˆ

x

x̄ˆ

y

e−(r+ρ)(T(x)−T(y))

i(y)
e−r[T(y)−T(u)]

i(u)
[i(u) + κ (i(u))] dudy

︸ ︷︷ ︸
v̂1(x)

−
xˆ

x

e−(r+ρ)(T(x)−T(y))

i(y)
e−rT(y)pzdy

︸ ︷︷ ︸
v̂2(x)

Step 4. Simplifying Algebra We start with v̂1(x). We change the order of integration, so

v̂1(x) =

xˆ

x

x̄ˆ

y

e−(r+ρ)(T(x)−T(y))

i(y)
e−r[T(y)−T(u)]

i(u)
[i(u) + κ (i(u))] dudy

=

xˆ

x

uˆ

x

e−(r+ρ)(T(x)−T(y))

i(y)
e−r[T(y)−T(u)]

i(u)
[i(u) + κ (i(u))] dydu

=

xˆ

x

[
i(u) + κ (i(u))

i(u)

]
e−(r+ρ)T(x)erT(u)

 uˆ

x

eρT(y)

i(y)
dy

 du

Noting that

uˆ

x

eρT(y)

i(y)
dy =

uˆ

x

(
d

dy
− eρT(y)

ρ

)
dy

= −1
ρ

(
eρT(u) − eρT(x)

)
We can write

v̂1(x) =
1
ρ

xˆ

x

[
i(u) + κ (i(u))

i(u)

]
e−r(T(x)−T(u))

(
1− e−ρ(T(x)−T(u))

)
du

Last, change variables from u to τ = T(x)− T(u). Then, du/i(u) = dτ, the bounds now
run from 0 to T(x), and we define u as the stage y(τ) of the project starting in stage x, i.e. for
which y(0) = x. Putting all together,

v̂1(x) =

T(x)ˆ

0

[
i(y(τ)) + κ (i(y(τ)))

i(u)

]
e−rτ

(
1− e−ρτ

ρ

)
dτ

98



Moving to v̂2(x), we intergrate

v̂2(x) =

xˆ

x

e−(r+ρ)(T(x)−T(y))

i(y)
e−rT(y)pzdy

= pze−(r+ρ)T(x)

xˆ

x

eρT(y)

i(y)
dy

= e−rT(x)pz

(
1− e−ρT(x)

ρ

)

So bringing all together yields (16) and completes the proof.

F.5.2 Proof of Proposition 3

We omit z from the derivations to lighten notation. The results hold pointwise along the
distribution of z. Differentiate the FOC

1 + κ′(I(x, t, s)) =
∂

∂x
V(x, t, s)

with respect to s to obtain

κ′′(I(x, t, s))
∂

∂s
I(x, t, s) =

∂

∂s
∂

∂x
V(x, t, s)

Switching the order of differentiation and evaluating at a steady state, we obtain

κ′′(i(x))î(x, t) =
∂

∂x
v̂(x, t)

where we defined î(x, t) := ∂
∂sI(x, s, t)

∣∣∣
s=0

. Once again, we conjecture î(x, t) = e−ρt î(x) (and

analogously for v̂(x, t)), where as before î(x) := ∂
∂sI(x, s, t)

∣∣∣
s,t=0

. Thus,

î(x) =
∂v̂(x)/∂x

κ′′(i(x))

Differentiating (36) with respect to x using Leibniz’s rule, we obtain

∂v̂(x)
∂x

=
1

i(x)

v(x)− (r + ρ)

xˆ

x

e−(r+ρ)[T(x)−T(y)]

i(y)
v(y)dy


=

1
i(x)

[v(x)− (r + ρ)v̂(x)]
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which completes the proof.
To get the capital budgeting rule, note that

∂v̂(x)
∂x

=
v(x)

(r + ρ)i(x)

[
1

r + ρ
− v̂(x)

v(x)

]
It remains to show that v̂perp/vperp = −1/(r+ρ). To see this, write down the HJB equation for
valuing a perpetual bond with unit cashflow

ru(t) = 1 +
∂u(t)

∂t

(or, more simply, the ODE describing of the value of a perpetuity over time). Given a first-
order shock to discount rates, we can write

(
r + se−ρt) u(s, t) = 1 +

∂u(s, t)
∂t

Defining û(t) := ∂u(s,t)/∂s|s=0, differentiate with respect to s

rû(t) + e−ρtu(t) =
dû
dt

(t)

And then conjecture û(t) = e−ρtû, where û := ∂u(s,t)/∂s|s,t=0, so

re−ρtû + e−ρtu = −ρe−ρtû

⇒ û
u
= − 1

r + ρ

for u the t = 0 value of the perpetual bond. Relabeling appropriately yields the result.

F.5.3 Proof of Proposition 5

Let Z̄(t, s) denote the entry threshold for a project. It must satisfy

V(0, Z̄(t, s), t, s) = 0

where the restriction x = 0 comes from the project being nascent. From the implicit function
theorem, it is immediate that

∂Z̄(t, s)
∂s

= −
∂V/∂s

∂V/∂z

∣∣∣∣
(x,z)=(0,Z̄(t,s))

(39)

We have already obtained the numerator, at least in steady state, when deriving the re-
sponse of value to the shock. Towards the denominator, differentiate the time-dependent
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HJB making use of the Envelope Theorem to obtain

r
∂V
∂z

(x, z, s, t) = I(x, z, s, t)
∂

∂x

(
∂V
∂z

(x, z, s, t)
)

∂V
∂z

(x̄, z, s, t) = p

and in the steady-state (i.e. s = t = 0), using lower-case letters to denote steady-state objects

r
∂v(x, z)

∂z
= i(x, z)

∂

∂x

(
∂v(x, z)

∂z

)
∂v(x, z)

∂z

∣∣∣∣
x=x̄

= p

Once again, we have a first-order ODE in ∂v(x,z)
∂z with a given terminal condition. Here,

recall that
∂

∂x
e−rT(x,z) =

rerT(x,z)

i(x, z)

so that
∂v(x, z)

∂z
= pe−rT(x,z) (40)

satisfies the ODE and the terminal condition.
Returning to (39) and evaluating at a steady state, we have

∂z̄
∂s

:=
∂Z̄(t, s)

∂s

∣∣∣∣
s,t=0

= −
∂v(x,z)/∂x

∂v(x,z)/∂z

∣∣∣∣
(x,z)=(0,z̄)

= − v̂(0, z̄)
∂v(0,z̄)/∂z

= − erT(0,z̄)

p
v̂(0, z̄)

which is (19) after rearranging.

F.5.4 Proof of Proposition 6

We omit z from the derivations to lighten notation. The results hold pointwise along the
distribution of z.
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Fixed Capital Formation Fix any z > z̄. After any shock, not necessarily first-order, the
distribution evolves according to the time-dependent KFE. Integrating the KFE, we have

∂

∂t

x̄ˆ

0

g(x, t)dx = i(0, t)g(0, t)− i(x̄, t)g(x̄, t)

Now, integrate from t = 0 (the time the shock hits) to t = ∞, and so

lim
t→∞

x̄ˆ

0

g(x, t)dx−
x̄ˆ

0

g(x, 0)dx =

∞̂

0

[i(0, t)g(0, t)− i(x̄, t)g(x̄, t)] dt

where g(x, 0) is by definition the steady state distribution.
If the shock is temporary, the distribution reverts back to steady state, and so

∞̂

0

[i(0, t)g(0, t)− i(x̄, t)g(x̄, t)] dt = 0

That is, the total outflow of projects must be equal to the total inflow of projects over time.
If the shock is small enough that z remains above z̄ (or for any first order shock and

z > z̄), we have
∞̂

0

[i(x̄, t)g(x̄, t)− f (z)] dt = 0

where we have used the initial boundary condition for the KFE for z > z̄

i(0, t)g(0, t) = f (z)

But f (z) is also the steady state outflow of firms, so this means that the area under the IRF of
outflows (or capital formation if multiplied by z) is zero.

Accounting Investment The area “under” the curve is

∞̂

0

 x̄ˆ

0

i(x, t)g(x, t)dx− f (z)x̄

 dt

where
´ x̄

0 i(x, t)g(x, t)dx is total accounting investment at time t and f (z)x̄ is its steady state
value. We want the area is zero.

102



Integrating the KFE, we have

∂

∂t

xˆ

0

g(y, t)dy = i(0, t)g(0, t)− i(x, t)g(x, t)

Now, integrate again from x = 0 to x̄

∂

∂t

x̄ˆ

0

xˆ

0

g(y, t)dydx = i(0, t)g(0, t)x̄−
x̄ˆ

0

i(x, t)g(x, t)dx

Consider the left-hand side. Switching the order of integration, we have

x̄ˆ

0

xˆ

0

g(y, t)dydx =

x̄ˆ

0

x̄ˆ

y

g(y, t)dxdy

=

x̄ˆ

0

(x̄− y)g(y, t)dy

And thus
x̄ˆ

0

(x̄− y)
∂

∂t
g(y, t)dy = i(0, t)g(0, t)x̄−

x̄ˆ

0

i(x, t)g(x, t)dx

Integrating from t = 0 to t→ ∞, we obtain

x̄ˆ

0

(x̄− y)
[

lim
t→∞

g(y, t)− g(y, 0)
]

dy = −
∞̂

0

 x̄ˆ

0

i(x, t)g(x, t)dx− i(0, t)g(0, t)x̄

 dt

Last, if the shock is temporary and sufficiently small, we have limt→∞ g(y, t) = g(y, 0)
and i(0, t)g(0, t) = f (z), so

0 =

∞̂

0

 x̄ˆ

0

i(x, t)g(x, t)dx− f (z)x̄

 dt

as desired.
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G Convex Adjustment Cost Model

In this appendix, we describe the convex adjustment cost model we use to compare general
equilibrium investment dynamics across models with and without time to build. See Figure
11 and the main text for an introductory discussion.

Setup The setup is largely the same as in Section 5. The firm still faces a distribution of
projects f (z), but now projects can be instantaneously built. This means that projects are
started so long as p(t)z(t) = x̄, and hence the (possibly time-varying) threshold for entry is
z̄(t) = x̄/p(t). As projects are completed, they are added to the aggregate capital stock K(t).
All projects are of the same size x̄, and all heterogeneity is loaded on the output distribution
f (z).

Each period, a representative final goods producer uses the capital stock to produce and
obtains revenues A(t)K(t). It chooses investment in capital goods I(t), and pays a quadratic
adjustment cost if investment deviates from some level Ī. The firm chooses I(t) to maximize
its discounted net present value of profits

max

∞̂

0

e−r(t)t
[

A(t)F(K(t))− p(t)I(t)− p(t)
φ

2
(I(t)− Ī)2

]
dt

subject to the investment law of motion I(t) = K̇(t) + δK(t). The interest rate r(t) is taken as
given.

Solution The Hamiltonian is given by

H = A(t)F(K(t))− p(t)I(t)− p(t)
φ

2
(I(t)− Ī)2

+ λ(t) [I(t)− δK(t)] (41)

where λ(t) is the co-state (dynamic Lagrange multiplier) on the law of motion for the state
K(t).

Thet necessary conditions for optimality are given by

∂H
∂I(t)

= 0

r(t)λ(t) =
∂H

∂K(t)
+ λ̇(t)
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Differentiation of (41) yields

λ(t) = p(t) [1 + φ (I(t)− Ī)]

λ̇(t) = (r(t) + δ)λ(t)−MPK(t)

We can solve forward the co-state law of motion to obtain the co-state as

λ(t) =

∞̂

0

e−
´ s

0 (r(t+u)+δ)du MPK(t + s)ds (42)

which implies the following optimality condition for investment

p(t) [1 + φ (I(t)− Ī)] =

∞̂

0

e−
´ s

0 (r(t+u)+δ)du MPK(t + s)ds (43)

In the absence of adjustment costs (φ = 0), the equation reflects the usual result that the price
of capital in competitive markets reflects the discounted value of future marginal products,
where depreciation is baked into the Jorgensonian user cost. This is effectively an equation
capturing the demand for physical capital by the final goods producer.

By definition, fixed capital formation is given by the total amount of completed projects
in any given instant

FCF(t) =

∞̂

z̄(t)

z f (z)dz = E [z|z ≥ z̄(t)] (44)

where recall z̄(t) = x̄/p(t). This equation represent the supply of physical capital in the
economy.

Distributional Assumption Towards simplifying the model, we follow the assumption
made in Section 6 and assume a Pareto distribution for project output

f (z) = α
zα

min
zα+1 (45)

Standard results for the truncated mean of a Pareto then allow us to express fixed capital
formation, or capital supply, in closed form

FCF(t) =
α

α− 1
zα

min
z(t)α−1

=
α

α− 1
zα

min
xα−1 p(t)α−1 (46)
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Equilibrium Equilibrium in the market for physical capital requires equating the supply
of capital by capital producing firms and the demand for capital by the final goods producer

FCF(t) = I(t)

From (46), we have

p(t) =
[

α− 1
α

xα−1

zα
min

] 1
α−1

I(t)
1

α−1 (47)

Finally, from (43), we can solve out the price of capital to obtain

I(t)
1

α−1 [1 + φ (I(t)− Ī)] =
[

α

α− 1
zα

min
xα−1

] 1
α−1

∞̂

0

e−
´ s

0 (r(t+u)+δ)du MPK(t + s)ds (48)

Steady State In our time to build models, the steady state capital stock and investment are
independent of adjustment costs. To make the convex model comparable, we specify the
Ī = δK, i.e. the firm pays adjustment costs of investment if it deviates from the steady state
level of investment. With a constant MPK in steady state, we have

I
1

α−1 =

[
α

α− 1
zα

min
xα−1

] 1
α−1 MPK

r + δ
(49)

and the steady state price of capital is then just the annuity value of the steady state marginal
product of capital

p =
MPK
r + δ

First-Order Dynamics In Figure 11, we plot the response of accounting investment and
productive capital in this model to a AR(1) shock to discount rates, i.e. r(t) = r + se−ρt for
r the steady state interest rate. In the spirit of Proposition 7, we can derive the response of
equilibrium objects to this first-order shock.

We first take first-order deviations of the co-state equation (42) relative to steady-state

λ̂(t) =

∞̂

0

e−(r+δ)s
(

M̂PK(t + s)−MPK
r̂(t + u)

r + δ

)
ds

We can write equation (48) as

I(t)
1

α−1 [1 + φ (I(t)− δK)] =
[

α

α− 1
zα

min
xα−1

] 1
α−1

λ(t)
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so taking “hats” on both sides, we find

[
1

α− 1
1
I
+ φ

]
I

1
α−1 Î(t) =

[
α

α− 1
zα

min
xα−1

] 1
α−1

λ̂(t)

From steady state investment (49), we can write[
1

α− 1
1
I
+ φ

]
Î(t) =

r + δ

MPK
× λ̂(t)

and hence
Î(t)

I
=

r + δ
1

α−1 + φI
×

∞̂

0

e−(r+δ)s

(
M̂PK(t + s)

MPK
− r̂(t + s)

r + δ

)
ds (50)

Finally, capital price dynamics immediately follow from equation (47)

p̂(t)
p(t)

=
Î(t)
I(t)

Panel (a) of Figure 11 plots “accounting” or balance sheet investment of the capital sup-
pliers. We now derive the equation underlying the grey dot-dashed line in such figure. In
this model, we can write accounting investment as

Iacc(t) =

∞̂

z̄(t)

x f (z)dz

= xP(z > z(t))

so under the Pareto assumption,

Iacc(t) = x
(

zmin

z(t)

)α

=
zα

min

xα−1 p(t)α

=
zα

min

xα−1 p(t)α
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From equation (47), we obtain55

Iacc(t) = x
[

α− 1
α

1
zmin

] α
α−1

I(t)
α

α−1

Finally, taking “hats”
Îacc(t)

Iacc =
α

α− 1
Î(t)

I
(51)

Towards the dynamics of the capital stock, recall that the capital stock reflects all underpre-
ciated capital, which implies

K̂(t)
K

= δ

tˆ

0

eδ(s−t) Î(s)
I

ds (52)

Equations (51) and (52) help us understand the gray dot-dashed lines in Figure 11. We
assume a decreasing returns to scale production function with same curvature as that in the
main text. The dynamics are as follows: higher discount rates push for lower capital prices
as the future marginal products of capital (i.e. cash flows) are discounted more heavily.
The lower price of capital acts to reduce capital supply, as capital-producing firms raise the
threshold they use to start new projects. This drives the large impact drop in accounting
investment in Panel (a). Indeed, up to first-order

ˆ̄z(t)
z̄(t)

= − p̂(t)
p(t)

As the capital stock falls, marginal products of capital rise. At some point, the resulting
increase in marginal products of capital relative to steady state – the M̂PK/MPK terms – start
to balance the effect of higher discount rates – the r̂/r terms decline over time and eventually
reach zero given the AR(1) nature of the shock. As a result, the response of investment starts
to become small. This drives the upward sloping part of the IRF in Panel (b). Accounting
investment, fixed capital formation, and the productive capital stock eventually return to the
steady state level.

55Moreover, steady state accounting investment is given by

Iacc = x
(

α− 1
α

I
zmin

) α
α−1

= zmin
MPK
r + δ
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