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News or Noise? The Missing Link†

By Ryan Chahrour and Kyle Jurado*

The literature on belief-driven business cycles treats news and noise 
as distinct representations of agents’ beliefs. We prove they are empir-
ically the same. Our result lets us isolate the importance of purely 
belief-driven fluctuations. Using three prominent estimated models, 
we show that existing research understates the importance of pure 
beliefs. We also explain how differences in both economic environ-
ment and information structure affect the estimated importance of 
pure beliefs. (JEL D83, D84, E12, E23, E32)

A large literature in macroeconomics has argued that changes in agents’ beliefs 
about the future can be an important cause of economic fluctuations.1 This idea, 
which dates at least to Pigou (1927), has been formalized in two ways. In the first 
way, which we call a “news representation,” agents perfectly observe part of an 
exogenous fundamental in advance. As an analogy, this is like learning today that in 
next week’s big game your favorite team will certainly win the first half. You don’t 
know whether they will win the game, which is ultimately what you care about, 
because you are still unsure how the second half will turn out. In the second way, 
which we call a “noise representation,” agents imperfectly observe an exogenous 
fundamental in advance. This is like your friend telling you that he thinks your team 
will win next week’s game. He follows the sport more than you do, and is often 
right, but sometimes he gets it wrong.

Much of the literature emphasizes the differences between these two ways of 
representing agents’ beliefs.2 For example, in models with news, agents have full 
information and shocks are perfectly anticipated; in models with noise, agents have 
imperfect information and shocks are not perfectly anticipated. It has been sug-
gested that models with noise shocks may be more theoretically flexible, and require 
weaker assumptions regarding the timing of information arrival. Others argue that 
models with news shocks may be easier to estimate using semi-structural empirical 
methods, which rely on fewer theoretical assumptions. Some studies include both 

1 Throughout the paper, we use the words “beliefs,” “expectations,” and “forecasts” as synonyms. 
2 This emphasis is often implicit in discussions of news and noise. Relatively explicit examples include 

Sections 2 and 4.2.3 of Beaudry and Portier (2014), Sections 5 and 6 of Lorenzoni (2011), Sections IIB and IIC of 
Blanchard, L’Huillier, and Lorenzoni (2013), and the introduction of Barsky and Sims (2012). 
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news and noise shocks in the same model and attempt to determine which is more 
important.

In this paper, we argue that news and noise representations are more closely linked 
than the literature has recognized. Specifically, we prove that these two informa-
tion structures are observationally equivalent. This means that even given an ideal 
dataset with complete observations of exogenous fundamentals and agents’ beliefs 
about those fundamentals, it would be impossible to tell them apart. It therefore 
follows that neither representation requires stronger modeling assumptions for the-
oretical work, or greater reliance on a model’s structural details for empirical work.

Our main result is a representation theorem, which says that fundamentals and 
agents’ beliefs about them always have both a news representation and a noise rep-
resentation. This implies that associated with every noise representation is an obser-
vationally equivalent news representation and vice versa. We present a constructive 
proof of the theorem using Hilbert space methods. Because it is constructive, our 
proof also provides a method for explicitly deriving the mapping from one repre-
sentation to another. We compute this mapping in closed form for several models of 
interest from the literature.

The main step in moving from noise to news amounts to finding the Wold repre-
sentation of the noise model. This is because the shocks in the news representation 
are static rotations of the Wold innovations implied by the noise representation. 
Because the Wold innovations are contained in the space spanned by the history of 
variables that agents observe, the news representation is a way of writing models 
with noise “as if  ” agents have perfect information.3 To move in the opposite direc-
tion, from news to noise, the idea is to reverse engineer the signal extraction problem 
that generates a given Wold representation. The challenge is to ensure that the noise 
shocks in that signal extraction problem are independent of fundamentals at all leads 
and lags, and that they capture all the nonfundamental variation in beliefs.

Beyond clarifying the link between news and noise, our representation theorem 
sheds new light on the importance of purely belief-driven fluctuations. Existing 
studies that either use models with only news shocks or some combination of news 
and noise shocks do not isolate the pure contribution of beliefs above and beyond 
fundamentals. The reason is that news shocks mix the fluctuations due purely to 
beliefs with those due to fundamentals. News shocks can change beliefs on impact 
without any change in current fundamentals, but they are tied by construction to 
changes in future fundamentals. Beliefs change today, and on average fundamentals 
change tomorrow. But which is more important, the change in beliefs or the subse-
quent change in fundamentals?

To isolate the contribution of pure beliefs, it is necessary to disentangle the effects 
due only to expected changes in fundamentals from the consequences of their actual 
realizations.4 One way to do this is to first find a noise representation of the news-
shock model, and then consider the importance of noise shocks. Noise shocks iso-
late precisely those movements in beliefs that are independent of fundamentals at 

3 A related result is Lemma 2 of Blanchard, L’Huillier, and Lorenzoni (2013), which shows that their informa-
tion structure has an observationally equivalent full information representation with correlated shocks. 

4 This point has been emphasized in the literature. For example, see the discussion in Section IV.A of Barsky, 
Basu, and Lee (2015), as well as the recent paper by Sims (2016). 
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all horizons. Our representation theorem ensures that it is always possible to do this, 
and our constructive proof provides a procedure for doing so.

The noise representation therefore allows us to decompose variation in endoge-
nous variables into the part purely due to fundamentals and the part purely due to 
beliefs. It can also be used to further decompose the contribution of fundamentals 
into a part due to future fundamental shocks, and a part due to current and past 
fundamental shocks. The part due to future fundamental shocks represents the con-
tribution of correctly anticipated fundamental changes. In order for future funda-
mental shocks to be an important driver of current actions, two things must be true. 
First, agents’ actions must depend to a sufficient degree on their expectations of 
future fundamentals. Second, they must have access to accurate information about 
future fundamental shocks that is not already revealed by current or past fundamen-
tal realizations.

We use our result to compute the importance of pure beliefs implied by three 
different quantitative models of US business cycles. The three models come 
from Schmitt-Grohé and Uribe (2012), Barsky and Sims (2012), and Blanchard, 
L’Huillier, and Lorenzoni (2013). These models all appear to have very different 
information structures, which, combined with differences in the rest of the physical 
environment, estimation procedure, and data sample, has made it difficult to com-
pare results across models. By allowing us to isolate the independent contribution 
of beliefs in each model, our representation theorem provides a way of coherently 
comparing them. We use the exact models and estimated parameters from the orig-
inal papers. Because news and noise representations are observationally equivalent, 
the likelihood functions are the same under either representation.

In all three cases, the importance of pure beliefs has been understated. In the 
model of Schmitt-Grohé and Uribe (2012), there is no shock labeled “noise,” but the 
implicit contribution of noise shocks is between 3 percent and 11 percent depending 
on the variable. In the model of Barsky and Sims (2012), noise shocks are respon-
sible for 9 percent of the fluctuations in consumption, which is almost an order of 
magnitude larger than the original estimate of 1 percent. In the model of Blanchard, 
L’Huillier, and Lorenzoni (2013), the contribution of noise to consumption is 57 
percent, compared to the originally reported value of 44 percent.

While these models disagree sharply regarding the overall importance of noise 
shocks, we find that they all agree that future fundamental shocks play a very small 
role compared to current and past fundamental shocks. For example, in the model 
of Barsky and Sims (2012), future fundamentals are responsible for less than 
0.5 percent of consumption fluctuations, while current and past fundamentals are 
responsible for over 80 percent. Future fundamentals matter the most in the model 
of Blanchard, L’Huillier, and Lorenzoni (2013), but even in that model they are 
responsible for less than 7 percent of consumption fluctuations.

We conclude our paper by investigating the sources of disagreement across mod-
els regarding the overall importance of noise shocks. We show that the disagreement 
is due to differences both in the models’ economic environments and information 
structures. For noise shocks to play a large role, agents’ actions need to depend 
heavily on their forecasts of future fundamentals (economic environment), and 
their forecasts in turn need to depend heavily on noise-ridden signals (information 
structure). The model of Blanchard, L’Huillier, and Lorenzoni (2013) has both of 
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these features, which is why they find a large role for noise shocks. In their model, 
productivity is a random walk, so agents rely heavily on their noisy signal to fore-
cast future productivity. Nominal price and wage rigidity and an accommodative 
monetary policy rule work together to make agents’ consumption decisions highly 
forward-looking, and allow the model to generate empirically realistic patterns of 
comovement in response to a noise shock.

To quantify the relative contribution of economic environment and information 
structure on the estimated importance of noise shocks, we re-estimate the models 
of Barsky and Sims (2012) and Blanchard, L’Huillier, and Lorenzoni (2013) using 
the same data, exogenous shocks, and estimation procedure (maximum likelihood) 
across both models. Consistent with the authors’ original estimates, we find that 
noise shocks play a small role in the model of Barsky and Sims (2012) and a much 
larger role in the model of Blanchard, L’Huillier, and Lorenzoni (2013). This sug-
gests that differences in data, shocks, and estimation procedure are not the primary 
reasons these models deliver different estimates of the importance of noise shocks.

We then swap information structures and re-estimate both models. Substituting 
the information structure of Blanchard, L’Huillier, and Lorenzoni (2013) into the 
economic environment of Barsky and Sims (2012) does almost nothing to change 
the estimated importance of noise shocks. On the other hand, substituting the infor-
mation structure of Barsky and Sims (2012) into the economic environment of 
Blanchard, L’Huillier, and Lorenzoni (2013) results in an estimated importance of 
noise shocks that is about halfway between the original estimates. This suggests 
that, while both economic environment and information structure play an important 
role in generating a large role for noise shocks, differences in economic environ-
ment turn out to be quantitatively more important in explaining the disagreement 
between these two models.

The literature on both news and noise shocks is large. In the noise literature, 
Lorenzoni (2009), Angeletos and La’O (2013), and Benhabib, Wang, and Wen 
(2015) have explored models in which dispersed information across agents can 
generate fluctuations in beliefs that are independent of aggregate fundamentals; we 
restrict our analysis to cases with a single, representative information set. In the 
news literature, Cochrane (1994), Beaudry and Portier (2006), and Beaudry and 
Lucke (2010) all provide vector autoregression (VAR) based evidence pointing to 
an important role for news, and some empirical dynamic stochastic general equilib-
rium (DSGE) studies not cited above, including Forni et al. (2017) and Christiano, 
Motto, and Rostagno (2014), have estimated large roles for such shocks. Walker and 
Leeper (2011) and Leeper, Walker, and Yang (2013) explore how the specification 
of news processes alters the effects of news shocks on the dynamics of endoge-
nous variables. Other related papers include Jaimovich and Rebelo (2009); Beaudry, 
Nam, and Wang (2011); Lorenzoni (2011); Barsky and Sims (2011); Born, Peter, 
and Pfeifer (2013); Kurmann and Otrok (2013); and Jinnai (2014).

I.  Observational Equivalence

News and noise representations are two different ways of describing economic 
fundamentals and agents’ beliefs about them. “Fundamentals” are stochastic pro-
cesses capturing exogenous changes in technology, preferences, endowments, or 
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government policy. Throughout this section, fundamentals are summarized by a sin-
gle scalar process ​{ ​x​t​​ }​. Agents’ decisions depend on expected future realizations of ​​
x​t​​​ , so both representations specify what agents can observe at each date and how 
they use their observations to form beliefs about the future.

The main result of the paper, which is presented in this section, is a representa-
tion theorem linking news and noise representations. The first subsection presents 
the basic result in a simple example with news or noise regarding fundamentals 
only one period in the future while the second subsection presents the more general 
result.

A. Simple Example

In the simplest of news representations, ​​x​t​​​ is equal to the sum of two shocks, ​​a​0, t​​​ 
and ​​a​1, t−1​​​ , which are independent and identically distributed (i.i.d.) over time, and 
which are independent of one another:

(1)	​ ​x​t​​  = ​ a​0, t​​ + ​a​1, t−1​​ , ​ [​
​a​0, t​​​ ​a​1, t​​​]​ ​  ∼​ iid​​     ​

(
0, ​[​

​σ​ a, 0​ 2  ​
​ 

0
​ 

0
​ 

​σ​ a, 1​ 2  ​
​]​

)
​.​

At each date ​t​ , agents observe the whole history of the two shocks up through that 
date, ​{ ​a​0, τ​​ , ​a​1, τ​​ }​ for all integers ​τ  ≤  t​. Their beliefs regarding fundamentals are 
rational; the probabilities they assign to future outcomes are exactly those implied 
by system (1). The shock ​​a​1, t​​​ is a news or anticipated shock because agents see it 
at date ​t​ but it doesn’t affect the fundamental until date ​t + 1​. The shock ​​a​0, t​​​ is a 
surprise or unanticipated shock.

Now consider instead a noise representation. The fundamental variable ​​x​t​​​ is i.i.d. 
over time, and there is a noisy signal of the fundamental one period into the future:

(2)	​ ​s​t​​  = ​ x​t+1​​ + ​v​t​​ , ​ [ ​
​x​t​​​ ​v​t​​​ ]​ ​  ∼​ iid​​   ​(0, ​[​​σ​ x​ 2​​  0​ 

0
​ 

​σ​ v​ 2​
​]​)​.​

At each date ​t​ , agents observe the whole history of fundamentals and signals up 
through that date, ​{ ​x​τ​​ , ​s​τ​​ }​ for all integers ​τ  ≤  t​. Even though agents only have 
imperfect information about ​​x​t+1​​​ , their beliefs are nevertheless still rational. The 
shock ​​v​t​​​ is a noise shock because it affects beliefs but is totally independent of 
fundamentals.

Our point is that these two representations are observationally equivalent. But 
before making that point, it is important to be clear about what types of things we 
are considering to be “observable.” To be concrete, imagine an econometrician who 
is able to observe the entire past, present, and future history of the fundamental pro-
cess ​{ ​x​t​​ }​ , along with the entire past, present, and future history of agents’ subjective 
beliefs regarding ​{ ​x​t​​ }​. More concisely, we will say that the econometrician observes 
“fundamentals and beliefs.” All of our results are stated from the perspective of such 
an econometrician, and are to be understood with respect to those observables.

An important feature of our concept of equivalence is that we treat beliefs, as 
well as fundamentals, as observable. We take this approach for three reasons. First, 
it is a stronger condition; observational equivalence with respect to a larger set of 
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observables implies observational equivalence with respect to any smaller set of 
those observables. Second, beliefs are observable in economics, in principle. Beliefs 
may be measured directly, using surveys, or indirectly, using the mapping between 
beliefs and actions implied by an economic model. That actions reflect beliefs is, 
after all, a basic motivation for the literature on belief-driven fluctuations. Third, in 
a broad class of linear rational expectations models with unique equilibria, endog-
enous processes are purely a function of current and past fundamentals and beliefs 
about future fundamentals. So observational equivalence of fundamentals and 
beliefs implies observational equivalence of the entire economy.

We would also like to emphasize that the observability of beliefs distinguishes 
our concept of observational equivalence from that often encountered in time 
series analysis. To use a familiar example (cf. Hamilton 1994, pp. 64–67), it is well 
known that

(3)	​ ​y​t​​  = ​ ϵ​t​​ − θ ​ϵ​t−1​​, ​ ϵ​t​​ ​  ∼​ iid​​   (0, ​σ​​ 2​ )  and ​ y​t​​  = ​​ ϵ ̃ ​​t​​ − ​θ ̃ ​ ​​ϵ ̃ ​​t−1​​, ​​ ϵ ̃ ​​t​​ ​ ∼​ iid​​  (0, ​​σ ̃ ​​​ 2​ )​

are two observationally equivalent representations of the stationary MA(1) process 
​{ ​y​t​​ }​ when ​​θ ̃ ​ = 1 / θ​ and ​​σ​​ 2​ = ​θ​​ 2​ ​​σ ̃ ​​​ 2​​. However, this applies only when ​{ ​y​t​​ }​ is the sole 
observable. If (rational) expectations of future values of ​{ ​y​t​​ }​ are also observable, 
then the two representations in (3) are no longer the same. To see why, note that 
the variance of the one-step-ahead rational forecast ​​​y ˆ ​​t​​  ≡ ​ E​t​​ [ ​y​t+1​​ ]​ is equal to ​​θ​​ 2​ ​σ​​ 2​​ 
under the first representation, but ​​σ​​ 2​​ under the second. Therefore, an econometrician 
observing ​{ ​​y ˆ ​​t​​ }​ and ​{ ​y​t​​ }​ (or independent functions of these objects) could discrimi-
nate between these two representations.

The following proposition states the equivalence result for the simple example of 
this subsection, and provides the parametric mapping from one representation to the 
other. Its proof is in the Appendix.

PROPOSITION 1: The news representation (1) is observationally equivalent to the 
noise representation (2) if and only if

	​ ​σ​ x​ 2​  = ​ σ​ a, 0​ 2  ​ + ​σ​ a, 1​ 2  ​  and ​  ​σ​ v​ 2​ _ 
​σ​ x​ 2​

 ​  = ​ 
​σ​ a, 0​ 2  ​
 _ 

​σ​ a, 1​ 2  ​
 ​ .​

The intuition behind the result comes from the fact that the noise representation 
implies an observationally equivalent innovations representation (cf. Anderson and 
Moore 1979, ch. 9) of the form

(4)	​​
​x​t​​   = ​​ x ˆ ​​t−1​​ + ​w​0, t​​,​  ​​x ˆ ​​t​​   =  κ ​w​1, t​​,

 ​ ​  [​
​w​0, t​​​ ​w​1, t​​​]​ ​  ∼​ iid​​   ​(0, ​[​

κ ​σ​ v​ 2​
​ 

0
​ 

0
​ 

​σ​ x​ 2​ + ​σ​ v​ 2​
​]​)​,​

where ​κ = ​σ​ x​ 2​/(​σ​ x​ 2​ + ​σ​ v​ 2​ )​ is a Kalman gain parameter controlling how much agents 
trust the noisy signal, and ​​w​t​​ ≡ (​w​0, t​​, ​w​1, t​​​) ′ ​​ is the vector of Wold innovations. But 
system (4) is the same as the news representation in system (1) when ​​a​0, t​​ = ​w​0, t​​​ 
and ​​a​1, t​​ = κ ​w​1, t​​​. The news shocks are linear combinations of the Wold innovations.
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A direct implication of Proposition 1 is that the news representation is identified 
if and only if the noise representation is identified. By observational equivalence, 
both representations have the same likelihood function. Because the relations in 
Proposition 1 define a bijection, it is always possible to go from one set of parame-
ters to the other and vice versa. This suggests that the distinction often made between 
news and noise representations in the literature on semi-structural empirical meth-
ods may be misleading.

Proposition 1 also reveals that noise shocks are closely related to a popular thought 
experiment in the news-shock literature, which some researchers have used to iso-
late the effects of a change in beliefs that does not correspond to any change in fun-
damentals (e.g., Christiano et al. 2010, Section 4.2; Schmitt-Grohé and Uribe 2012, 
Section 4.2; Barsky, Basu, and Lee 2015, Section IV.A; or Sims 2016, Section 3.3). 
This experiment involves computing the impulse responses of endogenous variables 
to a current news shock followed by an offsetting future surprise shock.

In this simple example, it is easy to see that the noise shocks generate exactly 
the sort of offsetting news shocks envisioned by this thought experiment. Using the 
Kalman filter, the surprise and news shocks can be expressed as functions of funda-
mental and noise shocks:

	​ ​a​1, t​​  =  κ​x​t+1​​ + κ​v​t​​  and ​ a​0, t​​  =  (1 − κ) ​x​t​​ − κ​v​t−1​​ .​

Therefore, a positive noise shock at date ​t​ generates a positive news shock at date ​t​ 
and an exactly offsetting surprise shock at date ​t + 1​.

This example shows that it may be possible to mimic noise shocks using par-
ticular linear combinations of news shocks. Nevertheless, there are a number of 
advantages to working directly with noise shocks. First, we can think about how 
often these situations arise, since we have an explicit probability distribution for the 
noise shocks: for example, how big is a “one standard deviation impulse” of a news 
reversal? Second, we can ask how important these types of news reversals are in the 
data overall; that is, we can do a proper variance decomposition. Third, in models 
with news shocks that are not i.i.d., it is not as straightforward to determine the con-
figuration of news shocks that correspond to a noise shock. Therefore, it is desirable 
to have a more general characterization of the link between news and noise shocks. 
We turn to this more general characterization next.

B. Representation Theorem

This subsection generalizes the previous example to allow for news and noise at 
multiple future horizons, and potentially more complex time-series dynamics. To fix 
notation, we use ​​​​ 2​​ to denote the space of (equivalence classes of) complex random 
variables with finite second moments, which is a Hilbert space when equipped with 
the scalar product ​(a, b) = E[a  ​b 

–
​ ]​ for any ​a, b ∈ ​​​ 2​​. Completeness of this space is 

with respect to the norm ​ǁ  a ǁ  ≡ ​(a, a)​​ 1/2​​. For any collection of random variables 
in ​​​​ 2​​ ,

	​ { ​y​i, t​​ },  with  i  ∈ ​ ​y​​  ⊆  ℤ  and  t  ∈  ℤ,​
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we let ​(y)​ denote the closed subspace spanned by the variables ​​y​i, t​​​ for all ​i  ∈ ​ ​y​​​ 
and ​t  ∈  ℤ​. Similarly, ​​​t​​ (y)​ denotes the closed subspace spanned by these variables 
over all ​i​ but only up through date ​t​.

Fundamentals are summarized by a scalar discrete-time process ​{ ​x​t​​ }​. As in the 
previous subsection, this process is taken to be mean zero, stationary, Gaussian, and 
linearly regular.5 The fact that ​{ ​x​t​​ }​ is a scalar process is not restrictive; we can imag-
ine a number of different scalar processes, each capturing changes in one particular 
fundamental. In that case it will be possible to apply the results from this section to 
each fundamental one at a time.

Agents’ beliefs about fundamentals are summarized by a collection of random 
variables ​{ ​​x ˆ ​​i, t​​ }​ , with ​i, t  ∈  ℤ​ , where ​​​x ˆ ​​i, t​​​ represents the forecast of the fundamental 
realization ​​x​t+i​​​ as of time ​t​. Under rational expectations, ​​​x ˆ ​​i, t​​​ is equal to the math-
ematical expectation of ​​x​t+i​​​ with respect to a particular date-​t​ information set. We 
assume that ​{ ​x​t​​ }​ and ​{ ​​x ˆ ​​i, t​​ }​ jointly form a Gaussian system; that is, the vector formed 
by any finite subset of these random variables is Gaussian. This allows us to summa-
rize agents’ entire conditional distribution over fundamentals at each date solely by 
their conditional expectations across different horizons.

A “representation of fundamentals and beliefs” means a specification of the fun-
damental process ​{ ​x​t​​ }​ and the collection of agents’ conditional expectations about 
that process at each point in time ​{ ​​x ˆ ​​i, t​​ }​. A typical assumption is that agents’ infor-
mation set is equal to ​​​t​​ (x)​ , so ​​​x ˆ ​​i, t​​  ∈ ​ ​t​​ (x)​ for all ​t  ∈  ℤ​. In this case, the process ​
{ ​x​t​​ }​ is itself sufficient to describe both the fundamental and agents’ beliefs about it. 
A key departure in models of belief-driven fluctuations due to advance information 
is that agents may have more information than what is reflected in ​​​t​​ (x)​ alone. 
Therefore, throughout the paper we maintain the assumption that ​​​t​​ (x)  ⊆ ​ ​t​​ (​x ˆ ​)​ 
for all ​t  ∈  ℤ​.

DEFINITION 1: In a “news representation” of fundamentals and beliefs, the pro-
cess ​{ ​x​t​​ }​ is related to a collection of independent, stationary Gaussian processes 
​{ ​a​i, t​​ }​ with ​i  ∈ ​ ​a​​  ⊆ ​ ℤ​+​​​ by the summation

	​ ​x​t​​  = ​  ∑ 
i∈  

​​​ ​a​i, t−i​​  for all t  ∈  ℤ,​

where agents’ date-​t​ information set is ​​​t​​ (a)​.

The idea behind this representation is that agents observe parts of the fundamen-
tal realization ​​x​t​​​ prior to date ​t​. The variable ​​ϵ​ i, t​ a ​  ≡ ​ a​i, t​​ − E [ ​a​i, t​​ | ​​t−1​​ (a)]​ is called 
the “news shock” associated with horizon ​i​ whenever ​i  >  0​. By convention, for ​
i  =  0​ the variable ​​ϵ​ 0, t​ a  ​​ is referred to as the “surprise shock.” An important aspect of 
this definition is that all of the news shocks are correlated both with fundamentals 
and agents’ beliefs. This is because any increase in fundamentals that agents observe 
in advance must, other things equal, generate a one-for-one increase in fundamen-
tals at some point in the future.

5 The results in this section can be extended, in an appropriate limiting sense, to processes that are stationary 
only after suitable differencing. We will examine one such case in Section IIIC. 
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DEFINITION 2: In a “noise representation” of fundamentals and beliefs, there is a 
collection of signal processes ​{ ​s​i, t​​ }​ with ​i  ∈ ​ ​s​​  ⊆ ​ ℤ​+​​​ of the form

	​ ​s​i, t​​  = ​ m​i, t​​ + ​v​i, t​​  for all t  ∈  ℤ,​

where ​​m​i, t​​  ∈  (x)​ , ​​v​i, t​​  ⊥  (x)​ , and agents’ date-​t​ information set is ​​​t​​ (s)​ , which 
satisfies ​​​t​​ (s)  = ​ ​t​​ (​x ˆ ​)​.

The idea behind this representation is that agents may receive signals about the 
fundamental realization ​​x​t​​​ prior to date ​t​ , but those signals are contaminated with 
noise. The variable ​​ϵ​ i, t​ v  ​  ≡ ​ v​i, t​​ − E [ ​v​i, t​​ | ​​t−1​​ (v)]​ is called the “noise shock” asso-
ciated with signal ​i​. The variable ​​ϵ​ t​ x​  ≡ ​ x​t​​ − E [ ​x​t​​ | ​​t−1​​ (x)]​ is called the “funda-
mental shock.” An important aspect of this definition is that all of the noise shocks 
are completely independent of fundamentals, but because agents cannot separately 
observe ​​m​i, t​​​ and ​​v​i, t​​​ at date ​t​ , their beliefs are still affected by noise. The condition 
that ​​​t​​ (s)  = ​ ​t​​ (​x ˆ ​)​ simply rules out redundant or totally uninformative signals.

With these definitions in hand, we are ready to state the main result of the paper. 
Its proof is in the Appendix.

THEOREM 1: Fundamentals and beliefs always have both a news representation 
and a noise representation. Moreover, the news representation is unique.

This theorem clarifies the sense in which news and noise representations of fun-
damentals and beliefs are really just two sides of the same coin. It is possible to 
view the same set of data from either perspective. The proof is constructive, which 
means that it also provides an explicit computational method for passing from one 
representation to the other.

The only asymmetric aspect of the theorem involves the uniqueness of the two 
representations. Any particular news representation will be compatible with several 
different noise representations. This is the same sort of asymmetry present between 
signal models and innovations representations in the literature on state-space mod-
els. In general there exist infinitely many signal models with the same innovations 
representation. We explain in the subsequent sections, however, that this multiplicity 
of noise representations does not pose much of a problem.

An implication of Theorem 1 is that any model economy with a news represen-
tation of fundamentals and beliefs has an observationally equivalent version with 
a noise representation of fundamentals and beliefs, and vice versa. This is because 
the equivalence of fundamentals and beliefs implies the equivalence of any endog-
enous processes that are functions of them. To make this statement more precise, 
we first define here what we mean by an endogenous process, and then present this 
statement as a proposition. The proof of the proposition, together with all remaining 
proofs, is contained in the online Appendix.

DEFINITION 3: Given a fundamental process ​{ ​x​t​​ }​ and a collection of forecasts 
​{​​x ˆ ​​i, t​​}​ satisfying ​​​t​​(x) ⊆ ​​t​​(​x ˆ ​)​ , a process ​{​c​t​​}​ is “endogenous” with respect to ​{ ​x​t​​ }​ if

	​ ​c​t​​  ∈ ​ ​t​​ (​x ˆ ​)  for all t  ∈  ℤ.​
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PROPOSITION 2: If two different representations of fundamentals and beliefs are 
observationally equivalent, then they imply observationally equivalent dynamics for 
any endogenous process.

The stipulation in Definition 3 that endogenous processes be linearly related to 
agents’ forecasts of fundamentals is not restrictive. Proposition 2 holds even if we 
generalize the definition of an endogenous process ​{ ​c​t​​ }​ to require only that ​​c​t​​​ be 
measurable with respect to agents’ date-​t​ information set for all ​t  ∈  ℤ​ (the proof 
provided in the online Appendix establishes this stronger result). Together with 
Theorem 1, this means that as long as fundamentals and beliefs form a Gaussian 
system, any nonlinear economy that allows for belief-driven fluctuations can be 
equivalently written with either news or noise shocks.

Throughout the rest of the paper, however, we will retain the restriction of 
linearity in Definition 3. This is because many objects of economic interest, such 
as variance decompositions, are defined only for linear models. Therefore, it is 
most natural to present our results in terms of endogenous variables that can be 
expressed as linear functions of agents’ forecasts. Furthermore, all of the quanti-
tative models we consider in Section III rely on linear-approximate equilibrium 
dynamics.

II.  The Importance of Pure Beliefs

A central question in the literature on belief-driven fluctuations is: how important 
are purely belief-driven fluctuations? That is, fluctuations due to changes in beliefs 
that cannot be explained by any actual change in economic fundamentals. Perhaps 
surprisingly, it turns out that no existing quantitative study in this literature has 
answered this question. Some studies report the importance of news shocks, which 
combine the contribution due to fundamentals with the contribution purely due to 
beliefs. Others include noise shocks and news shocks in the same model, and as 
a result, do not isolate the contribution of either one. In this section we argue that 
Theorem 1 provides a way to determine the importance of pure beliefs as a driver 
of fluctuations.

The first subsection explains the problem with using news shocks to determine 
the importance of pure beliefs, and the second subsection clarifies the problems that 
arise when attempting to include both news and noise shocks in the same model. 
To keep things clear, the discussion of both of these issues is framed in terms of the 
simple example from Section IA. The third subsection establishes a result regarding 
the uniqueness of variance decompositions. The fourth subsection discusses how to 
further decompose the contribution of fundamental shocks into parts due to past, 
present, and future fundamental shocks.

A. The Problem with News Shocks

In the context of dynamic linear models, the importance of a set of exogenous 
shocks can be determined by performing a variance decomposition. This entails 
computing the model-implied variance of an endogenous process under the assump-
tion that all shocks other than those in the set of interest are counterfactually equal to 
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zero almost surely, and comparing that variance to the unconditional variance of the 
process. More nuanced versions include only considering variation over a certain 
range of spectral frequencies, or variation in forecast errors over a certain forecast 
horizon.

The problem with using news shocks to determine the importance of pure beliefs 
is that news shocks mix changes that are due to fundamentals and changes that 
are purely due to beliefs. This is because a news shock is an anticipated change in 
fundamentals. Expectations change at the time the news shock is realized, but then 
fundamentals change in the future when the anticipated change actually occurs. Of 
course, agents’ expectations may not always be fully borne out in future fundamen-
tal realizations, due to other unforeseen disturbances. Nevertheless, the anticipated 
shock is borne out on average, which is to say that news shocks are related to future 
fundamentals on average.

A stark way to see this point is to consider the importance of pure beliefs for 
driving fundamentals. Because fundamentals are exogenous, they are obviously not 
driven by beliefs at all. However, in the simple news representation from Section IA, 
for example, news shocks can be responsible for an arbitrarily large part of the fluc-
tuations in the fundamental process ​{ ​x​t​​ }​. Recall that in that example, ​​x​t​​ = ​a​0, t​​ + ​
a​1, t−1​​​. Therefore, the fraction of the variation in ​{ ​x​t​​ }​ due to news shocks, ​{ ​a​1, t​​ }​ is 
given by

(5)	​ ​ 
var [ ​x​t​​ | ​a​0, t​​  =  0]

  ____________  
var [ ​x​t​​ ]

  ​  = ​ 
var [ ​a​1, t​​ ] _ 
var [ ​x​t​​ ]

  ​  = ​ 
​σ​ a, 1​ 2  ​
 _ 

​σ​ a, 0​ 2  ​ + ​σ​ a, 1​ 2  ​
 ​ .​

As ​​σ​ a, 1​ 2  ​​ increases relative to ​​σ​ a, 0​ 2  ​​ , this fraction approaches one, in which case news 
shocks would explain all the variation in ​{ ​x​t​​ }​.

To disentangle the importance of pure beliefs from fundamentals in models with 
news shocks, we can use Theorem 1. Specifically, we can write down an observa-
tionally equivalent noise representation of the news model, and then use a vari-
ance decomposition to compute the share of variation attributable to noise shocks. 
Because these shocks are independent of fundamentals at all horizons, they capture 
precisely those changes in beliefs that cannot be explained by fundamentals. That is, 
noise shocks are pure belief shocks.

Returning to the example from Section IA, we have already shown that an 
observationally equivalent noise representation involves ​​x​t​​ ​ ∼​ iid​​  (0, ​σ​ x​ 2​ )​ with 
​​σ​ x​ 2​  ≡ ​ σ​ a, 0​ 2  ​ + ​σ​ a, 1​ 2  ​​. Therefore, the fraction of variation in ​{ ​x​t​​ }​ due to noise shocks is

	​ ​ var [ ​x​t​​ | ​x​t​​  =  0]
  ___________ 

var [ ​x​t​​ ]
  ​  =  0,​

which is the correct answer to the question of how much beliefs contribute to the 
fluctuations of fundamentals. This example illustrates the more general point that 
in order to determine the importance of pure beliefs, one should perform variance 
decompositions in terms of noise shocks rather than news shocks.

The fact that variance decompositions in terms of news shocks are not appro-
priate for determining the importance of pure beliefs has lead some researchers to 
conclude that there is a fundamental problem with using variance decompositions 
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for that purpose.6 We would like to suggest that the problem is not with variance 
decompositions as such; rather, the problem is with the type of shock one considers. 
It is noise shocks, not news shocks, that are the appropriate shocks for isolating the 
independent contribution of beliefs. Once that distinction has been made, traditional 
variance decompositions can be performed as usual.

B. Mixing News and Noise Shocks

In some cases, researchers have constructed representations of fundamentals and 
beliefs that seem to include both news and noise shocks at the same time (e.g., 
Blanchard, L’Huillier, and Lorenzoni 2013; Barsky and Sims 2012). A simple exam-
ple is

(6)	​​
​x​t​​  = ​ μ​t−1​​ + ​η​t​​,​  ​s​t​​  =  ​μ​t​​ + ​ξ​t​​,

 ​  ​
[
​ 
​η​t​​

​ ​μ​t​​​ 
​ξ​t​​
 ​
]
​ ​  ∼​ iid​​    ​

⎛

 ⎜ 
⎝

0, ​

⎡

 ⎢ 
⎣

​
​σ​ η​ 2​

​ 
0

​ 
0

​ 0​  ​σ​ μ​ 2 ​​  0​ 
0

​ 
0

​ 
​σ​ ξ​ 2​

​

⎤

 ⎥ 
⎦

​

⎞

 ⎟ 
⎠

​.​

At each date ​t​ , agents observe ​{ ​x​τ​​ , ​s​τ​​ }​ for all ​τ  ≤  t​. The shock ​​μ​t​​​ looks like a 
news shock because it affects agents’ beliefs at date ​t​ (through the signal ​​s​t​​​), but 
does not affect fundamentals until the following period. Similarly, the shock ​​η​t​​​ looks 
like a surprise shock because it affects agents’ beliefs and the fundamental at the 
same time. Finally, the shock ​​ξ​t​​​ looks like a noise shock because it affects agents’ 
beliefs but is independent of fundamentals.

The problem with this type of representation, at least from the perspective of iso-
lating the importance of pure beliefs, is that while ​​ξ​t​​​ can generate nonfundamental 
fluctuations in beliefs, so can certain combinations of ​​η​t​​​ and ​​μ​t​​​. To see this, notice 
that in the limit case ​​ξ​t​​  =  0​ , we have that ​​s​t​​  = ​ μ​t​​​ and this representation col-
lapses to a news representation with ​​a​0, t​​  ≡ ​ η​t​​​ and ​​a​1, t​​  ≡ ​ μ​t​​​. We have already seen 
in Proposition 1 that such a news representation has an observationally equivalent 
noise representation with (nonzero) noise shocks. Therefore ​​ξ​t​​  =  0​ does not mean 
that beliefs do not have an independent role to play as a driver of fluctuations.7

Of course, Theorem 1 implies that the representation in (6), which is neither a 
news nor a noise representation, still has an observationally equivalent noise repre-
sentation. The following proposition presents the mapping from one representation 
to the other.

PROPOSITION 3: The representation of fundamentals and beliefs in (6) is observa-
tionally equivalent to the noise representation in (2) if and only if

	​ ​σ​ x​ 2​  = ​ σ​ μ​ 2 ​ + ​σ​ η​ 2​  and ​  ​σ​ v​ 2​ _ 
​σ​ x​ 2​

 ​  = ​ 
​σ​ μ​ 2 ​ ( ​σ​ η​ 2​ + ​σ​ ξ​ 2​ )  + ​σ​ η​ 2​ ​σ​ ξ​ 2​

  ________________  
​σ​ μ​ 4 ​

 ​  .​

6 For example, Sims (2016, p. 42) describes the problem of identifying the importance of pure beliefs (which 
both he and Barsky, Basu, and Lee 2015 call “pure news”) as a fundamental limitation of the traditional variance 
decomposition. 

7 In two of the quantitative models we consider in the next section, this distinction is particularly stark; the 
contribution of pure beliefs turns out to increase as ​​σ​ ξ​ 2​  →  0​. 
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To see how the process ​{ ​ξ​t​​ }​ understates the importance of pure beliefs, 
consider the endogenous variable ​​​x ˆ ​​t​​  = ​ E​t​​ [ ​x​t+1​​ ]​. Under representation (6), 

​​​x ˆ ​​t​​  = ​  
​σ​ μ​ 2 ​
 _____ 

​σ​ μ​ 2 ​ + ​σ​ ξ​ 2​
 ​ ( ​μ​t​​ + ​ξ​t​​ )​ , so the contribution of the process ​{ ​ξ​t​​ }​ is

	​ ​ var [ ​​x ˆ ​​t​​ | ​μ​t​​  = ​ η​t​​  =  0]
  _______________  

var [ ​​x ˆ ​​t​​ ]
  ​  = ​  

​σ​ ξ​ 2​
 _ 

​σ​ μ​ 2 ​ + ​σ​ ξ​ 2​
 ​ .​

On the other hand, in the observationally equivalent noise representation implied by 

Proposition 3, ​​​x ˆ ​​t​​  = ​   ​σ​ x​ 2​
 _____ 

​σ​ x​ 2​ + ​σ​ v​ 2​
 ​ ( ​x​t+1​​ + ​v​t​​ )​. Therefore, the contribution of ​{ ​v​t​​ }​ is

	​ ​ var [ ​​x ˆ ​​t​​ | ​x​t​​  =  0]
  ___________ 

var [ ​​x ˆ ​​t​​ ]
  ​  = ​   ​σ​ v​ 2​ _ 

​σ​ x​ 2​ + ​σ​ v​ 2​
 ​  = ​  

​σ​ μ​ 2 ​ ​σ​ η​ 2​
  _______________  

( ​σ​ μ​ 2 ​ + ​σ​ η​ 2​ ) ( ​σ​ μ​ 2 ​ + ​σ​ ξ​ 2​ )
 ​ + ​ 

​σ​ ξ​ 2​
 _ 

​σ​ μ​ 2 ​ + ​σ​ ξ​ 2​
 ​ ,​

where the second equality uses the parametric restrictions from Proposition 3. 
Because the first term in this expression is positive, it follows that ​{ ​ξ​t​​ }​ understates 
the importance of pure beliefs for explaining variations in ​{ ​​x ˆ ​​t​​ }​. It is also easy to see 
how the importance of pure beliefs can be strictly positive even as ​​σ​ ξ​ 2​  →  0​.

C. Different Noise Representations

So far we have argued that it is possible to use a noise representation to separate 
fluctuations that are due to actual changes in fundamentals versus those that are 
due purely to changes in beliefs. First, one can rewrite any representation of funda-
mentals and beliefs as a noise representation using the constructive procedure from 
Theorem 1. Then, one can use a variance decomposition to determine the share of 
variation in any endogenous variable that is attributable to noise shocks. And this 
share represents the contribution purely due to nonfundamental changes in beliefs.

But is the variance decomposition in terms of noise shocks unique? As we pointed 
out in the discussion of Theorem 1, any representation of fundamentals and beliefs 
is compatible with infinitely many different noise representations. Fortunately, it 
turns out that all observationally equivalent noise representations deliver the same 
answer regarding the importance of pure beliefs for any endogenous process. For 
variance decompositions, the fact that noise representations are not unique is not a 
problem.

PROPOSITION 4: In any noise representation of fundamentals and beliefs, the vari-
ance decomposition of any endogenous process in terms of noise and fundamentals 
is uniquely determined over any frequency range.

An immediate corollary of this proposition is that the variance decomposition of 
agents’ errors in forecasting an endogenous process is also uniquely determined for 
any forecast horizon. This is because the forecast errors are themselves endogenous 
processes to which Proposition 4 applies.
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COROLLARY 1: In any noise representation of fundamentals and beliefs, the 
forecast error variance decomposition of any endogenous process in terms of 
noise and fundamentals is uniquely determined for any horizon, and over any 
frequency range.

D. Past, Present, and Future Fundamentals

Our discussion in this section has focused on the distinction between the rel-
ative contributions of fundamental shocks and nonfundamental noise shocks. 
However, it is also possible to further decompose the contribution of fundamental 
shocks into parts separately due to past, present, and future fundamental shocks. 
Even if news shocks don’t capture the contribution of noise shocks, maybe they 
capture something like the sum of the contribution of noise shocks and future 
fundamental shocks.

While that intuition seems sensible enough, it turns out to be incorrect. But 
before explaining why, we first show how to separately determine the contribution 
of past, present, and future fundamental shocks. Recall the i.i.d. noise model from 
Section IA,

	​ ​s​t​​  = ​ x​t+1​​ + ​v​t​​, ​ [ ​
​x​t​​​ ​v​t​​ ​]​ ​  ∼​ iid​​   ​(0, ​[​​σ​ x​ 2​​  0​ 

0
​ 

​σ​ v​ 2​
​]​)​,​

and consider an endogenous variable that depends on past, present, and expected 
future fundamentals with weights ​​ϕ​−1​​​ , ​​ϕ​0​​​ , and ​​ϕ​1​​​, respectively:

(7)	​ ​c​t​​  = ​ ϕ​−1​​ ​x​t−1​​ + ​ϕ​0​​ ​x​t​​ + ​ϕ​1​​ ​E​t​​ [ ​x​t+1​​ ] .​

Solving the signal-extraction problem to obtain the optimal forecast, we have

(8)	​ ​c​t​​  = ​ ϕ​−1​​ ​x​t−1​​ + ​ϕ​0​​ ​x​t​​ + ​ϕ​1​​ κ ​x​t+1​​ + ​ϕ​1​​ κ ​v​t​​ ,​

where ​κ ≡ ​σ​ x​ 2​/( ​σ​ x​ 2​ + ​σ​ v​ 2​ )​ is the gain parameter.
Since the fundamental and noise processes are both i.i.d., we can decompose the 

variance of ​​c​t​​​ into four parts,

(9)  ​var [ ​c​t​​ ]   =​ ​​ ϕ​ −1​ 2  ​ ​σ​ x​ 2​   ⏟
​​ 

past fundamentals

​​+​ ​​ ϕ​ 0​ 2​ ​σ​ x​ 2​   ⏟
​​ 

present fundamentals

​​+​ ​​ ϕ​ 1​ 2​ ​κ​​ 2​ ​σ​ x​ 2​   ⏟
​​ 

future fundamentals

​​+ ​​​ϕ​ 1​ 2​ ​κ​​ 2​ ​σ​ v​ 2​   ⏟
​​ 

noise

​ ​  ,​

where the sum of the first three parts equals the total contribution of fundamentals. 
Notice from this equation that even when there are no noise shocks (​​σ​v​​  =  0​), the 
contribution of future fundamentals is not necessarily equal to zero. In that case, ​
κ  =  1​ , so the share of the variance of ​​c​t​​​ due to future fundamentals would be 
​​ϕ​ 1​ 2​ /(​ϕ​ −1​ 2  ​ + ​ϕ​ 0​ 2​ + ​ϕ​ 1​ 2​)​.
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More generally, we can use the noise representation of fundamentals and beliefs 
to uniquely decompose any endogenous variable as

(10) ​​ c​t​​​ = ​​  ​​ ∑ 
  j=−∞

​ 
∞

 ​​ ​ α​j​​ ​ϵ​ t−j​ 
x ​  

 

 


​​ 

fundamentals

​ ​​  + ​​​​ ∑ 
j=0

​ 
∞

 ​​ ​β​j​​ ​ϵ​ t−j​ 
v
  ​ 

 
 

⏟

​​ 

noise

​ ​​

	 = ​​   ​​  ∑ 
  j=1

​ 
∞

 ​​ ​α​j​​ ​ϵ​ t−j​ 
x ​  

 
 

⏟

​​ 

past fundamentals

​​​ +​​ ​​ α​0​​ ​ϵ​ t​ 
x​ 

 
 

⏟
​​ 

present fundamentals

​​​+​​   ​​ ∑ 
  j=−∞

​ 
−1

 ​​ ​ α​j​​ ​ϵ​ t−j​ 
x ​  

 

 


​​ 

future fundamentals

​​​ + ​​​​ ∑ 
j=0

​ 
∞

 ​​ ​β​j​​ ​ϵ​ t​ v​ 
 
 

⏟

​​ 

noise

​ ​​ ,

where ​{ ​ϵ​ t​ x​ }​ are the fundamental shocks, and ​{ ​ϵ​ t​ v​ }​ are the noise shocks. Because the 
shocks are i.i.d., the variance of ​​c​t​​​ is equal to the sum of the variances in each of the 
four terms on the right, just as in equation (9). The uniqueness of the decomposition 
in equation (10) is summarized in the following proposition.

PROPOSITION 5: In any noise representation of fundamentals and beliefs, the 
share of the variance of any endogenous process due to past, present, or future fun-
damental shocks is uniquely determined.

Going back to equation (7), we can show that the contribution of news shocks 
is not equal to the sum of the contribution of future fundamental shocks and noise 
shocks. Consider the contribution of news shocks for ​​c​t​​​ in the special case that ​​
ϕ​−1​​ = ​ϕ​1​​  =  0​ and ​​ϕ​0​​ = 1​ , so that ​​c​t​​ = ​x​t​​​. In this case, the contribution of future 
fundamentals and noise are both zero; all that matters for ​​c​t​​​ is the current fundamen-
tal realization. But we have already seen in equation (5) that news shocks can be 
arbitrarily important for explaining fluctuations in ​{ ​x​t​​ }​. This is because past news 
shocks eventually show up as changes in current fundamentals. Therefore, news 
shocks can be very important even when both noise shocks and future fundamentals 
are not.

On the other hand, if the contribution of news shocks is small, that does tell 
us that the contribution of both future shocks and noise shocks must be small as 
well. To see this, we can use equation (9) and Proposition 1 to write the part of the 
variance of ​​c​t​​​ due to future fundamentals shocks and noise shocks in terms of the 
corresponding parameters from the observationally equivalent news representation:

	​ ​ϕ​ 1​ 2​ ​κ​​ 2​ ​σ​ x​ 2​ + ​ϕ​ 1​ 2​ ​κ​​ 2​ ​σ​ v​ 2​  = ​ ϕ​ 1​ 2​ ​ 
​σ​ a, 1​ 4  ​
 _ 

​σ​ a, 0​ 2  ​ + ​σ​ a, 1​ 2  ​
 ​ + ​ϕ​ 1​ 2​ ​ 

​σ​ a, 0​ 2  ​ ​σ​ a, 1​ 2  ​
 _ 

​σ​ a, 0​ 2  ​ + ​σ​ a, 1​ 2  ​
 ​ .​

As the variance of news shocks, ​​σ​ a, 1​ 2  ​​ , approaches zero, this expression also 
approaches zero (term by term). From this we can conclude that a large contribution 
of news shocks is necessary but not sufficient for there to be a large contribution of 
either future fundamental shocks or noise shocks.

One difference relative to Proposition 4 is that Proposition 5 does not apply “over 
any frequency range.” It only applies to unconditional variance decompositions; that 
is, to decompositions across all frequencies ​λ  ∈  [−π, π]​. The distinction between 
past, present, and future makes sense in the time domain, but not in the frequency 
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domain. Either we can look at the contribution of fundamentals over different time 
ranges or frequency ranges, but not both at the same time.

Finally, it is worth noting that the extent to which an endogenous process depends 
on future fundamental shocks depends on both the physical economic environment 
and agents’ information structure. In equation (8), the weight of ​​c​t​​​ on ​​x​t+1​​​ depends 
both on ​​ϕ​1​​​ and ​κ​. If the economic model is not sufficiently “forward-looking,” so ​​
ϕ​1​​  →  0​ , then the share of future fundamentals will be small. Perhaps less intui-
tively, if ​κ  →  0​ then the share of future fundamentals will also be small. Even if 
the model is forward-looking, so ​​ϕ​1​​  >  0​ , future fundamental shocks can still be 
unimportant for current actions if the only information agents have about future fun-
damentals is completely contained in current and past fundamentals. Note that this 
is true even if the model is purely forward looking; that is, when ​​ϕ​−1​​  = ​ ϕ​0​​  =  0​ 
and ​​ϕ​1​​  >  0​.

III.  Quantitative Analysis

In this section, we use Theorem 1 and Proposition 4 to empirically quantify the 
importance of pure beliefs in driving business cycle fluctuations. Because several 
models of belief-driven fluctuations have already been constructed and estimated in 
the literature, we take a meta-analytic perspective. We select three prominent theo-
retical models that have been estimated in the literature and compute the importance 
of pure beliefs implied by each of those models for different macroeconomic vari-
ables (e.g., output, investment, etc.). The three models are the model of news shocks 
from Schmitt-Grohé and Uribe (2012), the model of news and animal spirits from 
Barsky and Sims (2012), and the model of noise shocks from Blanchard, L’Huillier, 
and Lorenzoni (2013).

These three models are different in several respects. First, they incorporate dif-
ferent physical environments, including differences in preferences, frictions, and 
market structure. Second, the three models are estimated on different data and with 
different sample periods. Third, the authors make different assumptions about the 
information structure faced by agents. While agents in all three models observe 
current fundamentals and receive advance information about future fundamentals, 
Schmitt-Grohé and Uribe (2012) take a pure news perspective while the Barsky and 
Sims (2012) and Blanchard, L’Huillier, and Lorenzoni (2013) offer somewhat dif-
ferent perspectives on combining news and noise within a single model.

Perhaps not surprisingly given the scope of these differences, the authors above 
come to very different conclusions. Schmitt-Grohé and Uribe (2012) conclude that 
news shocks explain about one-half of aggregate fluctuations, but do not take an 
explicit stance on the importance of independent fluctuations in beliefs. Barsky and 
Sims (2012) also conclude that news shocks are important, and that noise shocks 
explain essentially none of the variation in any variable. However, Blanchard, 
L’Huillier, and Lorenzoni (2013) conclude that noise shocks play a crucial role in 
business cycle dynamics, especially for consumption.

In principle, it is possible that these different conclusions are largely a result of 
the different “normalizations” the authors take with respect to noise shocks. Indeed, 
our analysis indicates that all authors have (implicitly or explicitly) underestimated 
the actual of role of pure beliefs in their estimated models. For Schmitt-Grohé and 
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Uribe (2012) and Barsky and Sims (2012), we find that the role of noise rises from 
being essentially zero to being small but nontrivial, generally between 3 percent and 
11 percent at the business cycle frequency. Surprisingly, even Blanchard, L’Huillier, 
and Lorenzoni (2013) underestimate the role of noise shocks in driving their econ-
omy, with pure beliefs about productivity driving endogenous variables more than 
productivity itself.

While our results indicate that noise shocks are more important than previously 
reported, they do not fully explain the degree of disagreement regarding the inde-
pendent contribution of beliefs. To understand the remaining differences, we per-
form a series of exercises, including re-estimating different versions of these models 
after swapping information structures.

A. Schmitt-Grohé and Uribe (2012)

The first model comes from Schmitt-Grohé and Uribe (2012), and was con-
structed to determine the importance of news shocks for explaining aggregate fluc-
tuations in output, consumption, investment, and employment. The main result of 
their paper is that news shocks account for about one-half of the predicted aggregate 
fluctuations in those four variables. As we have seen in the previous section, how-
ever, news shocks mix fluctuations due to beliefs and fundamentals. As a result, 
exactly what this model implies about the importance of pure beliefs is still an unan-
swered question.

The model is a standard real business cycle model with six modifications: invest-
ment adjustment costs, variable capacity utilization with respect to the capital stock, 
decreasing returns to scale in production, one period internal habit formation in con-
sumption, imperfect competition in labor markets, and period utility allowing for a 
low wealth effect on labor supply. Fundamentals comprise seven different indepen-
dent processes, which capture exogenous variation in stationary and nonstationary 
neutral productivity, stationary and nonstationary investment-specific productivity, 
government spending, wage markups, and preferences. The model is presented in 
more detail in the online Appendix.

Each of the seven exogenous fundamentals follows a law of motion:

(11)  ​​x​t​​  = ​ ρ​x​​ ​x​t−1​​ + ​ϵ​ 0, t​ a  ​ + ​ϵ​ 4, t−4​ a  ​ + ​ϵ​ 8, t−8​ a  ​ , ​
⎡
 ⎢ 

⎣
​
​ϵ​ 0, t​ a  ​

​ ​ϵ​ 4, t​ a  ​​ 
​ϵ​ 8, t​ a  ​

​
⎤
 ⎥ 

⎦
​ ​  ∼​ iid​​     ​

⎛

 ⎜ 
⎝

0, ​

⎡

 ⎢ 
⎣
​
​σ​ a, 0​ 2  ​

​ 
0

​ 
0

​  0​  ​σ​ a, 4​ 2  ​​  0​  
0

​ 
0

​ 
​σ​ a, 8​ 2  ​

​

⎤

 ⎥ 
⎦
​

⎞

 ⎟ 
⎠

​,​

where ​0  < ​ ρ​x​​  <  1​. The model is estimated by likelihood-based methods on a 
sample of quarterly US data from 1955:II to 2006:IV. The time series used for esti-
mation are: real GDP, real consumption, real investment, real government expen-
diture, hours, utilization-adjusted total factor productivity, and the relative price of 
investment.

A variance decomposition shows that news shocks turn out to be very import-
ant. The first column of Table 1 shows the share of business cycle variation in the 
level of four endogenous variables that is attributable to surprise shocks ​{ ​ϵ​ 0, t​ a  ​ }​ , 
and the second column shows the share attributable to the news shocks ​{ ​ϵ​ 4, t​ a  ​ }​ and 
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​{ ​ϵ​ 8, t​ a  ​ }​ combined. We define business cycle frequencies as the components of the 
endogenous process with periods of 6 to 32 quarters, and we focus on variance 
decompositions over these frequencies to facilitate comparison across the different 
models in this section. Our results are consistent with the authors’ original findings 
(see their Table V).

However, to determine the contribution of beliefs relative to fundamentals, we 
would like to construct a noise representation that is observationally equivalent to 
representation (11). One such noise representation is in the following proposition.

PROPOSITION 6: The representation of fundamentals and beliefs in system (11) is 
observationally equivalent to the noise representation

	​​ 
  ​x​t​​   = ​ ρ​x​​ ​x​t−1​​ + ​ϵ​ t​ x​,

​  ​s​4, t​​  =  ​ϵ​ t+4​ x  ​ + ​v​4, t​​,​  
​s​8, t​​  =  ​ϵ​ t+8​ x  ​ + ​v​8, t​​,

​ ​
[
​ 
​ϵ​ t​ x​

​ ​v​4, t​​​ 
​v​8, t​​

​
]
​ ​  ∼​ iid​​    ​

⎛

 ⎜ 
⎝
0, ​

⎡

 ⎢ 
⎣
​
​σ​ x​ 2​

​ 
0

​ 
0

​  0​  ​σ​ v, 4​ 2  ​​  0​  
0

​ 
0

​ 
​σ​ v, 8​ 2  ​

​

⎤

 ⎥ 
⎦
​

⎞

 ⎟ 
⎠
​​

with the convention that ​​s​0, t​​  ≡ ​ x​t​​​ , and where

	 ​​ σ​ x​ 2​   = ​ σ​ a, 0​ 2  ​ + ​σ​ a, 4​ 2  ​ + ​σ​ a, 8​ 2  ​,

	 ​ σ​ v, 4​ 2  ​   = ​   1 _ 
​σ​ a, 4​ 2  ​

 ​ ​σ​ a, 0​ 2  ​ ( ​σ​ a, 0​ 2  ​ + ​σ​ a, 4​ 2  ​ ),

	​ σ​ v, 8​ 2  ​   = ​   1 _ 
​σ​ a, 8​ 2  ​

 ​ ( ​σ​ a, 0​ 2  ​ + ​σ​ a, 4​ 2  ​ ) ( ​σ​ a, 0​ 2  ​ + ​σ​ a, 4​ 2  ​ + ​σ​ a, 8​ 2  ​ ).​

We can use the noise representation in Proposition 6 with the same parameter 
estimates as before, and recompute the variance decomposition of the seven observ-
able variables in terms of fundamental shocks and noise shocks. This decomposition 
is unique by Proposition 4. There is no need to re-estimate the model because obser-
vational equivalence implies that the likelihood function is the same under both rep-
resentations. The third column of Table 1 shows the share of variation attributable to 
fundamental shocks ​{ ​ϵ​ t​ x​ }​ , and the fourth column shows the share attributable to the 
noise shocks ​{ ​v​4, t​​ }​ and ​{ ​v​8, t​​ }​ combined.

Table 1—Variance Decomposition

Variable Surprise News Fundamental Noise

Output 57 43 94   6
Consumption 50 50 95   5
Investment 55 45 89 11
Hours 16 84 97   3

Notes: Variance decomposition (percent) in the model of Schmitt-Grohé and Uribe (2012) 
over business cycle frequencies of 6 to 32 quarters. All variables are in levels. Estimated model 
parameters are set to their posterior median values.
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The main result is that nearly all of the variation in output, consumption, invest-
ment, and hours is due to fundamentals. In terms of differences across the endogenous 
variables, it is interesting that real investment growth is affected the least by news 
shocks, but it is affected the most by noise shocks. At the same time, hours worked 
is affected the most by news shocks and the least by noise shocks. But based on the 
fact that 89 percent or more of the variation in every series is attributable to funda-
mental changes, we conclude that beliefs are not an important independent source 
of fluctuations through the lens of this model.

B. Barsky and Sims (2012)

The second model comes from Barsky and Sims (2012). It was constructed to 
determine whether measures of consumer confidence change in ways that are related 
to macroeconomic aggregates because of noise (i.e., “animal spirits”) or news. The 
main result of the paper is that changes in consumer confidence are mostly driven 
by news and not noise. Noise shocks account for negligible shares of the variation 
in forecast errors of consumption and output, while news shocks account for over 
one-half of the variation in long-horizon forecast errors. However, as we saw in 
Section IIB, including both news and noise shocks in the same model can be prob-
lematic when it comes to isolating the importance of pure beliefs.

The model is a standard New Keynesian DSGE model with real and nominal fric-
tions: one period internal habit formation in consumption, capital adjustment costs 
(as opposed to investment adjustment costs, according to which costs are a function 
of the growth rate of investment rather than the level of investment relative to the 
existing capital stock), and monopolistic price setting with time-dependent price 
rigidity. Fundamentals comprise three different independent processes, which cap-
ture exogenous variation in nonstationary neutral productivity, government spend-
ing, and monetary policy. More details are in the online Appendix.

Agents only receive advance information about productivity, and not about the 
other two fundamentals. So it is only pure beliefs about productivity that can play 
an independent role in driving fluctuations. Letting ​​x​t​​​ denote the growth rate of pro-
ductivity (in deviations from its mean), and using our notation from Section IIB, the 
process ​{ ​x​t​​ }​ is assumed to follow a law of motion of the form

(12)	​​
​x​t​​   = ​ μ​t−1​​ + ​η​t​​,

​  ​μ​t​​  =  ρ​μ​t−1​​ + ​ϵ​ t​ μ​,​  
​s​t​​   = ​ μ​t​​ + ​ξ​t​​,

 ​ ​ 
[
​
​ϵ​ t​ μ​

​ ​η​t​​​ 
​ξ​t​​
 ​
]
​ ​  ∼​ iid​​    ​

⎛

 ⎜ 
⎝

0, ​

⎡

 ⎢ 
⎣

​
​σ​ μ​ 2 ​

​ 
0

​ 
0

​ 0​  ​σ​ η​ 2​​  0​ 
0

​ 
0

​ 
​σ​ ξ​ 2​

​

⎤

 ⎥ 
⎦

​

⎞

 ⎟ 
⎠

​,​

where ​0  <  ρ  <  1​. Barsky and Sims (2012) refer to ​​ϵ​ t​ μ​​ as a news shock, ​​η​t​​​ as a 
surprise shock, and ​​ξ​t​​​ as a noise (animal spirits) shock.8 However, these definitions 
are not consistent with the definitions in our paper. To avoid any confusion we will 
use asterisks to indicate the terminology of Barsky and Sims (2012). So we refer to ​​
ϵ​ t​ μ​​ as a news* shock, ​​η​t​​​ as a surprise* shock, and ​​ξ​t​​​ as a noise* shock.

8 While these authors refer to signal noise as “animal spirits,” they also use the term “pure noise” to refer to 
statistical measurement error. We are only concerned with noise in the first sense. 
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The model is estimated by minimizing the distance between impulse responses 
generated from simulations of the model and those from estimated structural vector 
autoregressions. The vector autoregressions are estimated on quarterly US data from 
1960:I to 2008:IV. The time series used to estimate the vector autoregression are 
real GDP, real consumption, CPI inflation, a measure of the real interest rate, and a 
measure of consumer confidence from the Michigan Survey of Consumers (E5Y).

A variance decomposition shows that news* shocks are much more important 
than noise* shocks. The first column of Table 2 shows the share of business cycle 
variation in the level of four endogenous variables that is attributable to surprise* 
shocks ​{ ​η​t​​ }​ , the second shows the share attributable to news* shocks ​{ ​ϵ​ t​ μ​ }​ , and 
the third shows the share attributable to noise* shocks ​{ ​ξ​t​​ }​. Due to the presence of 
exogenous government spending and monetary policy shocks, the rows do not sum 
to 100 percent; the residual represents the combined contribution of these two addi-
tional fundamental shocks. These results are consistent with the authors’ original 
findings, which are stated in terms of the variance decompositions of forecast errors 
over different horizons, but across all frequency ranges (see their Table 3).

To properly isolate the independent contributions of beliefs, we would again like 
to construct a noise representation that is observationally equivalent to representa-
tion (12). The following proposition presents one such noise representation.

PROPOSITION 7: The representation of fundamentals and beliefs in system (12) is 
observationally equivalent to the noise representation

	  ​​x​t​​   =  − ρ ​ 
​σ​ η​ 2​
 _ 

​σ​ μ​ 2 ​
 ​​[​m​t​​ − ​(​ 1 + ​δ​​ 2​ _ δ ​ )​ ​m​t−1​​ + ​m​t−2​​]​,

	​ m​t​​   =  (ρ + δ) ​m​t−1​​ − ρδ ​m​t−2​​ + ​ϵ​ t​ m​,

	​ s​t​​   = ​ m​t​​ + ​v​t​​,

	​ v​t​​   =  δ ​v​t−1​​ + ​ϵ​ t​ v​ − β ​ϵ​ t−1​ v  ​​,

	​ ​[​​ϵ​ t​ 
m​​ ​ϵ​ t​ v​
 ​]​ ​ ∼​ iid​​    ​

(
0, ​

[
​
δ​σ​ μ​ 4 ​/ (ρ​σ​ η​ 2​ )

​ 
0
​  

0
​ 

δ​σ​ ξ​ 2​/β
​
]
​
)

​,​

with the convention that ​​s​0, t​​  ≡ ​ x​t​​​ , and where
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Using the noise representation in this proposition, we can recompute the variance 
decomposition of the endogenous processes in terms of fundamental shocks and 
noise shocks. The fourth column of Table 2 shows the share of variation attributable 
to fundamental productivity shocks, and the fifth column shows the share attributable 
to productivity noise shocks. Again, the rows do not sum to 100 percent due to the 
presence of government spending and monetary policy shocks. Conceptually, the 
contribution of these shocks should also be included under the heading of funda-
mental shocks, but for comparison with the first three columns, we only include 
fundamental productivity shocks in the fourth column.

As in the model of Schmitt-Grohé and Uribe (2012), nearly all of the variation 
in output, consumption, investment, and hours is due to fundamentals. The contri-
bution of noise shocks is larger than the contribution of noise* shocks, for all vari-
ables. However, the bulk of the contribution of news* shocks turns out to be due to 
fundamentals rather than noise.

To further highlight the difference between noise and noise* shocks, we plot in 
Figure 1, panel A, both the noise and noise* shares of consumption for different val-
ues of the standard deviation of noise shocks, ​​σ​ξ​​​. The striking result is that the noise 
share of consumption is monotonically decreasing in ​​σ​ξ​​​. This means that removing 
noise* shocks altogether, by taking ​​σ​ξ​​  →  0​ , actually leads to a larger noise share.

The intuition for this result is that the noise share of agents’ forecasts (and their 
actions) is a hump-shaped function of the relative size of noise shocks. When noise 
shocks are very small, agents’ signal is very precise, and noise shocks do not affect 
their forecasts very much. At the other extreme, when noise shocks are very large, 
agents’ signal is very imprecise, so they rationally ignore it. The maximum contri-
bution of noise shocks occurs is achieved for an intermediate size of these shocks.

In this model, noise is generated explicitly by the noise* shocks ​{ ​ξ​t​​ }​ , but also 
implicitly by the two shocks ​{ ​η​t​​ }​ and ​{ ​ϵ​ t​ μ​ }​. Panel A of Figure 1 indicates that at the 
estimated parameter values, the combined level of noise is large enough that agents 
have already begun to pay less attention to the signal. By eliminating noise* shocks, 
the signal becomes more informative and agents to rely on it more. This allows the 
remaining noise coming from ​{ ​η​t​​ }​ and ​{ ​ϵ​ t​ μ​ }​ to affect their forecasts to a greater extent.

C. Blanchard, L’Huillier, and Lorenzoni (2013)

The third model we consider comes from Blanchard, L’Huillier, and Lorenzoni 
(2013), and was constructed “to separate fluctuations due to changes in fundamentals 

Table 2—Variance Decomposition

Variable Surprise* News* Noise* Fundamental Noise

Output 53 37 0 89 1
Consumption 61 34 1 88 9
Investment 40 43 1 80 4
Hours 62 14 0 74 3

Notes: Variance decomposition (percent) in the model of Barsky and Sims (2012) over busi-
ness cycle frequencies of 6 to 32 quarters. All variables are in levels, and estimated parameters 
are set to their point-estimated values. The rows do not sum to 100 percent because of other 
non-technology fundamental processes. Asterisks refer to the authors’ terminology.
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(news) from those due to temporary errors in agents’ estimates (noise).” 9 The main 
quantitative result of their paper is that noise shocks explain a sizable fraction of short-
run consumption fluctuations. However, it turns out that what the authors call “noise” 
shocks do not fully isolate fluctuations due to temporary errors in agents’ estimates. 
So we can investigate what this model implies about the importance of pure beliefs.

The model is a standard New Keynesian DSGE model with real and nominal 
frictions: one-period internal habit formation in consumption, investment adjust-
ment costs, variable capital capacity utilization, and monopolistic price and wage 
setting with time-dependent price rigidities. Fundamentals comprise six different 
independent processes, which capture exogenous variation in nonstationary neu-
tral productivity, stationary investment-specific productivity, government spending, 
wage markups, final good price markups, and monetary policy. For more details, see 
the online Appendix.

Agents only receive advance information about productivity, and not about the 
other five fundamentals. So it is only pure beliefs about productivity that can play 
an independent role in driving fluctuations. Let ​​x​t​​​ denote the level of productivity, 
which is observed by agents in the economy, and let ​​s​t​​​ denote the additional infor-
mative signal that agents receive. Then the processes ​{ ​s​t​​ }​ and ​{ ​x​t​​ }​ are assumed to 
evolve according to a system of the form

(13)	​​

      ​x​t​​  = ​ μ​t​​ + ​η​t​​,

​  
    ​s​t​​ =  ​μ​t​​ + ​ξ​t​​,​  Δ​μ​t​​  =  ρΔ​μ​t−1​​ + ​ϵ​ t​ μ​,

​   

     ​η​t​​ =  ρ​η​t−1​​ + ​ϵ​ t​ η​,

 ​  ​
⎡
 ⎢ 

⎣
​
​ϵ​ t​ μ​

​ ​ϵ​ t​ η​​ 
​ξ​t​​
 ​
⎤
 ⎥ 

⎦
​ ​  ∼​ iid​​    ​

⎛

 ⎜ 
⎝
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⎡

 ⎢ 
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⎤

 ⎥ 
⎦

​

⎞

 ⎟ 
⎠

​,​

9 This quotation is taken from the article’s abstract (not printed with the article), which can be found on the 
AEA’s website: https://www.aeaweb.org/articles?id=10.1257/aer.103.7.3045. 
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Figure 1. Noise versus Noise*

Notes: BS refers to Barsky and Sims (2012); BBL refers to Blanchard, L’Huillier, and Lorenzoni (2013). This figure 
plots the noise and noise* shares of consumption over business cycle frequencies of 6 to 32 quarters, for different 
values of the variance of noise* shocks. The vertical dash-dotted line marks the estimated value of this parameter; 
the white circles correspond to the consumption noise shares reported in Tables 2 and 3. (The asterisk denotes the 
authors’ original terminology.)

https://www.aeaweb.org/articles?id=10.1257/aer.103.7.3045.
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with the parameter restriction10 that ​ρ​σ​ μ​ 2 ​  = ​ (1 − ρ)​​ 2​ ​σ​ η​ 2​​.
The authors refer to ​​ϵ​ t​ μ​​ as a permanent productivity shock, ​​ϵ​ t​ η​​ as a transitory pro-

ductivity shock, and ​​ξ​t​​​ as a noise shock. Taken together, they refer to ​​ϵ​ t​ μ​​ and ​​ϵ​ t​ η​​ 
as news shocks, because they are both correlated with future productivity. Again, 
because these definitions are not consistent with the ones in our paper, we will use 
asterisks to indicate the authors’ terminology in contrast to ours.

The model is estimated using likelihood-based methods on a sample of quarterly 
US data from 1954:III to 2011:I. The time series used for estimation are real GDP, 
real consumption, real investment, employment, the federal funds rate, inflation as 
measured by the implicit GDP deflator, and wages.

A variance decomposition reveals that noise* shocks are important, especially for 
consumption. The first column of Table 3 shows the share of business cycle varia-
tion in the level of output, consumption, investment, and hours that is attributable to 
news* shocks, ​{ ​ϵ​ t​ μ​ }​ and ​{ ​ϵ​ t​ η​ }​ , and the second column shows the share attributable 
to noise* shocks ​{ ​ξ​t​​ }​. Due to the presence of the other five fundamental shocks, the 
rows do not sum to 100 percent; the residual represents the combined contribution of 
these additional fundamental shocks. These results are consistent with the authors’ 
original findings, which are stated in terms of the variance decompositions of fore-
cast errors over different horizons (see their Table 6).

However, to properly isolate the independent contribution of beliefs, we can 
derive a noise representation that is observationally equivalent to representation 
(13). The following proposition presents one such noise representation.

PROPOSITION 8: The representation of fundamentals and beliefs in system (13) is 
observationally equivalent to the noise representation

	  ​​x​t​​   =  − ​  ρ _ 
​(1 − ρ)​​ 2​

 ​ ​m​t+1​​ + ​ (1 + ​ρ​​ 2​ )
 _ 

​(1 − ρ)​​ 2​
 ​ ​m​t​​ − ​  ρ _ 

​(1 − ρ)​​ 2​
 ​ ​m​t−1​​,

	​ s​t​​   = ​ m​t​​ + ​v​t​​,

	​ m​t​​   =  (1 + 2ρ) ​m​t−1​​ − ρ(2 + ρ) ​m​t−2​​ + ​ρ​​ 2​ ​m​t−3​​ + ​ϵ​ t​ m​,

	​ v​t​​   =  2ρ​v​t−1​​ − ​ρ​​ 2​ ​v​t−2​​ + ​ϵ​ t​ v​ − (δ + ​δ –
 ​) ​ϵ​ t−1​ v  ​ + δ ​δ –

 ​ ​ϵ​ t−2​ v  ​​,

	​ ​[​​ϵ​ t​ 
m​​ ​ϵ​ t​ v​
 ​]​ ​  ∼​ iid​​    ​

(
0, ​

[
​
​(1 − ρ)​​ 2​ ​σ​ μ​ 2 ​

​ 
0
​  

0
​ 

​ρ​​ 2​ ​σ​ ξ​ 2​/(δ ​δ –
 ​)
​
]
​
)

​,​

with the convention that ​​s​0, t​​  = ​ x​t​​​ , and where11

	​ δ  = ​  1 _ 
2ρ ​​(1 + ​ρ​​ 2​ + ​ρ​​ 1/2​ ​ 

​σ​μ​​ _ ​σ​ξ​​ ​ i − ​​[​​(1 + ​ρ​​ 2​ + ​ρ​​ 1/2​ ​ 
​σ​μ​​ _ ​σ​ξ​​ ​ i)​​​ 

2

​ − 4​ρ​​ 2​]​​​ 
1/2

​)​.​

10 This restriction ensures that productivity is a random walk. 
11 In the definition of ​δ​ , ​i  ≡ ​ √ 

_
 − 1 ​​ is the imaginary unit, and ​​δ –

 ​​ denotes the complex conjugate of ​δ​. Both 
​δ + ​δ –

 ​​ and ​δ ​δ –
 ​​ are real numbers. 
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Using the noise representation in this proposition, we can recompute the variance 
decomposition of the endogenous processes in terms of fundamental shocks and 
noise shocks. The third column of Table 3 shows the share of variation attributable 
to fundamental productivity shocks and the fourth column shows the share attribut-
able to productivity noise shocks. Again, the rows do not sum to 100 percent due to 
the presence of fundamental processes other than productivity.

In contrast to both the Schmitt-Grohé and Uribe (2012) and Barsky and Sims 
(2012) models, we find that a sizable fraction of the variation in output, consump-
tion, and hours worked can be attributed to noise shocks. For example, nearly 60 per-
cent of the variation in consumption is due to noise shocks. This is more than 10 
percent larger than the share Blanchard, L’Huillier, and Lorenzoni (2013) originally 
attributed to independent fluctuations in beliefs. A result of similar magnitude is true 
for output and hours worked. It is interesting that for all variables in the table, noise 
about productivity is in fact more important than productivity itself. This cannot be 
seen from the original decomposition.

Moreover, panel B of Figure 1 indicates that, as in the model of Barsky and Sims 
(2012), the noise share of consumption is maximized when the size of noise* shocks 
is zero. This emphasizes the fact that variance decompositions in terms of noise* 
shocks can be a misleading measure of the importance of pure beliefs.

D. Future Fundamentals

Across all three of the models we consider, fundamental shocks appear to play 
a relatively large role. This is especially true in the models of Schmitt-Grohé and 
Uribe (2012) and Barsky and Sims (2012). Are fundamentals important because 
agents are correctly anticipating future fundamental changes before they occur, or 
because they are merely reacting to past fundamental changes? To answer this ques-
tion, we can use the decomposition in equation (10) to compare the importance of 
current and past fundamental shocks relative to future fundamental shocks.

As we described in Section IID, it is only possible to consider decompositions 
in terms of past, present, and future fundamental shocks if the endogenous process 
under consideration is stationary. Each of the three models in this section exhibits 
trend growth in output, consumption, and investment. One option would be to first 
detrend these processes using a frequency-domain filter (e.g., band-pass filter) and 
then perform the past versus future decomposition. However, this would not be a 
good idea, because frequency filters of this type scramble up the dependence across 

Table 3—Variance Decomposition

Variable News* Noise* Fundamental Noise

Output 34 22 26 29
Consumption 40 44 27 57
Investment   6   3   4   5
Hours 17 29   7 39

Notes: Variance decomposition (percent) in the model of Blanchard, L’Huillier, and Lorenzoni 
(2013) over business cycle frequencies of 6 to 32 quarters. All variables are in levels, and esti-
mated parameters are set to their posterior median values. The rows do not sum to 100 percent 
because of other non-technology fundamental processes.
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time periods. As a result, they can introduce spurious dynamic relationships that are 
not part of the underlying economic model.

Therefore, we use an exponential detrending procedure that preserves the distinc-
tion between past and future shocks. For a difference stationary process ​{ ​y​t​​ }​ , we 
define the stochastic trend ​​​y – ​​t​​ (θ)​ as the exponential moving average of past values,

	​​​ y – ​​t​​ (θ)   =  (1 − θ) ​y​t−1​​ + θ ​​y – ​​t−1​​ (θ),​

where ​θ  ∈  [0, 1)​. We then define the detrended process ​{ ​​y ̃ ​​t​​ (θ)}​ as 
​​​y ̃ ​​t​​ (θ) ≡ ​y​t​​ − ​​y – ​​t​​ (θ)​.

The parameter ​θ​ controls the extent to which the trend depends on past values. 
When ​θ  =  0​ , the detrended process is just the first-differenced version of the orig-
inal process. As ​θ  →  1​ , ​​​y ̃ ​​t​​ (θ)   → ​ y​t​​​. By varying ​θ​ , we can therefore consider a 
range of different hypotheses regarding the stochastic trend. Because the filter is 
one-sided for any ​θ​ (unlike most frequency-domain filters), it preserves the notions 
of past, present, and future defined by the original process ​{ ​y​t​​ }​.12

Figure 2 plots the fraction of the fundamental share due to future fundamental 
shocks, for each of the three models considered in this section. We plot this fraction 
for a range of different detrended versions of the endogenous variables, correspond-
ing to a different values of ​θ​. As in the previous decompositions in this section, 
we focus only on fundamentals about which agents receive some advance infor-
mation. That means that for the models of Barsky and Sims (2012) and Blanchard, 
L’Huillier, and Lorenzoni (2013), we focus only on productivity, while in the model 
of Schmitt-Grohé and Uribe (2012) we include all seven fundamentals.13

The consistent result across all three models is that the bulk of the contribution 
of fundamentals comes from current and past, not future, fundamental shocks. In 
some cases, it is difficult to see that there are actually three lines in each subplot. 
This is because one of the lines is visually indistinguishable from zero. In the model 
of Barsky and Sims (2012), endogenous variables are the least sensitive to future 
shocks (on average across ​θ​), followed by the model of Schmitt-Grohé and Uribe 
(2012) and then Blanchard, L’Huillier, and Lorenzoni (2013).

This result may seem surprising considering that news* shocks are fairly import-
ant in all three models. How can it be that news* shocks are so important, but future 
fundamental shocks are not? As discussed in Section IID, two conditions must be 
satisfied for future fundamental shocks to be an important driver of current actions. 
First, agents’ actions must depend to a sufficient degree on their expectations of 
future fundamentals. Second, agents must receive signals that provide substantial 
information about future fundamentals, above and beyond what they can infer from 
current and past fundamentals.

While the different models deliver the same conclusion regarding the impor-
tance of future fundamentals, they do so for very different reasons. The model 
of Schmitt-Grohé and Uribe (2012) is not very forward-looking, so the first con-
dition is not met. This can be seen in the forecast error variance decompositions 

12 In this respect, our proposal is similar to the procedure recently suggested by Hamilton (forthcoming). 
13 Agents only receive advance information about productivity in the first two models, so including other 

non-productivity fundamentals would only reduce the future fundamental share. 
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from Figure 3, which report the share of news shocks in explaining the variance 
of forecast errors in various endogenous variables as a function of the forecast 
horizon. Most of the contribution of news shocks occurs only after the four-quar-
ter-ahead and eight-quarter-ahead news shocks actually materialize. This is the rea-
son the news shares look like step functions with jumps just after four and eight  
quarters.14

The models of Barsky and Sims (2012) and Blanchard, L’Huillier, and 
Lorenzoni (2013) are more forward-looking, but as we will discuss in more detail 
in Section IIIE, agents’ signals do not provide substantial information about future 
fundamentals above and beyond what they can already infer from observing current 
and past productivity. That is, the second condition is not met. In the Barsky and 
Sims (2012) model, agents can already forecast future productivity very well based 
on current and past productivity realizations alone, and have relatively little need 
for the signal. In the Blanchard, L’Huillier, and Lorenzoni (2013) model, agents 
rely on their signal much more, but that signal is quite noisy. Indeed, the fact that 
the signal is noisy is important for helping that model generate a large role for noise 
shocks.

14 This same observation is made by Sims (2016). 
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Figure 2. Future Fundamental Shocks

Notes: Fraction of the fundamental share due to future fundamental shocks, as a function of the detrending param-
eter ​θ  ∈  [0, 1)​. ​θ  =  0​ corresponds to a decomposition in (log) first differences, and ​θ  →  1​ corresponds to a 
decomposition in (log) levels. SGU refers to Schmitt-Grohé and Uribe (2012).
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E. Understanding the Differences

How is it that the three models we consider in this section, especially the rather 
similar models of Barsky and Sims (2012) and Blanchard, L’Huillier, and Lorenzoni 
(2013), deliver such different results regarding the importance of noise shocks? The 
existing literature has offered two separate explanations, one that emphasizes differ-
ences in information structures and another that emphasizes differences in physical 
economic environments. Beaudry and Portier (2014) argue that the key difference is 
that agents in the model of Blanchard, L’Huillier, and Lorenzoni (2013) face a more 
difficult inference problem, which leads them to make larger and more persistent 
forecast errors. By contrast, Barsky and Sims (2012) argue that the key difference 
is that Blanchard, L’Huillier, and Lorenzoni (2013) estimate a very accommodative 
monetary policy rule and a high degree of price rigidity, which work together to 
allow expectational shocks to propagate to the real side of the economy.

In this section we perform several exercises to better understand the reasons why 
these models disagree about the importance of noise shocks. We focus exclusively 
on the models of Barsky and Sims (2012) and Blanchard, L’Huillier, and Lorenzoni 
(2013), since those are the most similar. We will argue that, at least with respect to 
these models, both the “right” information structure and the “right” physical envi-
ronment are needed. Neither one alone is sufficient to generate an large role for 
noise shocks.
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Figure 3. Forecast Error Variance Decomposition

Notes: Forecast error variance decomposition in the model of Schmitt-Grohé and Uribe (2012). The line represents 
the share of news shocks in explaining the forecast error variance at each horizon. The decomposition is performed 
in growth rates (​θ  =  0​) and in terms of unconditional variances.
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First, we present in Figure 4 some prima facie evidence that the disagreement is 
not just due to differences in information structure. If we replace the information 
structure in the Barsky and Sims (2012) model with the information structure from 
Blanchard, L’Huillier, and Lorenzoni (2013), keeping all parameters at their origi-
nal estimated values, the noise share of consumption does not change by much. This 
suggests that having the right information structure alone is not enough. However, 
having the right information structure is still important. If we replace the informa-
tion structure in the Blanchard, L’Huillier, and Lorenzoni (2013) model with the 
information structure from Barsky and Sims (2012), the noise share of consumption 
falls dramatically.

What is it about the information structure of Blanchard, L’Huillier, and Lorenzoni 
(2013) that makes it amenable to a high consumption noise share? With this infor-
mation structure, agents have to rely a good deal on their noisy signal in order to 
forecast future productivity. With the Barsky and Sims (2012) information structure, 
on the other hand, agents can forecast future productivity fairly well from the past 
history of productivity alone. As a result, they rely less on the noisy signal.

Panel A of Figure 5 shows the standard deviation of productivity forecast errors 
in both models, with and without signals; larger forecast error standard deviations 
mean that agents are making larger mistakes. Agents with Blanchard, L’Huillier, 
and Lorenzoni (2013) information have a harder time forecasting productivity, 
even with their signal. But the additional benefit from receiving the signal is larger 
for these agents compared to those with Barsky and Sims (2012) information. For 
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Figure 4. Swapping Information Structures

Notes: This figure plots the noise share of consumption over business cycle frequencies of 6 
to 32 quarters, for each of four different combinations of model and information structure. All 
parameters are fixed at the authors’ original estimated values.
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those agents, forecasts with and without the signal are basically the same. The result 
of these differences can be seen in panel B: long-horizon productivity forecasts 
are affected by noise to a much greater extent under Blanchard, L’Huillier, and 
Lorenzoni (2013) information.

Of course, a large noise share in long-horizon productivity forecasts only trans-
lates into a large noise share in consumption if agents’ consumption decisions 
depend on long-horizon forecasts to a sufficient degree. In New Keynesian mod-
els, one way to achieve this is to have very rigid prices and a relatively unrespon-
sive monetary policy rule. When prices cannot adjust and nominal rates remain 
unchanged, real rates don’t move much in response to changes in beliefs about 
the future (whether justified or not). Instead, permanent-income logic implies 
that consumption must respond. In fact, as Blanchard, L’Huillier, and Lorenzoni 
(2013) show, in a limiting case of their model with perfectly rigid prices and a 
policy rule that does not respond to output, ​​c​t​​  = ​ lim​j→∞​​ ​E​t​​ [ ​a​t+j​​ ]​ up to a first-order 
approximation. In this limiting case, current consumption only depends on agents’ 
infinite-horizon forecast.

This is the line of reasoning emphasized by Barsky and Sims (2012). And as 
they suggest, it is true that for “extreme” parameter values it would be possible to 
achieve a higher consumption noise share. But that does not provide much by way 
of an explanation for why the estimates disagree. It may be possible for both models 
to achieve a higher noise share, but apparently only one estimated model actually 
does. Since the difference between possible and actual parameter configurations 
ultimately depends on the data, we consider that next.

To understand why one set of estimates delivers a high noise share while the 
other does not, we perform an estimation exercise. We first level the playing field 
by removing incidental differences between the two original estimation exercises 
(e.g., differences in the number of shocks, sample period, estimation procedure, 
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Notes: Panel A plots the standard deviation of ​j​-quarter ahead productivity forecast errors,  
​​a​t+j​​​ − ​​E​t​​​[​​a​t+j​​​ ], with and without noisy signals. Panel B plots the fraction of ​j​-quarter ahead productivity forecasts, ​​
E​t​​​[​​a​t+j​​​ ], attributable to noise shocks over business cycle frequencies of 6 to 32 quarters.
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and data series), and then re-estimate both models using maximum likelihood.15 To 
build confidence that our changes are incidental, we first verify that we replicate the 
disagreement between the two models. The top entry in the first column of Table 4 
reports that in our version of the Barsky and Sims (2012) model, the noise share 
of consumption is 17 percent, and the bottom entry of the second column reports 
that in our version of the Blanchard, L’Huillier, and Lorenzoni (2013) model, the 
noise share of consumption is 51 percent. This is close to what we found under the 
authors’ original estimates.

Next, we swap information structures and re-estimate both models. The resulting 
consumption noise shares are reported in the bottom entry of the first column and the 
top entry of the second column in Table 4. These results reconfirm the prima facie 
evidence we presented in Figure 4, that having the right information structure is 
important but not sufficient to generate a high noise share. In fact, the physical envi-
ronment appears somewhat more important after estimation, since our version of 
the Blanchard, L’Huillier, and Lorenzoni (2013) model still delivers a noise share of 
35 percent when estimated with the Barsky and Sims (2012) information structure.

Of the remaining differences in the physical environments, it turns out that the 
most important from the perspective of the importance of noise is whether nom-
inal wages are perfectly flexible or not. To show this, we estimate our version of 
the Blanchard, L’Huillier, and Lorenzoni (2013) model after removing the nominal 
wage rigidities; the results are in the third column of Table 4. When wages are flex-
ible, the Blanchard, L’Huillier, and Lorenzoni (2013) model delivers results that are 
much more in line with the Barsky and Sims (2012) model. Under either informa-
tion structure, the noise share of consumption is less than 20 percent.

The reason noise shocks are so much more important when wages are sticky 
is that nominal wage rigidities help the model to generate positive business cycle 
comovement in response to noise shocks. Figure 6 plots the impulse responses of out-
put, consumption, investment, and hours in our estimated version of the Blanchard, 
L’Huillier, and Lorenzoni (2013) model in response to a one standard deviation 
noise shock (baseline). In addition, we also plot the responses of this model in the 
limit as wage rigidities vanish, keeping all other parameters at their estimated values 
(flex wage).16 Only in the baseline case with sticky wages do all four aggregates 
increase together in response to a noise shock.

15 The details are described in the online Appendix. 
16 Alternatively, we could have plotted the responses in the estimated flexible wage version of the model used to 

generate the third column of Table 4; the same patterns hold. 

Table 4—Estimation Results

BS model BLL model BLL flex wage

BS info 17 35 16
(3,626) (2,041) (2,308)

BLL info 13 51 18
(3,654) (2,034) (2,273)

Notes: This table reports the noise share of consumption over business cycle frequencies of 
6 to 32 quarters, estimated under different combinations of model and information structure. 
The numbers in parentheses are the BIC values associated with each of the estimated models.
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The noise shock makes agents (mistakenly) expect higher future productivity. 
This has two conflicting effects on hours worked. On the one hand, households 
feel wealthier and want to consume more and work less. On the other hand, the 
expected marginal products of capital and labor are higher, which makes firms 
want more of both. When wages are flexible, the first effect dominates; households 
increase their wages enough that in equilibrium hours begin to fall. Since labor 
and capital are complementary, and there are investment adjustment costs, equi-
librium investment falls on impact. When wages are sticky, however, the second 
effect dominates; households expect to be working more and therefore increase 
investment on impact. In either case, as time passes agents begin to learn that the 
shock was noise, and eventually reverse their actions and return back to the orig-
inal steady state.

Lastly, we also report in Table 4 the Bayesian information criterion (BIC) values 
associated with each estimated model. Smaller values indicate better fit, adjusted for 
the number of free parameters. According to this criterion, we find that our version 
of the Blanchard, L’Huillier, and Lorenzoni (2013) model fits better than our version 
of the Barsky and Sims (2012) model, regardless of the information structure or the 
nature of wage setting. The best fitting model is also the one in which noise shocks 
play the largest role.
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Figure 6. Noise Shock Impulse Responses

Notes: Impulse responses to a one standard deviation noise shock. Here, the “flex wage” model is our the baseline 
estimated model when the wage rigidity parameter is taken to its flexible wage limit. All other parameters are the 
same in both models, and are equal to our baseline estimates (cf. the online Appendix).
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IV.  Conclusion

Models with news and noise are intimately related. In fact, as we have argued here, 
there is a precise sense in which they are identical. The missing link is the obser-
vation that they are really just two different ways of describing the joint dynamics 
of exogenous economic fundamentals and agents’ beliefs about them. This link is 
formalized by Theorem 1.

The observational equivalence of news and noise representations also raises 
important questions regarding the applicability of semi-structural empirical meth-
ods, such as structural vector autoregression analysis, to models of belief-driven 
fluctuations. Some have argued that, while it may be possible to use these methods 
to analyze models with news shocks, it is never possible to use them to analyze 
models with noise shocks.17 The reason is that news shocks can be expressed as a 
function of current and past observables (at least with a rich enough dataset), but 
noise shocks cannot. Noise representations are not “invertible.” If an econometrician 
could recover noise shocks from current and past observables, so could the agents 
in the model. But then, the agents would rationally ignore the noise shocks and they 
would never affect any of the agents’ actions.

How can news and noise representations be observationally equivalent if it is 
only possible to use semi-structural methods to analyze models with news shocks 
and not models with noise shocks? The answer, as it turns out, is that invertibility 
is not a necessary condition for using these methods. What matters is not whether 
shocks can be recovered from the current and past history of observables, but sim-
ply whether shocks can be recovered from the observables. This weaker condition, 
which we refer to as “recoverability,” is satisfied in any noise representation if and 
only if it is satisfied in its observationally equivalent news representation. We dis-
cuss these issues in more detail in Chahrour and Jurado (2017).

Appendix

PROOF OF PROPOSITION 1:
Let ​​​x ˆ ​​t​​  ≡ ​ E​t​​ [ ​x​t+1​​ ]​ denote agents’ expectations of the fundamental at date ​t + 1​ 

given their information at ​t​. The observable processes are ​{ ​x​t​​ }​ and ​{ ​​x ˆ ​​t​​ }​. Expectations 
at horizons greater than 1 are spanned by these two processes.

The two representations are observationally equivalent if and only if the spectral 
density of the observable data is the same. In this case, the data consists of the pro-
cess ​{ ​d​t​​ }​ with ​​d​t​​  ≡  ( ​x​t​​ , ​​x ˆ ​​t​​​) ′ ​​ for all ​t  ∈  ℤ​. Equating the spectral density implied by 
each representation,
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​ 
​(​  ​σ​ x​ 4​ _ 
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 ​

⎤
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​​  

noise

​ ​  .​

17 This is the main methodological argument of Blanchard, L’Huillier, and Lorenzoni (2013). 
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This equality holds if and only if the relations in Proposition 1 are satisfied. ∎

PROOF OF THEOREM 1:
To prove the first part, we begin by letting ​​​t​​ (​x ˆ ​)​ denote the orthogonal comple-

ment of ​​​t−1​​ (​x ˆ ​)​ in the subspace ​​​t​​ (​x ˆ ​)​ ,

	​ ​​t​​ (​x ˆ ​)  = ​ ​t​​ (​x ˆ ​)  ⊖  ​​t−1​​ (​x ˆ ​) .​

The linear regularity of ​{ ​​x ˆ ​​i, t​​ }​ (which follows from the linear regularity of ​{ ​x​t​​ }​ and 
rational expectations) means that ​​∩​ t=−∞​ ∞ ​ ​ ​t​​ (​x ˆ ​)  =  0​ , and consequently that each 
of the ​​​t​​ (​x ˆ ​)​ can be represented as the orthogonal direct sum of the subspaces 
​​​t−i​​​ , ​i  ≥  0​ ,

	​ ​​t​​ (​x ˆ ​) = ​  ⊕ 
i=0

​ ∞ ​​ ​​t−i​​ (​x ˆ ​) .​

This implies that ​​x​t​​  ∈ ​ ​t​​ (​x ˆ ​)​ has a unique representation of the form

(A1)	​ ​x​t​​  = ​  ∑ 
i=0

​ 
∞

 ​​ ​w​i, t−i​​ ,​

where the random variable ​​w​i, t−i​​​ represents the projection of ​​x​t​​​ onto ​​​t−i​​ (​x ˆ ​)​ for each ​
i  ≥  0​. By the orthogonality of the family ​{ ​​t​​ (​x ˆ ​) }​ , it follows that the process ​{ ​w​i, t​​ }​ 
is uncorrelated over time for each ​i  ≥  0​.18

While equation (A1) looks almost like a news representation, it does not satisfy 
Definition 1 because it may be that ​​w​i, t​​ ⊥/  ​w​j, t​​​ for some ​i  ≠  j​. Therefore, we use 
a version of the Gram-Schmidt orthogonalization procedure (cf. Luenberger 1969, 
ch. 3) to transform these into an orthogonal sequence of shocks. Specifically, we 
define

	​ ​ϵ​ 0, t​ a  ​  = ​ w​0, t​​, ​ ϵ​ i, t​ a ​  = ​ w​i, t​​ − ​ ∑ 
j=0

​ 
i−1

​​ ​ϕ​i, j​​ ​ϵ​ j, t​ a ​,  for i  >  0,​

where ​​ϕ​i, j​​  ≡  (​w​i, t​​, ​ϵ​ j, t​ a ​ ) /ǁ  ​ϵ​ j, t​ a ​ ​ǁ​​ 2​​ is the projection coefficient. Define the index set ​​
​a​​​ to be the set of indices ​i  ≥  0​ such that ​ǁ ​ϵ​ i, t​ a ​ ǁ   >  0​. The collection of orthogo-
nal shocks ​​ϵ​ i, t​ a ​​ with ​i  ∈ ​ ​a​​​ is uniquely determined because the collection of input 
shocks ​​w​i, t​​​ is unique. Substituting the orthogonalized shocks into equation (A1), ​​x​t​​​ 
can be uniquely rewritten as

​	 ​x​t​​  = ​  ∑ 
i=0

​ 
∞

 ​​  ​∑ 
j≤i

​ ​​ ​ϕ​i, j​​ ​ϵ​ j, t−i​ a  ​  = ​  ∑ 
j∈​​a​​

​​​  ​∑ 
i=j

​ 
∞

 ​​ ​ϕ​i, j​​ ​ϵ​ j, t−i​ a  ​  = ​  ∑ 
j∈​​a​​

​​​ ​a​j, t−j​​ .​

The second equality rearranges the indexes on the double summation, and the 
third equality introduces the definition ​​a​j, t−j​​  ≡ ​ ∑ i=j​ ∞ ​​ ​ϕ​i, j​​ ​ϵ​ j, t−i​ a  ​​. The fact that the 

18 Equation (A1) is a slight generalization of the Wold decomposition of the process ​{ ​x​t​​ }​. See Rozanov (1967) 
for a similar derivation in the familiar case when ​​​t​​ (​x ˆ ​)   = ​ ​t​​ (x)​ for all ​t​ , so that it is possible to write ​​w​i, t​​  = ​ c​i​​ ​ζ​t​​​ 
for a sequence of coefficients ​{ ​c​i​​ }​ and a single uncorrelated process ​{ ​ζ​t​​ }​. 



1735CHAHROUR AND JURADO: NEWS OR NOISE?VOL. 108 NO. 7

orthogonalized shocks are also uncorrelated over time implies that ​​a​j, t​​  ⊥ ​ a​k, τ​​​ for 
all ​j  ≠  k​ and ​t, τ  ∈  ℤ​. Therefore, this defines the unique news representation when 
agents’ date-​t​ information set is ​​​t​​ (a)​.

What remains is to prove that the expectations implied by this news representa-
tion are in fact equal to ​{ ​​x ˆ ​​i, t​​ }​ for any ​i  ∈  ℤ​. Under rational expectations, the ​i​-step 
ahead expectation of ​​x​t​​​ at date ​t​ under the original noise representation is equal to 
the orthogonal projection of ​​x​t+i​​​ onto ​​​t​​ (​x ˆ ​)​: ​​​x ˆ ​​i, t​​  =  E [ ​x​t+i​​ | ​​t​​ (​x ˆ ​) ]​. By the unique-
ness of orthogonal projections,

	​ ​w​i, t​​  = ​​ x ˆ ​​i, t​​ − ​​x ˆ ​​i+1, t−1​​,​

where ​​w​i, t​​​ was defined in equation (A1). Therefore, ​​​t​​ (w)  = ​ ​t​​ (​x ˆ ​)​. But then 
because ​​​t​​ (a )   = ​ ​t​​ (w)​ by construction, it follows that ​​​t​​ (a )   = ​ ​t​​ (​x ˆ ​)​. So 
expectations are indeed the same under both representations, ​​​x ˆ ​​i, t​​  =  E [ ​x​t+i​​ | ​​t​​ (​x ˆ ​) ]   
=  E [ ​x​t+i​​ | ​​t​​ (a ) ]​ , which completes the proof of the first part of the theorem.

To prove the second part, we start from the (unique) news representation and 
define

	​ ​s​i, t​​  ≡ ​ a​i, t​​  for all i  ∈ ​ ​a​​.​

Because ​(x )   ⊆  (a)​ , there exist unique elements ​​m​i, t​​  ∈  (x)​ and ​​
v​i, t​​  ∈  (s )  ⊖  (x)​ such that ​​s​i, t​​  = ​ m​i, t​​ + ​v​i, t​​​. This defines a noise representa-
tion when agents’ date-​t​ information set is ​​​t​​ (s)​. What remains is to prove that the 
expectations implied by this noise representation are the same as the ones implied 
by the original news representation. Because ​​​t​​ (s )   = ​ ​t​​ (a)​ by construction, 
and ​​​t​​ (a )   = ​ ​t​​ (​x ˆ ​)​ by the definition of a news representation, it follows that 
​​​t​​ (s )   = ​ ​t​​ (​x ˆ ​)​ and therefore expectations are the same, ​​​x ˆ ​​i, t​​  =  E [ ​x​t+i​​ | ​​t​​ (​x ˆ ​)  ]   
=  E [ ​x​t+i​​ | ​​t​​ (s ) ]​. This completes the proof of the second part of the theorem. ∎
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