Dynamic Campaign Spending

Avidit Acharya, Edoardo Grillo, Takuo Sugaya, Eray Turkel

November 5, 2019

Abstract

We build a model of electoral campaigning in which two office-motivated candidates each allocate their budgets over time to affect their relative popularity, which evolves as a mean-reverting stochastic process. We show two key results. First, the equilibrium ratio of spending by each candidate equals the ratio of their available budgets in every period. Second, in a range of specifications of the model, the equilibrium growth rate in spending over time is constant. We use these results to characterize the path of spending over time as a function of the parameters of the popularity process, and show that the growth rate in spending increases with the degree of mean reversion of the process.

Key words: campaigns, dynamic allocation problems, contests

JEL codes: C72

1 Introduction

Existing research by Gerber et al. (2011), Hill et al. (2013) and others shows that political advertising has positive effects on support for the advertising candidate, but that these effects decay rapidly over time. Given that the effects of advertising decay, how should

*We are grateful to Matilde Bombardini, Steve Callander, Allan Drazen, Inga Deimen, John Duggan, Matthew Gentzkow, Justin Grimmer, Seth Hill, Emir Kamenica, Kei Kawai, Greg Martin, Adam Meirowitz, Carlo Prato, and Francesco Trebbi for helpful conversations and comments. We also thank conference and seminar participants at the Collegio Carlo Alberto, Wharton, Stanford, NYU, Texas A&M, UBC, the 2019 DC PECO, the 2019 SAET conference, the 2019 Utah Winter Business Economics Conference, the 2018 European Winter Meeting of the Econometric Society, the 2018 Symposium of the Spanish Economic Association, and the 2018 Asset Conference.

†avidit@stanford.edu; edoardo.grillo@carloalberto.org; tsugaya@stanford.edu; eturkel@stanford.edu.

1See DellaVigna and Gentzkow (2010), Kalla and Broockman (2018), Jacobson (2015) and the references in these papers for the state of current knowledge on the effects of political advertising, and persuasion more generally.
strategic candidates optimally time their spending on political advertising and other persuasion efforts in the run-up to the election?

To answer this question, we build a simple model in which two candidates, 1 and 2, allocate their stocks of available resources across time to influence the movement of their relative popularity, and eventually win the election. The candidates begin the game with one being possibly more popular than the other. At each moment in time, relative popularity may go up, meaning that candidate 1’s popularity increases relative to candidate 2’s popularity; or it may go down. Relative popularity evolves between periods according to a (possibly) mean-reverting Brownian motion. In the baseline specification of the model, we assume that the long-run mean of the process that governs the evolution of relative popularity between periods depends on the candidates’ spending decisions through the ratio of their spending levels. At the final date, an election takes place and the candidate that is more popular at that time wins office. Money left over has no value, so the game is zero-sum.

The solution to the optimal spending decision rests on a key result, which we call the “equal spending ratio result:” at every history, the two candidates spend the same fraction of their remaining budgets. This result is robust across various extensions and generalizations of the baseline model. This includes extensions in which (i) the long run mean of the popularity process is affected not by the ratio of the candidates’ spending levels, but by differences in (nonlinear) transformations of their levels of spending, (ii) the candidates’ available budgets evolve over time in response to shifts in relative popularity, and (iii) electoral competition is over multiple districts.

In the baseline model and in extension (i) above, we find that the equilibrium ratio of spending by either candidate in consecutive periods is constant over time; we call this the “constant spending growth result.” In the baseline model, for example, this ratio is given by $e^{\lambda \Delta}$, where λ is the speed of mean reversion of the popularity process, and Δ the time interval between periods. This provides us with a clean characterization of the unique equilibrium path of spending over time as a function of the popularity process. When $\lambda = 0$ (the case of no mean-reversion) the candidates spread their resources evenly across periods. When $\lambda > 0$, popularity leads tend to decay between consecutive periods at the

2A key premise of our model is that advertising can influence elections. For recent evidence on this, see Spenkuch and Toniatti (2018) and Martin (2014). For a summary of prior work on the effects of advertising in elections, see Jacobson (2015).

3This special case recovers the finding of a recent paper by Klumpp et al. (2019) that studies a dynamic strategic allocation problem absent the feature of decay, and shows that the equilibrium allocation is constant over time; see our discussion below.
rate $1 - e^{-\lambda T}$, and in this case, candidates increase their spending over time. For higher values of λ they spend more towards the end of the race and less in the early stages. This establishes a one-to-one relationship between the decay rate and the equilibrium spending path, holding fixed the time interval between periods of action.

The fact that spending increases over time when popularity leads tend to decay rationalizes the pattern of spending in actual elections. Figure 1 shows the pattern of TV ad spending over time for candidates in U.S. House, Senate and gubernatorial elections over the period 2000-2014. The upper figures show that the average spending patterns for Democrats and Republicans in these races are nearly identical, and that average spending increases over time. The lower figures show how there is more noise in individual candidates’ observed spending, but that the overall pattern of increased spending over time holds at the individual candidate level as well, especially in contests that see the highest spending levels. We end the paper with a closer first look at the data, to examine the extent to which this noise and other factors have led to violations of the equal spending ratio result and the constant spending growth result.

Our paper relates to the prior literature on campaigning, which typically focuses on other aspects of the electoral contest. Kawai and Sunada (2015), for example, build on the work of Erikson and Palfrey (1993, 2000) to estimate a model of fund-raising and campaigning in which the inter-temporal resource allocation decisions that candidates make are across different elections rather than across periods in the run-up to a particular election. de Roos and Sarafidis (2018) explain how candidates that have won past races may enjoy “momentum,” which results from a complementarity between prior electoral success and current spending. Meirowitz (2008) studies a static model to show how asymmetries in the cost of effort can explain the incumbency advantage. Polborn and David (2004) and Skaperdas and Grofman (1995) also examine static campaigning models in which candidates choose between positive or negative advertising. Iaryczower et al. (2017) estimate a model in which campaign spending weakens electoral accountability, assuming that the cost of spending is exogenous rather than subject to an inter-temporal budget constraint. Garcia-Jimeno and Yildirim (2017) estimate a dy-

4Other dynamic models of electoral campaigns in which candidates enjoy momentum—such as Callander (2007), Knight and Schiff (2010), Ali and Kartik (2012)—are models of sequential voting.

5Other static models of campaigning include Prat (2002) and Coate (2004), who investigate how one-shot campaign advertising financed by interest groups can affect elections and voter welfare, and Krasa and Polborn (2010) who study a model in which candidates compete on the level of effort that they apply to different policy areas. Prato and Wolton (2018) study the effects of reputation and partisan imbalances on the electoral outcome.
namic model of campaigning in which candidates decide how to target voters taking into account the strategic role of the media in communication. Finally, Gul and Pesendorfer (2012) study a model of campaigning in which candidates provide information to voters over time, and face the strategic timing decision of when to stop.

Our paper also relates to the literature on dynamic contests (see Konrad et al., 2009, and Vojnović, 2016, for reviews of this literature). In this literature, Gross and Wagner (1950) study a continuous Blotto game; Harris and Vickers (1985, 1987), Klumpp and Polborn (2006) and Konrad and Kovenock (2009) study models of races; and Glazer and Hassin (2000) and Himosaar (2018) study sequential contests.

Our paper, in contrast to the above prior work, studies campaigning as a dynamic strategic allocation problem. In this respect, it relates closely to Klumpp et al. (2019), who also study a dynamic strategic allocation model and find that absent any decay, the allocation of resources over time is constant. Our work extends theirs by uncovering the fact that the equal spending ratio result holds in a variety of general settings that are motivated by our application to electoral campaigning.

2 Model

Consider the following complete information dynamic campaigning game between two candidates, $i = 1, 2$, ahead of an election. Time runs continuously from 0 to T and candidates take actions at times in $\mathcal{T} := \{0, \Delta, 2\Delta, ..., (N-1)\Delta\}$, with $\Delta := T/N$ being the time interval between consecutive actions. We identify these times with N discrete periods indexed by $n \in \{0, ..., N - 1\}$. For all $t \in [0, T]$, we use $t := \max\{\tau \in \mathcal{T} : \tau \leq t\}$ to denote the last time that the candidates took actions.

At the start of the game the candidates are endowed with positive resource stocks, $X_0 \geq 0$ and $Y_0 \geq 0$ respectively for candidates 1 and 2.6 Candidates allocate their resources across periods to influence changes in their relative popularity. Relative popularity at time t is measured by a continuous random variable $Z_t \in \mathbb{R}$ whose realization at time t is denoted by z_t. We will interpret this as a measure of candidate 1’s lead in the polls. If $z_t > 0$, then candidate 1 is ahead of candidate 2. If $z_t < 0$, then candidate 2

6Although candidates raise funds over time, our assumption that they start with a fixed stock is tantamount to assuming that they can forecast how much will be available to them. In fact, some large donors make pledges early on and disburse their funds as they are needed over time. Nevertheless, in Section 4.2 we relax this assumption and consider an extension of the model in which the candidates’ resources evolve over time in response to the candidates’ relative popularity.
is ahead; and if $z_t = 0$, it is a dead heat. We assume that at the beginning of the game, relative popularity is equal to $z_0 \in \mathbb{R}$.

At any time $t \in \mathcal{T}$, the candidates simultaneously decide how much of their resource stock to invest in influencing their future relative popularity. Candidate 1’s investment is denoted x_t while candidate 2’s is denoted y_t. The size of the resource stock that is available to candidate 1 at time $t \in \mathcal{T}$ is denoted $X_t = X_0 - \sum_{\tau \in \{\nu \in \mathcal{T}; \nu < t\}} x_\tau$ and that available to candidate 2 is $Y_t = Y_0 - \sum_{\tau \in \{\nu \in \mathcal{T}; \nu < t\}} y_\tau$. At every time $t \in \mathcal{T}$, budget constraints must be satisfied, so $x_t \leq X_t$ and $y_t \leq Y_t$.

Throughout, we will maintain the assumption that for all times t, the evolution of popularity is governed by the following Brownian motion:

$$dZ_t = (q \left(\frac{x_t}{y_t} \right) - \lambda Z_t) dt + \sigma dW_t$$

(1)

where $\lambda \geq 0$ and $\sigma > 0$ are parameters and $q(\cdot)$ is a strictly increasing, strictly concave function on $[0, \infty)$. Thus, the drift of popularity depends on the ratio of investments through the function $q(\cdot)$, and it may be mean-reverting if $\lambda > 0$.\(^7\)

Finally, we assume that the winner of the election collects a payoff of 1 while the loser collects a payoff of 0. For analytical convenience, we make the assumption that if either candidate $i = 1, 2$ invests an amount equal to 0 at any time in \mathcal{T}, then the game ends immediately. If $j \neq i$ invested a positive amount at that time, then j is the winner while if j also invested 0 at that time, then each candidate wins with equal probability.\(^8\) If both candidates invest a positive amount at every time $t \in \mathcal{T}$, then the game only ends at time T, with candidate 1 winning if $z_T > 0$, losing if $z_T < 0$, and both candidates winning with equal probability if $z_T = 0$. In other words, if the game does not end before time T, then the winner is the candidate that is more popular at time T, and if they are equally popular they win with equal probability.

\(^7\)If $\lambda = 0$ the process governing the evolution of popularity in the interval between two consecutive times in \mathcal{T} is a standard Brownian motion— the continuous time limit of the random walk in which popularity goes up with probability probability $\frac{1}{2} + q(x_t/y_t)\sqrt{\lambda}$ and goes down with complementary probability. If $\lambda > 0$, instead, popularity evolves in this interval according to the Ornstein-Uhlenbeck process, under which the leading candidate’s lead has a tendency to decay.

\(^8\)These assumptions close the model since q is undefined if the denominator of its argument is 0. The assumptions also guarantee that Z_t follows an Itô process at every history. This model can be considered the limiting case of two different models. One is a model in which the marginal return to investing an ϵ amount of resources starting at 0 goes to infinity. The other is one in which candidates have to spend a minimum amount ϵ in each period to sustain the campaign, and ϵ goes to 0.
3 Analysis

Since the game is in continuous time, strategies must be measurable with respect to the filtration generated by W_t. However, since candidates take actions only at discrete times, we will forgo this additional formalism and treat the game as a game in discrete time. By our assumption about the popularity process in (1), the distribution of $Z_{t+\Delta}$ at any time $t \in \mathcal{T}$, conditional on (x_t, y_t, z_t), is normal with constant variance and a mean that is a weighted sum of $q(x_t/y_t)$ and z_t; specifically,

$$Z_{t+\Delta} \mid (x_t, y_t, z_t) \sim \begin{cases}
\mathcal{N}(q(x_t/y_t)\Delta + z_t, \sigma^2\Delta) & \text{if } \lambda = 0 \\
\mathcal{N}((1 - e^{-\lambda\Delta})q(x_t/y_t)/\lambda + e^{-\lambda\Delta}z_t, \sigma^2(1 - e^{-2\lambda\Delta})/2\lambda) & \text{if } \lambda > 0
\end{cases}
$$

where $\mathcal{N}(\cdot, \cdot)$ denotes the normal distribution whose first component is mean and second is variance. Note that the mean and variance of $Z_{t+\Delta}$ in the $\lambda = 0$ case correspond to the limits as $\lambda \to 0$ of the mean and variance in the $\lambda > 0$ case.

The model is therefore strategically equivalent to a discrete time model in which relative popularity is a state variable that transitions over discrete periods, and in each period it is normally distributed with a constant variance and a mean that depends on the popularity in the last period and on the ratio of candidates’ spending.

With this, our equilibrium concept is subgame perfect Nash equilibrium (SPE) in pure strategies. We will refer to this concept succinctly as “equilibrium.”

In the remainder of this section, we establish results on the paths of spending and popularity over time. We begin with a key observation, established in Section 3.1 below, that facilitates the analysis: on the equilibrium path of play, the ratio of the candidates’ spending, x_t/y_t, is constant across all periods $t \in \mathcal{T}$.

3.1 Equal Spending Ratios

We refer to the ratio of a candidate’s current spending to current budget as that candidate’s spending ratio. For candidate 1 this is x_t/X_t and for candidate 2 it is y_t/Y_t. We will show that on the equilibrium path, these two ratios equal each other at every time t that the candidates make spending decisions.

Consider any time $t \in \mathcal{T}$ at which the game has not ended and candidates have to make their investment decisions. If $t = (N - 1)\Delta$, then both candidates will spend their
remaining budgets, i.e. \(x_{(N-1)\Delta} = X_{(N-1)\Delta} \) and \(y_{(N-1)\Delta} = Y_{(N-1)\Delta} \). Therefore, both candidates’ spending ratios equal 1.

Now suppose that \(t < (N-1)\Delta \) and assume that the stock of resources available to the two candidates are \(X_t, Y_t > 0 \).\(^{10}\) Also, suppose that after the candidates choose their spending levels \(x_t \) and \(y_t \), the probability that candidate 1 will win the election at time \(T \) when evaluated at time \(t+\Delta \) depends on \(X_{t+\Delta} = X_t - x_t \) and \(Y_{t+\Delta} = Y_t - y_t \) only through the ratio \((X_t - x_t)/(Y_t - y_t) \). Denote this probability by \(\pi_t \left((X_t - x_t)/(Y_t - y_t), z_{t+\Delta} \right) \). Further, let \(F(z_{t+\Delta}|x_t/y_t, z_t) \) denote the c.d.f. of \(Z_{t+\Delta} \) conditional on \((x_t, y_t, z_t) \), and let \(f(z_{t+\Delta}|x_t/y_t, z_t) \) denote the associated p.d.f. (Recall that these are normal distributions that depend on \(x_t \) and \(y_t \) only through the ratio \(x_t/y_t \).)

If both candidates spend a positive amount in every period, candidate 1’s expected payoff at time \(t \) is given by

\[
\Pi_t(x_t, y_t|X_t, Y_t, z_t) = \int \pi_t \left(\frac{X_t - x_t}{Y_t - y_t}, z_{t+\Delta} \right) dF(z_{t+\Delta}|x_t/y_t, z_t)
\]

and candidate 2’s expected payoff is \(1 - \Pi_t(x_t, y_t|X_t, Y_t, z_t) \). The pair of necessary first order conditions for interior equilibrium values of \(x_t \) and \(y_t \) are

\[
\frac{1}{y_t} \int \pi_t \left(\frac{X_t - x_t}{Y_t - y_t}, z_{t+\Delta} \right) \frac{\partial f(z_{t+\Delta}|x_t/y_t, z_t)}{\partial (x_t/y_t)} dz_{t+\Delta} = \frac{1}{Y_t - y_t} \int \frac{\partial \pi_t \left(\frac{X_t - x_t}{Y_t - y_t}, z_{t+\Delta} \right)}{\partial \left(\frac{X_t - x_t}{Y_t - y_t} \right)} dF(z_{t+\Delta}|x_t/y_t, z_t); \quad (3)
\]

\[
\frac{x_t}{(y_t)^2} \int \pi_t \left(\frac{X_t - x_t}{Y_t - y_t}, z_{t+\Delta} \right) \frac{\partial f(z_{t+\Delta}|x_t/y_t, z_t)}{\partial (x_t/y_t)} dz_{t+\Delta} = \frac{X_t - x_t}{(Y_t - y_t)^2} \int \frac{\partial \pi_t \left(\frac{X_t - x_t}{Y_t - y_t}, z_{t+\Delta} \right)}{\partial \left(\frac{X_t - x_t}{Y_t - y_t} \right)} dF(z_{t+\Delta}|x_t/y_t, z_t). \quad (4)
\]

Taking the ratios of the respective left and right hand sides of these equations implies that \(x_t/y_t = (X_t - x_t)/(Y_t - y_t) \), or \(x_t/y_t = X_t/Y_t \). This observation suggests that our supposition that the remaining budgets \(X_t - x_t \) and \(Y_t - y_t \) affect continuation payoffs only through their ratio can be established by induction provided that the second order

\(^{10}\)Recall that if either \(X_t \) or \(Y_t \) equal 0, the game will end at time \(t \): either both candidates have no money to spend, or the one with a positive budget will spend any positive amount and win.
conditions are satisfied. The main steps in the proof of the following proposition involve establishing these facts. This and all other proofs appear in the Appendix.\footnote{The word “essentially” appears in the proposition below only because the equilibrium is not unique at histories at which either \(X_t = 0 < Y_t \) or \(X_t > 0 = Y_t \) — histories that do not arise on the path of play. In these cases, the candidate with a positive resource stock may spend any amount in period \(t \) and win. Apart from this trivial source of multiplicity, the equilibrium is unique.}

Proposition 1. There exists an essentially unique equilibrium. If \(X_t, Y_t > 0 \) are the remaining budgets of candidates 1 and 2 at any time \(t \in \mathcal{T} \), then in all equilibria,

\[
x_t / X_t = y_t / Y_t.
\]

The model described so far satisfies two conditions, each one of which is sufficient for the equal spending ratio result of Proposition 1, and which serve as the basis for the generalization of the baseline model that we provide in Section 4.1 below. The first condition is that there exists a homothetic function \(p(x_t, y_t) \) whose ratio of partials with respect to \(x_t \) and \(y_t \) respectively is invertible, such that for all \(t \in \mathcal{T} \) we can write

\[
Z_{t+\Delta} = (1 - e^{-\lambda \Delta}) p(x_t, y_t) + e^{-\lambda \Delta} Z_t + \varepsilon_t,
\]

where \(\varepsilon_t \) is a mean-zero normally distributed random variable. This makes the term that depends on \((x_t, y_t) \) linearly separable from the stochastic terms \((Z_t, \varepsilon_t) \). We establish the sufficiency of this condition for the equal spending ratio result in Section 4.1.

The second condition is that the distribution of \(Z_T \) given \((x_{t}, y_{t}, z_{t})_{t \leq \Delta}, z_{t} \) depends on \((x_{t}, y_{t})_{t \geq t} \) only through the ratios \((x_{t}/y_{t})_{t \geq t} \). When this is the case, if \((x^*, y^*)_{t \geq t} \) is an equilibrium in the continuation game in which the candidates’ remaining budgets are \(X_t, Y_t > 0 \) then \((\theta x^*_t, \theta y^*_t)_{t \geq t} \) must be an equilibrium when the budgets are \(\theta X_t, \theta Y_t \), for all \(\theta > 0 \).\footnote{If this were not the case, we could find \((\tilde{x}_t, \tilde{y}_t)_{t \geq t} \) that gives candidate 1 a higher probability of winning given \((y^*_t)_{t \geq t} \). Because \(Z_T \) is determined by \((x_{t}/y_{t})_{t \geq t} \), this would imply that the distribution of \(Z_T \) given \((\tilde{x}_t, \tilde{y}_t)_{t \geq t} \) is more favorable to candidate 1 than the distribution given \((\theta x^*_t, \theta y^*_t)_{t \geq t} = (x^*_t/y^*_t)_{t \geq t} \). Because \((\tilde{x}_t/\theta)_{t \geq t} \) and \((y^*_t)_{t \geq t} \) are feasible continuation spending paths when the budgets are \((X_t, Y_t) \), this would contradict the optimality of \((x^*_t)_{t \geq t} \) when candidate 2 spends \((y^*_t)_{t \geq t} \).} This observation serves as the basis for the generalizations of the baseline model that we present in Sections 4.2 and 4.3.

3.2 Equilibrium Spending and Popularity Paths

An immediate corollary of Proposition 1 is a characterization of the process governing the evolution of relative popularity on the equilibrium path.
Corollary 1. On the equilibrium path, relative popularity follows the process

\[dZ_t = (q(X_0/Y_0) - \lambda Z_t)\, dt + \sigma dW_t \]

(6)

If \(\lambda = 0 \), this is a Brownian motion with constant drift \(q(X_0/Y_0) \). If \(\lambda > 0 \), it is the Ornstein-Uhlenbeck process with long-term mean \(q(X_0/Y_0)/\lambda \) and speed of reversion \(\lambda \).

Therefore, when \(\lambda > 0 \) popularity leads have a tendency to decay towards zero. The instantaneous volatility of the process is \(\sigma \) and the stationary variance is \(\sigma^2/2\lambda \).

Proposition 1 also enables us to solve, in closed form, for the equilibrium spending ratio at each history.

Proposition 2. Let \(t \in \mathcal{T} \) be a time at which \(X_t, Y_t > 0 \). Then, in equilibrium, spending ratios depend only on calendar time, the time interval between consecutive actions, and the speed of reversion \(\lambda \). In particular,

\[
\frac{x_t}{X_t} = \frac{y_t}{Y_t} = \begin{cases}
\frac{\Delta}{(T - t)} & \text{if } \lambda = 0 \\
\frac{e^{-\lambda(T-t)} - e^{-\lambda(T-t)}}{1 - e^{-\lambda(T-t)}} & \text{if } \lambda > 0
\end{cases}
\]

which is continuous at \(\lambda = 0 \).

Proposition 2 implies that the fraction of their initial budget that each candidate spends in each period \(n\Delta \) is the same for both candidates, and so is the ratio of spending in consecutive periods \(n\Delta \) and \((n+1)\Delta\); we define these quantities as dependent on \(n \) and \(\lambda \) to be, respectively,

\[
\gamma_\lambda(n) := \frac{x_n\Delta}{X_0} = \frac{y_n\Delta}{Y_0} \quad \text{and} \quad r_n(\lambda) := \frac{x(n+1)\Delta}{x_n\Delta} = \frac{y(n+1)\Delta}{y_n\Delta} \]

(7)

If \(\lambda = 0 \), then Proposition 2 implies that the candidates will spend a fraction \(\gamma_0(n) = 1/N \) of their available resources in each period \(n\Delta \), and the ratio of spending in consecutive periods is \(r_n(0) = 1 \). The \(\lambda > 0 \) case is handled in the following proposition.

Proposition 3. Fix the number of periods \(N \), total time \(T = N\Delta \), and consider the case in which \(\lambda > 0 \). Then, for all \(n \),

\[
\gamma_\lambda(n) = \frac{e^{\lambda\Delta} - 1}{e^{N\Delta} - 1} e^{\lambda\Delta n} \quad \text{and} \quad r_n(\lambda) = r(\lambda) = e^{\lambda\Delta}.
\]

A key implication of the proposition is that the growth rate in spending is constant over time. Another implication is that as the speed of reversion increases, candidates save
even more of their resources for the final stages of the campaign. Since \(r(\lambda) \) is increasing in \(\lambda \), we know that \(\gamma_\lambda(n) \) is increasing in \(n \), and as \(\lambda \) grows it is higher for higher values of \(n \). Figure 2 depicts these features by plotting \(\gamma_\lambda(n) \) for different values of \(\lambda \). The intuition behind this comparative static is straightforward. When \(\lambda = 0 \), popularity advantages do not decay, and candidates equate the marginal benefit of spending against the marginal (opportunity) cost by spending evenly over time. As \(\lambda \) increases, then the marginal benefit of spending early drops since any popularity advantage produced by an early investment has a tendency to decay, and this tendency is greater the greater is \(\lambda \). This means that candidates have an incentive to invest less in the early stages and more in the later stages of the race.

Finally, we can write a clean closed-form expression for the fraction of a candidate’s initial budget cumulatively spent at time \(t \) by taking the continuous time limit as \(\Delta \to 0 \), fixing \(T \). We have

\[
\lim_{\Delta \to 0} \sum_{n \Delta \leq t} \gamma_\lambda(n) = \frac{e^{\lambda t} - 1}{e^{\lambda T} - 1}.
\]

\[(8)\]

4 Robustness and Extensions

In this section, we study the robustness of the equal spending ratio result under various generalizations of the baseline model. Throughout the section, we focus on sufficient conditions for the equal spending ratio result to hold, and say that an equilibrium is interior if the first order conditions are satisfied at the equilibrium.

4.1 Alternative Specifications

Two of the key implications of the baseline model studied above are the equal spending ratio result of Proposition 1 and the implication of Proposition 2 that the spending ratios \(x_t/X_t \) and \(y_t/Y_t \) are independent of the past history \((z_t)_{t \leq \tau} \) of relative popularity. We show that these results are robust across many possible alternative specifications of the law of motion of relative popularity. In particular, suppose that instead of equation (1), relative popularity evolves according to the process

\[
dZ_t = (p(x_t, y_t) - \lambda Z_t) dt + \sigma dW_t
\]

for some twice differentiable real valued function \(p \). This generalizes the baseline model by allowing the drift of the process to depend on spending levels rather than simply
the spending ratio, but we continue to assume that the effect of spending is additively separable from the current popularity level.13 It turns out that this separability is sufficient for the spending ratios to be independent of the past history of relative popularity. Under this assumption, equation (5) holds, and we have

\[
Z_T = (1 - e^{-\lambda \Delta}) \sum_{n=0}^{N-1} e^{-\lambda \Delta(N-1-n)} p(x_{n\Delta}, y_{n\Delta}) + z_0 e^{-\lambda N \Delta} + \sum_{n=0}^{N-1} e^{-\lambda \Delta(N-1-n)} \varepsilon_{n\Delta},
\]

where \((\varepsilon_t)_{t \geq 0}\) are i.i.d. normal shocks with mean 0 and variance \(\sigma^2(1-e^{-2\lambda \Delta})/2\lambda\). Hence, an interior equilibrium exists if \(p(\cdot, y)\) is quasiconcave for all \(y\) and \(p(x, \cdot)\) is quasiconvex for all \(x\). The equilibrium spending profile \((x_t, y_t)\) is notably independent of \(z_t\). Moreover, the equal spending ratio result generalizes under the assumption that \(p\) is a homothetic function with an invertible ratio of marginals; specifically—

Assumption A. There is an invertible function \(\psi : (0, \infty) \to \mathbb{R}\) s.t.

\[
\forall x, y > 0, \quad \frac{p_x(x, y)}{p_y(x, y)} = \psi(x/y).
\]

Proposition 4. There is a unique equilibrium if \(p(\cdot, y)\) is quasiconcave in all \(y\) and \(p(x, \cdot)\) is quasiconvex in all \(x\), and the equilibrium is interior. In equilibrium, \(x_t/X_t\) and \(y_t/Y_t\) are independent of the past history \((z_t)_{t \leq t}\) of relative popularity. Under Assumption A, the equal spending ratio result also holds: \(x_t/X_t = y_t/Y_t\) for all \(t \in T\) s.t. \(X_t, Y_t > 0\).

Parametric Generalization Assumption A is satisfied, for example, by \(p(x, y) = h(\alpha_1 \varphi(x) - \alpha_2 \varphi(y))\) where \(h\) is a differentiable function, \(\alpha_1\) and \(\alpha_2\) are constants, and \(\varphi\) is a function such that \(\varphi'(x) = x^\beta\).14 This provides a parametric generalization of the baseline model, which is the special case where \(\alpha_1 = \alpha_2 = -\beta = 1\) (so that \(\varphi = \log\)) and \(h\) is chosen appropriately. Given \(Z_T\) from (9), at any time \(t \in T\) candidate 1 maximizes \(\Pr[Z_T \geq 0 | z_t, X_t, Y_t]\) under the constraint \(\sum_{n=t\Delta}^{N-1} x_{n\Delta} \leq X_t\), while candidate 2 minimizes this probability under the constraint \(\sum_{n=t\Delta}^{N-1} y_{n\Delta} \leq Y_t\). Using this fact, we can apply the Euler method from consumer theory to solve the equilibrium, provided

13Using the result in Karatzas and Shreve (1998) equation (6.30), we can write down sufficient conditions to obtain this separability. Details are available upon request.

14The assumption holds, defining \(\psi(x/y) = -(\alpha_1/\alpha_2)(x/y)^\beta\).
the first order conditions are sufficient and \(h \) is a homogenous function of degree \(d \) for some \(d \geq 1 \).

The candidates’ first order conditions with respect to \(x_{n\Delta} \) and \(y_{n\Delta} \) for each \(n < N-1 \) are respectively

\[
e^{-\lambda \Delta (N-1-n)} x_{n\Delta}^\beta h'(\alpha_1 \varphi(x_{n\Delta}) - \alpha_2 \varphi(y_{n\Delta})) = x_{(n+1)\Delta}^\beta h'(\alpha_1 \varphi(x_{(n+1)\Delta}) - \alpha_2 \varphi(y_{(n+1)\Delta}))
\]

\[
e^{-\lambda \Delta (N-1-n)} y_{n\Delta}^\beta h'(\alpha_1 \varphi(x_{n\Delta}) - \alpha_2 \varphi(y_{n\Delta})) = y_{(n+1)\Delta}^\beta h'(\alpha_1 \varphi(x_{(n+1)\Delta}) - \alpha_2 \varphi(y_{(n+1)\Delta}))
\]

Note that we can recover the equal spending ratio result from taking the ratios of these conditions. To find the equilibrium, we equate the left hand sides of candidate 1’s first order conditions for two consecutive periods \(n \) and \(n + 1 \) to get

\[
e^{-\lambda \Delta} x_{n\Delta}^\beta h'(\alpha_1 \varphi(x_{n\Delta}) - \alpha_2 \varphi(y_{n\Delta})) = x_{(n+1)\Delta}^\beta h'(\alpha_1 \varphi(x_{(n+1)\Delta}) - \alpha_2 \varphi(y_{(n+1)\Delta})) \tag{10}
\]

Then, we guess that the constant spending growth result holds, and the consecutive period spending ratio, \(\tilde{r}_n(\lambda) = r \), is constant over time as in the baseline model. If this guess is correct then

\[
h'(\alpha_1 \varphi(x_{(n+1)\Delta}) - \alpha_2 \varphi(y_{(n+1)\Delta})) = h'(r^{1+\beta}(\alpha_1 \varphi(x_{n\Delta}) - \alpha_2 \varphi(y_{n\Delta})))
\]

\[
= r^{(1+\beta)(d-1)} h' ((\alpha_1 \varphi(x_{n\Delta}) - \alpha_2 \varphi(y_{n\Delta})))
\]

since \(\varphi(x) = x^{1+\beta}/(1 + \beta) \) and the derivative of a homogenous function of degree \(d \) is a homogenous function of of degree \(d - 1 \). Therefore, using this in equation (10), we get that \(r = e^{-\lambda \Delta}/[(1+\beta)^{d-1}] \). The same is true for candidate 2. This verifies our guess, and gives us the following result, whose proof is in the text above.

Proposition 5. In the equilibrium of the parametric generalization of the model described above, the consecutive is, for all \(n \),

\[
\tilde{r}_n(\lambda) = \tilde{r}(\lambda) = e^{-\lambda \Delta}/[(1+\beta)^{d-1}]
\]

This generalization of the baseline model shows that our main results are robust to allowing the popularity process to depend on levels of spending rather than just the ratio of candidates’ spending, and they are not driven by a specification of the drift.

\(^{15}\)If \(h \) is the identity, for example, the assumptions needed for an interior equilibrium are satisfied for \(\beta < 0 \) and \(\alpha_1, \alpha_2 > 0 \).
in a neighborhood of zero spending.\footnote{One concern with the baseline specification in which \(q \) is a function of the ratio \(x_t/y_t \) of candidates’ spending, is that the effect of candidate 1 spending $2 against candidate 2 spending $1 on relative popularity is the same as candidate 1 spending $2 million and candidate 2 spending $1 million. This example also shows that our key results are not driven by this feature of the baseline specification.} For example, if \(\beta = -0.5 \), then the total dollar amounts spent by the candidates matter, and the drift is insensitive to spending levels close to zero. Moreover, for this specification we can accommodate 0 spending by either or both candidates without assuming, as we did in the baseline model, that the game ends immediately if one of them does not spend a positive amount.\footnote{This also shows that we are not artificially forcing the candidates to spend substantial amounts of their resources early by assuming that they lose immediately if they don’t.}

Further Generalizations We conclude this section with some additional remarks about the robustness of the results above. First, the proof of Proposition 4 in the appendix actually shows that the Nash equilibrium of this extension is unique. Second, since the game is zero-sum and the unique equilibrium is in pure strategies, all of our results are also robust to having the candidates move sequentially within a period, with arbitrary (and possibly stochastic) order of moves across periods. Third, since the equilibrium strategies do not depend on realizations of the relative popularity path, the results are also robust to having the candidates imperfectly and asymmetrically observe the realization of the path of popularity. Fourth, the results are also robust to allowing the final payoffs to depend linearly on \(Z_T \) (an assumption that encompasses the case where candidates care not just about winning but also about margin of victory) so long as the game remains zero-sum. Finally, since the model of this section is a generalization of the baseline model, all of these observations apply to the baseline model as well.

Early Voting In many American elections, voters are able to cast their votes prior to election day, either by mail or in person. Our model is able to accommodate this kind of early voting. Suppose that all other features of the above parametric generalization of the baseline model continue to hold, but now voters can vote early from time \(\hat{N} \Delta \) onwards, where \(\hat{N} < N \) is an integer. Furthermore, suppose that the vote difference among votes cast for each candidate starting from period \(\hat{N} \Delta \) is proportional in each period \(n \geq \hat{N} \) to that period’s relative popularity \(Z_{n\Delta} \). Thus, votes are cast every period. Finally, let the number of total votes cast in period \(n \geq \hat{N} \) be a proportion \(\xi \in (0, 1) \) of the total votes cast in period \((n + 1)\). Therefore, the higher is \(\xi \), the lower is the growth rate in votes cast as election day approaches, and if \(\xi \) is close to zero, then almost all
votes are cast at time T. Then, the objective is thus for candidate 1 to maximize (and candidate 2 to minimize):\footnote{This objective function implicitly assumes that, despite early voting, either candidate can win the election if his popularity at time T is sufficiently high, no matter how low it was in previous periods. This holds if $\xi(2 - \xi^{N - \hat{N}}) < 1$, which is implied by $\xi < 1/2$. Alternatively, the results of Proposition 6 would hold if we assume that candidate 1 maximizes (and candidate 2 minimizes) the difference in candidate 1 and 2’s vote share, which we could write as being

$$\sum_{k=0}^{N - \hat{N}} \xi^k Z(N - k)\Delta$$

}.

$$\Pr \left\{ \sum_{k=0}^{N - \hat{N}} \xi^k Z(N - k)\Delta \geq 0 \right\}$$

Proposition 6. In the equilibrium of this early voting extension, the equal spending ratio result holds: if $X_t, Y_t > 0$ then $x_t/X_t = y_t/Y_t$ for all $t \in T$. In addition, the consecutive period spending ratio for both candidates is constant in n and equal to $\bar{r}(\lambda)$ from Proposition 5 for $n < \hat{N}$. For $n \geq \hat{N}$, it is weakly lower than $\bar{r}(\lambda)$ and increasing in n if $(1 + \beta)d > 1$ and decreasing if the reverse inequality holds.

4.2 Evolving Budgets

Our baseline model assumes that candidates are endowed with a fixed budget at the start of the game (or they can perfectly forecast how much money they will raise), but in reality the amount of money raised may depend on how well the candidates poll over the campaign cycle. To account for this, we present an extension here in which the resources stock also evolves in a way that depends on the evolution of popularity. We retain all the features of the baseline model except the ones described below.

Candidates start with exogenous budgets X_0 and Y_0 as in the baseline model. However, we now assume that the budgets now evolve according to the following geometric Brownian motions:

\[
\begin{align*}
\frac{dX_t}{X_t} &= az_t dt + \sigma_X dW^X_t \quad \text{if } X_t > 0 \\
\frac{dY_t}{Y_t} &= bz_t dt + \sigma_Y dW^Y_t \quad \text{if } Y_t > 0
\end{align*}
\]
where \(a, b, \sigma_X \) and \(\sigma_Y \) are constants, and \(W_t^X \) and \(W_t^Y \) are Wiener processes. None of our results hinge on it, but we also make the assumption for simplicity that \(dW_t \) is independent of \(dW_t^X \) and of \(dW_t^Y \), while \(dW_t^X \) and \(dW_t^Y \) have covariance \(\rho \geq 0 \). If either of the two budgets reaches 0 at a given moment in time, it is 0 thereafter.\(^{19}\)

In this setting, if \(b < 0 < a \) then donors raise their support for candidate that is leading in the polls and withdraw support from the one that is trailing. If \(a < 0 < b \) then donors channel their resources to the underdog. Popularity therefore feeds back into the budget process. The feedback is positive if \(a - b > 0 \) and negative if \(a - b < 0 \). We refer to \(a \) and \(b \) as the feedback parameters.\(^{20}\)

All other features of the model are exactly the same as in the baseline model, including the process (1) governing the evolution of popularity, though we now assume for analytical tractability that

\[
q(x/y) = \log(x/y).
\]

Proposition 7. In the model with evolving budgets, for every \(N, T, \) and \(\lambda > 0 \), there exists \(-\eta < 0 \) such that whenever \(a - b \geq -\eta \), there is an essentially unique equilibrium. For all \(t \in T \), if \(X_t, Y_t > 0 \), then in equilibrium,

\[
x_t/X_t = y_t/Y_t.
\]

To understand the condition \(a - b \geq -\eta \), note that when \(a < 0 < b \), there is a negative feedback between popularity and the budget flow: a candidate’s budget increases when she is less popular than her opponent. The condition \(a - b \geq -\eta \) puts a bound on how negative this feedback can be. If this condition is not satisfied, candidates may want to reduce their popularity as much as they can in the early stages of the campaign to accumulate a larger war chest to use in the later stages. This could undermine the existence of an equilibrium in pure strategies.

One question that we can ask for this extension is how the distribution of spending over time varies with the feedback parameters \(a \) and \(b \) that determine the rate of flow of candidates’ budgets in response to shifts in relative popularity. In the baseline model, when \(\lambda > 0 \) the difficulty in maintaining an early lead means that there is a disincentive to spend resources early on. This produces the result that spending is increasing over

\(^{19}\)Formally, if \(X_t = 0 (Y_t = 0) \), then \(X_\tau \equiv 0 (Y_\tau \equiv 0) \) for all \(\tau \geq t \).

\(^{20}\)Also, note that \(dX_t \) and \(dY_t \) may be negative. One interpretation is that \(X_t \) and \(Y_t \) are expected total budgets available for the remainder of the campaign, where the expectation is formed at time \(t \). Depending on the level of relative popularity, the candidates revise their expected future inflow of funds and adjust their spending choices accordingly.
time. However, in this extension, if $b < 0 < a$ then there is a force working in the other direction: spending to build early leads may be advantageous because it results in faster growth of the war chest, which is valuable for the future. The disincentive to spend early is mitigated by this opposing force, and may even be overturned if a is much larger than b, i.e., if donors have a greater tendency to flock to the leading candidate.

We can establish this intuition formally. Recall that $r_n(\lambda)$ defined in the main text gave the ratio of equilibrium spending in consecutive periods, n and $n + 1$. For this extension with evolving budgets, we define the analogous ratio, \tilde{r}_n, which we show in the appendix depends on a and b only through the difference $a - b$ and is the same for both candidates. Specifically,

$$\tilde{r}_n(\lambda, a - b) = \frac{x_{(n+1)\Delta}/X_{(n+1)\Delta}}{x_{n\Delta}/X_{n\Delta}} = \frac{y_{(n+1)\Delta}/Y_{(n+1)\Delta}}{y_{n\Delta}/Y_{n\Delta}}$$

Proposition 8. Fix the number of periods N, total time $T = N\Delta$, and consider the case in which $\lambda > 0$. Then, for all n, if $a - b$ is sufficiently small then the ratio $\tilde{r}_n(\lambda, a - b)$ of spending in consecutive periods n and $n + 1$ conditional on the history up to period n is (i) greater than 1, (ii) increasing in $a - b$, and (iii) decreasing in $a - b$.

The baseline model (with $q(x/y) = \log(x/y)$) is the special case of the model with evolving budgets in which the total budget is constant over time: $a = b = \sigma_X = \sigma_Y = 0$. What Proposition 8 says is that starting with this special case, as we increase the difference $a - b$ from zero, spending plans becomes more balanced over time: there is a greater incentive to spend in earlier periods of the race than there is if $a = b$.\(^{21}\)

Budgets Evolving in Response to Closeness of the Race The popularity process can feed back into candidates’ budgets also in other ways. For instance, contributions may be higher when the electoral race is a dead heat (z_t is small in absolute value), and

\(^{21}\)It is also worth commenting on the fact that the results of Proposition 8 do not necessarily hold when $a - b$ is very large. We have examples in which $\tilde{r}_n(\lambda, a - b)$ is increasing in $a - b$ for large λ, n, and $a - b$. (One such example is $\lambda = 0.8$, $\Delta = 0.9$, and $n = a - b = 10$.) The intuition behind these examples rests on the fact that when the degree of mean reversion is high, then it is important for candidates to build up a large war chest that they can deploy in the final stages of the race. If the election date is distant and $a - b$ is large, then early spending is mostly for the purpose of building up these resources. But spending too much in any one period, especially an early period, is risky: if the resource stock does not grow (or even if it grows but insufficiently) then there is less money, and hence not much opportunity, to grow it in the subsequent periods. Since q is concave, the candidates would like to have many attempts to grow the war chest early on, and this is even more the case as the importance of the relative feedback $a - b$ gets large.
less so when one of the candidates has a solid lead \((z_t \text{ is large in absolute value})\). To capture this possibility, we can modify the budgets’ laws of motion as follows:

\[
\frac{dX_t}{X_t} = \frac{a}{1 + z_t^2} dt + \sigma_X dW_t^X \quad \text{and} \quad \frac{dY_t}{Y_t} = \frac{b}{1 + z_t^2} dt + \sigma_Y dW_t^Y,
\]

with \(a, b > 0\). Proposition 9 below shows that in any interior equilibrium of this model, the equal spending ratio result holds.

Proposition 9. In the model with endogenous budgets that evolve depending on the closeness of the race, if for all \(t \in \mathcal{T} \), \(X_t, Y_t > 0\), then in equilibrium,

\[
\frac{x_t}{X_t} = \frac{y_t}{Y_t}.
\]

In this setting closed-form solutions cannot be obtained in general. This is because the drifts of the budget processes depend non-linearly on popularity. However, one special case in which closed-form solutions can be obtained occurs when \(a = b\). Under this assumption, the percentage change in campaign budgets arising from movements in relative popularity is the same for both candidates. As a result, the interior equilibrium is essentially unique and its closed form expression is identical to the one derived in Proposition 7 of the Appendix, for the special case in which \(a = b\).

4.3 Multi-district Competition

We now provide an extension to address the possibility that the candidates compete in \(S\) winner-take-all districts or media markets (rather than a single district, or market) and each must win a certain subset, or share, of these to win the electoral contest.\(^{22}\) This extension is general enough to cover the electoral college for U.S. presidential elections, as well as competition between two parties seeking to control a majoritarian legislature composed of representatives from winner-take-all single-member districts, and even the case where candidates compete in a single winner-take-all race but must choose how to allocate spending across different geographic media markets in the district.

\(^{22}\)For example, if the set of districts is \(S = \{1, ..., S\}\) then consider any electoral rule such that for all partitions of \(S\) of the form \(\{S_1, S_2\}\), either candidate 1 wins if he wins all the districts in \(S_1\) or 2 wins if she wins all the districts in \(S_2\). The rule should be monotonic in the sense that for any partitions \(\{S_1, S_2\}\) and \(\{S'_1, S'_2\}\) if candidate \(i\) wins by winning \(S_i\) then \(i\) wins by winning \(S'_i \supseteq S\).
Relative popularity in each district \(s \) is the random variable \(Z^s_t \) with realizations \(z^s_t \), and we assume that the joint distribution of the vector \((Z^s_{t+1})^S_{s=1} \) depends on \((x^s_t/y^s_t, z^s_t)^S_{s=1} \) only. This allows for correlation of relative popularity across districts.

All other structural features are the same as in the baseline model. In particular, to close this version of the model, we assume that if a candidate stop spending money in a particular district, then she loses the election right away if the other candidate is spending a positive amount in all districts and she wins the election with probability \(1/2 \) if the other candidate does not campaign in at least one district as well.

Proposition 10. In any equilibrium of the multi-district extension, if \(X_t, Y_t > 0 \) are the remaining budgets of candidates 1 and 2 at any time \(t \in T \), then for all districts \(s \),

\[
\frac{x^s_t}{X_t} = \frac{y^s_t}{Y_t}.
\]

The key implication of this result is that the total spending of each of the two candidates across all districts at a given time also respects the equal spending ratio result: if \(x_t = \sum_s x^s_t \) is candidate 1’s total spending at time \(t \) and \(y_t = \sum_s y^s_t \) is candidate 2’s then the proposition above implies \(x_t/X_t = y_t/Y_t \).

5 A First Look at the Data

We now offer a first glance at actual electoral spending data through the lens of our model. The model’s two most robust predictions are the following:

(i) The equal spending ratio result, which says that the candidates spend the same fraction of their remaining budgets at every moment in time. This result holds under all of the extensions and generalizations of the model we provide.

(ii) The constant spending growth result, which says that the growth rate in spending is constant over time. This result holds in the baseline model and the parametric generalization of Section 4.1.

Figure 1 in the introduction shows that there is some violation of these predictions in the data (which are in part due to noisy observations of the actual spending path). We end now with an examination of the extent to which these results seem to be violated.
5.1 Data and Descriptive Statistics

We focus on subnational American elections, namely U.S. House, Senate, and gubernatorial elections in the period 2000 to 2014.

Spending in our model refers to all spending—TV ads, calls, mailers, door-to-door canvassing visits—that directly affects the candidates’ relative popularity. But for some of these categories of spending, it is not straightforward to separate out the part of spending that has a direct impact on relative popularity from the part that does not (e.g. fixed administrative costs). For one category, namely TV advertising, it is straightforward to do this, so we focus exclusively on TV ad spending. Television advertising constitutes around 35% of the total expenditures by congressional candidates, and is approximately 90% of all advertising expenditure (Albert, 2017). We proceed under the assumption that any residual spending on other types of campaign activities that directly affect relative popularity is proportional to spending on TV ads.

Our TV ad spending data are from the Wesleyan Media Project and the Wisconsin Advertising Database. For each election in which TV ads were bought, the database contains information about the candidate each ad supports, the date it was aired, and the estimated cost. For the year 2000, the data covers only the 75 largest Designated Market Areas (DMAs), and for years 2002-2004, it covers only the 100 largest DMAs. The data from 2006 onwards covers all of the 210 DMAs. We obtain the amount spent on ads from total ads bought and price per ad. For 2006, where ad price data are missing, we estimate prices using ad prices in 2008.23

We focus on races where the leading two candidates in terms of vote share are from the Democratic and the Republican party. We label the Democratic candidate as candidate 1 and the Republican candidate as candidate 2, so that \(x_t, X_0 \), etc. refer to the Democrat’s spending, budget, etc. and \(y_t, Y_0 \), etc. refer to the Republican’s.

We aggregate ad spending made on behalf of the two major parties’ candidates by week and focus on the twelve weeks leading to election day, though we will drop the final week which is typically incomplete since elections are held on Tuesdays. We then drop all elections that are clearly not genuine contests to which our model does not apply, defining these to be elections in which one of the candidates did not spend anything for

23One concern with this approach could be that if prices increase as the election approaches, then the increase in total spending over time confounds the price increase with increased advertising. However, federal regulations limit the ability of TV stations to increase ad prices as the election approaches, and instead requires them to charge political candidates “the lowest unit charge of the station for the same class and amount of time for the same period” (Chapter 5 of Title 47 of the United States Code 315, Subchapter III, Part 1, Section 315, 1934). This fact allays some of this concern.
more than half of the period studied. This leaves us with 346 House, 122 Senate, and 133 gubernatorial elections. We focus on the last twelve weeks mainly because we want to restrict attention to the general election campaign, and we define the total budgets of the candidates to be the total amount that they spent over these twelve weeks. Summary statistics for spending are given in Table 1. On average, candidates spent about $6 million on TV ads for statewide races, and $1.5 million for house races. There is considerable difference in the amount and pattern of spending between state-wide and house elections, so we proceed in analyzing the data using this disaggregation.

5.2 Spending Ratios

To investigate the extent to which the equal spending ratio result holds in the data, we plot the difference \(\frac{x_t}{X_t} - \frac{y_t}{X_t} \) over the final twelve weeks of each election in Figure 3 and tabulate the percent of elections, by election type, in which each candidate’s spending was within 10 and 5 percentage points of the other’s in Table 2. Overall, Table 2 shows that the prediction seems to be violated to a smaller extent in statewide races than in House races, and violated to a greater extent as election day approaches. That said, the absolute difference in spending ratios is less than 0.1 for 85% of our dataset, and less than 0.05 for 65%. Even in the final six weeks where all candidates spend a positive amount, the candidates’ spending ratios are within within 10 percentage points of one another in 75.4% of election-weeks, and within 5 percentage points of one another in 49.5% of them. So, while there is a substantial amount of violation of the equal spending ratio result, the extent of violations seem to be limited.

In addition to looking at Senate, gubernatorial and House races separately, we also look in Table 2 separately at (i) elections with early voting versus those without, (ii) those that are open seat versus those in which an incumbent is running, (iii) those in which the final vote difference between the top two candidates is less than 5 percentage points versus those with larger margins, and (iv) those in which one candidate’s budget is more than 25 percent greater than the other’s, versus those where it is not. We do not

24 A tabulation of these elections is given in the Appendix.
25 In some elections, the primaries end more than twenty weeks prior to the general election date, but ad spending in the period prior to twelve weeks from the election date is typically zero, anyway.
26 Note that since these values are defined as the share of remaining budget rather than total budget, they can take any value between 0 and 1 in every week in the data prior to the final week. (For example, a candidate can be spending 99% of their remaining budget in every week until the final week.) In the final week, each candidate spends 100% of money left over, so if we added the final (partial) twelfth week of the election, to the final column, these numbers would all be 100%, by construction.
find major differences in the extent to which the equal spending ratio result is violated across these settings apart from the observation that it appears to be violated less in close elections and in those with more symmetric budgets.

5.3 Consecutive Period Spending Ratios

The consecutive period spending ratio (CPSR) is defined as x_{t+1}/x_t for the Democrat and y_{t+1}/y_t for the Republican candidate, over all twelve weeks t. If the equal spending ratio result holds, then these are the same for the two candidates. However, since there are candidates who spend zero in some weeks, this ratio cannot be defined for certain weeks. To deal with this problem, we take three different approaches.

We first calculate the consecutive period spending ratios for every candidate in the dataset using two approaches: (i) dropping all elections with zero spending in any week, and (ii) dropping all pairs of consecutive weeks that would include a week with zero spending. These constitute two different rules for discarding data. Approach (i) leaves us with only 221 (out of the total 601) elections in our dataset where no zero spending occurs, and in approach (ii) we drop 1,692 consecutive week pairs out of a total of 13,223. Although this is only about 12.8% of consecutive week pairs, we are still discarding important violations of the constant consecutive period spending result that arise from zero spending. An alternative to discarding data with zero spending is to (iii) use all of the data and proceed under the assumption that observed spending is a noisy process, with zero spending levels reflecting a truncation of actual spending, and estimate the average CPSR and its variance using maximum likelihood, as follows.

Given an election, let $\{x_{n,\Delta}\}$ denote the path of spending for the Democratic candidate, and $\{y_{n,\Delta}\}$ denote the path of spending for the Republican candidate. Assume that we observe in the data $\{\ell(x_{n,\Delta})\}, \{\ell(y_{n,\Delta})\}$, where

$$\ell(x_{n,\Delta}) := \max \{0, \log x_{n,\Delta} + \epsilon_{x,n,\Delta}\} \quad \text{and} \quad \ell(y_{n,\Delta}) := \max \{0, \log y_{n,\Delta} + \epsilon_{y,n,\Delta}\}$$

where $\{\epsilon_{x,n,\Delta}\}$ and $\{\epsilon_{y,n,\Delta}\}$ are measurement errors. We assume that these errors are all drawn independently, and for each candidate, the sequence of errors is drawn from an identical mean-zero normal distribution with variance σ_x^2 for candidate 1 and σ_y^2 for candidate 2. Proposition 3 shows that $\log x_{n,\Delta} = \log \gamma_\Delta(n)X_0$ and $\log y_{n,\Delta} = \log \gamma_\Delta(n)Y_0$.

\[\text{If zero spending occurs at time } t, \text{ both } x_{t+1}/x_t \text{ and } x_t/x_{t-1} \text{ are excluded.}\]
so we can write the likelihood as

\[
L := \prod_{n: \ell(x_n) = 0} \Phi_x \left(\frac{-\mu_x - n \log r}{\sigma_x} \right) \prod_{n: \ell(x_n) > 0} \frac{1}{\sigma_x} \phi_x \left(\frac{\ell(x_n) - \mu_x - n \log r}{\sigma_x} \right) \prod_{n: \ell(y_n) = 0} \Phi_y \left(\frac{-\mu_y - n \log r}{\sigma_y} \right) \prod_{n: \ell(y_n) > 0} \frac{1}{\sigma_y} \phi_y \left(\frac{\ell(y_n) - \mu_y - n \log r}{\sigma_y} \right)
\]

where

\[
\begin{align*}
\mu_x &= \log(e^{\log r} - 1) - \log(e^{T \log r} - 1) + \log \hat{X}_0 \\
\mu_y &= \log(e^{\log r} - 1) - \log(e^{T \log r} - 1) + \log \hat{Y}_0
\end{align*}
\]

and \(\Phi_x, \Phi_y, \phi_x, \phi_y \) are the cdfs and pdfs of the mean-zero normal distributions with variances \(\sigma_x^2 \) and \(\sigma_y^2 \). The estimator for the tuple of parameters \((r, \sigma_x, \sigma_y, \hat{X}_0, \hat{Y}_0)\) maximizes the log of this likelihood subject to the constraint that \(r \geq 1 \).

Results The distribution of CPSRs along with their 95% confidence intervals from each of the three approaches are depicted in Figure 4. The figure shows that while there are some important differences, the distributions are similar. The distributions from approaches (i) and (ii) are very similar, as are the confidence intervals from these approaches. The estimates of the mean CPSRs for House races using the maximum likelihood method are overall higher than the other two, while the estimates for the statewide races are similar. Overall, the 95% confidence intervals are smaller using the maximum likelihood method, and typically highest using approach (ii).

Therefore, to be conservative, we take the estimates from approach (ii), where we discard weeks with zero spending. Figure 5 depicts the raw CPSRs for each candidate by week, calculated under this approach, and Table 3 shows that the constant spending growth prediction is violated to a smaller extent as the election approaches and candidates begin to spend more substantial amounts. The same table also shows that the statewide races, which typically see larger amounts of money spent, generally have smaller/fewer violations than House races. For example, even in the last eight weeks of the elections, the consecutive period spending ratios remain within 20% of their means for each candidate in 37.1%, 34.5%, and 25.9% of Senate, gubernatorial and House candidates, respectively.

One possible explanation for these violations is that our constant spending growth result does not hold in elections where there is early voting starting from the time that
ballots can be cast. However, Table 3 shows that looking only at races in which early voting is not allowed does not seem to reduce the extent of violations by much, though there is some improvement given that early voting typically starts two to seven weeks before election day depending on the state. Another possible explanation is that the result relies on the assumption that the candidates can correctly forecast how much money they will end up raising by the end of the campaign—which is not true in the evolving budgets extension—and it is hard for candidates to do this, especially for House candidates for whom the amount of money they will raise is more uncertain. Unfortunately, however, we cannot investigate whether the equilibrium spending path predicted by our evolving budget extension could account for these violations since data on when candidates receive money or pledges from donors is not available.

We also look at the extent of violations of the constant spending growth prediction in the other disaggregations that we looked at with the equal spending ratio result. Again we find overall small differences across the different settings, though the prediction is violated substantially more in elections where the budgets are asymmetric than those in which they are relatively close: the consecutive period spending ratios remain within 20% of their means for each candidate in 39.1% of races with close budgets, and only 33.3% of races with highly unequal budgets.

6 Conclusion

We have proposed a new model of dynamic campaigning, and used it to recover estimates of the decay rate in the popularity process using spending data alone.

Our theoretical contribution raises new questions, however. Since we focused on the strategic choices made by the campaigns, we abstracted away from some important considerations. For example, we left unmodeled the behavior of the voters that generates over-time fluctuations in relative popularity. In addition, we abstracted away from the motivations and choices of the donors, and the effort decisions of the candidates in how much time to allocate to campaigning versus fundraising. These abstractions leave open questions about how to micro-found the behavior of voters and donors, and effort allocation decision for the candidates.28

28Bouton et al. (2018) address some of these questions in a static model. They study the strategic choices of donors who try to affect the electoral outcome and show that donor behavior depends on the competitiveness of the election. Similarly, Mattozzi and Michelucci (2017) analyze a two-period dynamic model in which donors decide how much to contribute to each of two possible candidates without knowing ex-ante who is the more likely winner.
Moreover, we have abstracted from the fact that in real life, campaigns may not know what the return to spending is at various stages of the campaign, or what the decay rate is, as these may be specific to the personal characteristics of the candidates, and changes in the political environment, including the “mood” of voters. Real-life campaigns face an optimal experimentation problem whereby they try to learn about their environment through early spending. Our model also abstracted away from the question of how early spending may benefit campaigns by providing them with information about what kinds of campaign strategies seem to work well for their candidate. This is a considerably difficult problem, especially in the face of a fixed election deadline, and the endogeneity of donor interest and available resources. But there is no doubt that well-run campaigns spend to acquire valuable information about how voters are engaging with and responding to the candidates over the course of the campaign. These are interesting and important questions that ought to be addressed in subsequent work.
Figure 1: Upper figures are average spending paths by Democrats and Republicans on TV ads in “competitive” House, Senate and gubernatorial races in the period 2000-2014. These are elections in which both candidates spent a positive amount; see Section 5.1 for the source of these data, and more details. Bottom figures are spending paths for 5th, 25th, 50th, 75th, and 95th percentile candidates in terms of total money spent in the corresponding elections of the upper panel.
Figure 2: The fraction $\gamma_\lambda(n)$ of initial budget that the candidates spend over time, for $N = 100$ and various values of λ.
Senate Elections in our Sample

<table>
<thead>
<tr>
<th>Year</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>DE, FL, IN, ME, MI, MN, MO, NE, NV, NY, PA, RI, VA, WA</td>
</tr>
<tr>
<td>2002</td>
<td>AL, AR, CO, GA, IA, LA, ME, NC, NH, NJ, OK, OR, SC, TN, TX</td>
</tr>
<tr>
<td>2004</td>
<td>CO, FL, GA, KY, LA, NC, OK, PA, SC, WA</td>
</tr>
<tr>
<td>2006</td>
<td>AZ, MD, MI, MO, NE, OH, PA, RI, TN, VA, WA, WV</td>
</tr>
<tr>
<td>2008</td>
<td>AK, CO, GA, ID, KS, KY, LA, ME, MS, NC, NE, NH, NM, OK, OR, SD</td>
</tr>
<tr>
<td>2010</td>
<td>AL, AR, CA, CO, CT, IA, IL, IN, KY, LA, MD, MO, NH, NV, NY, OR, PA, VT, WA</td>
</tr>
<tr>
<td>2012</td>
<td>AZ, CT, FL, HI, IN, MA, MO, MT, ND, NE, NM, NV, OH, PA, RI, VA, WI, WV</td>
</tr>
<tr>
<td>2014</td>
<td>AK, AR, CO, GA, IA, IL, KY, LA, ME, MI, MT, NC, NH, NM, OR, SD, VA, WV</td>
</tr>
</tbody>
</table>

Gubernatorial Elections in our Sample

<table>
<thead>
<tr>
<th>Year</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>IN, MO, NC, NH, WA, WV</td>
</tr>
<tr>
<td>2002</td>
<td>AL, AR, AZ, CA, CT, FL, GA, HI, IA, IL, KS, MA, MD, ME, MI, NM, NY, OK, OR, PA, RI, SC, TN, TX, WI</td>
</tr>
<tr>
<td>2004</td>
<td>IN, MO, NC, NH, UT, VT, WA</td>
</tr>
<tr>
<td>2006</td>
<td>AL, AR, AZ, CO, CT, FL, GA, IA, IL, KS, MD, ME, MI, MN, NH, NV, NY, OH, OR, PA, RI, TN, VT, WI</td>
</tr>
<tr>
<td>2008</td>
<td>IN, MO, NC, WA</td>
</tr>
<tr>
<td>2010</td>
<td>AK, AL, AR, AZ, CA, CT, FL, GA, HI, IA, ID, IL, MA, MD, MI, MN, NH, NM, NV, NY, OH, OK, OR, PA, SC, SD, TN, TX, UT, VT, WI</td>
</tr>
<tr>
<td>2012</td>
<td>IN, MO, MT, NC, ND, NH, WA, WV</td>
</tr>
<tr>
<td>2014</td>
<td>AL, AR, AZ, CO, CT, FL, GA, HI, IA, ID, IL, KS, MA, MD, ME, MI, MN, NE, NH, NM, NY, OH, OK, OR, PA, SC, TX, WI</td>
</tr>
</tbody>
</table>
House Elections in our Sample

<table>
<thead>
<tr>
<th>Year</th>
<th>State-District</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>AL-4, AR-4, CA-20, CA-49, CO-6, CT-5, FL-12, FL-22, FL-8, GA-7, KS-3, KY-3, KY-6, MI-8, MN-6, MO-2, MO-3, MO-6, NC-11, NC-8, NH-1, NH-2, NM-1, NV-1, OH-1, OH-12, OK-2, PA-10, PA-13, PA-4, TX-25, UT-2, VA-2, WA-1, WA-5, WV-2</td>
</tr>
<tr>
<td>2002</td>
<td>AL-1, AL-3, AR-4, CT-5, FL-22, IA-1, IA-2, IA-3, IA-4, IL-19, IN-2, KS-3, KS-4, KY-3, ME-2, MI-9, MS-3, NH-1, NH-2, NM-1, NM-2, OK-4, PA-11, PA-17, SC-3, TX-11, UT-2, WV-2</td>
</tr>
<tr>
<td>2004</td>
<td>CA-20, CO-3, CT-2, CT-4, FL-13, GA-12, IA-3, IN-8, KS-3, KY-3, MO-5, MO-6, NC-11, NE-2, NM-1, NM-2, NV-3, NY-27, OK-2, OR-1, TX-17, WA-5, WV-2</td>
</tr>
<tr>
<td>2006</td>
<td>AZ-5, AZ-8, CO-4, CO-7, CT-2, CT-4, CT-5, FL-13, FL-22, GA-12, HI-2, IA-1, IA-3, ID-1, IL-6, IN-2, IN-8, IN-9, KY-2, KY-3, KY-4, MN-6, NC-11, NH-2, NM-1, NV-3, NY-20, NY-24, NY-25, NY-29, OH-1, OH-12, OH-15, OH-18, OR-5, PA-10, SC-5, TX-17, VA-2, VA-5, VT-1, WA-5, WI-8</td>
</tr>
<tr>
<td>2008</td>
<td>AK-1, AL-2, AL-3, AL-5, AZ-3, AZ-5, AZ-8, CA-11, CA-4, CO-4, CT-4, CT-5, FL-16, FL-24, FL-8, GA-8, ID-1, IL-10, IN-3, KY-2, KY-3, LA-4, LA-6, MD-1, MI-7, MO-6, NC-8, NH-1, NH-2, NM-1, NM-2, NV-2, NV-3, NY-20, NY-24, NY-25, NY-26, NY-29, OH-1, OH-15, PA-10, PA-11, SC-1, VA-2, VA-5, WI-8, WV-2</td>
</tr>
<tr>
<td>2010</td>
<td>AL-2, AL-5, AR-2, AZ-1, AZ-5, AZ-8, CA-20, CA-45, CO-3, CO-4, CT-4, CT-5, FL-2, FL-22, FL-24, FL-8, GA-12, GA-8, HI-1, IA-1, IA-2, IA-3, IN-2, IN-8, KS-4, KY-6, MA-1, MD-1, MD-2, MI-1, MI-3, MI-7, MI-9, MN-6, MO-3, MO-4, MO-8, MS-1, NC-2, NC-5, NC-8, NE-2, NH-1, NH-2, NM-1, NM-2, NV-3, NY-20, NY-23, NY-24, NY-25, OH-1, OH-12, OH-13, OH-15, OH-16, OH-9, OK-5, OR-3, OR-5, PA-10, PA-11, PA-4, SC-2, SC-5, SD-1, TN-1, TN-4, TN-8, TN-9, TX-17, VA-2, VA-5, VA-9, WA-2, WI-8, WV-3</td>
</tr>
<tr>
<td>2012</td>
<td>AZ-2, CA-10, CA-24, CA-3, CA-36, CA-52, CA-7, CA-9, CO-3, CO-6, CO-7, CT-5, FL-18, GA-12, HI-1, IA-1, IA-2, IA-3, IA-4, IL-12, IL-13, IL-17, IL-8, IN-2, IN-8, KY-6, MA-6, ME-2, MI-6, MN-6, MN-8, MT-1, NC-7, ND-1, NH-1, NH-2, NM-1, NV-3, NY-19, NY-21, NY-24, NY-25, NY-27, OH-16, OH-6, PA-12, RI-1, SD-1, TX-23, UT-4, VA-2, VA-5, WI-8, WV-3</td>
</tr>
<tr>
<td>2014</td>
<td>AR-2, AZ-1, AZ-2, CA-21, CA-36, CA-52, CA-7, CO-6, CT-5, FL-18, FL-2, FL-26, GA-12, HI-1, IA-1, IA-2, IA-3, IL-10, IL-12, IL-13, IL-17, IN-2, ME-2, MI-7, MN-7, MN-8, MT-1, ND-1, NE-2, NH-2, NM-2, NV-3, NY-19, NY-21, NY-23, NY-24, VA-10, VA-2</td>
</tr>
</tbody>
</table>
Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Open Seat Election</th>
<th>Incumbent Competing</th>
<th>No Excuse Early Voting</th>
<th>Average total spending</th>
<th>Average spending difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senate</td>
<td>122</td>
<td>68</td>
<td>54</td>
<td>82</td>
<td>6019 (5627)</td>
</tr>
<tr>
<td>Governor</td>
<td>133</td>
<td>59</td>
<td>74</td>
<td>92</td>
<td>5980 (9254)</td>
</tr>
<tr>
<td>House</td>
<td>346</td>
<td>97</td>
<td>249</td>
<td>223</td>
<td>1533 (1304)</td>
</tr>
<tr>
<td>Overall</td>
<td>601</td>
<td>224</td>
<td>377</td>
<td>397</td>
<td>3428 (5581)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week</th>
<th>-11</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. spending</td>
<td>196 (291)</td>
<td>250 (328)</td>
<td>266 (403)</td>
<td>314 (487)</td>
<td>357 (401)</td>
<td>477 (505)</td>
<td>545 (577)</td>
<td>652 (724)</td>
<td>716 (803)</td>
<td>860 (947)</td>
</tr>
<tr>
<td></td>
<td>% spending</td>
<td>0.270</td>
<td>0.180</td>
<td>0.123</td>
<td>0.082</td>
<td>0.008</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Senate</td>
<td>Avg. spending</td>
<td>262 (632)</td>
<td>253 (468)</td>
<td>258 (424)</td>
<td>316 (581)</td>
<td>420 (865)</td>
<td>416 (579)</td>
<td>530 (1,249)</td>
<td>597 (1,015)</td>
<td>701 (1,305)</td>
<td>800 (1,523)</td>
</tr>
<tr>
<td></td>
<td>% spending</td>
<td>0.297</td>
<td>0.207</td>
<td>0.139</td>
<td>0.068</td>
<td>0.030</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Governor</td>
<td>Avg. spending</td>
<td>17 (41)</td>
<td>27 (55)</td>
<td>38 (57)</td>
<td>56 (85)</td>
<td>83 (93)</td>
<td>120 (134)</td>
<td>137 (134)</td>
<td>177 (182)</td>
<td>212 (219)</td>
<td>250 (270)</td>
</tr>
<tr>
<td></td>
<td>% spending</td>
<td>0.653</td>
<td>0.545</td>
<td>0.386</td>
<td>0.246</td>
<td>0.095</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The upper panel reports the breakdown of elections that are open seat versus those that have an incumbent running, the numbers in which voters can vote early without an excuse to do so, average spending levels by the candidates, and the average difference in spending between the two candidates, all by election type. The lower panel presents average spending for each week in our dataset, and the percent of candidates spending 0 in each week, all by election type. Standard deviations for averages are reported in parentheses. All monetary amounts are in units of $1,000.
Figure 3: The difference in spending ratios between the Democratic candidate (x_t / X_t) and the Republican candidate (y_t / Y_t) for each week in our dataset. Each line is an election.
Table 2: $x_t/X_t - y_t/Y_t$

<table>
<thead>
<tr>
<th>Week</th>
<th>-11</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% ∈ (-0.1,0.1)</td>
<td>0.963</td>
<td>0.953</td>
<td>0.938</td>
<td>0.902</td>
<td>0.879</td>
<td>0.847</td>
<td>0.829</td>
<td>0.754</td>
<td>0.676</td>
<td>0.622</td>
<td>0.797</td>
</tr>
<tr>
<td>Senate</td>
<td>0.943</td>
<td>0.934</td>
<td>0.975</td>
<td>0.926</td>
<td>0.934</td>
<td>0.885</td>
<td>0.844</td>
<td>0.787</td>
<td>0.746</td>
<td>0.648</td>
<td>0.803</td>
</tr>
<tr>
<td>Governor</td>
<td>0.932</td>
<td>0.910</td>
<td>0.887</td>
<td>0.820</td>
<td>0.812</td>
<td>0.812</td>
<td>0.767</td>
<td>0.774</td>
<td>0.639</td>
<td>0.624</td>
<td>0.782</td>
</tr>
<tr>
<td>House</td>
<td>0.983</td>
<td>0.977</td>
<td>0.945</td>
<td>0.925</td>
<td>0.884</td>
<td>0.847</td>
<td>0.847</td>
<td>0.734</td>
<td>0.665</td>
<td>0.613</td>
<td>0.801</td>
</tr>
<tr>
<td>Early Voting</td>
<td>0.970</td>
<td>0.955</td>
<td>0.942</td>
<td>0.912</td>
<td>0.884</td>
<td>0.844</td>
<td>0.816</td>
<td>0.753</td>
<td>0.673</td>
<td>0.612</td>
<td>0.798</td>
</tr>
<tr>
<td>No Early Voting</td>
<td>0.951</td>
<td>0.951</td>
<td>0.931</td>
<td>0.882</td>
<td>0.868</td>
<td>0.853</td>
<td>0.853</td>
<td>0.755</td>
<td>0.681</td>
<td>0.642</td>
<td>0.794</td>
</tr>
<tr>
<td>Open Seat</td>
<td>0.942</td>
<td>0.933</td>
<td>0.920</td>
<td>0.897</td>
<td>0.857</td>
<td>0.862</td>
<td>0.866</td>
<td>0.795</td>
<td>0.705</td>
<td>0.656</td>
<td>0.804</td>
</tr>
<tr>
<td>Incumbent Competing</td>
<td>0.976</td>
<td>0.966</td>
<td>0.950</td>
<td>0.905</td>
<td>0.891</td>
<td>0.838</td>
<td>0.806</td>
<td>0.729</td>
<td>0.658</td>
<td>0.602</td>
<td>0.793</td>
</tr>
<tr>
<td>Close Election</td>
<td>0.976</td>
<td>0.965</td>
<td>0.935</td>
<td>0.941</td>
<td>0.947</td>
<td>0.924</td>
<td>0.906</td>
<td>0.882</td>
<td>0.776</td>
<td>0.706</td>
<td>0.788</td>
</tr>
<tr>
<td>Not Close Election</td>
<td>0.958</td>
<td>0.949</td>
<td>0.940</td>
<td>0.886</td>
<td>0.852</td>
<td>0.817</td>
<td>0.798</td>
<td>0.703</td>
<td>0.636</td>
<td>0.589</td>
<td>0.800</td>
</tr>
<tr>
<td>Close Budgets</td>
<td>0.974</td>
<td>0.974</td>
<td>0.959</td>
<td>0.925</td>
<td>0.914</td>
<td>0.895</td>
<td>0.883</td>
<td>0.812</td>
<td>0.763</td>
<td>0.695</td>
<td>0.838</td>
</tr>
<tr>
<td>Not Close Budgets</td>
<td>0.955</td>
<td>0.937</td>
<td>0.922</td>
<td>0.884</td>
<td>0.851</td>
<td>0.809</td>
<td>0.785</td>
<td>0.707</td>
<td>0.606</td>
<td>0.564</td>
<td>0.764</td>
</tr>
<tr>
<td>% ∈ (-0.05,0.05)</td>
<td>0.865</td>
<td>0.815</td>
<td>0.757</td>
<td>0.727</td>
<td>0.661</td>
<td>0.599</td>
<td>0.554</td>
<td>0.468</td>
<td>0.418</td>
<td>0.369</td>
<td>0.562</td>
</tr>
<tr>
<td>Senate</td>
<td>0.811</td>
<td>0.762</td>
<td>0.664</td>
<td>0.762</td>
<td>0.713</td>
<td>0.648</td>
<td>0.639</td>
<td>0.566</td>
<td>0.492</td>
<td>0.393</td>
<td>0.598</td>
</tr>
<tr>
<td>Governor</td>
<td>0.782</td>
<td>0.744</td>
<td>0.759</td>
<td>0.639</td>
<td>0.586</td>
<td>0.519</td>
<td>0.489</td>
<td>0.481</td>
<td>0.406</td>
<td>0.346</td>
<td>0.556</td>
</tr>
<tr>
<td>House</td>
<td>0.916</td>
<td>0.861</td>
<td>0.789</td>
<td>0.749</td>
<td>0.671</td>
<td>0.613</td>
<td>0.549</td>
<td>0.428</td>
<td>0.396</td>
<td>0.370</td>
<td>0.552</td>
</tr>
<tr>
<td>Early Voting</td>
<td>0.864</td>
<td>0.814</td>
<td>0.763</td>
<td>0.746</td>
<td>0.660</td>
<td>0.602</td>
<td>0.542</td>
<td>0.463</td>
<td>0.406</td>
<td>0.370</td>
<td>0.562</td>
</tr>
<tr>
<td>No Early Voting</td>
<td>0.868</td>
<td>0.819</td>
<td>0.745</td>
<td>0.691</td>
<td>0.691</td>
<td>0.593</td>
<td>0.578</td>
<td>0.475</td>
<td>0.441</td>
<td>0.368</td>
<td>0.564</td>
</tr>
<tr>
<td>Open Seat</td>
<td>0.799</td>
<td>0.799</td>
<td>0.723</td>
<td>0.763</td>
<td>0.688</td>
<td>0.625</td>
<td>0.603</td>
<td>0.549</td>
<td>0.460</td>
<td>0.362</td>
<td>0.580</td>
</tr>
<tr>
<td>Incumbent Competing</td>
<td>0.905</td>
<td>0.825</td>
<td>0.777</td>
<td>0.706</td>
<td>0.645</td>
<td>0.584</td>
<td>0.525</td>
<td>0.419</td>
<td>0.393</td>
<td>0.374</td>
<td>0.552</td>
</tr>
<tr>
<td>Close Election</td>
<td>0.853</td>
<td>0.841</td>
<td>0.841</td>
<td>0.812</td>
<td>0.741</td>
<td>0.729</td>
<td>0.706</td>
<td>0.553</td>
<td>0.535</td>
<td>0.424</td>
<td>0.576</td>
</tr>
<tr>
<td>Not Close Election</td>
<td>0.870</td>
<td>0.805</td>
<td>0.724</td>
<td>0.694</td>
<td>0.629</td>
<td>0.548</td>
<td>0.494</td>
<td>0.434</td>
<td>0.371</td>
<td>0.348</td>
<td>0.557</td>
</tr>
<tr>
<td>Close Budgets</td>
<td>0.880</td>
<td>0.842</td>
<td>0.789</td>
<td>0.793</td>
<td>0.741</td>
<td>0.677</td>
<td>0.628</td>
<td>0.526</td>
<td>0.515</td>
<td>0.474</td>
<td>0.590</td>
</tr>
<tr>
<td>Not Close Budgets</td>
<td>0.854</td>
<td>0.794</td>
<td>0.731</td>
<td>0.675</td>
<td>0.597</td>
<td>0.537</td>
<td>0.496</td>
<td>0.421</td>
<td>0.340</td>
<td>0.287</td>
<td>0.540</td>
</tr>
</tbody>
</table>

Note: The table reports the share of elections in which the absolute difference in spending ratios is less than 0.1 and 0.05 for every week, across different election types. We define close elections to be races where the final difference in vote shares between two candidates is less than 5 percentage points. We define races in which the budgets are close to be races where the ratio of budgets of the two candidates are in the interval (0.75, 1.25).
Figure 4: Estimated CPSR values with 95% confidence intervals. The upper row are estimates of the CPSR that we get from dropping all elections with zero spending. The middle row are estimates that we get from dropping all pairs of consecutive weeks that include zero spending. The last row are estimates from the MLE approach. We also depict the densities of the CPSR across election types using all three approaches.
Figure 5: Consecutive period spending ratios over time for every candidate in our dataset, dropping all weeks with zero spending.
Table 3: Consecutive Period Spending Ratios

<table>
<thead>
<tr>
<th>% ∈ (-0.5σ, 0.5σ)</th>
<th>-12</th>
<th>-11</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senate</td>
<td>0.390</td>
<td>0.332</td>
<td>0.354</td>
<td>0.413</td>
<td>0.440</td>
<td>0.487</td>
<td>0.483</td>
<td>0.556</td>
<td>0.556</td>
<td>0.572</td>
<td>0.473</td>
</tr>
<tr>
<td>Governor</td>
<td>0.410</td>
<td>0.330</td>
<td>0.369</td>
<td>0.406</td>
<td>0.442</td>
<td>0.537</td>
<td>0.553</td>
<td>0.652</td>
<td>0.586</td>
<td>0.660</td>
<td>0.503</td>
</tr>
<tr>
<td>House</td>
<td>0.354</td>
<td>0.327</td>
<td>0.344</td>
<td>0.402</td>
<td>0.435</td>
<td>0.445</td>
<td>0.436</td>
<td>0.496</td>
<td>0.520</td>
<td>0.539</td>
<td>0.448</td>
</tr>
<tr>
<td>Early Voting</td>
<td>0.408</td>
<td>0.353</td>
<td>0.369</td>
<td>0.425</td>
<td>0.454</td>
<td>0.484</td>
<td>0.484</td>
<td>0.543</td>
<td>0.555</td>
<td>0.555</td>
<td>0.475</td>
</tr>
<tr>
<td>No Early Voting</td>
<td>0.357</td>
<td>0.291</td>
<td>0.323</td>
<td>0.391</td>
<td>0.414</td>
<td>0.493</td>
<td>0.483</td>
<td>0.581</td>
<td>0.556</td>
<td>0.605</td>
<td>0.468</td>
</tr>
<tr>
<td>Open Seat</td>
<td>0.390</td>
<td>0.328</td>
<td>0.344</td>
<td>0.388</td>
<td>0.448</td>
<td>0.525</td>
<td>0.502</td>
<td>0.565</td>
<td>0.578</td>
<td>0.625</td>
<td>0.482</td>
</tr>
<tr>
<td>Incumbent Competing</td>
<td>0.390</td>
<td>0.335</td>
<td>0.361</td>
<td>0.430</td>
<td>0.436</td>
<td>0.464</td>
<td>0.472</td>
<td>0.550</td>
<td>0.542</td>
<td>0.541</td>
<td>0.467</td>
</tr>
<tr>
<td>Close Election</td>
<td>0.335</td>
<td>0.299</td>
<td>0.344</td>
<td>0.430</td>
<td>0.444</td>
<td>0.515</td>
<td>0.524</td>
<td>0.550</td>
<td>0.526</td>
<td>0.579</td>
<td>0.470</td>
</tr>
<tr>
<td>Not Close Election</td>
<td>0.415</td>
<td>0.347</td>
<td>0.358</td>
<td>0.407</td>
<td>0.439</td>
<td>0.476</td>
<td>0.468</td>
<td>0.558</td>
<td>0.567</td>
<td>0.570</td>
<td>0.474</td>
</tr>
<tr>
<td>Close Budgets</td>
<td>0.414</td>
<td>0.315</td>
<td>0.372</td>
<td>0.412</td>
<td>0.446</td>
<td>0.506</td>
<td>0.500</td>
<td>0.538</td>
<td>0.600</td>
<td>0.602</td>
<td>0.483</td>
</tr>
<tr>
<td>Not Close Budgets</td>
<td>0.368</td>
<td>0.348</td>
<td>0.337</td>
<td>0.415</td>
<td>0.436</td>
<td>0.472</td>
<td>0.470</td>
<td>0.570</td>
<td>0.521</td>
<td>0.549</td>
<td>0.464</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% ∈ (0.8µ, 1.2µ)</th>
<th>-12</th>
<th>-11</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senate</td>
<td>0.146</td>
<td>0.139</td>
<td>0.187</td>
<td>0.242</td>
<td>0.258</td>
<td>0.302</td>
<td>0.296</td>
<td>0.282</td>
<td>0.342</td>
<td>0.327</td>
<td>0.229</td>
</tr>
<tr>
<td>Governor</td>
<td>0.250</td>
<td>0.180</td>
<td>0.230</td>
<td>0.303</td>
<td>0.311</td>
<td>0.352</td>
<td>0.352</td>
<td>0.381</td>
<td>0.418</td>
<td>0.414</td>
<td>0.290</td>
</tr>
<tr>
<td>House</td>
<td>0.180</td>
<td>0.173</td>
<td>0.180</td>
<td>0.274</td>
<td>0.252</td>
<td>0.353</td>
<td>0.293</td>
<td>0.331</td>
<td>0.447</td>
<td>0.398</td>
<td>0.262</td>
</tr>
<tr>
<td>Early Voting</td>
<td>0.278</td>
<td>0.248</td>
<td>0.268</td>
<td>0.321</td>
<td>0.332</td>
<td>0.366</td>
<td>0.350</td>
<td>0.402</td>
<td>0.436</td>
<td>0.419</td>
<td>0.353</td>
</tr>
<tr>
<td>No Early Voting</td>
<td>0.291</td>
<td>0.227</td>
<td>0.274</td>
<td>0.306</td>
<td>0.331</td>
<td>0.407</td>
<td>0.390</td>
<td>0.453</td>
<td>0.454</td>
<td>0.456</td>
<td>0.372</td>
</tr>
<tr>
<td>Open Seat</td>
<td>0.277</td>
<td>0.228</td>
<td>0.270</td>
<td>0.314</td>
<td>0.318</td>
<td>0.408</td>
<td>0.364</td>
<td>0.420</td>
<td>0.424</td>
<td>0.444</td>
<td>0.358</td>
</tr>
<tr>
<td>Incumbent Competing</td>
<td>0.287</td>
<td>0.251</td>
<td>0.269</td>
<td>0.317</td>
<td>0.339</td>
<td>0.363</td>
<td>0.363</td>
<td>0.419</td>
<td>0.438</td>
<td>0.424</td>
<td>0.360</td>
</tr>
<tr>
<td>Close Election</td>
<td>0.288</td>
<td>0.208</td>
<td>0.294</td>
<td>0.348</td>
<td>0.343</td>
<td>0.397</td>
<td>0.391</td>
<td>0.418</td>
<td>0.426</td>
<td>0.444</td>
<td>0.366</td>
</tr>
<tr>
<td>Not Close Election</td>
<td>0.280</td>
<td>0.257</td>
<td>0.259</td>
<td>0.302</td>
<td>0.327</td>
<td>0.374</td>
<td>0.353</td>
<td>0.420</td>
<td>0.444</td>
<td>0.427</td>
<td>0.357</td>
</tr>
<tr>
<td>Close Budgets</td>
<td>0.307</td>
<td>0.245</td>
<td>0.314</td>
<td>0.336</td>
<td>0.361</td>
<td>0.423</td>
<td>0.397</td>
<td>0.444</td>
<td>0.506</td>
<td>0.468</td>
<td>0.391</td>
</tr>
<tr>
<td>Not Close Budgets</td>
<td>0.260</td>
<td>0.237</td>
<td>0.230</td>
<td>0.298</td>
<td>0.307</td>
<td>0.346</td>
<td>0.337</td>
<td>0.400</td>
<td>0.387</td>
<td>0.403</td>
<td>0.333</td>
</tr>
</tbody>
</table>

Note: The upper panel of the table reports the share of candidates for which the CPSRs are less than 0.5 standard deviations away from that candidate’s average CPSR over 11 weeks. The lower panel reports the share of candidates in that week for which their CPSRs are within 20% of their average CPSR. The overall share is the share of candidate-weeks that fall within 20% of the corresponding candidate’s average CPSR over all weeks. Week –2 is missing because the final week is not included in the analysis. See the note under Table 2 for the definition of close elections and close budgets.
Appendix

A Proofs

A.1 Proof of Proposition 1

We consider the case of $\lambda > 0$. The $\lambda = 0$ case must be handled separately, but is very similar, so we omit the details.29

We prove by induction that, in any equilibrium, if $X_t, Y_t > 0$, then for all $t \in T$,

(i) $x_\tau / y_\tau = X_t / Y_t$ at all times $\tau \geq t$ at which the candidates take actions;

(ii) if $t < (N - 1)\Delta$, then the distribution of Z_T computed at time $t \in T$ given z_t is

$$
\mathcal{N}\left(\mu \left(\frac{x_t}{y_t}\right) (1 - e^{-\lambda(T-t)}) + z_t e^{-\lambda(T-t)}; \frac{\sigma^2(1 - e^{-2\lambda(T-t)})}{2\lambda}\right)
$$

The claim is obviously true at $t = (N - 1)\Delta$, since in any equilibrium the candidates’ payoffs depend only on z_T and in the final period they must spend the remainder of their budget.

Suppose, for the inductive step, that for all $\tau \geq t + \Delta$, both statements (i) and (ii) above hold. The distribution of $Z_{t+\Delta}$ at time $t \in T$ given (x_t, y_t, z_t) is

$$
\mathcal{N}\left(\mu \left(\frac{x_t}{y_t}\right) (1 - e^{-\lambda\Delta}) + z_t e^{-\lambda\Delta}, \frac{\sigma^2(1 - e^{-2\lambda\Delta})}{2\lambda}\right)
$$

By this hypothesis, the distribution of Z_T computed at time $t + \Delta \in T$ given $z_{t+\Delta}$ is

$$
\mathcal{N}\left(\mu \left(\frac{X_t - x_t}{Y_t - y_t}\right) (1 - e^{-\lambda(T-t-\Delta)}) + z_{t+\Delta} e^{-\lambda(T-t-\Delta)}; \frac{\sigma^2(1 - e^{-2\lambda(T-t-\Delta)})}{2\lambda}\right)
$$

The compound of normal distributions is also a normal distribution. Therefore, the distribution of Z_T at time t, given (x_t, y_t, z_t) is normal with mean and variance:

$$
\mu_{Z_T|t} = p \left(\frac{X_t - x_t}{Y_t - y_t}\right) (1 - e^{-\lambda(T-t-\Delta)}) + p \left(\frac{x_t}{y_t}\right) (e^{-\lambda(T-t-\Delta)} - e^{-\lambda(T-t)}) + z_t e^{-\lambda(T-t)}
$$

$$
\sigma^2_{Z_T|t} = \frac{\sigma^2(1 - e^{-2\lambda(T-t)})}{2\lambda}.
$$

29We have continuity at the limit: all of the results for the $\lambda = 0$ case hold as the limits of the $\lambda > 0$ case as $\lambda \to 0$.

35
These expressions follow from the law of iterated expectation, \(\mu_{Z_T|t} = E_t[E_{t+1}[Z_T]] \), and the law of iterated variance, \(\sigma^2_{Z_T|t} = E_t[Var_{t+1}[Z_T]] + Var_t[E_{t+1}[Z_T]] \).

Now, define the standardized random variable
\[
\tilde{Z}_T = \frac{Z_T - \mu_{Z_T|t}}{\sigma_{Z_T|t}}.
\]
Candidate 1 wins if \(Z_T > 0 \) or, equivalently, if
\[
\tilde{Z}_T > -\frac{\mu_{Z_T|t}}{\sigma_{Z_T|t}} =: \tilde{z}_T^*.
\]
Therefore, taking \(y_t \) as given, candidate 1’s objective is to maximizes his probability of winning, which is given by
\[
\pi_t(x_t, y_t|X_t, Y_t, z_t) := \int_{\tilde{z}_T^*}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-s^2/2} ds.
\]
Factoring common constants, the first order condition for this optimization problem is satisfied if and only if
\[
0 = \frac{\partial \mu_{Z_T|t}}{\partial x_t}, \text{ i.e.,}
\]
\[
0 = p'\left(\frac{x_t}{y_t}\right) \frac{e^{-\lambda(T-t-\Delta)} - e^{-\lambda(T-t)}}{y_t} - p'\left(\frac{X_t - x_t}{Y_t - y_t}\right) \cdot \frac{1 - e^{-\lambda(T-t-\Delta)}}{Y_t - y_t}
\] (11)
Moreover, substituting the first order condition in the second order condition and rearranging terms, we get that the second order expression is given by a positive constant that multiplies
\[
\frac{\partial^2 \mu_{Z_T|t}}{\partial (x_t)^2} = p''\left(\frac{x_t}{y_t}\right) \frac{(e^{-\lambda(T-t-\Delta)} - e^{-\lambda(T-t)})}{y_t^2} + p''\left(\frac{X_t - x_t}{Y_t - y_t}\right) \cdot \frac{1 - e^{-\lambda(T-t-\Delta)}}{(Y_t - y_t)^2}
\]
Because the function \(q \) is strictly concave, \(p \) is strictly concave as well. Hence, the second order condition is always satisfied and the objective function is strictly quasi-concave in \(x_t \). By an analogous argument, we can show that candidate 2’s problem is strictly quasi-concave in \(y_t \).

Therefore, the first order approach in the main text of Section 3.1 is valid, and we have \(x_t/y_t = X_t/Y_t \) for all \(\tau \geq t \). This implies \((X_t - x_t)/(Y_t - y_t) = X_t/Y_t\). Therefore, we can conclude that the distribution of \(Z_T \) computed at time \(t \) is given by a normal
distribution with mean and variance:
\[
\mu_{Z_t|t} = p \left(\frac{X_t}{Y_t} \right) \left(1 - e^{-\lambda(T-t)} \right) + z_t e^{-\lambda(T-t)},
\]
\[
\sigma_{Z_t|t}^2 = \frac{\sigma^2(1 - e^{-2\lambda(T-t)})}{2\lambda}.
\]
This concludes the inductive step. The statement of the proposition follows by induction.

A.2 Proof of Proposition 2

Suppose that \(\lambda > 0 \). Then, the first order condition for \(x_t \) from (11) is
\[
p' \left(\frac{x_t}{y_t} \right) \frac{e^{-\lambda(T-t-\Delta)} - e^{-\lambda(T-t)}}{y_t} = p' \left(\frac{X_t - x_t}{Y_t - y_t} \right) \cdot \frac{1 - e^{-\lambda(T-t-\Delta)}}{Y_t - y_t}
\]
This equation together with the fact that from Proposition 1 we know that \(x_t/y_t = (X_t - x_t)/(Y_t - y_t) \)
\[
x_t = y_t = \frac{e^{-\lambda(T-t-\Delta)} - e^{-\lambda(T-t)}}{1 - e^{-\lambda(T-t)}}.
\]
Now consider the \(\lambda = 0 \) case. The first order conditions for \(x_t \) and \(y_t \) are, respectively,
\[
p' \left(\frac{x_t}{y_t} \right) \frac{\Delta}{y_t} = p' \left(\frac{X_t - x_t}{Y_t - y_t} \right) \cdot \frac{T - t}{Y_t - y_t},
\]
\[
p' \left(\frac{x_t}{y_t} \right) \frac{x_t \Delta}{(y_t)^2} = p' \left(\frac{X_t - x_t}{Y_t - y_t} \right) \frac{(X_t - x_t)(T - t)}{(Y_t - y_t)^2}.
\]
Therefore, we have \(x_t/X_t = y_t/Y_t = \Delta/(T - t) \).

A.3 Proof of Proposition 3

Since spending ratios are equal for the two candidates, we can focus without loss of generality on candidate 1. From Proposition 2, we have
\[
\frac{x_{n\Delta}}{X_{n\Delta}} = \frac{e^{-\lambda(T-(n+1)\Delta)} - e^{-\lambda(T-n\Delta)}}{1 - e^{-\lambda(T-n\Delta)}} = \frac{e^{\lambda\Delta} - 1}{e^{\lambda(T-n\Delta)} - 1}
\]
Then since
\[
\frac{e^{\lambda(T-(n+1)\Delta)} - 1}{e^{\lambda(T-n\Delta)} - 1} = \frac{x_{n\Delta}/X_{n\Delta}}{x_{(n+1)\Delta}/X_{(n+1)\Delta}} = \frac{x_{n\Delta}}{x_{(n+1)\Delta}} \frac{X_{(n+1)\Delta}}{X_{n\Delta}} = \frac{x_{n\Delta}}{x_{(n+1)\Delta}} \frac{X_{n\Delta} - x_{n\Delta}}{X_{n\Delta}}
\]
we have
\[r_n(\lambda) = \frac{x_{(n+1)\Delta}}{x_{n\Delta}} = \left(1 - \frac{x_{n\Delta}}{X_{n\Delta}}\right) \frac{e^{\lambda(T-n\Delta)} - 1}{e^{\lambda(T-(n+1)\Delta)} - 1} = \left(1 - \frac{e^{\lambda\Delta} - 1}{e^{\lambda(T-n\Delta)} - 1}\right) \frac{e^{\lambda(T-n\Delta)} - 1}{e^{\lambda(T-(n+1)\Delta)} - 1} = e^{\lambda\Delta}. \]

This gives us
\[x_{n\Delta} = e^{\lambda\Delta} x_0 \quad \text{and} \quad X_0 = \sum_{n=0}^{N-1} x_{n\Delta} = \sum_{n=0}^{N-1} e^{\lambda\Delta} x_0 = \frac{e^{\lambda N\Delta} - 1}{e^{\lambda\Delta} - 1} x_0. \]

Therefore, we have
\[\gamma_\lambda(t) = \frac{x_{n\Delta}}{X_0} = \frac{e^{\lambda\Delta} - 1}{e^{\lambda N\Delta} - 1} e^{\lambda\Delta} n. \]

A.4 Proof of Proposition 4

Existence of an interior equilibrium under the conditions posited in the proposition, and independence of spending ratios from the history of relative popularity, both follow from the argument laid out in the main text above the proposition.

To prove that Assumption A implies the equal spending ratio result, write \(Z_T \) as in equation (9) in the main text, and note that at any time \(t \in T \) candidate 1 maximizes \(\Pr[Z_T \geq 0 \mid z_t, X_t, Y_t] \) under the constraint \(\sum_{n=t/\Delta}^{N-1} x_{n\Delta} \leq X_t \), while candidate 2 minimizes this probability under the constraint \(\sum_{n=t/\Delta}^{N-1} y_{n\Delta} \leq Y_t \).

Consider the final period. Because money-left over has no value, candidates will spend all of their remaining budget in the last period so that the equal spending ratio result holds trivially in the last period.

Now consider any period \(m \) that is not the final period. Reasoning as in the proof of Proposition 1, candidate 1 will maximize the mean of \(Z_T \) while candidate 2 minimizes it. By the budget constraint, this implies that equilibrium spending \(x_{n\Delta} \) and \(y_{n\Delta} \) for any period \(n \in \{0, 1, ..., N-2\} \) solve the following pair of first order conditions

\[e^{-\lambda(N-1-n)} p_x(x_{n\Delta}, y_{n\Delta}) = p_x \left(X_0 - \sum_{m=0}^{N-2} x_{m\Delta}, Y_0 - \sum_{m=0}^{N-2} y_{m\Delta} \right) \]
\[e^{-\lambda(N-1-n)} p_y(x_{n\Delta}, y_{n\Delta}) = p_y \left(X_0 - \sum_{m=0}^{N-2} x_{m\Delta}, Y_0 - \sum_{m=0}^{N-2} y_{m\Delta} \right) \]

38
Taking the ratio of these first order conditions, applying Assumption A and inverting function \(\psi \), we get that \(\forall n < N - 2 \)

\[
\frac{x_{n\Delta}}{X_0 - \sum_{m=0}^{N-2} x_{m\Delta}} = \frac{y_{n\Delta}}{Y_0 - \sum_{m=0}^{N-2} y_{m\Delta}}.
\]

or equivalently

\[
x_{n\Delta} = \frac{x_{(N-1)\Delta}}{y_{(N-1)\Delta}} y_{n\Delta}.
\]

Thus for every \(n < N - 2 \), we have

\[
\frac{x_{n\Delta}}{X_{n\Delta}} = \frac{x_{n\Delta}}{\sum_{m=n}^{N-1} x_{m\Delta}} = \frac{x_{(N-1)\Delta} y_{n\Delta}}{\sum_{m=n}^{N-2} \left(\frac{x_{(N-1)\Delta}}{y_{(N-1)\Delta}} y_{m\Delta} \right) + x_{(N-1)\Delta}} = \frac{y_{n\Delta}}{Y_{n\Delta}}.
\]

Therefore, the equal spending result holds for all periods.

A.5 Proof of Proposition 6

For the periods \(\hat{N}, \ldots, N \), we can write

\[
Z_{N\Delta} = (1 - e^{-\lambda\Delta}) \sum_{n=0}^{N-1} e^{-\lambda\Delta(N-1-n)} p(x_{n\Delta}, y_{n\Delta}) + z_0 e^{-\lambda\Delta N} + \sum_{n=0}^{N-1} e^{-\lambda\Delta(N-1-n)} \varepsilon_{n\Delta},
\]

\[
Z_{(N-1)\Delta} = (1 - e^{-\lambda\Delta}) \sum_{n=0}^{N-2} e^{-\lambda\Delta(N-2-n)} p(x_{n\Delta}, y_{n\Delta}) + z_0 e^{-\lambda\Delta(N-1)} + \sum_{n=0}^{N-2} e^{-\lambda\Delta(N-2-n)} \varepsilon_{n\Delta},
\]

\[
\vdots
\]

\[
Z_{\hat{N}\Delta} = (1 - e^{-\lambda\Delta}) \sum_{n=0}^{\hat{N}-1} e^{-\lambda\Delta(N-1-n)} p(x_{n\Delta}, y_{n\Delta}) + z_0 e^{-\lambda\Delta \hat{N}} + \sum_{n=0}^{\hat{N}-1} e^{-\lambda\Delta(N-1-n)} \varepsilon_{n\Delta}.
\]

Substituting these in the objective function of the candidates, we can rewrite it as:

\[
V = \Pr \left\{ \sum_{m=0}^{N-\hat{N}} \xi^m Z_{(N-m)\Delta} \geq 0 \right\} = \Pr \left\{ \sum_{m=0}^{N-\hat{N}} \xi^m E_{N-m} \geq - \sum_{m=0}^{N-\hat{N}} \xi^m B_{N-m} \right\},
\]

where

\[
B_k := (1 - e^{-\lambda\Delta}) \sum_{n=0}^{k-1} e^{-\lambda\Delta(N-1-n)} p(x_{n\Delta}, y_{n\Delta}) + z_0 e^{-\lambda k}
\]
and

\[E_k := \sum_{n=0}^{k-1} e^{-\lambda \Delta (N-1-n)} \varepsilon_n \Delta \]

Because all \(E_k \) are sums of normally distributed shocks, we can equivalently assume that candidate 1 maximizes (and candidate 2 minimizes) \(\sum_{m=0}^{N-N} \xi^m B_{N-m} \). Hence, the objective function of candidates will be:

\[
V = p(x_{(N-1)\Delta}, y_{(N-1)\Delta}) + \left(e^{-\lambda \Delta} + \xi \right) p(x_{(N-2)\Delta}, y_{(N-2)\Delta}) + \ldots \\
+ \left(e^{-\lambda \Delta + \xi N-N} e^{-\lambda \Delta} + \xi N-N \right) p(x_{N\Delta}, y_{N\Delta}) + \\
+ \left(e^{-\lambda \Delta + \xi N-N} e^{-\lambda \Delta} + \xi N-N \right) \sum_{n=0}^{N-1} e^{-\lambda \Delta (N-1-n)} p(x_{n\Delta}, y_{n\Delta})
\]

and it is clear from this that under Assumption A the equal spending ratio holds.

Now, for any two consecutive periods both prior to period \(\hat{N} \), after we cancel out the constant terms, the consecutive period spending ratio is the same as the one derived in the main text for the parametric generalization, \(\hat{\tau}(\lambda) \), hence it is constant. Consider two consecutive periods \((\hat{N} + k) \) and \((\hat{N} + k + 1) \), with \(k \in \{0, \ldots, N - \hat{N} - 2 \} \). Reasoning as in the main text, if we equate the first order conditions for these two periods we get

\[
x_{\hat{N}+k}^\beta h'(x_{\hat{N}+k}, y_{\hat{N}+k}) \\
= e^{\lambda \Delta} \left(1 - \frac{\xi N-N-k-1}{\xi e^{-(N-N-k-2)\lambda \Delta} + \ldots + \xi N-N-k-2 e^{-\lambda \Delta} + \xi N-N-k-1} \right) x_{\hat{N}+k+1}^\beta h'(x_{\hat{N}+k+1}, y_{\hat{N}+k+1}).
\]

Because the term in parentheses above is lower than 1, if we compare this equation with equation (10), we can show that the consecutive period spending ratio is now lower. In particular, using the same steps used to prove Proposition 5, we get that the consecutive period spending ratio is

\[
\hat{\tau}_{\hat{N}+k}(\lambda) = e^{-\lambda \Delta} \left(1 - \frac{\xi N-N-k-1}{\xi e^{-(N-N-k-2)\lambda \Delta} + \ldots + \xi N-N-k-2 e^{-\lambda \Delta} + \xi N-N-k-1} \right)^{\frac{1}{(1+\beta)d-1}}
\]

and the term in parentheses is lower than 1. Finally, observe that the term in parentheses is decreasing in \(k \). Therefore, for \(k \geq 0 \), \(\hat{\tau}_{\hat{N}+k}(\lambda) \) will be decreasing in \(k \) if \((1+\beta)d < 1 \) and increasing in \(k \) if \((1+\beta)d > 1 \).
A.6 Proof of Proposition 7

We will in fact prove a more general result than Proposition 7 under which we also characterize the stochastic path of spending over time for this extension.

Applying Itô’s lemma, we can write the process governing the evolution of this ratio for this model as:

\[
\frac{d(X_t/Y_t)}{X_t/Y_t} = \mu_{XY}(z_t)dt + \sigma_X dW^X_t - \sigma_Y dW^Y_t ,
\]

where

\[
\mu_{XY}(z_t) = (a - b)z_t + \sigma_Y^2 - \rho \sigma_X \sigma_Y .
\]

Hence, the instantaneous volatility of this process is simply

\[
\sigma_{XY} = \sqrt{\sigma_X^2 + \sigma_Y^2 - \rho \sigma_X \sigma_Y}.
\]

Therefore, if at time \(t \in T \) the candidates have an amount of available resources equal to \(X_t \) and \(Y_t \) and spend \(x_t \) and \(y_t \), then \(Z_{t+\Delta} \) conditional on all information, \(I_t \), available at time time \(t \) is a normal random variable:

\[
Z_{t+\Delta} \mid I_t \sim N \left(\log \left(\frac{x_t}{y_t} \right) \frac{1 - e^{-\lambda \Delta}}{\lambda} + z_t e^{-\lambda \Delta}, \frac{\sigma_Y^2(1 - e^{-2\lambda \Delta})}{2\lambda} \right) ,
\]

and Itô’s lemma implies that

\[
\log \left(\frac{X_{t+\Delta}}{Y_{t+\Delta}} \right) \mid I_t \sim N \left(\log \left(\frac{X_t - x_t}{Y_t - y_t} \right) + \mu_{XY}(z_t) \Delta, \sigma_{XY}^2 \Delta \right) .
\]

Last, let \(g_1(0) = 1 \) and \(g_2(0) = 0 \), and define recursively for every \(m \in \{ 1, ..., N - 1 \} \),

\[
\begin{pmatrix}
g_1(m) \\
g_2(m)
\end{pmatrix} = \begin{pmatrix}
e^{-\lambda \Delta} & a - b \\
\frac{1 - e^{-\lambda \Delta}}{\lambda} & 1
\end{pmatrix} \begin{pmatrix}
g_1(m-1) \\
g_2(m-1)
\end{pmatrix} \tag{13}
\]

Then we have the following result, which implies Proposition 7 in the main text.

Proposition 7’. Let \(t = (N - m)\Delta \in T \) be a time at which \(X_t, Y_t > 0 \). Then, in the essentially unique equilibrium, spending ratios are equal to

\[
\frac{x_t}{X_t} = \frac{y_t}{Y_t} = \frac{g_1(m-1)}{g_1(m-1) + g_2(m-1) \frac{\lambda}{1 - e^{-\lambda \Delta}}} . \tag{14}
\]
Moreover, in equilibrium, \(\log(x_{t+n\Delta}/y_{t+n\Delta}), z_{t+n\Delta}) \mid \mathcal{I}_t \) follows a bivariate normal distribution with mean
\[
\left(\frac{1}{1-e^{-\lambda \Delta} \Delta} (a-b) \Delta \right)^n \left(\log \left(\frac{Y}{Y_t} \right) + \frac{\lambda (\sigma^2_{Xt} - \rho \sigma_X \sigma_Y)}{a-b} \right) - \left(\frac{\lambda (\sigma^2_{Xt} - \rho \sigma_X \sigma_Y)}{a-b} \right)
\]
and variance
\[
\left(\frac{1}{1-e^{-\lambda \Delta} \Delta} (a-b) \Delta \right)^n \left(\frac{\sigma^2_{XY} \Delta}{\sigma^2_{(1-e^{-2\lambda \Delta})}} \right) \left(\frac{1}{(a-b) \Delta} \right).
\]

Proof. Consider time \(t = n\Delta \in \mathcal{T} \) and suppose that at time \(t \) both candidates have still a positive budget, \(X_t, Y_t > 0 \). We will prove the proposition by induction on the times at which candidates take actions, \(t = (N-m)\Delta \in \mathcal{T}, m = 1, 2, \ldots, N \).

To simplify notation, let \(g_1(0) = 1, g_2(0) = 0, g_3(0) = 0 \) and \(g_4(0) = 0 \). Furthermore, using (13), recursively write for every \(m \in \{1, 2, \ldots, N\} \),
\[
g_3(m) = g_2(m-1)\Delta + g_3(m-1)
\]
\[
g_4(m) = (g_1(m-1))^2 \frac{\sigma^2_{X} (1-e^{-2\lambda \Delta})}{2\lambda} + (g_2(m-1))^2 \frac{\sigma^2_{X} \Delta}{2\lambda} + g_4(m-1)
\]

Diagonalizing the matrix in (13) and solving for \((g_1(m), g_2(m))'\) with initial conditions \(g_0(1) = 1 \) and \(g_2(0) = 0 \), we can conclude that, for each \(N \in \mathbb{N} \) and \(\lambda, \Delta > 0 \), there exists \(-\eta < 0 \) such that, if \(a - b \geq -\eta \), both \(g_1(m) \) and \(g_2(m) \) are non-negative for each \(m \). In the proof, we will thus assume that \(g_1(m) \geq 0 \) and \(g_2(m) \geq 0 \) for every \(m = 1, \ldots, N \).

The inductive hypothesis is the following: for every \(\tau = (N-m)\Delta \in \mathcal{T}, m \in \{1, \ldots, N\} \), if \(X_\tau, Y_\tau > 0 \), then
\[
\begin{align*}
\text{(i)} & \quad \text{the continuation payoff of each candidate is a function of current popularity } z_\tau, \text{ current budget ratio } X_\tau/Y_\tau \text{ and calendar time } \tau; \\
\text{(ii)} & \quad \text{the distribution of } Z_\tau \text{ given } z_\tau \text{ and } X_\tau/Y_\tau \text{ is } \mathcal{N} \left(\hat{\mu}_{(N-m)\Delta}(z_\tau), \hat{\sigma}^2_{(N-m)\Delta} \right), \text{ where } \\
& \hat{\mu}_{(N-m)\Delta}(z_{(N-m)\Delta}) = g_1(m)z_{(N-m)\Delta} + g_2(m) \log \left(\frac{X_{(N-m)\Delta}}{Y_{(N-m)\Delta}} \right) + g_3(m)(\sigma^2_{X} - \rho \sigma_X \sigma_Y), \\
& \hat{\sigma}^2_{(N-m)\Delta} = g_4(m).
\end{align*}
\]
Base Step Consider $m = 1$, the subgame reached in the final period $t = (N-1)\Delta$ and suppose both candidates still have a positive amount of resources, $X_{(N-1)\Delta}, Y_{(N-1)\Delta} > 0$. Both candidates will spend their remaining resources: $x_{(N-1)\Delta} = X_{(N-1)\Delta}$ and $y_{(N-1)\Delta} = Y_{(N-1)\Delta}$. Hence, $x_{(N-1)\Delta}/y_{(N-1)\Delta} = X_{(N-1)\Delta}/Y_{(N-1)\Delta}$ and

$$Z_T \mid I_{(N-1)\Delta} \sim \mathcal{N}\left(\log \left(\frac{X_{(N-1)\Delta}}{Y_{(N-1)\Delta}}\right) \frac{1 - e^{-\lambda \Delta}}{\lambda} + z_{(N-1)\Delta} e^{-\lambda \Delta}, \frac{\sigma^2(1 - e^{-2\lambda \Delta})}{2\lambda}\right).$$

Because Z_T fully determines the candidates' payoffs, the continuation payoff of the candidates is a function of current popularity $z_{(N-1)\Delta}$, the ratio $X_{(N-1)\Delta}/Y_{(N-1)\Delta}$, and calendar time. Furthermore, given the recursive definition of g_1, g_2, g_3 and g_4, we can conclude that the second part of the inductive hypothesis also holds at $t = (N-1)\Delta$. This concludes the base step.

Inductive Step Suppose the inductive hypothesis holds true at any time $(N-m)\Delta \in \mathcal{T}$ with $m \in \{1, 2, ..., m^* - 1\}, m^* \leq N$. We want to show that at time $(N-m^*)\Delta \in \mathcal{T}$, if $X_t, Y_t > 0$, then (i) an equilibrium exists, (ii) in all equilibria, $x_t/y_t = X_t/Y_t$ and the continuation payoffs of both candidates are functions of relative popularity z_t, the ratio X_t/Y_t, and calendar time t, and (iii) Z_T given period t information is distributed according to $\mathcal{N}\left(\hat{\mu}_{(N-m^*)\Delta}(z_t), \hat{\sigma}^2_{(N-m^*)\Delta}\right)$.

Consider period $t = N - m^*$ and let $x, y > 0$ be the candidates’ spending in this period. Exploiting the inductive hypothesis, the distribution of $Z_{t+\Delta} \mid I_t$ and the one of $\log \left(\frac{X_{t+\Delta}}{Y_{t+\Delta}}\right) \mid I_t$, we can compound normal distributions and conclude that $Z_T \mid I_t \sim \mathcal{N}(\hat{\mu}, \hat{\sigma}^2)$, where

$$\hat{\mu} = \hat{\mu}_t(x, y) := G_1 \log \left(\frac{x}{y}\right) + G_2 \log \left(\frac{X_{(N-m^*)\Delta} - x}{Y_{(N-m^*)\Delta} - y}\right) + G_3$$

$$\hat{\sigma}^2 = G_4$$

with G_1, G_2, G_3 and G_4 defined as follows:

$$G_1 = g_1(m^* - 1)\frac{1 - e^{-\lambda \Delta}}{\lambda} \quad (15)$$

$$G_2 = g_2(m^* - 1) \quad (16)$$

$$G_3 = g_1(m^* - 1)z_t e^{-\lambda \Delta} + g_2(m^* - 1)\mu_{XY}(z_t)\Delta + g_3(m^* - 1)(\sigma^2_Y - \rho \sigma_X \sigma_Y) \quad (17)$$

$$G_4 = (g_1(m^* - 1))^2\frac{\sigma^2(1 - e^{-2\lambda \Delta})}{2\lambda} + (g_2(m^* - 1))^2\sigma^2_{XY}\Delta + g_4(m^* - 1) \quad (18)$$
Note that $\hat{\sigma}^2$ is independent of x and y.

Candidate 1 wins the election if $Z_T > 0$. Thus, in equilibrium he chooses x to maximize his winning probability

$$\int_{-\hat{\mu}(x,y)/\hat{\sigma}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-s/2} ds.$$

The first order necessary condition for x is given by

$$\frac{1}{\sqrt{2\pi}} e^{\hat{\mu}(x,y)/\hat{\sigma}} \frac{\hat{\mu}'(x,y)}{\hat{\sigma}} = \frac{1}{\sqrt{2\pi}} e^{\hat{\mu}(x,y)/\hat{\sigma}} \left[\frac{G_1(X_1 - x) - G_2 x}{x(X_1 - x)} \right].$$

Furthermore, when the first order necessary condition holds, the second order condition is given by

$$\frac{1}{\sqrt{2\pi}} e^{\hat{\mu}(x,y)/2\hat{\sigma}} \frac{\hat{\mu}''(x,y)}{\hat{\sigma}} = -\frac{1}{\sqrt{2\pi}} e^{\hat{\mu}(x,y)/2\hat{\sigma}} \left[\frac{G_1(X_1 - x)^2 + G_2 x^2}{x^2(X_1 - x)^2} \right] < 0.$$

Hence, the problem is strictly quasi-concave for candidate 1 for each y. A symmetric argument shows that the corresponding problem for candidate 2 is strictly quasi-concave for each x. Hence an equilibrium exists and the optimal investment of the two candidates is pinned down by the first order necessary conditions, which yields

$$\frac{x_t}{X_t} = \frac{y_t}{Y_t} = \frac{G_1}{G_1 + G_2}. \quad (19)$$

Thus, in equilibrium, $x_t/y_t = X_t/Y_t$ and $(X_t - x_t)/(Y_t - y_t) = X_t/Y_t$. Because the continuation payoffs of candidates is fully determined by Z_T, these expected payoffs from the perspective of time t depend only on calendar time, the level of current popularity and the ratio of budget at time t. Furthermore, recalling the definition of $\mu_{XY}(z_t)$, we conclude that the second part of the inductive hypothesis is also true.

Next, we know that

$$Z_T \mid I_{(N-m^*)\Delta} \sim N(\hat{\mu}_{(N-m^*)\Delta}, \hat{\sigma}^2_{(N-m^*)\Delta})$$

where

$$\hat{\mu}_{(N-m^*)\Delta}(z_{(N-m^*)\Delta}) = g_1(m^*)z_{(N-m^*)\Delta} + g_2(m^*) \log \left(\frac{X_{(N-m)\Delta}}{Y_{(N-m)\Delta}} \right) + g_3(m^*)(\sigma_Y^2 - \rho \sigma_X \sigma_Y), \quad \hat{\sigma}^2_{(N-m^*)\Delta} = g_4(m^*).$$

44
The expression for \(x_t/X_t \) and \(y_t/Y_t \) in the proposition thus follows from (13), (15), (16) and (19). To derive the distribution of \((x_t/y_t, z_t)\), we first use the proof of Proposition 7 to derive the distribution of \(x_{t+j\Delta}/y_{t+j\Delta} \) and \(z_{t+j\Delta} \) given \(x_t/y_t \) and \(z_t \). Let

\[
\Sigma = \begin{pmatrix}
\sigma_{XY}^2 \Delta & 0 \\
0 & \frac{1-e^{-2\lambda \Delta}}{2\lambda}
\end{pmatrix}.
\]

Because \(X_t/Y_t = x_t/y_t\) for each \(t\), we can write

\[
\begin{pmatrix}
\log \left(\frac{x_{t+n\Delta}}{y_{t+n\Delta}} \right) \\
\log \left(\frac{x_{t+(n-1)\Delta}}{y_{t+(n-1)\Delta}} \right)
\end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix}
\log \left(\frac{x_{t+(n-1)\Delta}}{y_{t+(n-1)\Delta}} \right) + \mu_{XY} \left(z_{t+(n-1)\Delta} \right) \\
\log \left(\frac{x_{t+(n-1)\Delta}}{y_{t+(n-1)\Delta}} \right) + \log \left(\frac{x_{t+(n-1)\Delta}}{y_{t+(n-1)\Delta}} \right) + \frac{1-e^{-\lambda \Delta}}{\lambda} + z_{t+(n-1)\Delta} e^{-\lambda \Delta}
\end{pmatrix}, \Sigma \right)
\]

Define

\[
A = \begin{pmatrix} 1 \\ \frac{1-e^{-\lambda \Delta}}{\lambda} \end{pmatrix}.
\]

and notice that the previous distribution implies

\[
\begin{pmatrix}
\log \left(\frac{x_{t+n\Delta}}{y_{t+n\Delta}} \right) + \frac{\lambda \sigma_y^2 - \rho \sigma_y \sigma_y}{a-b} \\
z_{t+n\Delta} + \frac{\sigma_y^2 - \rho \sigma_y \sigma_y}{a-b}
\end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix}
\log \left(\frac{x_{t+(n-1)\Delta}}{y_{t+(n-1)\Delta}} \right) + \frac{\lambda \sigma_y^2 - \rho \sigma_y \sigma_y}{a-b} \\
z_{t+(n-1)\Delta} + \frac{\sigma_y^2 - \rho \sigma_y \sigma_y}{a-b}
\end{pmatrix}, \Sigma \right)
\]

follows a multivariate normal distribution

\[
\mathcal{N} \left(\begin{pmatrix}
\log \left(\frac{x_{t+(n-1)\Delta}}{y_{t+(n-1)\Delta}} \right) + \frac{\lambda \sigma_y^2 - \rho \sigma_y \sigma_y}{a-b} \\
z_{t+(n-1)\Delta} + \frac{\sigma_y^2 - \rho \sigma_y \sigma_y}{a-b}
\end{pmatrix}, \Sigma \right)
\]

Therefore, we conclude that

\[
\begin{pmatrix}
\log \left(\frac{x_{t+n\Delta}}{y_{t+n\Delta}} \right) + \frac{\lambda \sigma_y^2 - \rho \sigma_y \sigma_y}{a-b} \\
z_{t+n\Delta} + \frac{\sigma_y^2 - \rho \sigma_y \sigma_y}{a-b}
\end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix}
\log \left(\frac{x_{t+n\Delta}}{y_{t+n\Delta}} \right) + \frac{\lambda \sigma_y^2 - \rho \sigma_y \sigma_y}{a-b} \\
z_{t+n\Delta} + \frac{\sigma_y^2 - \rho \sigma_y \sigma_y}{a-b}
\end{pmatrix}, \Sigma \right)
\]

follows the multivariate normal distribution

\[
\mathcal{N} \left(\begin{pmatrix}
\log \left(\frac{x_{t+n\Delta}}{y_{t+n\Delta}} \right) + \frac{\lambda \sigma_y^2 - \rho \sigma_y \sigma_y}{a-b} \\
z_{t+n\Delta} + \frac{\sigma_y^2 - \rho \sigma_y \sigma_y}{a-b}
\end{pmatrix}, \Sigma \right)
\]

\[
\mathcal{N} \left(A^n \begin{pmatrix}
\log \left(\frac{X_t}{Y_t} \right) + \frac{\lambda \sigma_y^2 - \rho \sigma_y \sigma_y}{a-b} \\
z_t + \frac{\sigma_y^2 - \rho \sigma_y \sigma_y}{a-b}
\end{pmatrix}, A^n \Sigma (A^T)^n \right).
\]
A.7 Proof of Proposition 8

Fix \(\lambda \) and \(\Delta \). and let \(n = N - m \). We must show that for all \(n \in \{0, ..., N - 1\} \),

\[
\hat{r}_n(a - b) = \frac{x_n}{X_n} / \frac{x_{(n+1)}}{X_{(n+1)}}
\]

is decreasing in \(\alpha := a - b \) around \(\alpha = 0 \). Note that \(\hat{r}_n \) is the same as \(\bar{r}_{N-m} \).

Proposition 7' and (13) imply

\[
\hat{r}_m(\alpha) = \frac{g_1(m - 1) \left(g_1(m) + g_2(m) \frac{\lambda}{1-e^{-\lambda \Delta}} \right)}{\left(g_1(m - 1) + g_2(m - 1) \frac{\lambda}{1-e^{-\lambda \Delta}} \right) g_1(m)} = \frac{g_1(m - 1) g_2(m + 1)}{g_1(m) g_2(m)}.
\]

Furthermore, (13) also implies

\[
g_1(m) = \frac{(\lambda + \alpha) e^{-\lambda \Delta} - \alpha}{\lambda} g_1(m - 1) + \alpha g_2(m), \tag{20}
g_2(m + 1) = \frac{(1 - e^{-\lambda \Delta}) ((\lambda + \alpha) e^{-\lambda \Delta} - \alpha)}{\lambda^2} g_1(m - 1) + \frac{\alpha - \alpha e^{-\lambda \Delta} + \lambda}{\lambda} g_2(m). \tag{21}
\]

Substituting in the expression for \(\hat{r}_m(\alpha) \) and simplifying, we get

\[
\hat{r}_m(\alpha) = \frac{1}{\lambda} + \alpha g_m \left(\frac{(1 - e^{-\lambda \Delta}) ((\lambda + \alpha) e^{-\lambda \Delta} - \alpha)}{\lambda^2} \frac{1}{g_m} + \frac{\alpha - \alpha e^{-\lambda \Delta} + \lambda}{\lambda} \right), \tag{22}
\]

where \(g_m := g_2(m) / g_1(m - 1) \). We can thus identify two values of \(g_m \) for which (22) holds. However, if \(\alpha \) is sufficiently low, namely if \(\alpha < \lambda/(1 + e^{\lambda \Delta}) \), one of these two values is negative and thus not feasible. Thus, if \(\alpha \) is sufficiently small, (22) enables us to express \(g_m \) as a function of \(\hat{r}_m(\alpha) \). Moreover, from (20) and (21), we further have

\[
g_{m+1} = \frac{1 - e^{-\lambda \Delta} ((\lambda + \alpha) e^{-\lambda \Delta} - \alpha)}{\lambda} + \frac{\alpha + \alpha - \alpha e^{-\lambda \Delta} + \lambda}{\lambda} g_m. \tag{23}
\]

Computing (22) one step forward and substituting for \(g_{m+1} \) as obtained from (23) and, subsequently, for \(g_m \) as obtained from (22), we get \(\hat{r}_{m+1} \) as a function of \(\alpha \) and \(\hat{r}_m \), \(\hat{r}_{m+1}(\alpha, \hat{r}_m) \).

Given the expression for \(\hat{r}_{m+1} \), we can show by induction that \(\hat{r}_m > e^{\lambda \Delta} > 1 \) for each \(m \) around \(\alpha = 0 \). When \(m = 1 \), we have \(x_{(N-1)\Delta}/X_{(N-1)\Delta} = 1 \) and \(x_{(N-2)\Delta}/X_{(N-2)\Delta} = \).
\(g_1(1) / \left(g_1(1) + g_2(1) \right) \). Substituting for \(g_1(1) \) and \(g_2(1) \), we get \(\hat{r}_1 - e^{\lambda \Delta} = 1 \). Thus, \(\hat{r}_1 > e^{\lambda \Delta} > 1 \). Suppose \(\hat{r}_m > e^{\lambda \Delta} > 1 \). Then, subtracting \(e^{\lambda \Delta} \) from the right hand side of the expression of \(\hat{r}_{m+1} \) and setting \(\alpha = 0 \), we get \(\hat{r}_{m+1} - e^{\lambda \Delta} = 1 - e^{\lambda \Delta} / \hat{r}_m > 0 \). We conclude that, if \(\hat{r}_m > e^{\lambda \Delta} \), then \(\hat{r}_{m+1} > e^{\lambda \Delta} \) in a neighborhood of \(\alpha = 0 \). Therefore, \(\hat{r}_m > e^{\lambda \Delta} \) for each \(m \) in a neighborhood of \(\alpha = 0 \).

Furthermore, \(\hat{r}_{m+1}(\alpha, \hat{r}_m) \) is decreasing in \(\alpha \) and increasing in \(\hat{r}_m \) at \(\alpha = 0 \):

\[
\frac{\partial \hat{r}_{m+1}(\alpha, \hat{r}_m)}{\partial \alpha} \bigg|_{\alpha=0} = - \frac{(\hat{r}_m - 1) e^{\lambda \Delta} \left(e^{2\lambda \Delta} - 1 \right)}{\hat{r}_m (\hat{r}_m - e^{\lambda \Delta})} < 0;
\]

\[
\frac{\partial \hat{r}_{m+1}(\alpha, \hat{r}_m)}{\partial \hat{r}_m} \bigg|_{\alpha=0} = e^{\lambda \Delta} (\hat{r}_m^2) > 0.
\]

Hence, a simple induction argument implies that \(\hat{r}_m(\alpha) \) is decreasing in \(\alpha \) for each \(m \) in a neighborhood of \(\alpha = 0 \).

Finally, \(\hat{r}_m \) is increasing in \(\lambda \) as well:

\[
\frac{\partial \hat{r}_{m+1}(\alpha, \hat{r}_m, \lambda)}{\partial \lambda} \bigg|_{\alpha=0} = e^{\lambda \Delta} (\hat{r}_m - 1) \Delta \hat{r}_m > 0 \text{ for each } \lambda > 0.
\]

Thus, a symmetric inductive argument shows that \(\hat{r}_m \) is increasing in \(\lambda \) for every \(m \) in a neighborhood of \(\alpha = 0 \).

A.8 Proof of Proposition 9

For any \(t \in T \) the distribution of \(Z_{t+\Delta} \mid I_t \) is given by (2), while Ito’s lemma implies:

\[
\log \left(\frac{X_{t+\Delta}}{Y_{t+\Delta}} \right) \mid I_t \sim \mathcal{N} \left(\log \left(\frac{X_t - x_t}{Y_t - y_t} \right) + m(z_t), \sigma_{XY}^2 \Delta \right),
\]

where \(m_{XY}(z_t) = (a - b) / (1 + z_t^2) + \sigma_Y^2 - \rho \sigma_X \sigma_Y \) and \(\sigma_{XY}^2 = \sigma_X^2 + \sigma_Y^2 - \rho \sigma_X \sigma_Y \). Furthermore, the two distributions are independent (conditional on \(I_t \)). Let \(\phi_1 \) and \(\phi_2 \) be the pdfs of these two distributions. The proof of the proposition is by induction.

Base Step. Consider period \(t = (N - 1) \Delta \). Because money leftover has no value and we are considering an interior equilibrium, \(x_{(N-1)\Delta} = X_{(N-1)\Delta} \) and \(y_{(N-1)\Delta} = Y_{(N-1)\Delta} \). Thus, the equal spending holds at time \(t = (N-1) \Delta \). Also, observe that the continuation
payoff of candidates is fully determined by the distribution of Z_T and, in equilibrium,

$$
Z_T \mid I_{(N-1)\Delta} \sim \mathcal{N} \left(\log \left(\frac{X_{(N-1)\Delta}}{Y_{(N-1)\Delta}} \right) \frac{1 - e^{-\lambda \Delta}}{\lambda} + z_{(N-1)\Delta} e^{-\lambda \Delta} \left(\frac{\sigma^2 (1 - e^{-2\lambda \Delta})}{2\lambda} \right) \right).
$$

Hence, in equilibrium, the expected continuation payoff of candidates at time $(N - 1)\Delta$ depends on the popularity at time $(N - 1)\Delta$, $z_{(N-1)\Delta}$, and on the logarithm of the available budgets, $\log(X_{(N-1)\Delta}/Y_{(N-1)\Delta})$. Denote such an expected continuation payoff for candidate 1 with $V_{(N-1)\Delta}(z_{(N-1)\Delta}, X_{(N-1)\Delta}/Y_{(N-1)\Delta})$. Obviously, the expected continuation payoff for candidate 2 is $1 - V_{(N-1)\Delta}(z_{(N-1)\Delta}, X_{(N-1)\Delta}/Y_{(N-1)\Delta})$.

Inductive Step. Pick $m \in \{0, N-2\}$ and suppose that for all periods $\tau \in \{(N - m + 1)\Delta, (N - m + 2)\Delta, (N - 1)\Delta\}$ in an interior equilibrium the equal spending ratio result holds and the expected continuation payoff of candidates depends on z_{τ} and on X_τ and Y_τ only through the log of their ratio, $\log(X_\tau/Y_\tau)$. Denote this continuation for candidate 1 with $V_\tau(z_\tau, X_\tau/Y_\tau)$. Then, at time $t = (N - m)\Delta$, the expected payoff of candidate 1 is:

$$
V_t(z_t, x_t, y_t) = \int \phi_1(z_{t+\Delta} | z_t, x_t, y_t) \phi_2(z_{t+\Delta}, \log \left(\frac{X_{t+\Delta}}{Y_{t+\Delta}} \right) | z_t, x_t, y_t) \times
\times V \left(z_{t+\Delta}, \log \left(\frac{X_{t+\Delta}}{Y_{t+\Delta}} \right) \right) d(z_{t+\Delta}, X_{t+\Delta}, Y_{t+\Delta}). \quad (25)
$$

Candidate 1 chooses x_t to maximize $V_t(z_t, x_t, y_t)$ and candidate 2 chooses y_t to minimize it. Hence the two first order conditions are given by:

$$
\frac{1}{x_t} \int \frac{\partial \phi_1}{\partial \mu_1} \phi_2 V_{t+\Delta} d(z_{t+\Delta}, X_{t+\Delta}, Y_{t+\Delta}) =
+ \frac{1}{X_t - x_t} \int \phi_1 \left(\frac{\partial \phi_2}{\partial \mu_2} V_{t+\Delta} + \phi_2 \frac{\partial V_{t+\Delta}}{\partial \log \left(\frac{X_t - x_t}{Y_t - y_t} \right)} \right) d(z_{t+\Delta}, X_{t+\Delta}, Y_{t+\Delta})
$$

$$
\frac{1}{y_t} \int \frac{\partial \phi_1}{\partial \mu_1} \phi_2 V_{t+\Delta} d(z_{t+\Delta}, X_{t+\Delta}, Y_{t+\Delta}) =
+ \frac{1}{Y_t - y_t} \int \phi_1 \left(\frac{\partial \phi_2}{\partial \mu_2} V_{t+\Delta} + \phi_2 \frac{\partial V_{t+\Delta}}{\partial \log \left(\frac{X_t - x_t}{Y_t - y_t} \right)} \right) d(z_{t+\Delta}, X_{t+\Delta}, Y_{t+\Delta})
$$

Consider candidate 1 (the reasoning for candidate 2 is identical). Spending 0 at time t is not compatible with equilibrium behavior: if candidate 1 spends 0 at time t, a
deviation to spending $X_\tau/(N-\tau)$ in all periods $\tau \geq t$ would strictly increase the winning probability.\(^{30}\) Hence both candidates must be spending a positive amount in period t. Similarly, $x_t = X_t$ cannot be compatible with equilibrium behavior either: if candidate 2 is spending a positive amount in period $(N - m + 1)\Delta$, this strategy would lead to the defeat of player 1 in period $(N - m + 1)\Delta$, while by spending $x_\tau = X_\tau/(N - \tau)$ for all $\tau \geq t$ candidate 1 could win with positive probability. (If candidate 2 is spending 0 in period $(N - m + 1)\Delta$, $x_t = X_t$ would lead player 1 to win with probability 1/2, while $x_\tau = X_\tau/(N - \tau)$ for all $\tau \geq t$ would guarantee victory with probability 1.) Hence the equilibrium must be interior and the first order condition must hold. Thus, taking the ratio of the two first order conditions, we get the equal spending ratio result. Hence, in equilibrium must be interior and the first order condition must hold. Therefore, in equilibrium spending must be interior (i.e., satisfy the first order conditions) for any district and any period.

A.9 Proof of Proposition 10

Note that the game ends in a defeat for any candidate that spends 0 in any district in any period. Therefore, in equilibrium spending must be interior (i.e., satisfy the first order conditions) for any district and any period.

Given this, we will prove the proposition by induction. Consider the final period as the basis case. Fix $(z^T_{T-\Delta})^S_{s=1}$ arbitrarily. Suppose candidates 1 and 2 have budgets X and Y, respectively in the last period. Fix an equilibrium strategy profile $(x^{T*}_{T-\Delta}, y^{T*}_{T-\Delta})^S_{s=1}$. We show that, if they have budgets θX and θY, then $(\theta x^{T*}_{T-\Delta}, \theta y^{T*}_{T-\Delta})^S_{s=1}$ is an equilibrium. This implies that the equilibrium payoff in the last period is determined by $(z^T_{T-\Delta})^S_{s=1}$ and $X_{T-\Delta}/Y_{T-\Delta}$.

Suppose otherwise. Without loss, assume that there is $(x^{T*}_{T-\Delta})^S_{s=1}$ such that it gives a higher probability of winning to candidate 1 given $(z^T_{T-\Delta})^S_{s=1}$ and $\theta y^{T*}_{T-\Delta}$, satisfying $\sum^S_{s=1} x^{T*}_{T-\Delta} \leq \theta X$. Since the distribution of $(Z^T_s)_{s=1}^S$ is determined by $(z^T_{T-\Delta})^S_{s=1}$ and $(x^{T*}_{T-\Delta}/y^{T*}_{T-\Delta})^S_{s=1}$, this means that the distribution of $(Z^T_s)_{s=1}^S$ given $(z^T_{T-\Delta})^S_{s=1}$ and $(x^{T*}_{T-\Delta}/y^{T*}_{T-\Delta})^S_{s=1}$ is more favorable to candidate 1 than that given $(z^T_{T-\Delta})^S_{s=1}$ and

$$\left(\frac{\theta x^{T*}_{T-\Delta}/\theta y^{T*}_{T-\Delta}}{x^{T*}_{T-\Delta}/y^{T*}_{T-\Delta}}\right)^S_{s=1} = \left(x^{T*}_{T-\Delta}/y^{T*}_{T-\Delta}\right)^S_{s=1}.$$

\(^{30}\)The probability would jump from 0 to a positive amount if candidate 2 was spending a positive amount and from 1/2 to 1 if candidate 2 was spending 0.
On the other hand, candidate 1 could spend \((\frac{1}{\theta^s} x^s_{1t-\Delta})_{s=1}^S\) when the budgets are \((X, Y)\). Since \((x^s_{T-\Delta}, y^s_{T-\Delta})_{s=1}^S\) is an equilibrium, the distribution of \((Z^s_{T})_{s=1}^S\) given \((z^s_{T-\Delta})_{s=1}^S\) and \((\frac{1}{\theta^s} x^s_{1t-\Delta}/y^s_{1t-\Delta})_{s=1}^S\) is no more favorable to candidate 1 than that given \((z^s_{T-\Delta})_{s=1}^S\) and \((x^s_{1t-\Delta}/y^s_{1t-\Delta})_{s=1}^S\). This is a contradiction.

Now consider the inductive step. Take the inductive hypothesis to be that the continuation payoff for either candidate in period \(t \in T\) can be written as a function of only the budget ratio \(X_{t+1}/Y_{t+1}\) and vector \((z^s_{t+1})_{s=1}^S\) and candidates spend a positive amount in each district and in each following period. We have to show that \(x^s_t/X_t = y^s_t/Y_t\).

Denote the continuation payoff of candidate 1 in period \(t\) with \(W_{t+1}(\frac{X_{t+1}}{Y_{t+1}}, (z^s_{t+1})_{s=1}^S)\). Candidate 1’s objective is

\[
\max_{x_t} \int W_{t+1} \left(\frac{X_t - \sum_{s=1}^S x^s_t}{Y_t - \sum_{s=1}^S y^s_t}, (z^s_{t+1})_{s=1}^S \right) f_t \left(\frac{x^s_t}{y^s_t}, (z^s_{t+1})_{s=1}^S \right) dz_{t+1}.
\]

The first order condition for an interior optimum is

\[
\frac{1}{y^s_t} \int \frac{\partial W_{t+1} ((X_t - x_t)/(Y_t - y_t), z_{t+1})}{\partial (x^s_t/y^s_t)} f_t \left(\frac{x^s_t}{y^s_t}, z_t \right) dz_{t+1} =
\]

\[
\frac{1}{y^s_t} \int W_{t+1} \left(\frac{X_t - x_t}{Y_t - y_t}, z_{t+1} \right) \frac{\partial f_t \left(\frac{x^s_t}{y^s_t}, (x^s_t/y^s_t)_{s=1}^S, z_t \right)}{\partial (x^s_t/y^s_t)} dz_{t+1}.
\]

Similarly, the objective for candidate 2 is

\[
\min_{y_t} \int W_{t+1} \left(\frac{X_t - x_t}{Y_t - y_t}, z_{t+1} \right) f_t \left(\frac{x_t}{y_t}, z_t \right) dz_{t+1}.
\]

and the corresponding first order condition is

\[
\frac{X_t - \sum_{s=1}^S x^s_t}{(Y_t - \sum_{s=1}^S y^s_t)^2} \int \frac{\partial W_{t+1} ((X_t - x_t)/(Y_t - y_t), z_{t+1})}{\partial (x^s_t/y^s_t)} f_t \left(\frac{x_t}{y_t}, z_t \right) dz_{t+1} =
\]

\[
\frac{x^s_t}{(y^s_t)^2} \int W_{t+1} \left(\frac{X_t - x_t}{Y_t - y_t}, z_{t+1} \right) \frac{\partial f_t \left(\frac{x^s_t}{y^s_t}, (x^s_t/y^s_t)_{s=1}^S, (z_t)_{s=1}^S \right)}{\partial (x^s_t/y^s_t)} dz_{t+1}.
\]

Dividing the candidate 1’s first order condition by candidate 2’s, we have

\[
\frac{X_t - \sum_{s=1}^S x^s_t}{Y_t - \sum_{s=1}^S y^s_t} = \frac{x^s_t}{y^s_t}.
\]
Hence there exists θ such that $x_t^s = \theta y_t^s$ for each s, and so

$$\theta = \frac{X_t - \theta \sum_{s=1}^{S} y_t^s}{Y_t - \sum_{s=1}^{S} y_t^s},$$

which implies $\theta = X_t / Y_t$. Therefore, $x_t^s / y_t^s = X_t / Y_t$ for each s.
References

