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Abstract

This paper studies the role of policy in the transition to clean technology. To do so, I develop
a general endogenous growth model with clean and dirty technologies and a rich network of cross-
technology knowledge spillovers. I show that the size and speed of technological redirection, following
a policy reform, depend on two forces: (i) substitution patterns in production and (ii) the network of
cross-technology knowledge spillovers, each summarized by a sufficient statistic matrix. Calibrating
my spillover network with patent data, I apply my theory to transportation and electricity generation
in the US. I find that a carbon price and clean innovation subsidy create large long-run increases in
clean technology for both sectors, but that the transition is slow, with half-lives of convergence of 121
years and 127 years, respectively. Using spectral analysis, I unpack the connections in the spillover
network that drive each sector’s convergence speed. I then characterize the optimal mix of carbon
prices and innovation subsidies along the transition, showing that innovation subsidies should reflect
a technology’s centrality in the spillover network, rather than its associated pollution externality.
Simulating the optimal policy path, I find that clean technologies create few knowledge spillovers
and receive correspondingly small innovation subsidies. However, if carbon prices are incomplete,
innovation subsidies should adjust to reflect the social cost of carbon, with clean technologies rewarded
for their ability to reduce emissions in equilibrium.
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1 Introduction

Decarbonizing the economy will require significant investments in clean innovation, so policymakers have
set out to redirect the path of innovation toward clean technology. The main challenge for this clean
technological transition is that innovation choices today depend not only on current policies but also on
the history of invention. Technological transitions induced by policy reforms can be slow, or nonexistent,
when established technologies face increasing returns to innovation: where more advanced technologies
offer greater rewards for innovation, incentivizing yet more innovation that further deepens their lead.
This raises two questions. On the descriptive side, how much, and how quickly, can policy reforms such
as carbon pricing redirect the path of innovation? On the normative side, what path of carbon prices
and innovation subsidies would generate an optimal clean technological transition?

To answer these questions, I develop a general endogenous growth model with clean and dirty tech-
nologies whose key feature is a network of cross-technology knowledge spillovers. These spillovers allow
researchers in one technology to build on the productive knowledge of other technologies; a process that
has featured prominently in the history of clean innovation. For instance, the first Tesla prototype – the
Mule 1 – was a gasoline-powered car that engineers at Tesla reconfigured by tearing out the combus-
tion engine and filling the engine compartment with batteries. Similarly, when researchers at Bell Labs
invented the modern solar cell, they made use of conductive properties of silicon already known from
previous research on semiconductors. The inventors of these clean technologies did not have to start from
scratch. Instead, they could build on existing knowledge from other technologies.1

My paper’s first contribution is to show that these cross-technology knowledge spillovers, together with
substitution patterns in production, shape the impact of policy on the direction of innovation. I provide
precise formulas for the size and speed of technology’s transition, following a policy reform, that depend on
two matrices: one summarizing substitution patterns in production and another summarizing the network
of knowledge spillovers. These two matrices are sufficient statistics, providing a clear mapping from the
model to the data for an arbitrary number of technologies and a general class of production and spillover
structures. That is, estimates of these matrices allow a first-order characterization of policy’s impact
on technology, in both the steady-state and transition, without needing to know the entire underlying
structure of spillovers and production.

Cross-technology knowledge spillovers prevent increasing returns to innovation by enhancing the re-
search productivity of less advanced technologies, while substitutability creates increasing returns by
increasing the market size of more advanced technologies. By combining the two sufficient statistic ma-
trices, I quantify the degree of increasing returns to innovation in terms of a spectral radius. When this
spectral radius is above one, technology is path dependent and only very large policy reforms can redirect
innovation. Conversely, a spectral radius below one implies that policy reforms will always influence the
long-run path of innovation, but the transition may be slow if the spectral radius is near one.

My formulas show that the long-run impact of policy and the speed of technology’s transition are
inversely related because increasing returns to innovation increase the overall size of transition while
at the same time slowing it down. By favoring more advanced technologies, increasing returns allow
technologies favored by policy to establish larger leads over their peers in the eventual steady-state.
However, the same mechanism slows down the transition by preventing less advanced technologies from

1Figures C.1 and C.2 provide illustrations of these two examples of cross-technology knowledge spillovers.
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achieving catchup growth. Thus, when policy reforms are transformative in the long-run, they will
tend to have little impact in the short-run, and vice versa. For example, cross-technology knowledge
spillovers speed up transitions by stimulating catchup innovation, but those same spillovers prevent any
one technology from gaining too large a lead in the long run.

My paper’s second contribution is to characterize the path of carbon prices and innovation subsidies
that generate an optimal clean technological transition. I show that policy should separately correct
the pollution externality and knowledge spillover externality, in keeping with the Pigou Principle. In
particular, carbon prices are set so production internalizes the social cost of carbon, but carbon prices
should not explicitly influence the direction of innovation. Instead, with the pollution externality cor-
rected, innovators simply need to internalize the knowledge spillovers they create. To this end, I derive
a general, recursive formula for innovation subsidies that reflects the social value of knowledge spillovers
sent through the spillover network. These innovation subsidies consider both the value of technology in
producing goods, as summarized by Domar weights, and the value of technology in producing innovations,
as summarized by centrality in the spillover network, with the weight between the two determined by the
Planner’s level of patience. Just as carbon prices do not explicitly target innovation, innovation subsidies
do not explicitly target the pollution externalities associated with each technology.

Given the political difficulty of carbon pricing, I consider second-best innovation subsidies where
carbon prices are set to some external, potentially sub-optimal, level. I show that the same recursive
formula for innovation subsidies holds as before but with a simple adjustment that adds the social
cost of carbon, net of the external carbon price, multiplied by the impact of innovation on equilibrium
emissions. This provides a general formula for innovation policy in the presence of improperly priced
externalities. As a result, clean technologies, that reduce equilibrium emissions, are further subsidized,
whereas dirty technologies, that increase equilibrium emissions, are punished. In this way, the Planner
modifies innovation subsidies to prevent ”immiserizing growth”, where innovation reduces welfare in
inefficient economies by exacerbating distortions (Bhagwati, 1958).

Knowledge spillovers play a fundamental role in both describing policy’s impact on the direction
of innovation and prescribing optimal policy to steer the direction of innovation. However, the role
of spillovers is slightly different in each case. As described above, lagging technologies enjoy greater
research productivity when they receive spillovers from their more advanced peers, reducing increasing
returns to innovation. However, on the normative side, the increase in research productivity enjoyed
by the recipients of spillovers is already internalized by innovators. Optimal innovation policy instead
focuses on the spillovers that a technology sends to its peers, as summarized by a technology’s centrality
in the spillover network.

My paper’s third contribution is a quantitative application of my model to the transportation and
electricity generation sectors in the United States. These are two sectors where production can be
clearly delineated into ”clean” and ”dirty”, and they together account for a little more than half of US
emissions.2 Using the citation network of granted US patents as a proxy for the network of knowledge
spillovers, I find, for both sectors, that increasing returns are large enough to create sluggish transitions,
but not so large as to induce path dependence. Cross-technology knowledge spillovers are strong enough
to overcome the substitutability of clean and dirty goods, thereby preventing destabilizing increasing

2According to the EPA, transportation and electricity generation accounted for 28.5% and 25% of total US greenhouse
gas emissions in 2021, respectively.

3



returns to innovation.
I apply my model to the data with four quantitative exercises. First, to validate my model, I examine

the progress made in clean transportation and electricity generation during the 2010s.3 Despite being
an untargeted moment, my model can explain this episode of clean technological progress while also
accounting for US climate policy in this period. However, when I shut down the spillover network, my
model predicts a counterfactual outcome: the past decade would have seen dirty technologies become
more entrenched in both sectors, not less.

Second, I examine the impact on the direction of innovation of introducing a $51 carbon price (the
Biden Administration’s current estimate of the social cost of carbon) and 30% clean innovation subsidy
(consistent with the subsidies in the Inflation Reduction Act). I find a large long-run effect of this
policy reform, with the steady-state prevalence of clean technology increasing by 116.6% and 120.3% for
transportation and electricity generation, respectively. However, the transition to this new steady-state
is slow, with half-lives of convergence of 121 years and 127 years, respectively. Underpinning both the
sizable long-run impact and sluggish transition is a spectral radius near one. Furthermore, using spectral
analysis, I unpack the connections in the spillover network that drive convergence speeds for each sector.

Third, I simulate the optimal path of carbon prices and innovation subsidies. This exercise highlights
the distinction between the spillovers a technology receives and the spillovers it sends. When carbon
pollution is priced at its social marginal cost, clean innovation subsidies play only a limited role in the
clean transition. This is because clean technologies are beneficial for their ability to produce goods
without pollution, not necessarily for their ability to produce knowledge spillovers. Indeed, the patent
data indicates that clean technologies do not have high centrality in the spillover network. As a result,
in the first century of policy, clean transportation and electricity generation receive average innovation
subsidies of only 39.8% and 59.8% of the baseline innovation wedge, respectively.4 As the Planner becomes
more patient, with a lower discount rate, they implement higher carbon prices and lower clean innovation
subsidies because their greater concern for the future increases the weight they place on a technology’s
centrality in the spillover network.

Finally, I simulate the path of second-best clean innovation subsidies, where carbon prices are incom-
plete. I consider two cases, one where the carbon price is ten percent of the social cost of carbon and
another where it is set to zero, and show that these two cases differ substantially. In the case with a small
carbon price, clean innovation subsidies shift upward by about 20-30% of the baseline innovation wedge,
and little welfare is lost relative to the first-best. However, if pollution is unpriced, then decarbonization
requires shutting down dirty innovation and relying exclusively on clean innovation. This leads to slow
emission reductions, due to a rebound effect of clean innovation, and slow economic growth, due to the
loss of spillovers from dirty technology, which together lead to far greater welfare losses.

1.1 Related Literature

This paper contributes to several strands of literature. First is the extensive literature on endogenous
innovation and the climate, such as Gans (2012), Acemoglu et al. (2016, 2023), Fried (2018), and Hassler
et al. (2021). The most notable point of comparison in this literature is the seminal work by Acemoglu

3From 2010 to 2021, the percentage of new light vehicles that were hybrid or electric rose from 2.4% to 9.8%, while the
percentage of electricity generated from non-fossil sources rose from 30.1% to 39%.

4The baseline innovation wedge is the steady-state innovation subsidy all technologies would receive in the absence of a
spillover network.
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et al. (2012) who show that the substitutability of clean and dirty goods implies increasing returns
to innovation. My model generalizes this line of reasoning by quantifying the degree of increasing re-
turns to innovation in terms of two sufficient statistic matrices that reflect both substitutability and
cross-technology knowledge spillovers.5 I also show that increasing returns to innovation has different
implications at different time horizons.

My paper also relates to the topic of technological path dependence.6 Several papers in this litera-
ture argue for the role of cross-technology knowledge spillovers in stabilizing technology’s steady-state,
including Acemoglu (2002, 2023) and Fried (2018). My formulas generalize these results by providing a
test for technological path dependence in terms of a spectral radius, applicable for an arbitrary number
of technologies and a broad class of production and spillover structures.

More generally, there is extensive literature, going back to Hicks (1932), that considers the role of input
prices in determining the direction of innovation. Examples of empirical research looking at the influence
of dirty input prices on clean innovation include Newell et al. (1999), Popp (2002), Aghion et al. (2016,
2023), and Känzig (2023).7 Examples of theoretical contributions from the skill-biased technological
change literature include Acemoglu (1998, 2002) and Acemoglu and Restrepo (2018, 2022a).8 While my
paper focuses on climate policy, my model provides a general framework that explains the key forces
determining the impact of input prices on the direction of innovation, while also providing guidance for
the measurement of these forces.9

My paper also relates to the vast literature on integrated assessment models (IAMs) that, starting
with the seminal contribution of Nordhaus (1992), seeks to quantify the social harm of carbon pollution.
Examples from this literature include Stern (2007), Golosov et al. (2014), Nordhaus (2017), Krusell and
Smith (2022), and Barrage and Nordhaus (2023).10 My paper provides a rich model of the response of
clean innovation to climate policy and shows that innovation subsidies should include the social cost of
carbon whenever pollution prices are limited. In doing so, I provide policymakers in the innovation space
a way to make use of the information provided by IAMs.

By focusing on innovation policy in the context of a spillover network, my work is closely related to
the recent work of Liu and Ma (2021).11 Specific to my context is the capacity for some technologies to
enable externalities in production, and I show that innovation subsidies should treat improperly priced
externalities in the same manner as a Domar weight, reflecting the contemporaneous impact of innovation
on welfare. Finally, the methodological tools I use to characterize the transition path of technology
following a policy reform are similar to those used by Kleinman et al. (2023).12 Their paper considers

5Fried (2018) also argues that cross-technology knowledge spillovers mediate the impact of carbon taxation.
6For research on the topic of path dependence in spatial economies, see Krugman (1991), Bleakley and Lin (2012), and

Allen and Donaldson (2020).
7For empirical work on the direction of innovation in other settings, see Acemoglu and Linn (2004) and Acemoglu and

Finkelstein (2008) for the context of healthcare and Hanlon (2015) for a historical examination of the textile industry.
8Other examples of research on the determinants of the direction of innovation more broadly include Budish et al. (2015)

on the choice of healthcare firms to invest in preventive medicine and Moscona and Sastry (2022) on the crop-specific pests
and pathogens that receive attention in agricultural research.

9My focus on the role of policy in steering the direction of innovation is also related to the recent AEA Distinguished
Lecture by Acemoglu (2023).

10For IAMs with endogenous innovation, see Nordhaus (2002) and Popp (2004).
11In general, knowledge spillovers have long been a central consideration of innovation policy (Arrow, 1962; Romer, 1990;

Bloom et al., 2019; Akcigit et al., 2020; Bryan and Williams, 2021). Closely related is a body of empirical work focused on
estimating the spillover benefits of innovation (Jones and Williams, 1998; Bloom et al., 2013; Jones and Summers, 2021;
Myers and Lanahan, 2022).

12The technique of characterizing macroeconomic dynamics using the spectral properties of a matrix is discussed in
Blanchard and Kahn (1980), Uhlig (1999), and Galor (2007).
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the transition dynamics of the distribution of capital and labor across space following a shock to regional
fundamentals. I take a complementary approach to describe transition dynamics in the context of directed
technological change.

The remainder of the paper is organized as follows. In Section 2, I describe the endogenous growth
model used throughout the paper. In Section 3, I consider a once-and-for-all policy reform, characterize
the change in technology’s steady-state, and derive technology’s transition path to its new steady-state.
In doing so, I quantify the degree of increasing returns to innovation. In Section 4, I derive optimal
innovation subsidies and carbon prices. I also consider a second-best case where the Planner cannot
control the carbon price. In Section 5, I describe the calibration of the spillover network and other
structural parameters of my model. I also showcase my model’s ability to match the 2010s advance of
clean technology in the US. In Section 6, I perform quantitative exercises that simulate the impact of a
policy reform on the direction of innovation as well as optimal climate policy in the first- and second-best.
Section 7 concludes.

2 Model

This section lays out the endogenous growth model used throughout the paper. Time is discrete and
indexed by t. Production in this economy consists of j-many technologies, which can produce varying
levels of pollution in production. The innovation process for each of these technologies is endogenously
determined by the incentives to produce a step-ladder innovation which entitles its owner to a single
period of monopoly rents.

The economic environment has two externalities, which are the focus of policy. First, inputs specific
to the dirty forms of production, e.g. fossil fuels, generate carbon emissions, and those emissions damage
future productive capacity. Second, innovation creates knowledge spillovers via a spillover network, so
innovators do not consider the benefit they bestow on the future production of knowledge. To correct these
externalities, I will consider a Planner with access to (i) a carbon price and (ii) an array of technology-
specific innovation subsidies.

I will start by describing the production and innovation technology of this economy, followed by a
description of how the direction of innovation is determined in competitive equilibrium. Throughout the
paper, I will use bold notation to denote matrices. I will use i or j to index technologies, with the final
technology denoted by J .

2.1 Production

Each technology in this economy produces a distinct good, and these technology-specific goods aggregate
into final output. Final output is produced according to

Yt = ΩtF
(
{Yjt}

)
, (1)

where Ωt is the climate damage function, and F (.) is a constant returns aggregator of technology-specific
goods. Climate damages Ωt are a function of the past sequence of emissions {Et̂}t̂≤t. An important
assumption embedded in this specification is that climate damages are Hicks-neutral, so they do not
influence relative marginal products.
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The good specific to technology j is produced according to

ln (Yjt) = α ln (Λjt) + (1 − α)
∫ 1

0
ln (yjιt)dι, (2)

where Λjt is an input and yjιt is an intermediate, both for technology j. That is, technology-specific goods
are produced via a Cobb-Douglas with share parameter α that combines an input and a unit interval of
intermediates.

Using one unit of input Λjt produces ωj units of carbon emissions, so I will call technologies with
ωj = 0 ”clean” and those with ωj > 0 ”dirty”. Thus, total carbon emissions follow

Et =
∑

j

ωjΛjt. (3)

Dirty inputs can be thought of as fossil fuels whose use generates carbon emissions. Carbon intensities
ωj may differ across dirty technologies due to the different types of fossil fuels they use. For instance, the
main fuels used to produce electricity – natural gas and coal – have different carbon intensities than that
used in transportation: gasoline.13 Denote the overall emissions intensity of the economy by ω̄t ≡ Et/Yt.

Inputs Λjt are produced using rj units of the final good, so the economy features ”round-about”
production. For concreteness, one can imagine that dirty input costs correspond to the resources required
to extract fossil fuels, but more generally, rj should be thought of as representing the intrinsic ability of
technology j to convert resources into a useful output. This is relevant in the case of the clean energy
transition because fossil fuel-based machinery is relatively inefficient at converting primary energy into
useful energy (BP, 2022).

Intermediate production is linear in labor, so

yjιt = ajιtℓjιt, (4)

where ajιt is the labor productivity of intermediate ι for technology j. I define the technology stock of j
as the geometric average of its labor productivities:

Ajt ≡ exp
( ∫ 1

0
ln (ajιt)dι

)
. (5)

The economy has a fixed endowment of labor that is supplied inelastically, so the total demand for
labor must satisfy ∑

j

∫ 1

0
ℓjιtdι ≤ L, (6)

where L is the aggregate supply of labor.14

Finally, the resource constraint requires that

Yt = ct +
∑

j

rjΛjt, (7)

13According to the EIA, the carbon intensity of natural gas, coal, and gasoline is 52.9, 96.1, and 70.7 kilograms of CO2
per million Btu, respectively.

14I abstract from capital accumulation, which is a standard simplifying assumption in the directed technological change
literature (Acemoglu, 2002; Acemoglu et al., 2012, 2016; Fried, 2018).
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where ct is household consumption.

2.2 Innovation

In this section, I describe the innovation production function. As is typical in the endogenous growth
literature, new ideas are produced by combining scientists and old ideas. Because there are multiple tech-
nologies, I specify a spillover function that defines the network of cross-technology knowledge spillovers.

Innovation follows a step-ladder process à la Grossman and Helpman (1991) and Aghion and Howitt
(1992), so if intermediate ι for technology j receives an innovation, we have that ajιt increases to γajιt,
where γ > 1 is the step size of innovation. Define zjt as the mass of intermediates for technology j that
receives an innovation. Plugging this into Equation (5), we have that technology evolves according to

Ajt = γzjtAjt−1. (8)

This formulation implies that technology-specific growth rates follow

gjt = ln (γ)zjt. (9)

The production of innovation follows

zjt = χjs
η
jtϕj

(
{Ait−1}

)
, (10)

where sjt is the number of scientists devoted to technology j, and ϕj(.) is a spillover function that governs
how research productivity is affected by the state of technology in the economy. I assume that spillover
functions are homogeneous of degree zero, so spillovers remain constant if all technologies scale together.
The parameter η ∈ (0, 1) determines the degree of diminishing returns in research, and χj is a general
research productivity term specific to each technology.

To describe the network of knowledge spillovers in this economy, consider the matrix of spillover
elasticities:

Definition 1 (Spillover Network φ). The spillover network is a J × J matrix with elements

φijt ≡ ∂ ln (ϕit)
∂ ln (Ajt−1) . (11)

The spillover network φt describes the response of spillovers to changes in the knowledge stock of each
technology. I will assume that φt is weakly positive off of its diagonal: φijt|i ̸=j ≥ 0. This guarantees that
technologies receive higher spillovers when they are relatively less advanced.15 By assuming that spillover
functions are homogeneous of degree zero, i.e.

∑
j φijt = 0, I ensure balanced growth in the presence of

a fixed supply of scientists.16 It will occasionally be helpful to refer to the gross spillover network φ̃t,
15To see this, note that because ϕit is homogeneous of degree zero, φijt|i ̸=j ≥ 0 implies ∂ϕi({Aqt−1/Ait−1})

∂(Ajt−1/Ait−1) |i̸=j ≥ 0.
That is, technology i’s spillovers increase as the other technologies become relatively more advanced. This implies φiit ≤ 0.

16Allowing for
∑

j
φijt < 0 would be consistent with the fishing out feature of semi-endogenous growth models (Jones,

1995, 2022). In that case, balanced growth would require an exponential increase in the supply of scientists. The possibility
that φiit < 0 introduces some notion of fishing out because it implies that additional innovations are more difficult for more
advanced technologies (Bloom et al., 2020). However, if all technologies advance concurrently, then reductions in research
productivity can be avoided, and balanced growth can still be achieved with a fixed supply of scientists.
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which is defined in relation to the (net) spillover network according to φt = φ̃t − I. Thus, the rows of
the gross spillover network describe an array of spillovers that sum to one, rather than zero.

The spillover network is a central factor in determining both the marginal cost and marginal benefit
of innovation. The rows of the spillover network determine the marginal cost of innovation as they
specify how the research productivity of each technology depends the overall state of technology in the
economy. This is particularly important for transition dynamics as less advanced technologies can receive
a catchup-inducing boost to their research productivity. However, the rows of the spillover network are
not relevant for policy because researchers fully internalize the productivity benefits they receive from
spillovers.

On the other hand, the columns of the spillover matrix determine the marginal benefit of innovation
as they specify how the efforts of future researchers will be enhanced by research that takes place today.
Therefore, the columns of the spillover matrix are the focus of policy because the positive spillovers they
mediate are not internalized by today’s researchers. However, the columns of the spillover network are
not relevant for laissez-faire transition dynamics because the external nature of spillovers implies they do
not influence equilibrium behavior.

As an example, an economy with no cross-technology knowledge spillovers would have a spillover
network of all zeros: φt = 0. In that case, spillovers ϕit would reduce to a positive constant for each
technology, so the spillover network would cease to play any role. Note that there would still be spillovers
within technologies as Equation (8) states that, for a given technology, innovation builds multiplicatively
on the existing technology stock. The absence of cross-technology knowledge spillovers is the implicit
assumption in much of the climate innovation literature (e.g. Acemoglu et al. (2012)), but as argued
throughout this paper, cross-technology knowledge spillovers play a critical role in shaping both transition
dynamics and optimal policy.

Finally, there is a fixed endowment of scientists supplied inelastically, so the allocation of scientists
must satisfy ∑

j

sjt ≤ S, (12)

where S is the aggregate supply of scientists. The fact that the aggregate supply of scientists is fixed
implies that the Planner’s concern is with the composition of scientific effort, not the total level. The
starting point of most innovation policies is that innovators do not internalize the full social marginal
benefit of their efforts (Arrow, 1962; Bryan and Williams, 2021). In a setting where scientists have an
outside option, e.g. production work or leisure, equilibrium scientific effort is likely to be below the
optimum. This has been the traditional justification of innovation subsidies (Romer, 1990; Bloom et al.,
2019). Instead, when the supply of scientists is fixed and there are multiple technologies, the fact that
differences in spillover creation across technologies may not track private profit incentives implies that
the equilibrium composition of scientific effort may not be optimal. Consequently, innovation subsidies
in this context close the technology-specific wedge between spillover creation and profit.

2.3 Preferences & Policy Instruments

The Planner seeks to maximize the utility of a representative household with two main policy instruments:
a carbon price, denoted by τt, and technology-specific innovation subsidies, denoted by ξjt. With these
instruments (and two others discussed below), the Planner can implement the first-best as a competitive
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equilibrium by correcting the economy’s externalities: carbon pollution and knowledge spillovers.
The social objective is household utility

∑
t≥0

1
(1 + ρ)t

u(ct), (13)

where u(.) is a concave function of consumption, and ρ is the rate of pure time preference. I will refer to
the rate of pure time preference ρ as the (social) discount rate.17

As discussed below, producers of intermediates have market power, so I will allow the Planner to
subsidize intermediates to correct the monopolist markup. This allows the Planner to correct every
market failure and achieve the first-best, but given that market power is not the focus of this paper, this
policy will play little role in the analysis. For the sake of simplicity, I will assume that all subsidies on
intermediates are constant, which would be the case in both laissez-faire and the first-best. Denote by
Υ the subsidy on intermediates. Finally, the Planner may levy a lump-sum tax Dt to fund(rebate) any
deficit(surplus) from the use of corrective instruments.

2.4 Equilibrium

I make the typical assumption in endogenous growth models that innovation for a given intermediate
grants exclusive ownership of the most advanced form of production for that intermediate. This exclusive
ownership creates a rent which drives the incentive to innovate (Romer, 1990; Aghion and Howitt, 1992).

The final good is the numeraire in each period. The producers of intermediates are the only firms
in the economy with market power, so prices of all other goods are set competitively. The final good
producer solves

max
{Yjt}

Yt −
∑

j

pjtYjt, (14)

where pjt is the price of the technology j good. This yields the condition

Ωt
∂Ft

∂Yjt
= pjt. (15)

The producers of technology-specific goods solve

max
Λjt,{yjιt}

pjtYjt − (rj + ωjτt)Λjt −
∫ 1

0
pjιtyjιtdι (16)

where pjιt is the price of intermediate ι for technology j. This yields the conditions

αpjt
Yjt

Λjt
= rj + ωjτt (17)

(1 − α)pjt
Yjt

yjιt
= pjιt. (18)

17A distinction can be drawn between the household’s (private) discount rate and the Planner’s (social) discount rate,
but this difference only matters in contexts where the household is making an intertemporal decision, e.g. savings, that the
Planner can influence with policy (e.g. Farhi and Werning (2007)). Because the choice to innovate depends on a one-period
monopoly and I have abstracted from capital accumulation, none of the equilibrium outcomes of this economy depend on
the household’s private discount rate. For this reason, I can ignore the distinction between private and social discount rates
and set ρ in accordance with the social discount rate.
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One can see from Equation (17) that carbon pricing reduces demand for dirty inputs by making those
dirty inputs more expensive. This, in turn, reduces the demand for all goods and intermediates associated
with dirty production as well.

Given their market power, an intermediate producer internalizes their demand curve from Equation
(18), so they solve

max
pjιt,yjιt

Υpjιtyjιt − wℓt

ajιt
yjιt s.t. (19)

(1 − α)pjt
Yjt

yjιt
= pjιt,

where wℓt is the wage paid to production workers. The optimal markup is infinite with a Cobb-Douglas
demand system, so to pin down the markup, I will assume intermediate producers limit price one step
down the productivity ladder to the competitive fringe. This yields

pjιt = γ

Υ
wℓt

ajιt
. (20)

That is, intermediate prices equal the subsidy-inclusive break-even price of the competitive fringe. This
allows intermediate producers to achieve profit

πjιt = Υγ − 1
γ

(1 − α)pjtYjt. (21)

We can see from Equation (21) that relative profits depend on relative prices of technology-specific goods,
so I show in Appendix A.1 that relative prices follow

pjt

pJt
=
( rj + ωjτt

rJ + ωJτt

)α(Ajt

AJt

)α−1
. (22)

That is, relative prices are increasing in relative input costs – inclusive of the carbon price – and decreasing
in relative technology.

Turning to the innovation side of the economy, I assume there is a competitive research firm that
produces innovations for every technology. The purchase of an innovation in technology j allows its
owner to be the productivity leader of a random intermediate for one period, so by no-arbitrage, the
equilibrium price for such an innovation is equal to expected profit: Πjt =

∫ 1
0 πjιtdι.

The research firm solves
max
{sjt}

∑
j

ξjtzjtΠjt − wst

∑
j

sjt (23)

where wst is the wage paid to scientists. That is, the research firm produces mass zjt of innovations for
technology j and sells them at price Πjt. Considering the no-arbitrage condition, we have that the price
of innovation for technology j is proportional to market size:

Πjt = Υγ − 1
γ

(1 − α)pjtYjt ∝ SjtYt, (24)

where Sjt is the income share of technology j. That is, the rent one can achieve by innovating in
technology j scales in accordance with total spending on the technology j good. This is a standard result
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in the directed technological change literature (Acemoglu, 2002; Acemoglu et al., 2012).
The research optimality condition yields( sjt

sJt

)1−η

=
( χj

χJ

)( ξjt

ξJt

)( ϕjt

ϕJt

)(Πjt

ΠJt

)
, (25)

which, together with the fixed supply of scientists (12), pins down the innovation equilibrium. Thus, the
allocation of scientists, and therefore the direction of innovation, is determined by three forces: subsidies,
spillovers, and market size. First, innovation subsidies have a natural influence; as policy favors one
technology with higher subsidies, more scientists are devoted to that technology. Second, spillovers
influence the allocation of scientists by affecting the productivity of research. As discussed in Section 2.2,
technologies that are relatively less advanced receive a boost in research productivity.

Third, technologies with larger markets, i.e. greater income shares, have larger innovation rents,
and therefore, stronger incentives to innovate. This is the channel through which the substitutability of
technology-specific goods influences the direction of innovation. If technologies are substitutes(complements),
then the less advanced technology will obtain a smaller(larger) innovation rent as it accounts for a
smaller(larger) share of final output. Market size is also the channel through which carbon prices influence
the direction of innovation. In the case of substitutes(complements), a price on carbon reduces(increases)
relative market size for dirty forms of production as it increases dirty input costs.

Finally, the representative household owns all of the factors and firms in the economy and consumes
their income in each period. Both the household and government must satisfy their budget constraints:

ct = wℓtL+ wstS + Πt −Dt (26)

Dt + τtEt =
∑

j

(ξjt − 1)zjtΠjt +
∑

j

∫ 1

0
(Υ − 1)pjιtyjιtdι, (27)

where Πt is a dividend equal to all of the profits in the economy. Because the household owns all of the
factors and firms in the economy, and net government expenditure is financed lump-sum, equilibrium
consumption is equal to final output net of input costs.

Given these conditions, the competitive equilibrium is defined as follows:

Definition 2 (Equilibrium). Given an initial condition for technology {Aj,−1} and an array of input costs
{rj}, an equilibrium consists of a sequence of carbon prices {τt}, innovation subsidies {ξjt}, intermediate
subsidies Υ, lump-sum taxes {Dt}, final output {Yt}, technology-specific goods {Yjt}, technology-specific
good prices {pjt}, inputs {Λjt}, intermediates {yjιt}, intermediate prices {pjιt}, labor {ℓjιt}, production
wages {wℓt}, innovation {zjt}, innovation rents {Πjt}, scientists {sjt}, scientist wages {wst}, technology
{Ajt}, emissions {Et}, and household consumption {ct} such that:

(i) Prices {{pjt, {pjιt}}, wℓt} and quantities {Yt, {Yjt,Λjt, {yjιt, ℓjιt}}} on the production side of the
economy solve the profit maximization problems (14), (16), and (19);

(ii) The labor market clears (6);

(iii) Prices {{Πjt}, wst} and quantities {zjt, sjt} on the innovation side of the economy satisfy the no-
arbitrage condition (24) and solve the profit maximization problem (23);

(iv) The scientist market clears (12);
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(v) Technology {Ajt} evolves according to (8);

(vi) Emissions {Et} follow (3);

(vii) The resource constraint (7) and budget constraints (26) and (27) hold.

Given this paper’s focus on innovation, one can think about the equilibrium evolution of technology
as a dynamic process with technology {Ajt} as the state and scientists {sjt} as the control. In each
period, the inherited state {Ajt−1} pins down the control {sjt} via a spillover effect and a market size
effect. The state then updates to {Ajt}, and the process starts over in the next period.

2.5 Example Production & Spillover Structure

The production and spillover structure I have described thus far involves minimal assumptions, so I
will now sketch an example economy where I take a stance on the functional forms of production and
spillovers. I will assume this structure when I calibrate and simulate my model in Sections 5 and 6, but
the theoretical results of Sections 3 and 4 apply to the more general setup described above.

Production is divided into Θ-many sectors, each of which has a clean and dirty form of production.
Final output follows

Yt = Ωt

(∑
θ

ν
1
λ

θ E
λ−1

λ

θt

) λ
λ−1

, (28)

where Eθt is the output of sector θ. That is, final output is a complements CES over sectors with elasticity
of substitution λ < 1 and sector shares νθ.

Output at the sector level follows

Eθt =
(
Y

σ−1
σ

θct + Y
σ−1

σ

θdt

) σ
σ−1

, (29)

where Yθc and Yθd are the clean and dirty forms of production for sector θ, respectively. That is, sectoral
output is a substitutes CES over clean and dirty production with elasticity of substitution σ > 1. This
production structure nests the setup of Acemoglu et al. (2012) when there is a single sector.

I will assume the final sector of the economy Θ only has a clean form of production. My application
considers the transportation and electricity generation sectors, but because these sectors make up only a
small portion of the economy, the final sector, which I will refer to as the ”general” sector, closes the model
while abstracting from emissions that originate outside of transportation or electricity generation.18

On the innovation side of the economy, I will assume that research productivity follows χj = χν−η
θ(j),

where θ(j) is the sector associated with technology j. Thus, the production of innovation follows

zjt = χ
( sjt

νθ(j)

)η

ϕjt. (30)

Following Acemoglu and Restrepo (2022b), I show in Appendix A.2 that one can interpret the sectoral
CES shares νθ as the share of tasks in the economy performed by sector θ. Thus, the relevant notion
of effective scientific effort in this case is the number of scientists per economic task associated with a
technology.

18Motor vehicle output and electricity generation accounted for 2.6% and 1.8% of US GDP in 2021, respectively.
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The spillover functions follow

ϕit =
∏

j A
φ̃ij

jt−1

Ait−1
, (31)

which implies that the spillover network is constant. The numerator represents an idiosyncratic Cobb-
Douglas aggregator of all knowledge stocks in the economy, and the denominator represents the recipient’s
own knowledge stock. The Cobb-Douglas shares define the gross spillover network φ̃, so as discussed
above, the (net) spillover network follows mechanically from φ = φ̃ − I. For example, the case of
no cross-technology knowledge spillovers corresponds to a gross spillover network equal to the identity
matrix: φ̃ = I. This specification for spillovers was studied in the recent work by Liu and Ma (2021).

Finally, household utility follows the common CRRA specification

u(ct) = c1−ϑ
t − 1
1 − ϑ

, (32)

where 1/ϑ is the intertemporal elasticity of substitution.19

3 Policy’s Impact on the Direction of Innovation

This section characterizes the dynamic response of the direction of innovation to a policy reform. Specif-
ically, I will imagine there is a once-and-for-all policy reform {dτ, {dξj}}.20 I first characterize how
technology’s steady-state changes in response to the policy reform using what I call the amplification ma-
trix. Next, I characterize the transition path of technology towards – or away from – the new steady-state
using what I call the transition matrix.21

Both my amplification matrix and transition matrix are composed of the same two sufficient statis-
tic matrices: one describing substitution patterns in production and another describing the network of
knowledge spillovers. These two matrices show how the two forces, substitutability and spillovers, de-
termine both the degree to which the policy reform will change technology’s steady-state and the speed
at which technology will converge to its new steady-state. These matrices are sufficient statistics in the
sense that, conditional on estimating each matrix, one does not need to know the underlying structure of
production and spillovers to first-order characterize the impact of policy on the direction of innovation.

Taking an eigendecomposition of the transition matrix, I quantify the degree of increasing returns
to innovation in terms of the spectral radius of the transition matrix. I show that increasing returns
determine both the long-run impact of policy and the speed of technology’s transition, but that the two
are inversely related. Finally, the spectral radius of the transition matrix provides me with a condition
for technological path dependence, where the path of technology depends discontinuously on its initial
condition. I conclude the section with a simple, two-technology example that illustrates the arguments
made throughout the section.

19This specification implies a consumption discount rate of ρ + ϑgct via the Ramsey equation, where gct is the growth
rate of consumption.

20As discussed in Section 4, time-invariant policy is not necessarily optimal. However, I focus on time-invariant policy
in this section to analytically characterize how the direction of innovation would respond to a given policy regime, given
unlimited time.

21My analysis does not require technology to be in a previous steady-state at the time of the policy reform.
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3.1 Sufficient Statistic Matrices

I start by defining the two sufficient statistic matrices that will be relevant throughout this section. These
matrices summarize the two main forces of my model: (i) substitution patterns in production and (ii)
the network of cross-technology knowledge spillovers.

First, consider the substitution matrix:

Definition 3 (Substitution Matrix Σ). The substitution matrix is a J − 1 × J − 1 matrix with elements

Σijt ≡ ∂ ln (Yit/YJt)
∂ ln (pJt/pjt)

. (33)

The substitution matrix Σt describes how relative demand responds to changes in relative prices. As
the relative price of good j changes, this induces a change in relative equilibrium demand for good i, as
described by Σijt. For both relative prices and quantities, good J is the base good.

The elements of the substitution matrix Σt are similar to elasticities of substitution. Indeed, the
diagonal elements of Σt are elasticities of substitution between goods i and J , but for off-diagonal
elements, we are allowing the change in relative price and change in relative quantity to refer to different
goods. We then have the usual interpretation that diagonal elements above one describe substitutes, while
diagonal elements below one describe complements. As an illustration, if the output aggregator were a
standard CES with elasticity of substitution σ, we would have Σt = σI. Therefore, the demand responses
described by the substitution matrix Σt provide a general characterization of substitution patterns in
production.

In the case of the nested-CES production structure described in Section 2.5, I show in Appendix A.3
that Σt is a block-diagonal matrix that depends on the elasticities of substitution of both nests, as well
as income shares within sectors. When I calibrate and simulate my model in Sections 5 and 6, I will
use this closed-form solution for the substitution matrix to estimate Σt using existing estimates of the
relevant elasticities of substitution.

Second, consider the spillover matrix:

Definition 4 (Spillover Matrix Φ). The spillover matrix is a J − 1 × J − 1 matrix with elements

Φijt ≡ ∂ ln (ϕJt/ϕit)
∂ ln (Ajt−1/AJt−1) . (34)

The spillover matrix Φt describes how relative spillovers change in response to changes in relative
technology stocks. As before, the base technology is J . The fact that spillover functions are homogeneous
of degree zero implies that one can map from the spillover network φt to the spillover matrix Φt using

Φijt = φJjt − φijt. (35)

Therefore, we can interpret the spillover matrix Φt as a matrix of relative spillover elasticities.22 That
is, a positive value for Φijt implies that the elasticity of ϕJt with respect to technology j is greater than

22To see this, note that if ϕit is homogeneous of degree zero, then its derivatives are homogeneous of degree negative one.
Thus, we have ∂ϕit({Ajt−1/AJt−1})

∂(Ajt−1/AJt−1)
Ajt−1/AJt−1

ϕit({Ajt−1/AJt−1}) = ∂ϕit({Ajt−1})
∂Ajt−1

Ajt−1
ϕit({Ajt−1}) .
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that of ϕit, and a negative value implies the reverse. Moreover, the mapping of Equation (35) implies
that any estimate of the spillover network provides an estimate of the spillover matrix as well.

The spillover matrix Φt provides a general description of an economy’s spillovers for a wide class
of spillover functions. In particular, the diagonal of Φt provides a measure of the degree to which
technologies receive spillovers from the other technologies in the economy. To see this, note that

Φiit = φJit − φiit =
∑
j ̸=i

(
φijt − φJjt

)
, (36)

so the diagonal elements of Φt will be large when technologies receive high spillovers from their peers,
relative to the spillovers received by the base technology. When technologies receive minimal spillovers
via the spillover network, i.e.

∑
j ̸=i φijt approaches 0, less advanced technologies will experience only a

minor enhancement in their research productivity. Therefore, the spillover matrix Φt is informative of
the extent to which cross-technology knowledge spillovers will stimulate catch-up growth.

For illustration, consider the two spillover networks of Figure 1.

Figure 1: Example Spillover Networks
No Spillovers Basic Science Spillovers

In the first network, the ”No Spillovers” network, there are no cross-technology knowledge spillovers,
so φt = 0. In this case, the spillover matrix is also zero Φt = 0 to reflect the irrelevance of cross-
technology spillovers in this economy. In the second network, the ”Basic Science Spillovers” network,
there is one technology that creates all of the spillovers in the economy. Assuming these spillovers are
symmetric, the spillover matrix follows Φt ∝ I, reflecting the predominance of cross-technology spillovers
in this economy.23

3.2 Steady-State Impact of Policy

I will now characterize how the balanced growth steady-state of this economy changes in response to a
policy reform.

Definition 5 (Balanced Growth Steady-State). A balanced growth steady-state is an equilibrium in which
every technology experiences uniform growth at rate g.

I will describe the steady-state of technology in terms of relative technology, rather than technology
levels, because relative technology is constant along a balanced growth path. Denote technology j’s
relative technology stock by

Ājt ≡ Ajt

AJt
, (37)

23In these two stylized cases, the value of Φt is independent of the choice of base technology, but this is not true in
general.
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where the base technology is J . Therefore, we can characterize the steady-state of this economy as a
fixed point in a dynamic process for relative technology.

The following proposition characterizes the steady-state impact of a policy reform in terms of an
amplification matrix.

Proposition 1. A policy reform {dτ, {dξj}} induces first-order changes in the steady-state level of relative
technology according to

d ln (Āss) = ηM
[
d ln (Ξ) − α

(
Σ − I

)
d ln (R)

]
, (38)

where d ln (Ξ) ≡ d ln
(
ξj/ξJ

)
and d ln (R) ≡ d ln

(
(rj + ωjτ)/(rJ + ωJτt)

)
are the changes to relative

innovation subsidies and relative input costs induced by the policy reform, respectively. The amplification
matrix M, evaluated at the steady-state, follows

M =
[
Φ − η(1 − α)

(
Σ − I

)]−1
. (39)

The proof of Proposition 1 can be found in Appendix A.4. Proposition 1 defines the amplification
matrix M, which describes the role of substitutability and spillovers in shaping the steady-state impact of
a policy reform. I will assume that the amplification matrix M does not flip the sign of policy impacts,
which I show to be the empirically relevant case in Section 6.1. Furthermore, I provide an economic
interpretation for the case when the amplification matrix does flip the sign of policy impacts in Section
3.4.

First, increases in relative subsidies Ξ increase the prevalence of favored technologies in steady-state.
Next, carbon pricing reduces the prevalence of dirty technologies in steady-state, insofar as goods are
substitutes, by increasing input costs for dirty technologies. Both of these effects are mediated by sub-
stitutability and spillovers via the amplification matrix M. When goods are substitutes, technologies
that are favored by policy are able to increase their market size, further increasing the equilibrium incen-
tive to innovate and amplifying the effect of policy. The opposite is true when goods are complements
because technologies favored by policy have their market size reduced. This channel shows up through
the substitution matrix net of the identity matrix (Σ − I) because one is the boundary point between
complements and substitutes. Conversely, cross-technology knowledge spillovers dampen the impact of
policy by increasing the research productivity of technologies disfavored by policy. If some technologies
become relatively advanced due to policy, they will lose part of their lead as their peers experience catchup
growth. Intuitively, the substitution matrix increases the ”size” of the amplification matrix as it enters
with a negative in the ”denominator”, while the spillover matrix decreases the ”size” of the amplification
matrix as it enters with a positive in the ”denominator”.

3.3 Technology’s Transition Path

Having examined how policy affects technology in the economy’s long-run steady-state, I can now describe
the transition path technology takes to its new steady-state. To determine the forces that are of first-order
importance in governing this transition, I will linearize the equilibrium conditions around the steady-state
to derive a transition matrix.

I will describe the transition path of technology in terms of the log deviation of relative technology
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from steady-state
Āt ≡ ln (Āt) − ln (Āss). (40)

That is, relative technology converges to its steady-state as Āt converges to zero.
The following proposition provides a first-order characterization of the transition path of technology

in terms of a transition matrix.

Proposition 2. To a first-order, the transition path of technology follows the linear process

Āt ≈ J Āt−1, (41)

where the transition matrix J , evaluated at the steady-state, follows

J =
[
(1 − η)I − gη(1 − α)

(
Σ − I

)]−1[(1 − η)I − gΦ
]
. (42)

The proof of Proposition 2 can be found in Appendix A.6. The main object of interest in Proposition
2 is the transition matrix J . This matrix shows that the transition path of technology is also governed by
the two forces emphasized throughout this paper: Substitution patterns in production and the network
of knowledge spillovers. Recall from Equation (25) in Section 2.4 that the allocation of scientists is
determined by subsidies, spillovers, and market size. Subsidies determine the location of the steady-
state, but we can now see that they do not directly determine technology’s transition matrix. Instead,
it is the latter two forces that govern the transition matrix. Spillovers influence the transition matrix by
enhancing the research productivity of less advanced technologies. As stated above, the diagonal of the
spillover matrix Φ provides a measure of the degree to which less advanced technologies can use spillovers
to achieve catchup growth.

Substitutability influences the transition matrix through a market size effect that reduces the profits
of technologies that are less advanced than their substitutes. Conversely, when technologies are less
advanced than their complements, they achieve higher profits. These effects are summarized by the
substitution matrix net of the identity matrix (Σ − I). As before, the identity matrix is subtracted
from the substitution matrix because one is the boundary point between complements and substitutes.
Furthermore, substitutability shows up through an inverse matrix because it follows the logic of a Leontief
inverse. A small change in the inherited technological state {Ājt−1} induces a change in the realized
technological state {Ājt}. The realized technological state is what governs market size, so the change
in market sizes induces yet another change in the realized technological state, and so on. This sequence
of ripple effects generates a geometric series that culminates in an inverse matrix which describes the
cumulative impact of the market size effect.24

24Formally, we have that[
I −

gη(1 − α)
1 − η

(Σ − I)
]−1

=
∑
n≥0

(gη(1 − α)
1 − η

(Σ − I)
)n

= I +
(gη(1 − α)

1 − η
(Σ − I)

)
+
(gη(1 − α)

1 − η
(Σ − I)

)2
+ . . . , (43)

which is proportional to the inverse matrix contained in J .
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3.4 Degree of Increasing Returns to Innovation

In this section, I eigendecompose the transition matrix and show that the degree of increasing returns to
innovation can be quantified in terms of the transition matrix’s spectral radius, which governs whether
technology converges to its new steady-state quickly, slowly, or in an extreme case, not at all. Furthermore,
I show that the amplification matrix can be written in terms of the eigenvalues of the transition matrix,
with the implication that the steady-state impact of policy and the speed of technology’s transition are
inversely related.

The speed of convergence quantifies the degree of increasing returns to innovation. When increasing
returns are high, convergence will be slow as technologies that are more advanced in the initial condition
than in the steady-state will only slowly lose their advantage. Conversely, when increasing returns are
low, convergence will be fast as any advantage enjoyed in the initial condition, relative to the steady-state,
will quickly disappear. In what follows, I derive the speed of convergence from the transition matrix using
spectral analysis.

First, use Equation (41) of Proposition 2 to iterate forward from technology’s initial log deviation
from steady-state

Āt ≈ J tĀ0. (44)

Intuitively, we can see that the speed of transition depends on how quickly the transition matrix J
shrinks technology’s log deviation from steady-state Āt. If J were a matrix of zeros, technology would
converge immediately, whereas if J were the identity matrix, technology would remain in its initial state
forever. Thus, the speed at which less advanced technologies can catch up to their peers, and therefore
the degree of increasing returns to innovation, depends on the ”size” of the transition matrix. As we will
see, the proper notion of a matrix’s ”size” is in terms of the magnitude of its eigenvalues, i.e. its spectral
radius. I will focus on the case where the transition matrix J has J − 1 distinct real eigenvalues {κj}. I
verify numerically that this is the empirically relevant case under the calibration described in Section 5.
Consider the eigendecomposition of the transition matrix

J = QD(κ)Q−1, (45)

where D(κ) is a diagonal matrix whose diagonal elements are the eigenvalues of the transition matrix,
and Q is an invertible matrix whose columns are the eigenvectors of the transition matrix. This eigen-
decomposition follows from the fact that any real square matrix has a Jordan decomposition (Galor,
2007).25 Plugging the eigendecomposition into Equation (44), we have

Āt ≈ QD(κ)tQ−1Ā0. (46)

From this, we can see that the speed of convergence is governed by the eigenvalues {κj} of the transi-
tion matrix. As time progresses, technology’s transition path is driven by the geometric decay of the
eigenvalues. Eigenvalues slightly above zero will rapidly shrink to zero, signifying fast convergence, while
eigenvalues slightly below one will gradually shrink to zero, signifying slow convergence.

25The basic arguments of this section hold for the more general case of repeated or complex eigenvalues because the main
properties of Equation (45) hold for the Jordan decomposition of any real square matrix: J = QDQ−1, where D is the
Jordan normal form of J , and Q is some invertible matrix. Therefore, the convergence properties of technology always
depend on the convergence properties of the Jordan normal form of J . See Lemma 2.8 of Galor (2007).
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The eigenvalues of the transition matrix determine the speed of convergence, but which eigenvalues
play the most important role quantitatively? To answer this question, consider the linear combination of
eigenvectors which recovers the initial state of technology

β = Q−1Ā0. (47)

That is, β is a linear projection of the initial state Ā0 onto the eigenvectors of the transition matrix. In
other words, one can regress Ā0 on Q to obtain β.26 I will refer to the eigenvectors of the transition
matrix as eigenstates. These eigenstates represent specific states of technology that correspond to the
eigenvectors of the transition matrix.27 Since Q forms a basis, any state of technology can be expressed
as a linear combination of these eigenstates. Moreover, each eigenstate has a convergence rate determined
by its corresponding eigenvalue. For instance, if the initial state of technology is proportional to the jth
eigenstate, then β will load exclusively on the jth dimension, and technology will geometrically converge
to the steady state with a decay rate of κj . More generally, the loading of the initial state on the
eigenstates determines the speed of convergence as a weighted average of the eigenvalues. The following
proposition provides a formal statement of how the spectral properties of the transition matrix determine
technology’s transition.

Proposition 3. Suppose the transition matrix J has J − 1 distinct real eigenvalues {κj}. Then the
transition path of technology follows

Āt ≈
∑

j

κt
jβjQj , (48)

where Qj is the jth eigenstate of the transition matrix, and β is the linear combination of the eigenstates
that recovers the initial state of technology β = Q−1Ā0.

Proposition 3 is derived through matrix manipulation of the eigendecomposition (45) of the transition
matrix. It demonstrates that technology’s transition depends on three factors: eigenvalues, eigenstates,
and the initial state’s loading on the eigenstates. The initial state of technology is composed of a linear
combination of the eigenstates, and as time progresses, each eigenstate component converges toward the
steady-state based on the geometric decay of its respective eigenvalue. Consequently, the overall speed
of convergence is determined by each eigenvalue according to the extent to which the initial state loads
on its respective eigenstate.

In summary, the speed of convergence depends on a weighted average of the transition matrix’s
eigenvalues, with the weights determined by the initial state’s loading on the eigenstates. The largest
eigenvalue will tend to have an outsized influence on the speed of convergence, so the spectral radius
provides a summary measure of increasing returns to innovation. Thus, the formula for the transition
matrix explains the determinants of increasing returns to innovation. Combining Equations (42) and
(45), I obtain the expression

[
(1 − η)I − gη(1 − α)

(
Σ − I

)]−1[(1 − η)I − gΦ
]

= QD(κ)Q−1. (49)
26Using the standard regression formula, we have β = (Q′Q)−1Q′Ā0, but since Q forms a basis, this formula simplifies

to β = Q−1Ā0. Thus, such a regression would have zero mean squared error.
27The ”eigenstates” of my paper are analogous to the ”eigenshocks” of Kleinman et al. (2023). In both cases, these

terms describe particular configurations of state variables that (i) correspond to eigenvectors of a transition matrix and (ii)
determine the eigenvalues that are most relevant for convergence speeds.
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Therefore, substitution patterns in production and cross-technology knowledge spillovers determine the
degree of increasing returns to innovation through their influence on the eigenvalues of the transition
matrix. Substitutability slows convergence by reducing profits for less advanced technologies. Conversely,
knowledge spillovers accelerate convergence by stimulating catchup growth. Intuitively, the substitution
matrix increases the ”size” of the transition matrix as it enters with a negative in the ”denominator”,
while the spillover matrix decreases the ”size” of the transition matrix as it enters with a negative in the
”numerator”.

Measuring increasing returns with the spectral radius of the transition matrix allows me to derive a
condition for technological path dependence, a central topic in the directed technical change literature
(Acemoglu et al., 2012; Aghion et al., 2016, 2019). When the direction of innovation is path dependent,
the path of technology depends discontinuously on its initial state. We can see this case play out by
considering the eigenvalues of the transition matrix. Technological convergence slows down as the eigen-
values of the transition matrix approach unity, and once one of the eigenvalues goes outside of the unit
circle, the steady-state becomes unstable. The following corollary states this point formally.

Corollary 1. The direction of innovation is path dependent if the transition matrix’s spectral radius
exceeds one.

Corollary 1 is an application of a well-known result in dynamical systems establishing the local insta-
bility of steady-states (Galor, 2007).28 It provides a sufficient condition for technological path dependence,
which hinges on the spectral radius of the transition matrix. By examining Equation (48), we can see that
if the initial state of technology loads on an eigenstate with an eigenvalue exceeding one, then technology
will geometrically diverge from the steady-state in the direction of this unstable eigenstate. Consequently,
the dynamic path for technology will depend discontinuously on the initial state, as a flip in the sign of
the loading on the unstable eigenstate would result in divergence along the same ray but in the opposite
direction.

My second corollary establishes the relationship between the amplification matrix and the eigenvalues
of the transition matrix.

Corollary 2. The amplification matrix follows

M = gQD(1 − κ)−1Q−1[(1 − η)I − gη(1 − α)
(
Σ − I

)]−1
. (50)

The proof of Corollary 2 can be found in Appendix A.7. This result establishes that increasing returns
to innovation increase the long-run impact of policy reforms through the term D(1 − κ)−1. This implies
that the long-run impact of policy and the speed of technology’s transition are inversely related. When
increasing returns are high (κj → 1), the steady-state impact of policy will be large, but the transition
will be slow. Conversely, when increasing returns are low (κj → 0), the steady-state impact of policy will
be small, but the transition will be fast. By favoring more advanced technologies, increasing returns allow
technologies that are favored by policy to gain larger leads over their peers in the long run. However,
the same mechanism leads to sluggish transitions by preventing less advanced technologies from catching
up. For instance, high cross-technology knowledge spillovers reduce increasing returns and allow rapid

28In particular, see Theorem 4.8 of Galor (2007). The more general statement pertains to the modulus, rather than the
absolute value, of the eigenvalues of the transition matrix, allowing for the possibility of complex eigenvalues.
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transitions by facilitating catchup growth, but those same spillovers prevent technologies from gaining a
significant advantage in the long run.

In describing the policy impacts of Proposition 1, I assumed the amplification matrix does not flip the
sign of policy impacts. For example, clean innovation subsidies or carbon pricing reduce the prevalence of
dirty technology in the steady-state. By combining Corollaries 1 and 2, we can interpret this assumption
in terms of the degree of increasing returns to innovation. A positive-definite amplification matrix makes
this assumption more likely to be correct, while a negative-definite amplification matrix is more likely to
flip the sign of policy impacts. As we can see from Equation (50), eigenvalues that are much larger than
one will tend to make the amplification matrix negative-definite. This is because, in the case of path
dependence, the steady-state defines the boundary of the different basins of attraction. This is why the
impact of policy can flip when technology is path dependent; policy reforms that favor clean technology
now shrink the dirty basins of attraction. For instance, an increase in the carbon price now increases
the prevalence of dirty technology in the steady-state, implying that fewer initial conditions will land in
dirty basins of attraction.

Finally, to measure convergence speeds in units of time, I will consider half-lives of convergence. That
is, the number of periods required to halve the log distance from steady-state. Each eigenstate has its
own half-life, which follows

t
(1/2)
ESj

=
⌈

ln (1/2)
ln (κj)

⌉
, (51)

where ⌈.⌉ is the ceiling function. Thus, if the initial state of technology is proportional to the jth
eigenstate, the half-life of convergence for each technology will equal t(1/2)

ESj
. More generally, as stated in

Proposition 3, each technology will have its own half-life governed by the initial state’s loading on the
eigenstates. Half-lives are scale independent, so the overall distance of technology’s initial state from its
steady-state will not affect this metric of convergence.29 However, the location of the initial state relative
to the steady-state matters in that it influences the loading on the eigenstates β.

3.5 Two Technology Example

To illustrate the arguments of this section, I will now consider a simple example where there are only
two technologies. I will make the parametric assumptions of Section 2.5 and imagine that there is a
single sector with clean and dirty technology, denoted by c and d. In this case, there is only one relative
technology Āt = Act/Adt. This setup nests the canonical model of Acemoglu et al. (2012). Throughout
this section, I will assume a mild regularity condition to ease exposition.30

When there are only two technologies, the various matrices reduce to scalars, and the two sufficient
statistic matrices become

Σ = σ (52)

Φ = φcd + φdc. (53)

That is, Σ is the elasticity of substitution between clean and dirty production, and Φ is the sum of
29To be exact, the half-life of convergence for each technology will be the same for initial states Ā0 and kĀ0, where k > 0.
30Specifically, I assume 1 − η > gΦ and 1 − η > gη(1 − α)(Σ − 1), both of which are easily satisfied under empirically

plausible parameter choices (see Section 5). The main reason for the ease with which these conditions are satisfied is that
empirically plausible growth rates are on the order of g = 0.02, so this shrinks the right-hand side of both inequalities.
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cross-technology knowledge spillovers in the economy. Consistent with Proposition 1, the steady-state
for relative technology follows

ln (Āss) = η
ln (Ξ) − α(Σ − 1) ln (R)

Φ − η(1 − α)(Σ − 1) , (54)

where, as before, Ξ ≡ ξc/ξd is the relative innovation subsidy and R ≡ rc/(rd +ωdτ) is the relative input
price (inclusive of the carbon price). From this, we can see that the amplification matrix follows

M = 1
Φ − η(1 − α)(Σ − 1) . (55)

As discussed in Section 3.2, the amplification matrix is increasing in the elasticity of substitution Σ
and decreasing in the level of cross-technology spillovers Φ. Applying Proposition 2, we have that the
transition matrix follows

J = (1 − η) − gΦ
(1 − η) − gη(1 − α)(Σ − 1) . (56)

The transition matrix is also increasing in the elasticity of substitution Σ and decreasing in the level of
cross-technology spillovers Φ, as argued in Section 3.4. In accordance with Proposition 3, technology’s
transition path is determined by the geometric decay, or expansion, of J t, so the speed of convergence
increases as the transition matrix shrinks. In particular, the half-life of convergence follows

t(1/2) =
⌈

ln (1/2)
ln (J )

⌉
. (57)

To consider the possibility of path dependence, we can apply Corollary 1 and ask if J is outside the
unit circle. This will be the case whenever

Φ < η(1 − α)(Σ − 1). (58)

That is, the direction of innovation is path dependent if the substitutability of clean and dirty technology
is high relative to the size of cross-technology spillovers. This effect is also modulated by the curvature
of research effort η and the importance of labor in production (1 − α). As research effort in each period
experiences steeper diminishing returns (η ↓), this reduces the incentive to allocate greater research
resources to the more advanced technology. As labor becomes less important in production ((1 − α) ↓),
this reduces the competitive advantage of the more advanced technology as the factor that benefits from
the productivity differential is less important.

Finally, the two forces of substitutability and spillovers have an intuitive influence: if the two technolo-
gies are highly substitutable relative to catchup-inducing spillovers, then the less advanced technology
will not be profitable enough to attract the innovation effort necessary to overcome their disadvantage.
Instead, the more advanced technology will enjoy greater innovation and further solidify its lead. As
this process continues, the more advanced technology will strengthen its lead until, in the limit, all pro-
duction and innovation will be devoted to the more advanced technology. This is the path dependence
scenario considered by Acemoglu et al. (2012), so Inequality (58) provides a test for their path dependence
hypothesis.

Finally, by applying Corollary 2, we can see that the long-run impact of policy and the speed of
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technology’s transition are inversely related as

M = g(1 − J )−1

(1 − η) − gη(1 − α)(Σ − 1) . (59)

This shows that increasing returns to innovation, as measured by J , slow the transition while at the
same time increasing the long-run impact of policy. Equation (59) also shows that the steady-state is
unstable if and only if the amplification matrix M is negative. As discussed in Section 3.4, in the case of
path dependence, the steady-state defines the boundary of the two basins of attraction. If the economy
starts with dirty technology relatively more advanced than the steady-state value (i.e. Ā0 < Āss), then
innovation will continue to favor dirty technology. Thus, policies that favor clean technology now lower
steady-state relative technology Āss and shrink the dirty basin of attraction.

4 Optimal Policy

We have seen the response of the direction of innovation to an arbitrary policy regime, so I will now
characterize optimal climate innovation policy. I start with a first-best problem where the Planner’s in-
struments are unrestricted. In that case, the two externalities, carbon pollution and knowledge spillovers,
are corrected separately, in keeping with the Pigou Principle. In particular, the fact that clean technol-
ogy can produce goods without pollution does not warrant an additional innovation subsidy when carbon
pollution is priced properly. Instead, innovation subsidies reward technologies for their ability to produce
knowledge spillovers, and I derive a recursive formula for optimal innovation subsidies that corrects the
knowledge spillover externality created via the spillover network. This analysis explains the differing role
of knowledge spillovers in describing the impact of policy and prescribing efficient policy.

I then consider a realistic second-best problem where the Planner cannot control the price of carbon
pollution. In that case, the Planner must choose innovation subsidies when there is some externally
imposed carbon price. I show that the adjustment to optimal innovation subsidies is simple; the same
recursive formula holds as in the first-best but with a simple adjustment for the wedge between the
external and efficient carbon price. Now clean technologies do receive additional innovation subsidies for
their ability to produce goods without pollution as the Planner must correct both externalities with a
single instrument.

4.1 First-Best

I start with the first-best planning problem. The Planner has a complete set of instruments, so I will
consider a first-best primal problem and back out the corrective instruments that implement the Planner’s
allocation as an equilibrium.
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Definition 6 (First-Best Planning Problem). The Planner solves

max
{ct,{Λjt,{ℓjιt},Ajt,sjt}}

∑
t≥0

1
(1 + ρ)t

u(ct) s.t. (60)

Yt = ct +
∑

j

rjΛjt

L =
∑

j

∫ 1

0
ℓjιtdι

Ajt = γχjsη
jt

ϕjtAjt−1

S =
∑

j

sjt.

That is, the Planner picks the technologically feasible allocation that will maximize household utility.
Note that climate damage from past carbon emissions is embedded in Yt. It will be helpful to define
the Planner’s intertemporal marginal rate of substitution Rt+1 ≡ (1 + ρ)u′

t/u
′
t+1. This is the Planner’s

discount factor over consumption goods. The following proposition describes first-best carbon prices and
innovation subsidies.

Proposition 4. To implement the first-best allocation as an equilibrium, the Planner separately corrects
the externalities from carbon pollution and knowledge spillovers. They set the carbon price according to

τt = −
∑
t̂≥t

t̂−t∏
ŝ=1

1
Rt+ŝ

Yt̂

∂ ln (Ωt̂)
∂Et

, (61)

which is the social cost of carbon. Next, they set innovation subsidies according to the recursion

ξjtΠjt = (1 − α)SjtYt + 1
Rt+1

[
ξjt+1Πjt+1 +

∑
i

ξit+1Πit+1git+1φijt+1
]
. (62)

The proof of Proposition 4 can be found in Appendix A.8. Several comments are in order. First,
the Planner corrects the two externalities in the economy with distinct instruments. This principle of
separating externalities has been argued for elsewhere in the climate innovation literature (Acemoglu
et al., 2012, 2016; Golosov et al., 2014). Clean innovators are blind to the climate benefit of their
innovations in laissez-faire, but once the carbon price has been set equal to the social cost of carbon (61),
innovation rents will be properly adjusted to reward clean technology. Innovation subsidies do not need
to provide additional support to clean innovation as such.

Instead, innovation subsidies correct the knowledge spillover externalities mediated through the spillover
network, and in doing so, they ignore the pollution externalities associated with each technology. Innova-
tion subsidies set according to the recursive formula of Equation (62) guarantee that the private reward
for innovation ξjtΠjt equals the social value of innovation. This social value includes two terms. First,
there is a contemporaneous benefit to production from having more advanced technology. This effect is
captured by the (1 −α)SjtYt term, which reflects the Domar weight of technology à la Hulten’s Theorem
(Hulten, 1978). Next, the terms in the brackets represent the spillover benefits realized in the following
period. Tomorrow’s innovators will build on top of the knowledge stock they inherit, represented by the
ξjt+1Πjt+1 term, and their research productivity will be affected by knowledge stocks via the spillover
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network φt+1, represented by the
∑

i ξit+1Πit+1git+1φijt+1 term. Therefore, the innovation subsidies of
Proposition 4 provide a general formula for innovation policy in the presence of a spillover network as it
relies on minimal parametric assumptions about the structure of production and spillovers. Finally, the
Planner sets the intermediate subsidy Υ to close the monopoly markup γ and the lump-sum tax Dt to
balance the government’s budget (27) in each period.

As I argue throughout this paper, knowledge spillovers are critical for understanding both the impact
and efficiency of policy in shaping the direction of innovation. However, we can see from Proposition 4
that the role of spillovers differs in these two cases. For describing the impact of policy, the spillovers
technologies receive are what matter. These spillovers allow less advanced technologies to achieve catchup
growth, and as argued in Section 3, this shapes both the steady-state impact of policy and the speed
with which technology converges to its steady-state. Put differently, the rows of the spillover matrix φt

are what matter for describing the impact of policy, and this can be seen from the fact that the diagonal
of the spillover matrix Φt (36) is composed of row sums. For prescribing optimal policy, the spillovers
technologies send are what matter. This is because the recipients of spillovers already internalize the
boost to their research productivity, so policy needs to reflect the spillover externalities that profit signals
ignore. It is the columns of the spillover matrix φt that matter for efficiency, and this can be seen from
the fact that the spillover benefit term of Equation (62) is composed of column sums.

To provide further intuition for the determinants of optimal innovation subsidies, I will consider steady-
state innovation policy. My results mirror those of Liu and Ma (2021), but I will consider a more general
structure for production and spillovers, albeit with a narrow focus on steady-state policy. I will describe
the steady-state in terms of innovation subsidies multiplied by income shares ξ̃jt ≡ ξjt · Sjt as this value
converges to a constant even in cases where income shares of some technologies go to zero. For instance,
ever-increasing carbon prices may drive the income share of dirty technologies asymptotically to zero.31

It will be helpful to define the Planner’s growth-adjusted intertemporal marginal rate of substitution
R̃t ≡ Rt/(1 + gyt), where gyt is the growth rate of output. The following corollary characterizes steady-
state innovation policy.

Corollary 3. In steady-state, innovation subsidies multiplied by income shares satisfy

ξ̃′ = 1
γ − 1S

′
[
(1 − R̃−1)I − gR̃−1φ

]−1
. (63)

The proof of Corollary 3 can be found in Appendix A.9. This result states that steady-state innovation
policy depends on both the spillover network φ and the Planner’s level of patience, as measured by their
growth adjusted discount factor R̃. To better understand the intuition, note that the inverse matrix of
Equation (63) follows the logic of a Leontief inverse. Today’s innovations expand output according to
income shares S and create spillovers for the following period. Iterating forward with Equation (62),
these spillovers beget further innovations tomorrow, which generate their own spillovers in the following
period, and so on. The sequence of ripple effects generates a geometric series that sums to the inverse
matrix of Equation (63).32

31This is what happens in the steady-state under the parametric assumptions of Sections 2.5 and 5.2.
32Formally, we can write[

(1 − R̃−1)I − gR̃−1φ
]−1

=
∑
n≥0

( I + gφ

R̃

)n
= I +

( I + gφ

R̃

)
+
( I + gφ

R̃

)2
+ . . . , (64)
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An informative case is when there are no cross-technology spillovers φ = 0. Then, all innovation
subsidies are set equal to 1/(γ−1)(1−R̃−1), which I call the baseline innovation wedge. This wedge reflects
the difference between the private marginal benefit of innovation, (γ − 1) times the contemporaneous
income growth from innovation, and the social marginal benefit of innovation, a permanent increase in
income from better technology, when there is no spillover network. In our setting, it is natural to think
about innovation policy net of the baseline innovation wedge ξ̂ ≡ (γ − 1)(1 − R̃−1)ξ̃ because this term
controls the composition of research effort. Without a spillover network, setting ξ̂ = S in steady-state
would be efficient because the lack of cross-technology spillovers implies innovation rents are proportional
to the social value of innovation.

For the more general case with a spillover network, manipulating Equation (63), we have that ξ̂ solves

(1 − R̃−1)
(
ξ̂′ − S′)− gR̃−1ξ̂′φ = 0. (65)

This allows us to see the role of the Planner’s level of patience. A Planner that is completely myopic, i.e.
R̃−1 → 0, will allow the composition of research effort to be set entirely by profit signals: ξ̂ = S. This
maximizes the contemporaneous benefit of innovation by focusing exclusively on the immediate impact
on output. A Planner that is perfectly patient, i.e. R̃−1 → 1, will set innovation policy with an exclusive
focus on the spillover benefit of innovation. They set innovation policy according to

ξ̂′φ = ξ̂′(φ̃ − I
)

= 0, (66)

where φ̃ is the gross spillover network discussed in Section 2.2. That is, ξ̂ solves ξ̂′φ̃ = ξ̂′, so ξ̂ is a
measure of eigenvector centrality for the gross spillover network. In this case, the Planner prioritizes
technologies that are central in the spillover network because these technologies are best able to produce
spillovers over time.

In summary, technology stocks are used in the production of both physical goods and ideas, and
Equation (65) states that steady-state innovation policy strikes a balance between these two benefits
according to the Planner’s degree of patience.

4.2 Second-Best: Innovation Subsidies with Incomplete Carbon Pricing

Having considered optimal policy with an unrestricted set of instruments, I will now consider a second-
best case where the Planner cannot set the price on carbon. I view this as a realistic case given that
pricing carbon has proved to be politically difficult.

Let {τ̂t} denote a sequence of externally imposed carbon prices. For example, these external carbon
prices may simply be zero if carbon pricing is politically impossible. The loss of policy instruments implies
that the Planner must now satisfy an incentive compatibility constraint. To keep focus on innovation, I
will assume that intermediate subsidies continue to close the monopolist markup Υ = γ.

so the Planner considers a full geometric series of spillover effects in setting steady-state innovation policy.
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Definition 7 (Second-Best Planning Problem). The Planner solves

max
{ct,{Ajt,sjt}}

∑
t≥0

1
(1 + ρ)t

u(ct) s.t. (67)

Yt = ct +
∑

j

rjΛjt

Ajt = γχjsη
jt

ϕjtAjt−1

S =
∑

j

sjt

{Λjt, {ℓjιt}} = argmax
[
Yt −

∑
j

rjΛjt − τ̂tEt

]
s.t. L =

∑
j

∫ 1

0
ℓjιtdι.

The final constraint is an incentive compatibility constraint which reflects the private optimizing
behavior of producers. The equilibrium of this economy can be represented as a simple revenue maxi-
mization problem, and the Planner must now choose an innovation allocation knowing that the choice of
technology will affect production choices in equilibrium. The Planner still has a complete set of policy
instruments on the innovation side of the economy, so they can back out the innovation subsidies that
implement their desired allocation of scientists as an equilibrium. The following proposition characterizes
those innovation subsidies.

Proposition 5. When the Planner can no longer control the carbon price, they set innovation subsidies
according to the recursion

ξjtΠjt = (1 − α)SjtYt − (τt − τ̂t)Et
∂ ln (Et)
∂ ln (Ajt)

+ 1
Rt+1

[
ξjt+1Πjt+1 +

∑
i

ξit+1Πit+1git+1φijt+1
]
, (68)

where τt follows the social cost of carbon formula of Equation (61).

The proof of Proposition 5 can be found in Appendix A.10. The first thing to note is that second-best
innovation subsidies are remarkably similar to those of the first-best; the only difference is a new term
that reflects the wedge between the external and efficient carbon price. The social cost of carbon is no
longer properly internalized in production decisions, so to make up for this distortion, the Planner adjusts
the direction of innovation in favor of clean technology.33 This adjustment multiplies the wedge between
the external and efficient carbon price, total emissions, and the elasticity of equilibrium emissions with
respect to technology. For clean technology, this emissions elasticity will tend to be negative, implying
an increase in clean innovation subsidies. Conversely, improvements in dirty technology will tend to
increase emissions in equilibrium, so dirty innovation subsidies will be reduced.34 As one might expect,
this formula recovers the first-best when the external carbon price τ̂t happens to be set at the efficient
level τt.

The similarity between first- and second-best innovation subsidies implies that the latter inherit
the properties discussed in Section 4.1. All else equal, technologies are rewarded for their importance

33I will assume that τt ≥ τ̂t in my discussion of Proposition 5 as this is the empirically relevant case, but the result does
not formally require this to be true.

34This opens the possibility that innovation subsidies are negative. In that case, the allocation of scientists will be a corner
solution with zero scientists allocated to technologies with negative innovation subsidies. Formally, ξjt ≤ 0 ⇒ sjt = 0.
Indeed, if all technologies lead to sufficiently large increases in equilibrium emissions, the Planner may want to stop growth
altogether.

28



in production and their ability to create spillovers, as measured by Domar weights and eigenvector
centrality respectively, with the weight between the two determined by the Planner’s level of patience.
Now that carbon pollution is improperly priced, the flow value of innovation includes the degree to which
technological change exacerbates the economy’s distortions. Thus, one can interpret the innovation
subsidies of Equation (68) as adjusting for the possibility of ”immiserizing growth”, where innovation
can reduce welfare in inefficient economies by further deepening distortions (Bhagwati, 1958, 1968). By
this view, Proposition 5 provides a general way of thinking about innovation policy in the presence of
distortions. The flow value of innovation that guides policy must include both Domar weights and the
effect on distortions to prevent technological change from reducing welfare.

5 Calibration

In this section, I describe my calibration of the structural parameters of my model. My application is
the transportation and electricity generation sectors in the United States. Throughout this section, I
make the parametric assumptions for production and spillovers described in Section 2.5. I conclude the
section with a model validation exercise that tests my model’s ability to match the advances made by
clean technology in both sectors from 2010 to 2021. I show that my model is able to match the evolution
of technology in this period when it includes the spillover network but fails to do so when the spillover
network is shut down.

A time period represents one year. Longer time periods, such as one representing five years, imply
counterfactually rapid growth of clean transportation from 2010 to 2021. Finally, any data series refer-
enced in this section that is published in nominal terms is adjusted using a US CPI index that takes 2012
as its base year. Thus, all dollar values referenced throughout the paper are in 2012 dollars.

5.1 Spillover Network

In this section, I describe how I calibrate one of the central objects in my model: the spillover network.
I follow Liu and Ma (2021) in using the citation network of patents as a proxy for the spillover network.

For my sample of patents, I take granted US patents from PatentsView.35 First, I need to assign
patents to my five technology classes: clean transportation, dirty transportation, clean electricity genera-
tion, dirty electricity generation, and general technology. To do so, I make use of the International Patent
Classification (IPC) and Cooperative Patent Classification (CPC) systems.36 IPC codes pertaining to
both clean and dirty transportation come from Aghion et al. (2016), who identify IPC codes for the
transportation sector in their empirical study of directed innovation in the auto industry.37 I also include
categories from CPC subclass Y02T that pertain to transportation. For clean transportation, this includes
electromobility (Y02T64-72), efficient charging and discharging systems (Y02T10/92), charging of electric

35I am abstracting from international patents in the construction of my spillover network, but I do not think this
introduces bias for the following two reasons. First, US patents primarily cite other US patents. Indeed, 70% of US patent
citations reference other US patents (Liu and Ma, 2021). Second, citation shares are scale independent, so for the exclusion
of international patents to introduce bias, citations to international patents would have to systematically differ in their
distribution across technology classes.

36The CPC system is a simple extension of the IPC system. While there is some discordance between the two systems,
I manually verify that all of the IPC codes that I use map directly to the same CPC codes with the same meaning. For
instance, B60L denotes electric vehicles in both the IPC and CPC system.

37For the full list of IPC codes pertaining to both clean and dirty transportation, see Table 1 of Aghion et al. (2016).
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vehicles (Y02T90/10-16), hydrogen technology in transport (Y02T90/40), and hybrids (Y02T10/62). For
dirty transportation, this includes ICE efficiency (Y02T10/12) and engine management (Y02T10/40).

For clean electricity generation, I take directly from the CPC subclass Y02E related to GHG reducing
innovations in electricity generation. This includes renewables (Y02E10), nuclear (Y02E30), and energy
storage (Y02E60/10-16). I also include integration of photovoltaics in buildings (Y02B10/10). IPC codes
pertaining to dirty electricity generation come from Lanzi et al. (2011), who identify a list of IPC codes
associated with fossil fuel technologies for electricity generation.38 Finally, I define general technology
patents as those patents that are not in any of the above categories. Table 1 gives a representative, but
not exhaustive, list of my patent classification codes.

Table 1: Sampling of Patent Classification Codes

Transportation Electricity Generation
Description IPC/CPC Codes Description IPC/CPC Codes

Clean Clean
Electric Vehicles B60L Renewables Y02E10
Hybrids Y02T10/62 Nuclear Y02E30
Hydrogen Fuel Cells H01M8 Energy Storage Y02E60/10-16

Dirty Dirty
Internal Combustion Engines F02B Steam Engine Plants F01K
Controlling Combustion Engines F02D Gas-Turbine Plants F02C
Supplying Combustion Engines F02M Steam Generation F22
Cylinders for Combustion Engines F02F Combustion Apparatus F23

Notes: IPC codes for both clean and dirty transport patents come from Aghion et al. (2016), CPC codes for clean electric
patents come directly from CPC subclass Y02E, and IPC codes for dirty electric patents come from Lanzi et al. (2011).
General patents are those not classified as pertaining to either transport or electricity.

With patents placed into technology classes, I estimate the gross spillover network φ̃ as the proportion
of technology i’s patent citations that reference patents in technology j. That is, I set gross spillovers
according to

φ̃ij = citesij∑
k citesik

, (69)

where citesij is the number of citations from patents in technology class i that reference patents in
technology class j. This approach leverages the widely accepted view that patent citations are a metric
of knowledge spillovers (Jaffe et al., 1993; Hall et al., 2005). The (net) spillover network then follows
mechanically from φ = φ̃ − I, and because Equation (69) implies that the rows of φ̃ mechanically sum
to one, this guarantees that the spillover function described in Equation (31) is homogeneous of degree
zero.

Figure 2 contains a heat map that illustrates the gross spillover network φ̃. It excludes the row
pertaining to the general technology as almost all of the general technology’s patent citations reference
another general technology patent.39 Figure 2 allows us to see several intuitive patterns in the spillover
network. First, all of the climate-relevant technology classes extensively cite both themselves and the
general technology. Second, the transportation sector has relatively high within-sector spillovers when
compared with the electricity generation sector. As suggested by the story of Tesla’s prototype, both

38For the full list of IPC codes pertaining to dirty electricity generation, see Table A1 of Lanzi et al. (2011).
39Specifically, 98.6% of general technology patent citations reference another general technology patent.
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clean and dirty vehicles can learn from each other because they are fundamentally similar machines. This
does not appear to be the case in the electricity generation sector where, for example, solar panels and
coal-fired power plants generate electricity via entirely different means. Instead, clean electricity has an
abnormally high citation share on the general technology, consistent with the solar panel inventors from
Bell Labs building on knowledge from the ICT sector. Finally, clean and dirty technologies each form
their own distinct spillover clusters. That is, dirty technologies of both sectors cite each other, and the
same is true of clean technologies but to a lesser extent. Each of these features of the spillover network
are relevant for convergence dynamics, as I will discuss in Section 6.1.

Figure 2: Heat Map of Gross Spillover Network φ̃

Notes: The y-axis denotes technologies receiving spillovers, while the x-axis denotes technologies sending spillovers. Granted
US patents come from PatentsView.

5.2 Climate Module

To simulate optimal climate policy, I must add structure to my model specifying (i) how a sequence
of emissions influences the Earth’s climate system and (ii) how warming of the Earth’s climate system
impacts the economy’s productive capacity. To this end, I follow Golosov et al. (2014) in my description
of the carbon cycle and economic damage function.

Atmospheric carbon concentrations evolve according to

Ct =
t∑

t̂=1800

(
ψp + (1 − ψp)ψ0ψ

t−t̂
)
Et̂ + C̄, (70)

where C̄ is the pre-industrial level of atmospheric carbon concentration. I select the year 1800 as the
starting point of industrialization.40 This specification of the carbon cycle provides a mapping from past

40One could debate the exact start date of industrialization, but given that carbon emissions were trivially small before

31



carbon emissions to the current level of atmospheric carbon concentrations. In particular, it states that
fraction (ψp + (1 − ψp)ψ0ψ

t−t̂) of carbon emitted at time t̂ ≤ t will remain in the atmosphere at time
t. This remaining carbon has both a permanent and transitory component. The permanent component,
fraction ψp, will remain in the atmosphere forever. The remainder, fraction (1 − ψp), is transitory. For
the transitory component, a fraction (1 − ψ0) exits the atmosphere within a period and is absorbed by
the biosphere or surface oceans. Next, the remainder of the transitory component, fraction ψ0, decays
geometrically according to ψ. As argued in Archer (2005) and Golosov et al. (2014), this relatively simple
specification of the Earth’s climate system provides a good approximation of the complex relationship
between carbon emissions and atmospheric carbon concentrations. In particular, it captures the slow
process by which the deep oceans absorb carbon from the atmosphere.41

The pre-industrial level of atmospheric carbon concentration C̄ was 596.4 gigatons of carbons.42

Throughout the paper, I list carbon quantities in terms of gigatons of carbon (GtC). For example,
US greenhouse gas emissions in 2021 were equivalent to 1.7 GtC. I will, however, list carbon prices in
terms of dollars per ton of CO2 as this is the convention.43 To map back and forth, one can note that a
ton of CO2 contains 12/44 tons of carbon.

To calibrate my climate module, I start by setting ψp = 0.2, in line with the 2007 IPCC report estimate
that 20% of carbon emissions will remain in the atmosphere after thousands of years. For the remaining
two parameters {ψ0, ψ}, I perform a similar exercise as Acemoglu et al. (2016) and pick these values to
match the relationship between carbon emissions and atmospheric carbon concentrations throughout the
1960-2020 period, selecting ψ0 = 0.377 and ψ = 0.994 as the values that minimize the distance between
the model’s predictions and the data. A major advantage of Equation (70) is that it allows for the state
of the climate to be written in terms of a two-dimensional recursion. The first dimension C1t represents
the permanent component of atmospheric carbon, and it follows

C1t = ψpEt + C1t−1. (71)

The second dimension C2t represents the transitory component of atmospheric carbon, and it follows

C2t = (1 − ψp)ψ0Et + ψC2t−1. (72)

The sum of these two components is therefore atmospheric carbon concentration Ct = C1t + C2t. Writing
the state of the climate recursively allows for a simpler representation of the climate system as one does
not need to keep track of the entire history of emissions. This requires the selection of an initial condition
{C1t0 , C2t0}. For any t0, such as 1960 in the case of my calibration exercise, I set C1t0 =

∑t0
t̂=1800 ψpEt̂ + C̄

the year 1800, the choice is insignificant for present purposes.
41This approach is an alternative to that of Nordhaus (2017), which models the Earth’s climate system as consisting of

three carbon reservoirs: the atmosphere, the upper oceans and biosphere, and the deep oceans. In that model, carbon
concentrations of the three reservoirs evolve according to a system of linear difference equations. As discussed in Archer
(2005), Archer et al. (2009), and Golosov et al. (2014), the linear, three reservoir specification implies a counterfactually
rapid absorption of atmospheric carbon into the deep oceans. Instead, the approach taken here is better able to match the
depreciation of atmospheric carbon concentrations, while also reducing the number of state variables needed to describe the
climate. The implication of this difference in modeling choice is longer-lived, and therefore larger, impacts of anthropogenic
carbon emissions on the climate.

42Atmospheric carbon concentrations are often stated in terms of parts per million (ppm) of CO2. One ppm of CO2 is
equivalent to 2.13 GtC (O’Hara, 1990). This conversion was used to map the widely-accepted pre-industrial 280 ppm of
CO2 to GtC: 596.4 = 280 × 2.13.

43For instance, the White House lists its social cost of carbon in dollars per ton of CO2.
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and C2t0 = Ĉt0 − C1t0 , where Ĉt0 is the observed level of atmospheric carbon concentrations. Data on
carbon emissions dating back to 1800 comes from Our World in Data, and data on atmospheric carbon
concentrations comes from the NOAA’s Mauna Loa Observatory.44 The results of my calibration exercise
can be seen in Figure 3.

Figure 3: Climate Model Matches Historic Relationship of Emissions and Carbon Concentrations
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Notes: Match of model predicted atmospheric carbon concentrations with data when ψp = 0.2, ψ0 = 0.377, and ψ = 0.994.
Carbon emissions come from Our World in Data, and atmospheric carbon concentrations come from the NOAA’s Mauna
Loa Observatory.

Finally, atmospheric carbon concentrations create damage to production via

Ωt = exp
(

− ϱ(Ct − C̄)
)
, (73)

where ϱ > 0 is a scale parameter determining the sensitivity of output to the climate.45 This specification
implies that the semi-elasticity of final output with respect to atmospheric carbon concentrations is
constant: ∂ ln (Yt)

∂Ct
= ϱ. Assuming a constant semi-elasticity of damages with respect to atmospheric

carbon concentrations does not allow for severe non-linearities in the climate system, e.g. tipping points,
but this functional form for damages is consistent with the approach taken in much of the climate
literature (Nordhaus, 1992, 2017; Stern, 2007; Krusell and Smith, 2022; Barrage and Nordhaus, 2023).
In my choice of ϱ, I take the same value as Golosov et al. (2014) and set ϱ = 5.3 × 10−5. However,
given the considerable uncertainties surrounding the damage that will result from climate change, I will
also consider an alternative damages parameter that is four times as large, roughly in line with the

44Carbon emissions from land use change are only available going back to 1850, so I extrapolate the linear trend in those
emissions from 1850 to 1950 back to 1800.

45One can also map from atmospheric carbon concentrations to temperature increases with the equation ∆Tt =
Γ ln (Ct/C̄)/ ln (2), where Γ represents the climate sensitivity parameter. That is, a doubling of atmospheric carbon con-
centrations over pre-industrial levels leads to warming of Γ◦Celsius. The standard value for Γ is 3, but there remains
considerable uncertainty over the value of Γ. The IPCC deems 1.5-4.5 to be the ”likely” range of Γ, but this leaves a very
real chance of much higher values (Wagner and Weitzman, 2016).
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”catastrophic damages” scenario considered by Golosov et al. (2014).46

5.3 Structural Parameters & Initial Conditions

In this section, I describe my calibration strategy for the remaining structural parameters of my model
{σ, λ, {νθ, ωθd}, L,S, γ, χ, α, {rj}, η, ϑ, ρ} as well as the initial condition for technology {Ajt0}. In Ap-
pendix B.1, I provide details explaining how the equilibrium conditions of my model, and therefore the
calibration moments discussed below, can be written in terms of just technology, policy instruments, and
structural parameters. Table 2 provides a summary of my parameter choices.

Table 2: Parameter Choice Summary

Parameter Description Value Source

σ Clean/Dirty ES 1.86 Papageorgiou et al. (2014)

λ Cross-Sector ES 0.1 Hassler et al. (2021)
νcar

νelec
CES Shares 0.029

0.025 See Text

γ Innovation Step Size 1.07 Acemoglu et al. (2023)

α Input Share 0.403 Barrage (2020)

rθd/rθc Relative Dirty Input Price 2.25 BP (2022)

η Research Elasticity 0.5 See Text

ϑ Inverse Intertemporal ES 1 Standard

ρ Rate of Pure Time Preference 0.01
0.15

Stern (2007)
Nordhaus (2017)

For the within-sector elasticity of substitution between clean and dirty forms of production, I set
σ = 1.86 in line with the average estimate from Papageorgiou et al. (2014).47 The evidence for this
estimate comes from the electricity generation sector, but I set it as the value for the transportation
sector as well in part because it is of a similar magnitude to the estimate of Lanzi and Sue Wing (2011)
who look at the energy sector more broadly. For the cross-sector elasticity of substitution, I set λ = 0.1 in
line with the evidence from Hassler et al. (2021) who find that energy is a near perfect complement with
capital/labor at annual frequencies. Across the literature, it is common to model energy as a complement
to other factors (Van der Werf, 2008; Böhringer and Rutherford, 2009). For instance, Fried (2018) selects a
near-zero elasticity of substitution between energy and other factors, making production almost Leontief.

For the sectoral CES shares, I normalize the sum of the shares to one and pick {νcar, νelec} so that
the income shares of transportation and electricity generation in the laissez-faire steady-state match

46I abstract from the consideration of risk in optimal climate policy. There are substantial uncertainties regarding the
climate system’s response to emissions, as well as the sensitivity of human civilization to changes in the Earth’s climate,
so a large literature explicitly considers the role of risk and insurance in determining the social cost of carbon (Weitzman,
2009; Lemoine and Traeger, 2014; Gillingham et al., 2018; Cai and Lontzek, 2019). A thorough consideration of climate
uncertainty is beyond the scope of this paper, but I will capture some elements of the insurance motive for climate policy
by considering the possibility of catastrophic damages as an extension.

47See Table 4 of Papageorgiou et al. (2014).
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the average values of those shares in the data from 2000 to 2020. Data on revenue for the electricity
generation sector comes from the US Energy Information Agency (EIA).48 Data on motor vehicle output
and GDP come from the US Bureau of Economic Analysis (BEA). This approach yields νcar = 0.029 and
νelec = 0.025 to match average income shares of 2.9% and 2.3%, respectively.

I normalize the supply of scientists and workers to S = 1 and L = 100, respectively. These are both
WLOG normalizations, but they match the fraction of the labor force that works in R&D in the US
(Jones and Vollrath, 2013). Following Acemoglu et al. (2023), I set the step size of innovation to γ = 1.07
to match the profit share of the petroleum and coal products, durable manufacturing, and wholesale
trade sectors.49 This is a similar value to that found in other models of step-ladder innovation (Acemoglu
et al., 2016; Akcigit and Kerr, 2018). I set research productivity χ so that growth in the laissez-faire
steady-state is 2% per year.

For the income share of inputs, I set α = 0.403 in line with the estimate from Barrage (2020) of the
labor share in electricity and resource production. For input costs, I normalize all of the clean input costs
to one: rθc = 1. I then set dirty input costs to match the relatively low efficiency of fossil fuel-based
machinery at converting primary energy into useful energy. To compare the energy conversion efficiency of
fossil fuels with non-fossil sources of energy, the BP Statistical Review of World Energy report assumes a
thermal equivalent efficiency factor that rises linearly from 36% in 2000 to 45% in 2050 (BP, 2022). That
is, in 2050 45 TWh of electricity produced from solar panels will require the burning of 100 TWh worth
of coal, down from 125 TWh in 2000.50 Therefore, I set the dirty input costs to rθd = 2.25 ≈ 1/0.45.

For my choice of the elasticity of innovation with respect to scientists η, I rely on a body of empirical
evidence from the innovation literature. One body of studies considers the elasticity of patents with
respect to R&D expenditures and generally finds a value of about 0.5 (Griliches, 1990; Hall and Ziedonis,
2001; Blundell et al., 2002). Another considers the elasticity of R&D expenditure with respect to the tax
price of research and generally finds an elasticity of about unity (Hall, 1993; Hall and Van Reenen, 2000;
Bloom et al., 2002; Wilson, 2009). As I discuss in Appendix B.1, both sets of findings correspond to a
value of η = 0.5 in my model. Similar conclusions were reached by Akcigit and Kerr (2018), Acemoglu
et al. (2018), and Bloom et al. (2021).

For the preference parameters, I set the inverse intertemporal elasticity of substitution ϑ equal to
the standard value of unity, which implies a logarithmic period utility function. For the rate of pure
time preference ρ, I consider both the Stern rate of 0.1% per year and the Nordhaus rate of 1.5% per
year (Stern, 2007; Nordhaus, 2017). The former is the standard value for those who believe ethical
considerations should drive the choice of discount rate, while the latter is the standard value for those
who think the discount rate should match the rate of return on capital. There has been substantial debate
in the climate literature over the appropriate choice of social discount rate (Stern, 2007; Nordhaus, 2007;
Dasgupta, 2008; Barrage, 2018).51 This debate is not the focus of this paper, but given the long-term

48Specifically, Forms EIA-826, EIA-861, and EIA-861M.
49Acemoglu et al. (2023) match the weighted average profit share for these sectors from 2004 to 2014 using the Quarterly

Financial Report from the US Census Bureau.
50This efficiency factor is consistent with the US Department of Energy estimate that electric vehicles convert more than

77% of the electricity they pull from the grid into kinetic energy, while gasoline-powered vehicles can only convert 12-30%
of the chemical energy in gasoline into kinetic energy. Given that gasoline-powered vehicles are a more mature technology,
this superior conversion rate of electric vehicles likely reflects an intrinsic difference between the two technologies.

51It is worth noting that moral philosophers universally reject the idea that utility should be discounted simply because it
occurs at a later date (Parfit, 1984; Ord, 2020). The only justification for discounting future utility that is widely accepted
amongst philosophers is the risk of extinction, so it is acceptable to discount future utility in accordance with the probability
that it may not happen. Indeed, this is the justification given by Stern (2007) for his choice of discount rate.
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impact of both climate and innovation policy, it is important to understand how the choice of social
discount rate shapes the optimal path of climate innovation policy.

For the initial condition of technology at time t0, I first set within-sector relative technology {Aθct0/Aθdt0}
to match the clean quantity share of each sector. I target clean quantity shares, as opposed to income
shares, because of data availability, but as I show in Appendix B.1, there is a straightforward mapping
between quantity shares and income shares. Data for quantity shares in the transportation sector comes
from the US Department of Energy’s Transportation Energy Data Book which lists the share of new light
vehicles in the US that were hybrids, plug-in hybrids, and EVs from 1999 to 2021 (Davis and Boundy,
2022).52 Data on the share of electricity generated from non-fossil sources comes from the EIA.53 Next,
I set cross-sector relative technology {Aθdt0/AΘct0} to match the income share of each sector. In both
cases, I include the clean input subsidies discussed below. Note that I am using data on sectoral income
shares for my calibration of both the CES shares and the initial condition for technology. In the case of
the CES shares, I am matching the average empirical income shares from 2000 to 2020 when technology is
in steady-state, which guarantees that the income shares of these two small sectors will remain plausible
as technology evolves in my simulations. In the case of the initial condition of technology, I am match-
ing the empirical income shares at a given point in time to back out appropriate values for technology.
Finally, I pin down the absolute level of technology by normalizing output to 100.

For my carbon intensity parameters {ωθd}, I match the emissions of transportation and electricity
generation in 2021. Data on US GHG emissions by sector comes from the US Environmental Protection
Agency (EPA). I find that the carbon intensity of electricity generation is about 65.2% larger than that of
transportation. My optimal policy simulations track emissions from the US transportation and electricity
generation sectors, but given that climate change is a global phenomenon, I need to select a sequence
of emissions for the remainder of the world economy. To this end, I set outside emissions equal to the
optimal emissions path of the 2010 RICE model, subtracting a little more than half of US emissions
(Nordhaus, 2010).54

5.4 Model Validation

In this section, I test my model’s ability to replicate the dynamics of clean technology from 2010 to 2021.
During this period, clean technology in both transportation and electricity generation made substantial
gains, leading to increases in the clean quantity share in both sectors.55 As shown in Figure 4, the
percentage of new light vehicles that were hybrid or electric rose from 2.4% to 9.8%, while the percentage
of electricity generated from non-fossil sources rose from 30.1% to 39%. I show that my model can match
these clean advances in both sectors, in spite of the fact that no model parameters was selected to target
this change.56 However, when I shut down the spillover network, my model predicts path dependence,

52In particular, see Table 6.02 of the Transportation Energy Data Book.
53Specifically, Form EIA-923.
54To be exact, I subtract 56.9% of US emissions as this is the average contribution of transportation and electricity

generation to US emissions from 2000 to 2020.
55Solar photovoltaics and onshore wind are now cheaper than fossil fuels in terms of the private lifetime cost of new

generation (Roser, 2020). These two forms of renewable electricity generation saw price declines of 89% and 70% from 2009
to 2019, respectively.

56The match of the model to the data over this period did inform my selection of the number of years in a time period,
as I discuss at the start of Section 5.
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implying that the 2010s would have seen dirty technology gain an increasing lead in both sectors.57 Thus,
the nascent clean energy transition of the 2010s is difficult to reconcile with endogenous growth models
that assume path dependence.

To argue that technological path dependence is inconsistent with the 2010s advance in clean technol-
ogy, it must be the case that US climate policy was too weak to push these sectors out of dirty basins of
attraction. To account for US climate policy during this time, I allow for subsidies to both innovation
and clean inputs. Further details on the selection of these subsidies are in Appendix B.2. For the clean
input subsidies, the clean form of production in sector θ receives an input subsidy of ξ̄θc, so the effective
input price becomes (1 − ξ̄θc)rθc. For the transportation sector, I set ξ̄car,c to match federal spending
on the plug-in electric vehicle tax credit as a proportion of total spending in the transportation sector.58

This yields a subsidy of ξ̄car,c = 0.011. For the electricity generation sector, I set ξ̄elec,c = 0.3 in line with
the 30% investment tax credit (ITC) given to renewable electricity generation during this period.

In selecting innovation subsidies, I focus on relative innovation subsidies because the fixed supply of
scientists implies that only relative innovation subsidy matter, as one can see in the research equilibrium
condition (25). That is, subsidies that apply to innovation across the board, such as the R&D tax credit,
will not affect the composition of scientists across technologies. To this end, I take data on public R&D
spending by technology from the International Energy Agency (IEA). I then select innovation subsidies to
match this spending as a proportion of total R&D spending, which I take from the BEA. This procedure
involves simulating the equilibrium path of technology, so I conduct a separate calibration of innovation
subsidies for the version of the model where I shut down the spillover network.

Using the procedure described in Section 5.3, I take 2010 as the start year to set my initial condition
for technology. I then simulate the equilibrium path of technology with and without the spillover network
and plot the implied dynamics of clean quantity shares in Figure 4.

Comparing the simulations with the data, one can see that the model with spillovers broadly matches,
as an untargeted moment, the empirical evolution of clean quantity shares in both sectors. This is
especially true in the electricity generation sector. The simulated clean quantity shares start at the same
value as the data in 2010 by construction, and by 2021, transportation and electricity generation reach
clean quantity shares of 6.6% and 40.3% in the simulation, respectively. By comparison, these sectors
had achieved clean quantity shares of 9.8% and 39% by 2021 in the data. When I shut down the spillover
network, the model makes the counterfactual prediction that clean technology would have fallen even
further behind during this period. Without spillovers, the clean quantity shares of transportation and
electricity generation would have fallen to 2.1% and 29.6% by 2021. Therefore, a model without spillovers
cannot match the qualitative direction of the data.

Using Propositions 2 and 3, we can better understand the role of spillovers in shaping the path of
clean technology during this period. When the model includes the spillover network, the spectral radius
of the transition matrix is equal to 0.993, indicating that technology is converging toward its steady-
state. The model predicts that starting in 2010, transportation and electricity generation will converge
halfway to their steady-states in 79 and 99 years, respectively. However, when I shutdown the spillover
network, the spectral radius rises to 1.01, inducing path dependence in accordance with Corollary 1. In

57By shutting down the spillover network, I mean setting the spillover network to a matrix of zeros: φ = 0. This is
equivalent to setting the gross spillover matrix to the identity: φ̃ = I.

58Data on federal spending on the plug-in electric vehicle tax credit during this period comes from US Congressional
Research Service Report IF11017.
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Figure 4: Model with Spillovers Matches 2010s Advance of Clean Technology
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Notes: For transportation, the clean quantity share is the proportion of new light vehicles that are hybrid or electric,
whereas for electricity generation, it is the proportion of electricity generated from non-fossil sources. Data for these two
series come from Davis and Boundy (2022) and the EIA.

that case, the half-life of convergence of each sector becomes infinite as the economy diverges from its
interior steady-state and moves deeper into the dirty basins of attraction. Thus, the model’s ability to
explain the nascent clean energy transition of the 2010s hinges on the inclusion of knowledge spillovers.

6 Simulation

In this section, I conduct three quantitative exercises. First, I examine the impact of introducing a carbon
price and clean innovation subsidy. I do so for several levels of cross-technology spillovers to demonstrate
their importance in determining the impact of the policy reform, both in the long-run and transition.
To make use of the theoretical results in Section 3 at the level of the sector, I define sector-specific
relative clean technology B̄θt ≡ Aθct/Aθdt, which is log-linear in relative technology {Ājt}.59 To quantify
convergence speeds, I will also describe half-lives of convergence at the level of the sector t(1/2)

θ .
Second, I simulate first-best climate innovation policy. This exercise highlights the distinction between

the spillovers a technology receives and the spillovers it sends. Clean technologies are not particularly
central in the spillover network, so they do not receive favorable innovation subsidies. Instead, clean
technologies are beneficial for their ability to produce physical goods without pollution, but this attribute
is already favored by the carbon price.

Finally, I simulate second-best innovation subsidies, where the price on carbon pollution is incomplete.
59To make use of Propositions 2 and 3 at the level of the sector, I can define

B̄θt ≡ ln (B̄θt) − ln (B̄θ,ss) = Āθct − Āθdt. (74)

Thus, there is a linear mapping from Āt to B̄t which allows me to examine transition dynamics at the level of the sector.
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I show that a small, growing carbon price can recover most of the welfare gains of the first-best. However,
if pollution is unpriced, then the Planner must decarbonize with improved clean technology alone. This
leads to slow emission reductions, due to a rebound effect of clean innovation, and slow economic growth,
due to the loss of spillovers from dirty technology. Together, these result in massive welfare losses relative
to the first-best.

6.1 Impact of Policy Reform

In this section, I examine the impact of introducing a policy reform. I consider a $51 carbon price, the
Biden Administration’s current estimate of the social cost of carbon, as well as a uniform clean innovation
subsidy equivalent to a 30% tax credit.60 I pick the clean innovation subsidy to be quantitatively similar
to the investment tax credits in the Inflation Reduction Act, but it should be noted that tax credits
for production have different effects from tax credits for innovation. Consistent with my theoretical
analysis, the policy reform’s impact, in both the long-run and transition, depends critically on the level
of cross-technology spillovers through its mediation of increasing returns to innovation.

I will assume the policy reform begins after research decisions are sunk in 2021, and for the sake of
simplicity, I will make comparisons with laissez-faire. Table 3 summarizes the impact of the policy reform
for three cases that differ in their level of cross-technology spillovers. First, I shut down the spillover
network. Second, I take my calibrated spillover network. Third, I double the level of cross-technology
spillovers in the economy. These three cases follow from a single parameterization which scales the
spillover network by ζ. Variation in ζ controls the level of cross-technology spillovers by multiplying
the off-diagonal components of the spillover network by factor ζ.61 For example, the double spillovers
case sets ζ = 2, doubling the off-diagonal row sums of the spillover network. The third panel of Table
3 summarizes the difference between the three cases in terms of their degree of increasing returns to
innovation, as measured by the spectral radius of the transition matrix.

The first panel of Table 3 considers the long-run impacts of the policy reform. The first two rows make
use of Proposition 1 and show the first-order change in steady-state relative clean technology by sector.
With calibrated spillovers, we have an increase of 116.6% for transportation and 120.3% for electricity
generation.62 Together, the carbon price and induced increase in clean technology increase within-sector
clean income shares and reduce the economy’s emissions intensity in steady-state.

The other two cases illustrate the role of cross-technology spillovers in determining the long-run impact
of policy reforms. When the spillover network is shut down, the spectral radius of the transition matrix
increases from 0.994 to 1.01, inducing path dependence. In that case, policy can only have a long-run
impact on technology if it pushes the economy into one of its clean basins of attraction, but when it
does so, the long-run impact is transformative. Table 3 shows the policy reform is strong enough to
do so for electricity generation, but not for transportation.63 This difference stems from the fact that
clean technology starts out with a greater disadvantage, relative to its dirty rival, in transportation.

60This implies an innovation subsidy for clean transportation and electricity generation of ξc = 1/(1 − 0.3) ≈ 1.43.
61One can also think in terms of the spillover matrix Φ, which measures the level of cross-technology spillovers in the

economy. Multiplying the spillover network by ζ does the same for the spillover network, giving us ζΦ.
62Formally, these changes in relative technology are listed in log points.
63As discussed in Corollary 2, in the case of path dependence, policy reforms push the economy into clean basins of

attraction by expanding those clean basins of attraction to include more initial conditions. Indeed, the policy reform of
Table 3 reduces relative clean technology in the interior steady-state by 101.8 and 116.8 log points for transportation and
electricity generation, respectively, thereby increasing the set of initial conditions that lead to clean growth. This expansion
includes the initial condition for electricity generation but is too small to include that of transportation.
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Table 3: Impact of Policy Reform

No Spillovers Calibrated Spillovers Double Spillovers

Long-Run Impacts

Relative Clean Technology by Sector
%∆B̄car 0% +116.61% +33.84%
%∆B̄elec +∞% +120.31% +38.66%
Clean Income Shares by Sector
∆Scar

c 0 pp +12.48 pp +7.42 pp
∆Selec

c +100 pp +14.81 pp +9.52 pp
Emissions Intensity
%∆ω̄ -74.36% -74.26% -57.23%

Transitional Impacts

Half-Lives of Convergence by Sector

t
(1/2)
car – 121 years 20 years
t
(1/2)
elec – 127 years 25 years

Carbon Emissions by Year
%∆E2035 -43.51% -50.64% -53.34%
%∆E2060 -46.36% -56.84% -55.07%

Degree of Increasing Returns to Innovation

Spectral Radius
max|κj | 1.01 0.994 0.977

Notes: Impact of introducing a carbon price at the Biden Administration’s estimate of the SCC ($51) and clean innovation
subsidy equivalent to a 30% tax credit (ξc = 1.43). Changes in relative technology are listed in log points. For path
dependent economies, long-run impacts refer to corner, rather than interior, steady-states.

Conversely, when cross-technology spillovers are doubled, the spectral radius of the transition matrix
decreases from 0.994 to 0.977, substantially reducing increasing returns to innovation. Now, the catchup
growth generated by cross-technology spillovers reduces the long-run impact of policy because clean
technologies cannot gain a large lead without enhancing research productivity in dirty technologies.
Thus, the long-run change in relative technology for both sectors is reduced substantially, along with the
change in clean income shares and emissions intensity.

The second panel of Table 3 considers the transitional impacts of the policy reform. Using Proposition
2, I can characterize the speed of transition to the new steady-state.64 For my calibrated spillover network,
increasing returns to innovation are strong enough to create a slow transition but are not so strong that
they generate path dependence. Following the policy reform, transportation and electricity generation
converge halfway to their steady-states in 121 and 127 years, respectively. The policy reform’s impact on

64Given that these results involve linearizing my model, one may be concerned that my results are not informative about
such a large policy reform. To address this concern, I compare the linearized transition path to the full simulation in Figure
C.3 and show that the two do not differ significantly.
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both input prices and the path of technology reduces emissions by about half in 2035 and 2060, relative
to the laissez-faire level in those years.65

As before, the other two cases illustrate how cross-technology spillovers shape the speed with which
policy can influence the direction of innovation. When the spillover network is shut down, the economy
doesn’t converge to an interior steady-state, making the half-lives of convergence undefined. Moreover,
the long-run emission reductions from pushing electricity generation into its clean basin of attraction
are achieved only slowly because clean electricity cannot enjoy catchup growth. This is reflected in the
weak emission reductions in the transition. Conversely, when cross-technology spillovers are doubled, the
transition speeds up substantially, with comparatively quick half-lives of convergence of 20 years and 25
years. In the near term, the more rapid technological transition allows for greater emission reductions,
but this lead is eventually lost as high cross-technology spillovers allow dirty technologies to stay relatively
advanced.

Figure 5: Technology Path
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Notes: Impact of introducing a carbon price at the Biden Administration’s estimate of the SCC ($51) and clean innovation
subsidy equivalent to a 30% tax credit (ξc = 1.43). Dotted lines indicate laissez-faire paths.

Figures 5, 6, and 7 provide further detail on the impact of the policy reform. The dotted lines
indicate the paths that would have been taken in the absence of reform. With calibrated spillovers, the
policy reform allows clean technologies to slowly gain a lead over their dirty counterparts as the economy
transitions to a new, cleaner steady-state. This induced improvement in clean technology leads to greater
clean incomes shares and reductions in total emissions over time, relative to laissez-faire.66

When the spillover network is shut down, the policy reform enables a slow shift toward clean tech-
nology for electricity generation while only delaying the advance of transportation into its dirty basin

65The emission reductions presented here abstract from differences in climate damages brought about by the different
emission paths.

66Absolute emissions still rise steadily in the long-run because a fixed carbon price is eventually overcome by economic
growth.
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of attraction. The high increasing returns to innovation, to the point of path dependence, bifurcate the
impact of policy. For large enough policy reforms, like in the case of electricity generation, the shift in
the direction of innovation will be slow, but in the long-run, the impact will be massive. This contrasts
sharply with the case where cross-technology spillovers are doubled. High spillovers allow for a rapid
response to the policy reform, but the overall transition eventually peters out due to the small long-run
change.

Figure 6: Clean Income Share Path
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Notes: Impact of introducing a carbon price at the Biden Administration’s estimate of the SCC ($51) and clean innovation
subsidy equivalent to a 30% tax credit (ξc = 1.43). Dotted lines indicate laissez-faire paths.

These differences showcase how both the long-run and transitional impacts of a policy reform are
shaped by cross-technology spillovers. High cross-technology spillovers allow policy to shape the direction
of innovation quickly by allowing less advanced technologies to achieve catchup growth. However, the
same mechanism implies smaller long-run effects of policy as any advantage granted to some technologies
will trickle down to others via spillovers. These effects are summarized by the degree of increasing returns
to innovation, as measured by the spectral radius of the transition matrix. Low increasing returns allow
for rapid transitions in response to policy reforms, but as argued in Corollary 2, the forces that prevent
increasing returns also reduce the long-run impact of policy by preventing any technology from gaining
a significant advantage.

This section has focused on cross-technology spillovers as a source of variation in increasing returns
to innovation, but similar results hold for substitution patterns in production. In Figure C.4, I show how
the steady-state impact of the policy reform varies in the level of cross-technology spillovers ζ and the
elasticity of substitution between clean and dirty goods σ. As I have argued, the steady-state impact
reduces as ζ increases. Similarly, the steady-state impact increases with the elasticity of substitution σ

because higher substitutability allows clean goods to gain greater market share when favored by policy.
In both cases, higher increasing returns to innovation increase the steady-state impact of policy while
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at the same time increasing the time needed for policy to take effect by slowing the transition. Figure
C.5 illustrates how the degree of increasing returns to innovation varies in ζ and σ. As I have argued
throughout this paper, cross-technology spillovers reduce increasing returns, with technology becoming
path dependent if cross-technology spillovers are reduced to 66% of their calibrated value. Similarly,
substitutability raises increasing returns, with technology becoming path dependent if the elasticity of
substitution σ rises to 2.3.

Figure 7: Pollution Path
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Notes: Impact of introducing a carbon price at the Biden Administration’s estimate of the SCC ($51) and clean innovation
subsidy equivalent to a 30% tax credit (ξc = 1.43). Dotted lines indicate laissez-faire paths.

The EPA has recently proposed increasing the federal SCC to $190. I examine the impact of introduc-
ing a carbon price of $190 in Table C.1 as well as Figures C.6, C.7, and C.8. The results are qualitatively
similar but quantitatively larger. In fact, a $190 carbon price is still not large enough to shift transporta-
tion into its clean basin of attraction when the spillover network is shut down. Figures C.9 and C.10 show
the carbon prices and clean innovation subsidies necessary to shift each technology into its clean basin of
attraction when the spillover network is shut down. With a clean innovation subsidy equivalent to a 30%
tax credit (ξc = 1.43), the electricity generation sector would shift to clean innovation without a carbon
price, while the transportation sector would require a carbon price of $245. With a carbon price at the
Biden Administration’s estimate of the SCC ($51), the electricity generation sector would shift to clean
innovation with a clean innovation subsidy of ξc = 1.04, while the transportation sector would require an
innovation subsidy of ξc = 1.62.67

Figure 8 shows the half-lives of convergence for each eigenstate and sector of the economy.68 Proposi-
tion 3 allows me to unpack the substitution patterns and connections in the spillover network that drive
each sector’s convergence speed. Each eigenstate represents a region of state space with a distinct con-

67These innovation subsidies are equivalent to tax credits of 3.8% and 38.3%, respectively.
68I perform the same exercise for the case where cross-technology spillovers are doubled in Figure C.11.
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Figure 8: Half-Lives of Convergence
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($51) and clean innovation subsidy equivalent to a 30% tax credit (ξc = 1.43).

vergence speed, and Figure 8 shows that the slowest eigenstate drives the speed of convergence for both
sectors. That is, technology’s initial condition loads primarily on the eigenstate representing the region
of state space where convergence is especially slow. This eigenstate represents initial conditions where
dirty technology has an economy-wide advantage over clean technology; exactly the initial condition that
policymakers must contend with.

What about this initial condition leads to slow convergence? First, the substitutability of clean and
dirty goods makes switching the predominant technology in any sector slow as the small market size
of the laggard will reduce innovation rents. However, this is not the whole story because the third
eigenstate, which is substantially faster, represents initial conditions where dirty technology is advanced
in one sector and clean technology is advanced in another. Moving from dirty to clean technology in both
sectors concurrently is especially slow because, as argued in Section 5.1, clean and dirty technologies
both form their own spillover clusters. Thus, catchup growth for clean technologies is reduced because
clean technologies receive spillovers from their peers who are themselves trying to catch up. In spite of
the forces that generate a slow transition, both sectors avoid path dependence. Overall, cross-technology
knowledge spillovers are large enough to stimulate sufficient catchup growth for clean technologies. In
particular, both clean technologies receive high spillovers from outside of the transportation and electricity
generation sectors. Without those spillovers, the spectral radius would increase to 1.007, inducing path
dependence.69

Another noteworthy feature of Figure 8 is that transportation converges a bit more quickly than
electricity generation, with electricity generation taking about 5% longer to halve its log distance from
steady-state. This difference is due to the higher within-sector spillovers in transportation. Another
feature of the spillover network visible in Figure 2 is that clean transport receives spillovers from dirty

69To shut down spillovers from the general sector, I transfer all of the general spillover elasticities to the diagonal of the
gross spillover network φ̃. I take a similar approach to shutdown within-sector spillovers, transferring all of the within-sector
spillover elasticities to the diagonal.
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transport, while there are almost no spillovers from dirty electricity to clean electricity. This is consistent
with the spillover anecdotes from my introduction, where electric vehicles receive spillovers from dirty
vehicles, but solar panels receive spillovers from the ICT sector. To quantify the importance of within-
sector spillovers, Figure C.12 shows half-lives of convergence when within-sector spillovers are shut down.
Without these spillovers, the spectral radius rises to 0.998, and the half-lives for transportation and
electricity generation rise to 434 years and 376 years, respectively. The loss of within-sector spillovers
substantially slows the overall speed of convergence, but more importantly, the sectors switch their
convergence speed rankings, signifying that transportation’s more rapid transition stems from within-
sector spillovers.

Finally, one may wonder whether the degree of increasing returns to innovation depends on the size
of the policy reform. Figure C.13 shows that the eigenvalues of the transition matrix, and therefore the
spectral radius, are not sensitive to the size of the policy reform. Thus, variation in transition speed across
different policy reforms comes from differences in the loading of the initial condition on the eigenstates
β, rather than the size of the eigenvalues {κj} themselves.

6.2 First-Best Policy

In this section, I simulate the policy path that generates an optimal clean transition, starting in 2022.70

As I have emphasized, optimal policy considers the spillovers a technology sends, rather than receives,
because they create a benefit that innovators fail to internalize. Clean technologies create relatively few
spillovers, so for this reason, clean innovation subsidies play a small role in the clean transition. Instead,
carbon emissions are brought down primarily through pricing pollution.

Figure 9: First-Best Policy Path
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70I provide further details on my solution method in Appendix B.3.
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Figure 9 shows the first-best policy path for two values of the discount rate. The left panel displays
the optimal carbon price. As expected, a lower discount rate increases the carbon price by increasing the
importance of future climate damages. The difference is substantial, with the less patient Planner taking
more than a century to reach the more patient Planner’s initial carbon price.

The right panel displays clean innovation subsidies as a fraction of the baseline innovation wedge.
Strikingly, clean technologies do not receive favorable innovation subsidies. The only case where a clean
technology receives an innovation subsidy above the baseline innovation wedge is clean electricity for the
first few decades of policy when the discount rate is high. As shown in Proposition 4, the primary function
of innovation subsidies is to correct the positive knowledge spillover externality. Clean technologies are
valued for their ability to produce goods without pollution, not necessarily for their ability to produce
spillovers. On the latter metric, they don’t score particularly well. Clean transport’s eigenvector centrality
in the spillover network is barely more than a tenth of its steady-state income share (0.64 vs. 5.2%), while
clean electricity’s eigenvector centrality is slightly less than a quarter of its steady-state income share
(0.91 vs. 3.7%).71 This is why, in both cases, the innovation subsidies for clean electricity are uniformly
higher than those for clean transport; the former is the superior clean technology for producing spillovers.
Alternatively, dirty transport and electricity have eigenvector centralities of 1.14 and 0.83, respectively,
relative to steady-state income shares of zero.

Moreover, a lower discount rate reduces clean innovation subsidies because, as shown in Corollary
3, a more patient Planner places more weight on spillover creation, rewarding technologies more for
their ability to produce ideas via spillovers, rather than their ability to produce physical goods. The
more patient Planner is more concerned about future climate damages, but this shows up in their higher
carbon price. With the social cost of carbon properly priced, there is no reason for them to give additional
support to clean technologies as such. For both values of the discount rate, clean innovation subsidies
decline toward their steady-state value over time. This slope stems from the fact that clean income
shares increase to their steady-state value over time. Thus, the private reward for clean innovation in
early periods is low relative to the forward-looking social value, warranting a front-loaded path for clean
innovation subsidies.

Figures 10, 11, and 12 provide further details on the first-best allocation. The dotted lines indicate
laissez-faire paths. For the path of relative clean technology, optimal policy does not unambiguously
favor clean technology. For transportation, the laissez-faire path actually has the highest relative clean
technology, and for both transportation and electricity generation, the patient Planner ends up with
the lowest relative clean technology. This again reflects the relatively low spillovers generated by clean
technologies. Because clean technologies are actually disfavored by innovation subsidies, they do not gain
as much of a lead over their dirty counterparts. This is especially true for transportation, where the
clean technology is particularly bad at generating spillovers, and for the more patient Planner, who puts
greater value on the generation of spillovers.

Nonetheless, the steadily rising price on carbon allows clean technology to slowly take over production
in both sectors. For both levels of discounting, within-sector clean income shares rise to steady-state
values of one, but this happens more quickly for the more patient Planner, who imposes a higher price
on carbon. Clean technology starts at a greater disadvantage in the transportation sector, but catchup

71I have scaled eigenvector centrality to sum to 100, making it comparable to a percent. The steady-state income shares
I have listed come from the low discounting allocation.
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Figure 10: First-Best Technology Path
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growth via the spillover network allows clean transport to achieve a similar within-sector income share
as clean electricity by 2200.

Finally, the carbon price substantially reduces carbon emissions, relative to laissez-faire. The more
patient Planner immediately reduces carbon emissions by about half and steadily reduces them thereafter,
whereas the less patient Planner allows carbon emissions to rise for a little more than a century. In both
cases, the economy continues to grow, leading to steady reductions in emissions intensity. Together, these
figures show that the Planner does not reduce emissions by abandoning dirty technologies. Instead, they
push dirty technology out of production by raising the price on carbon, while at the same time continuing
research in dirty technologies for the sake of spillovers.

In Figure C.14, I plot the temperature increases associated with first-best policy. Due to my focus on
the transportation and electricity generation sectors in the US, most of the emissions that determine the
global increase in temperature come from outside of my model. In spite of this, US climate policy still
has a substantial influence on the level of warming beyond 2100. Warming peaks around 3◦C or 3.2◦C,
depending on the discount rate, but in laissez-faire, warming continues unabated as the economy grows.

The damages we can expect from a warmer climate are highly uncertain, so I consider the possibility
of substantially higher damages in Figure C.15. For that case, I quadruple the damage parameter ϱ,
which substantially increases the social cost of carbon. Interestingly, despite the increased cost of climate
change, clean innovation subsidies are reduced even further. The higher price on carbon leads to higher
clean income shares, raising the private return to clean innovation. What does not change is the relatively
low centrality of clean technologies in the spillover network. Thus, the social value of clean innovation
increases by less than the private return, implying a reduction in innovation subsidies.

Finally, to further examine the role of spillovers in optimal policy, I shut down the spillover network
in Figure C.16. In that case, carbon prices are largely unchanged, but clean technology receives a ”big
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Figure 11: First-Best Clean Income Share Path
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push” with massive, yet temporary, innovation subsidies. Now innovation subsidies for clean transport
and electricity start at more than triple and double the baseline innovation wedge, respectively, and slowly
decrease down to the baseline level over the first century of policy. This is in sharp contrast to innovation
policy in the previous case because, without a spillover network, clean technologies are beneficial in terms
of both their ability to produce goods without pollution and their ability to produce spillovers. Before
every technology could create spillovers on clean technologies, but now that only clean technologies can
create clean spillovers, the usefulness of clean technology in production grants an exclusive value to their
spillovers as well.

6.3 Second-Best Innovation Subsidies

In this section, I simulate second-best innovation subsidies, where carbon prices are incomplete. I consider
two cases: one where the external carbon price is zero and another where the external carbon price is
ten percent of the social cost of carbon. I show that these cases differ substantially as even a small,
but growing, price on carbon allows the Planner to achieve welfare similar to that of the first-best, but
without a price on carbon, society suffers massive welfare losses relative to the first-best. As before, the
policy simulation starts in 2022.72 In the main text, I take my preferred specification of low discounting,
but I consider high discounting as a robustness check.73

Figure 13 displays second-best innovation subsidies, as a fraction of the baseline innovation wedge,
72Appendix B.4 contains further details on my solution method.
73Another justification for low discounting of climate damages stems from the pricing of risk. Because climate damages

are risky, limiting emissions is a form of insurance. Hence, abatement should carry a low, or even negative, risk premium,
like that of a hedging asset (Wagner and Weitzman, 2016). I do not explicitly consider climate risk, so low discounting
captures some of the insurance argument for limiting emissions.
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Figure 12: First-Best Pollution Path

2050 2100 2150 2200
0

1

2

3

4

5

Year

G
tC

Carbon Emissions

Low ρ

High ρ

2050 2100 2150 2200

0

0.2

0.4

0.6

0.8

1

·10−2

Year

ω̄

Emissions Intensity

Notes: Dotted lines indicate laissez-faire paths.

with the external carbon price τ̂t set as a proportion of the social cost of carbon. As shown in Proposition
5, innovation subsidies adjust to accommodate the distortion of incomplete carbon pricing. The dashed-
dotted lines reference the first-best policy path. First, we can see that the case with τ̂t set to ten percent
of the social cost of carbon is qualitatively similar to the first-best, with clean innovation subsidies shifted
upwards by about 20-30% of the baseline innovation wedge. In that case, rising carbon prices eventually
push dirty technology out of production, so the Planner can still develop dirty technologies to some degree
for the sake of spillovers.

This contrasts sharply with the case where carbon pollution is entirely unpriced. In that case, clean
innovation subsidies are similar to the ten percent case for the first century of policy, but beyond that,
they begin to rise precipitously. Moreover, dirty innovation is immediately shut down. Without a carbon
price, the only way for the Planner to push dirty technology out of production is to shut down dirty
innovation altogether, forgoing spillovers in the process.

Figures 14, 15, and 16 provide further details on second-best policy. The dotted lines indicate laissez-
faire paths. The difference between the two second-best cases emerges clearly in the path of relative
clean technology. Again, a small, growing carbon price allows the Planner to continue dirty innovation
for the sake of spillovers, so relative clean technology is only marginally higher than in the first-best.
However, without a carbon price, the Planner must drive relative clean technology to infinity to push
dirty production out of the economy. This opens a vast difference in relative clean technology for the
zero case, relative to the others.

The substantial increase in relative clean technology in the zero case leads to similar clean income
shares as in the first-best. Indeed, clean income shares in the zero case are larger than in the ten percent
case. However, without a carbon price, emissions in the zero case are only slightly below their level in
laissez-faire for the first few centuries. This is because increases in clean technology lead to expansions in
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Figure 13: Second-Best Policy Path
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output, which increase demand for dirty inputs in turn. Thus, reducing emissions via clean technological
growth alone is ineffective because the substitution from clean to dirty is dampened by a rebound effect.
Emissions in the ten percent case are still substantially larger than in the first-best, but a small carbon
price goes a long way in preventing technological advance from translating into increases in emissions.

In Figure C.17, I show the path of temperature increases associated with each second-best policy
path. As before, most global emissions come from outside of the model, but US climate policy has a
substantial influence on the level of warming beyond 2100. As suggested by the path of emissions, the
ten percent case leads to a fair amount of additional warming, with maximum warming of about 3.5◦C,
roughly half a degree higher than in the first-best. However, the zero case leads to disastrous warming
of about 10◦C and rising by 2500, underscoring the power of even a small carbon price.

These simulations illustrate the main tradeoff of second-best policy. Technology stocks are an input
into the production of both physical goods and new ideas. As shown in the first-best, clean technologies
should dominate production because they can produce goods without pollution, but in the production
of ideas, dirty technologies are generally better due to their higher centrality in the spillover network.
When the Planner can only control innovation subsidies, they must pick a path for technology that
compromises between the two. A growing carbon price ensures that dirty technology is eventually pushed
out of production, allowing dirty innovation to continue without increasing emissions. However, when
pollution is unpriced, any dirty innovation will raise emissions, so the Planner must stop developing the
dirty technology altogether.

In the end, decarbonizing by only improving clean technology leads to both slow emission reductions
from a rebound effect and slow growth from the loss of spillovers.74 For this reason, the welfare loss

74In the steady-state, the loss of dirty innovation leads growth to stop altogether. This stems from using a Cobb-Douglas
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Figure 14: Second-Best Technology Path

2050 2100 2150 2200
−3

−2

−1

0

1

2

3

Year

Lo
g

R
el

at
iv

e
C

le
an

Te
ch

no
lo

gy
Transport

0% τ̂

10% τ̂

100% τ̂

2050 2100 2150 2200

−1

0

1

2

3

4

Year

Electricity

Notes: Policy paths use the low discount rate. The external carbon price τ̂ is a proportion of the social cost of carbon, so
100% is the first-best. Dotted lines indicate laissez-faire paths.

of moving from the first-best to the second-best increases sharply when carbon pollution is unpriced.
Pricing carbon pollution at ten percent of the social cost of carbon leads to a consumption equivalent
loss of 1.5%, implying that a small, growing carbon price can achieve most of the welfare of the first-best.
However, if carbon pollution is unpriced, the consumption equivalent loss is almost 100%. Clearly, the
clean technological transition requires both instruments so as to decouple the production of physical
goods and new ideas.

Figure C.18 shows second-best innovation policy in the case of high discounting. The conclusions are
broadly similar. Clean innovation subsidies are higher than in the first-best in both the zero and ten
percent case, and those of the zero case grow substantially over time. However, the difference between the
zero and ten percent case is much less stark for the less patient Planner. For instance, dirty innovation
is now allowed to continue for about another 150 years in the zero case. This reduced difference stems
from the fact that the higher emissions and slower growth of the zero case are both costs that materialize
in the future. A less patient Planner puts less weight on these costs, with a consumption equivalent loss
of 0.3% for the ten percent case and 0.9% for the zero case, relative to the first-best. Therefore, the cost
of incomplete carbon pricing depends critically on the Planner’s degree of patience.
spillover function in my simulations. Put differently, when one or more technologies are lost, the model switches from
endogenous growth to semi-endogenous growth. If the spillover function had an elasticity of substitution above one, growth
could continue without dirty innovation, though the abrupt stop in dirty innovation would still dampen growth.

51



Figure 15: Second-Best Clean Income Share Path
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7 Conclusion

One of the main goals of climate policy is to redirect innovation from dirty to clean technology. Without
such redirection, decarbonization will be prohibitively expensive. This paper has studied the role of
policy in the transition to clean technology. I have argued that the two main forces that govern both
the size and speed of technological transition, following a policy reform, are substitution patterns in
productions and the network of knowledge spillovers. Moreover, I have shown that each of these forces
can be summarized in terms of sufficient statistics matrices, providing a mapping from the model to the
data. These two sufficient statistic matrices govern both the steady-state change and transition path by
controlling the degree of increasing returns to innovation, which can be quantified in terms of a spectral
radius. Interestingly, the long-run change in the direction of innovation is inversely related to the speed
of transition because the mechanisms that speed up transitions also prevent technologies from gaining
large leads over their peers in the long run.

For optimal policy, I have characterized the path of carbon prices and innovation subsidies that
generate an optimal clean technological transition. In keeping with the Pigou principle, carbon prices
correct the pollution externality, while innovation subsidies correct the knowledge spillover externality.
That is, clean innovation should not be subsidized simply because clean technologies can create goods
without pollution; it should be subsidized insofar as it produces spillovers. However, in the case where
carbon pricing is incomplete, I have shown that innovation subsidies can be straightforwardly adjusted
to account for the social cost of carbon.

To take my model to the data, I have performed four quantitative exercises, focusing on transportation
and electricity generation in the US. First, I showed that my model can explain the 2010s advance in clean
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Figure 16: Second-Best Pollution Path
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technology when it includes the spillover network, but in the absence of cross-technology spillovers, my
model counterfactually predicts that clean technology would have instead fallen further behind. Second,
I showed that introducing a realistic carbon price and clean innovation subsidy has a large long-run effect
on the direction of innovation but that this effect takes a long time to realize. Underpinning both the
sizable long-run impact and sluggish transition is a spectral radius near one, indicating increasing returns
to innovation that are large, but not so large as to induce path dependence. Third, I have shown that
optimal climate innovation policy reduces emissions primarily through carbon prices, rather than clean
innovation subsidies. Clean technologies do not receive favorable subsidies because they do not produce
particularly large spillovers, as measured by their centrality in the spillover network. Fourth, I simulated
second-best innovation subsidies and showed that if there is a small, growing carbon price, then the
second-best can achieve most of the welfare of the first-best. However, if carbon pollution is unpriced,
then decarbonization requires shutting down dirty innovation and relying exclusively on clean innovation,
with disastrous consequences for welfare and the climate.

I have applied my model to the context of climate change because that is a salient case where policy
must redirect innovation. However, my model is general and can be viewed as a framework for studying
the impact of economic shocks – to policy, input prices, etc – on the direction of innovation. I view many
of the insights of this paper as applying to a more general set of questions about the determination of
the direction of innovation. I leave the study of those questions to future work.
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Appendix

A Theory Derivations & Proofs

A.1 Equilibrium Conditions

To derive relative prices of technology-specific goods, plug the intermediate limit price condition (20) into
the intermediate demand condition (18) to obtain the equilibrium level of output for intermediates:

yjιt = (1 − α)pjtYjtΥajιt

γwℓt
. (A.1)

Plugging this into the production function for technology-specific goods (2) gives us

Yjt = Λjt

( (1 − α)pjtΥAjt

γwℓt

) 1−α
α

. (A.2)

Plugging Equation (A.2) into the input demand condition (17) gives us

pjt =
(
rj + ωjτt

)α( 1
α

)α( 1
1−α

)1−α(
γwℓt/Υ

)1−α

A1−α
jt

, (A.3)

which implies that relative prices of technology-specific goods follow

pjt

pJt
=
( rj + ωjτt

rJ + ωJτt

)α(Ajt

AJt

)α−1
, (A.4)

which gives us Equation (22) from the main text.
Turning to the innovation side of the economy, the research firm solves the problem described in

Equation (23). This yields the condition

ξjtχjηs
η−1
jt ϕjtΠjt = wst, (A.5)

which gives us the research condition (25) in the main text.
To derive demand for technology-specific goods under the nested-CES production structure described

in Section 2.5, first consider the final producer’s demand for sector-level output. The final producer solves

max
{Eθt}

Yt −
∑

θ

pθtEθt, (A.6)

where pθt is the price for sector θ. This yields the condition

Ω
λ−1

λ
t ν

1
λ

θ

( Yt

Eθt

) 1
λ = pθt. (A.7)

Next, producers at the sector level solve

max
Yθdt,Yθct

pθtEθt − pθctYθct − pθdtYθdt (A.8)

where pθct and pθdt are the price of clean and dirty production in sector θ, respectively. This yields the
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condition
pθt

( Eθt

Yθet

) 1
σ = pθet, (A.9)

where e ∈ {c, d}.

A.2 Task-Based Microfoundation for CES Shares

Following Acemoglu and Restrepo (2022b), let final output be a CES aggregator over a unit interval of
tasks

Yt = Ωt

(∫ 1

0
q

λ−1
λ

xt dx
) λ

λ−1
, (A.10)

where qxt is task-level output.
Task-level output follows

qxt =
∑

θ

υθxeθxt, (A.11)

where eθxt is the demand for sector θ goods in task x, and υθx is the productivity of sector θ goods in
task x. Market clearing requires total demand for sector θ goods across tasks to equal supply:∫ 1

0
eθxtdx = Eθt. (A.12)

Task-level output is perfect substitutes, so the sector with the lowest marginal cost is used to produce a
given task. Thus, task-level prices follow

pxt = min
θ

pθt

υθx
, (A.13)

and task-level demand follows
Ω

λ−1
λ

t

( Yt

qxt

) 1
λ = pxt. (A.14)

Suppose that the unit interval of tasks is partitioned into subsets where only one sector can produce.
That is, each sector has a set of tasks

Xθ =
{
x ∈ [0, 1]

∣∣υθx = 1
}

(A.15)

∀x /∈ Xθ : υθx = 0

∪θXθ = [0, 1]

∀θ, θ′ : Xθ ∩ Xθ′ = ∅.

Plugging task-level demand (A.14) into the market clearing condition (A.12) allows us to derive
equilibrium sector prices

pθt = |Xθ| 1
λ Ω

λ−1
λ

t

( Yt

Eθt

) 1
λ

, (A.16)

where |Xθ| ≡
∫

x∈Xθ
dx is the mass of tasks produced by sector θ. Plugging this into the ideal price index

1 = Ω−1
t

(∫ 1

0
p1−λ

xt dx
) 1

1−λ (A.17)
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gives us an aggregate representation of final output:

Yt = Ωt

(∑
θ

|Xθ| 1
λE

λ−1
λ

θt

) λ
λ−1

. (A.18)

Therefore, we can interpret the CES shares νθ of Equation (1) as the mass of tasks |Xθ| produced by
sector θ, as claimed in the main text.

A.3 Substitution Matrix for Nested-CES Production

I will omit time subscripts for the sake of parsimony. To derive the substitution matrix Σ, consider the
function G : R2(J−1) → R

J−1, which follows

Gi

({
ln
(
Yj/YJ

)
, ln
(
pJ/pj

)})
= ln

(
pJ/pi

)
−
[ 1
λ

ln
(
νθ(J)/νθ(i)

)
+
( 1
σ

− 1
λ

)
ln
(
Eθ(J)/Eθ(i)

)
− 1
σ

ln
(
YJ/Yi

)]
.

(A.19)
That is, G is a function valued at the zero vector when the equilibrium price conditions (A.7) and (A.9)
are satisfied. Note that θ(i) is the sector associated with technology i. To derive demand responses, we
can apply the Implicit Function Theorem to G. This gives us

∂Gi

∂ ln
(
Yj/YJ

) = −
[ 1
σ
1(i = j) +

( 1
λ

− 1
σ

)
εE

θ(i)j1(θ(i) = θ(j))
]

(A.20)

∂Gi

∂ ln
(
pJ/pj

) = 1(i = j), (A.21)

where εE
θ(i)j is the elasticity of sector θ(i) with respect to good j. Equation (A.20) relies on the fact that

Eθ(J) = YJ because the final sector Θ only has a clean form of production.
Applying the Implicit Function Theorem gives us

Σ = −DyG−1, (A.22)

where DyG is the Jacobian of G with respect to log relative quantities. We can ignore the Jacobian
of G with respect to log relative prices because it is just the identity matrix I. Using the fact that the
Jacobian of G with respect to log relative quantities is block diagonal, we can derive

Σ =


Σ̃1 0 . . . 0

0 Σ̃2 . . .
...

...
... . . . ...

0 . . . . . . Σ̃Θ−1

 , (A.23)

where

Σ̃θ =
(
λ+ (σ − λ)εE

θd (λ− σ)εE
θd

(λ− σ)εE
θc λ+ (σ − λ)εE

θc

)
, (A.24)

where, again, εE
θd is the elasticity of sector θ with respect to its dirty form of production, and εE

θc is
defined analogously. We can also interpret these elasticities as income shares. Note that in the special
case where σ = λ, we have Σ = σI as σ = λ would imply a standard CES.
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A.4 Proof of Proposition 1

I will omit time subscripts from variables that are time invariant in steady-state. Any balanced growth
steady-state requires equal levels of innovation across technologies: zi = zJ . From Equation (10), this
implies

ln
(
si/sJ

)
= −1

η
ln
(
χi/χJ

)
− 1
η

ln
(
ϕi/ϕJ

)
. (A.25)

Plugging this into the research condition (25) and using the no-arbitrage condition (24) and relative good
prices (22), we have

(1 − α) ln (Āi) = ln (Ξi) + 1
η

ln
(
χi/χJ

)
+ 1
η

ln
(
ϕi/ϕJ

)
+ α ln (Ri) + ln

(
Yit/YJt

)
, (A.26)

where Ξi ≡ ξi/ξJ denotes relative innovation subsidies, and Ri ≡ (ri + ωiτ)/(rJ + ωJτ) denotes relative
input costs inclusive of the carbon price. Note that assuming that production is constant returns implies
we can write relative quantities demanded just in terms of relative prices, and assuming spillovers are
homogeneous of degree zero implies we can write spillovers just in terms of relative technology. Thus,
relative technology in any balanced growth steady-state must satisfy Equation (A.26).

To derive the Jacobian of log steady-state relative technology with respect to log relative innovation
subsidies DΞĀss, we can differentiate

(1 − α)∂ ln (Āi)
∂ ln (Ξj) = 1(i = j) − 1

η

∑
q

Φiq
∂ ln (Āq)
∂ ln (Ξj) + (1 − α)

∑
q

Σiq
∂ ln (Āq)
∂ ln (Ξj) , (A.27)

which in matrix notation gives us

(1 − α)DΞĀss = I − 1
η
ΦDΞĀss + (1 − α)ΣDΞĀss (A.28)

⇒ DΞĀss = η
[
Φ − η(1 − α)

(
Σ − I

)]−1
.

To derive the Jacobian of log steady-state relative technology with respect to log relative input prices
DRĀss, we can differentiate

(1 − α) ∂ ln (Āi)
∂ ln (Rj) = α1(i = j) − 1

η

∑
q

Φiq
∂ ln (Āq)
∂ ln (Rj) + (1 − α)

∑
q

Σiq
∂ ln (Āq)
∂ ln (Rj) − αΣij , (A.29)

which in matrix notation gives us

(1 − α)DRĀss = αI − 1
η
ΦDRĀss + (1 − α)ΣDRĀss − αΣ (A.30)

⇒ DRĀss = −ηα
[
Φ − η(1 − α)

(
Σ − I

)]−1(
Σ − I

)
.

Combining Equations (A.28) and (A.30), we have

d ln (Āss) = η
[
Φ − η(1 − α)

(
Σ − I

)]−1[
d ln (Ξ) − α

(
Σ − I

)
d ln (R)

]
, (A.31)

which gives us Equations (38) and (39) from Proposition 1.
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A.5 Steady-State under Parametric Assumptions of Section 2.5

Under the parametric assumption of Section 2.5, we can further characterize the steady-state for relative
technology. Plugging the equilibrium price conditions (A.7) and (A.9) into Equation (A.26), we have∑

j<J

Φij ln (Āj) = η ln (Ξi) + η(1 − α)(σ − 1) ln (Āi) (A.32)

+ η(σ − λ) ln
(
pθ(i)t/pθ(J)t

)
− ηα(σ − 1) ln (Ri).

Denote relative sector prices by Pi ≡ pθ(i)t/pθ(J)t. Writing Equation (A.32) in terms of matrix notation,
we have

ln (Āss) = η
[
Φ − η(1 − α)(σ − 1)I

]−1[ ln (Ξ) + (σ − λ) ln (P) − α(σ − 1) ln (R)
]
. (A.33)

Using the sector-level ideal price index, we have that relative sector prices follow

Pi =
pθ(i)t

pθ(J)t
=
(p1−σ

θct + p1−σ
θdt

p1−σ
Jt

) 1
1−σ =

(
Rα(1−σ)

θc Ā
(1−α)(σ−1)
θc + Rα(1−σ)

θd Ā
(1−α)(σ−1)
θd

) 1
1−σ

, (A.34)

where we have used the fact that the final sector Θ only has a clean form of production. Steady-state
relative technology is then the solution to a fixed-point problem defined by Equation (A.33).

Furthermore, Equation (A.25) implies that

ln (s̄ss) = ln (V) + 1
η
Φ ln (Āss), (A.35)

where s̄j ≡ sj/sJ are relative scientists, and Vj ≡ νθ(j)/νθ(J) are relative CES shares. Thus, we have

ln (s̄ss) = ln (V) + Φ
[
Φ − η(1 − α)(σ − 1)I

]−1[ ln (Ξ) + (σ − λ) ln (P) − α(σ − 1) ln (R)
]
. (A.36)

We can also characterize corner steady-states in the case where the spillover network is shut down.
Then, each sector converges to a single technology, either clean or dirty. First, the technologies that lose
out in their sector will converge to zero in relative terms. For the remaining technologies, we can use the
same strategy as above. We have

ln (Āss) = 1
(1 − α)(1 − λ) ln (Ξ) + α

1 − α
ln (R), (A.37)

but only for technologies that persist in the long-run, one for each sector.

A.6 Proof of Proposition 2

I will describe the equilibrium evolution of technology as a dynamic process with log relative technology
{ln (Ājt)} as the state variable and scientists {sjt} as the control variable. Thus, we can write the
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dynamic process in vector notation as

ln (Āt) = H
(
st

(
ln (Āt−1)

)
, ln (Āt−1)

)
, (A.38)

where st

(
ln (Āt−1)

)
is the equilibrium mapping of the control to the previous period’s state. By definition,

the steady-state ln (Āss) is a fixed point of H, so taking a first-order approximation around the steady-
state, we have

ln (Āt) − ln (Āss) ≈ J
(

ln (Āt−1) − ln (Āss)
)
, (A.39)

where J is the Jacobian of H, evaluated at the steady-state. Thus, because At is defined as the log
deviation of relative technology from steady-state, we have Equation (41) of Proposition 2.

To unpack the Jacobian J , we can describe the dynamic process H using the law of motion for
technology (8), the research condition (25), the no-arbitrage condition (24), and the market clearing
condition for scientists (12). I will omit time subscripts on policy variables. This yields

ln (Āit) = ln (γ)
[
χis

η
itϕit − χJs

η
JtϕJt

]
+ ln (Āit−1) (A.40)

(1 − η)
[

ln (sit) − ln (sJt)
]

= ln
(
χi/χJ

)
+ ln

(
ξi/ξJ

)
+ ln

(
ϕit/ϕJt

)
+ ln

(
pit/pJt

)
+ ln

(
Yit/YJt

)∑
i

sit = S.

Note that assuming that production is constant returns implies we can write relative quantities demanded
just in terms of relative prices, and assuming spillovers are homogeneous of degree zero implies we can
write spillovers just in terms of relative technology.

Denote the elasticity of variable xit with respect to Ājt−1 by εx
ij ≡ ∂ ln (xit)

∂ ln (Ājt−1) , which implies εĀ
ij = Jij .

Differentiating the dynamical system and evaluating at the steady state, we have

εĀ
ij = g

[
η(εs

ij − εs
Jj) − Φij

]
+ 1(i = j) (A.41)

(1 − η)(εs
ij − εs

Jj) = −Φij − (1 − α)ϵĀij +
∑

q

Σiq(1 − α)ϵĀqj

⇒
[
(1 − η) + gη(1 − α)

]
ϵĀij = (1 − η)1(i = j) − gΦij + gη(1 − α)

∑
q

Σiqϵ
Ā
qj ,

where the derivative of relative good prices with respect to relative technology comes from Equation
(A.4). Transforming into matrix notation, we have Equation (42) from Proposition 2:

[
(1 − η)I−gη(1 − α)

(
Σ − I

)]
J = (1 − η)I − gΦ (A.42)

⇒ J =
[
(1 − η)I − gη(1 − α)

(
Σ − I

)]−1[(1 − η)I − gΦ
]
.
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A.7 Proof of Corollary 2

I will assume that the transition matrix J has J − 1 distinct real eigenvalues. We have

JQ = QD(κ) (A.43)

⇒
[
(1 − η)I − gΦ

]
Q =

[
(1 − η)I − gη(1 − α)

(
Σ − I

)]
QD(κ)

⇒
[
(1 − η)I − gη(1 − α)

(
Σ − I

)]
QD(1 − κ) = g

[
Φ − η(1 − α)

(
Σ − I

)]
Q

⇒ M = gQD(1 − κ)−1Q−1[(1 − η)I − gη(1 − α)
(
Σ − I

)]−1
,

which gives us Equation (50) of Corollary 2.

A.8 Proof of Proposition 4

As described in the Definition 6, the Planner solves

max
{ct,{Λjt,{ℓjιt},Ajt,sjt}}

∑
t≥0

1
(1 + ρ)t

u(ct) s.t. (A.44)

Yt = ct +
∑

j

rjΛjt : κt

L =
∑

j

∫ 1

0
ℓjιtdι : ϖℓt

ln (Ajt) = ln (γ)χjs
η
jtϕjt + ln (Ajt−1) : ϵjt

S =
∑

j

sjt : ϖst,

where next to each constraint is the corresponding multiplier. Note that I have transformed the law of
motion for technology to be in terms of logs.

Taking the FOC with respect to ct, we have

u′
t

(1 + ρ)t
= κt, (A.45)

which I will use to solve out κt in the remaining FOCs. Taking the FOC with respect to Λjt, we have

∂Yt

∂Λjt
= rj − ωj

∑
t̂≥t

Yt̂

(1 + ρ)t̂−t

u′
t̂

u′
t

∂ ln (Ωt̂)
∂Et

. (A.46)

Taking the FOC with respect to ℓjιt, we have

∂Yt

∂ℓjιt
= ϖℓt

u′
t/(1 + ρ)t

. (A.47)

Taking the FOC with respect to Ajt, we have

ϵjt

Ajt
= u′

t

(1 + ρ)t

∂Yt

∂Ajt
+ ϵjt+1

Ajt
+
∑

i

ϵit+1 ln (γ)χis
η
it+1

∂ϕit+1

∂Ajt
. (A.48)
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Taking the FOC with respect to sjt, we have

ϖst = ϵjt ln (γ)χjηs
η−1
jt ϕjt. (A.49)

We can now determine the prices and policy instruments that support this allocation as a competitive
equilibrium. First, to close the markup of the intermediate producer, the Planner sets the intermediate
subsidy equal to the markup: Υ = γ. This guarantees that intermediates are produced at marginal cost.
Next, the Planner sets the wage for workers to reflect the shadow price of labor: wℓt = ϖℓt

u′
t/(1+ρ)t . Then,

if the carbon price is set properly, prices {pjt, {pjιt}} set equal to marginal products/marginal costs will
be efficient. Note that, with these prices and policies, we now have average intermediate producer profit
Πjt = (γ − 1)(1 − α)pjtYjt.

Next, define Rt+1 ≡ (1 + ρ)u′
t/u

′
t+1 as the Planner’s intertemporal marginal rate of substitution. To

align the input demand condition (17) with the Planner’s input FOC (A.46), the Planner sets the carbon
price according to

τt = −
∑
t̂≥t

t̂−t∏
ŝ=1

1
Rt+ŝ

Yt̂

∂ ln (Ωt̂)
∂Et

, (A.50)

which is the social cost of carbon. This Pigouvian correction gives us Equation (61) of Proposition 4.
For innovation subsidies, we can compare the optimality condition of the research problem (A.5) with

the Planner’s scientist FOC (A.49). We have

χjηs
η−1
jt ϕjtξjtΠjt = wst (A.51)

χjηs
η−1
jt ϕjtϵjt = ϖst

ln (γ) .

The Planner can set the wage for scientists according to

wst = ϖst ln (γ)
u′

t/(1 + ρ)t
. (A.52)

Plugging this into the two research conditions (A.51), we can see that the incentives for innovation will
be efficient if the Planner sets innovation subsidies according to

ξjtΠjt = ϵjt

u′
t/(1 + ρ)t

. (A.53)

Note that any positive multiple of {wst, {ξjt}} would achieve the same outcome, but I am focusing on
what I view as a natural normalization for these prices and policies. Plugging this into the Planner’s
technology FOC (A.48), we get the recursion

ξjtΠjt = (1 − α)SjtYt + 1
Rt+1

[
ξjt+1Πjt+1 +

∑
i

ξit+1Πit+1git+1φijt+1
]
, (A.54)

which gives us Equation (62) of Proposition 4. Finally, the Planner sets the lump-sum tax Dt to balance
the government’s budget (27) in each period.
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A.9 Proof of Corollary 3

Manipulating Equation (62), we have

ξ̃jt = Sjt

γ − 1 + Yt+1/Yt

Rt+1

[
ξ̃jt+1 +

∑
i

ξ̃it+1git+1φijt+1
]
. (A.55)

I have assumed the economy is in steady-state, so income shares for technologies are constant and the
growth rate of output is equal to a constant gy. For example, if carbon pollution stops and the damage
function settles to a constant, then the growth rate of output gy will be equal to the growth rate of
technology g.75 More generally, we would have gy ≤ g as damages could worsen with continued carbon
pollution.

Define R̃ ≡ R/(1 + gy) as the Planner’s growth-adjusted intertemporal marginal rate of substitution,
evaluated at the steady-state. Then, evaluating Equation (A.55) in matrix notation at the steady-state,
we have

ξ̃′ = 1
γ − 1S

′
[
(1 − R̃−1)I − gR̃−1φ

]−1
, (A.56)

which gives us Equation (63) of Corollary 3. If all income shares remain positive in steady-state, this is
equivalent to

ξ′ = 1
γ − 1 1⃗′

[
(1 − R̃−1)I − gR̃−1D(S)φD(S)−1

]−1
. (A.57)

A.10 Proof of Proposition 5

As described in the Definition 7, the Planner solves

max
{ct,{Λjt,{ℓjιt},Ajt,sjt}}

∑
t≥0

1
(1 + ρ)t

u(ct) s.t. (A.58)

Yt = ct +
∑

j

rjΛjt : κt

ln (Ajt) = ln (γ)χjs
η
jtϕjt + ln (Ajt−1) : ϵjt

S =
∑

j

sjt : ϖst

{Λjt, {ℓjιt}} = argmax
[
Yt −

∑
j

rjΛjt − τ̂tEt

]
s.t. L =

∑
j

∫ 1

0
ℓjιtdι,

where next to each constraint is the corresponding multiplier. As before, I have transformed the law of
motion for technology to be in terms of logs. Now the Planner must consider the incentive compatibility
constraint for factors of production. Note that I am assuming the intermediate subsidy is set according
to Υ = γ.

Taking the FOC with respect to ct, we have

u′
t

(1 + ρ)t
= κt, (A.59)

75This is the steady-state under the parametric assumptions of Sections 2.5 and 5.2.
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which I will use to solve out κt in the remaining FOCs. Taking the FOC with respect to sjt, we have

ϖst = ϵjt ln (γ)χjηs
η−1
jt ϕjt. (A.60)

Taking the FOC with respect to Ajt, we have

ϵjt

Ajt
= u′

t

(1 + ρ)t

[ ∂Yt

∂Ajt
+
∑

i

∫ 1

0

∂Yt

∂ℓiιt

∂ℓiιt

∂Ajt
dι+

∑
i

( ∂Yt

∂Λit
− ri

) ∂Λit

∂Ajt
− τt

∂Et

∂Ajt

]
(A.61)

+ ϵjt+1

Ajt
+
∑

i

ϵit+1 ln (γ)χis
η
it+1

∂ϕit+1

∂Ajt
,

where τt is the same social cost of carbon from Equation (61). Now consider the producer optimality
conditions

∂Yt

∂Λjt
= rj + ωj τ̂t (A.62)

∂Yt

∂ℓjιt
= wℓt.

Plugging these conditions into the Planner’s optimality condition for technology (A.61), and noting that∑
j

∫ 1
0

∂ℓjιt

∂x dι = 0 for any x due to the fixed supply of labor, we have

ϵjt

Ajt
= u′

t

(1 + ρ)t

[ ∂Yt

∂Ajt
− (τt − τ̂t)

∂Et

∂Ajt

]
+ ϵjt+1

Ajt
+
∑

i

ϵit+1 ln (γ)χis
η
it+1

∂ϕit+1

∂Ajt
. (A.63)

As before, the Planner can create efficient incentive for innovation by satisfying Equations (A.52) and
(A.53). Thus, innovation subsidies follow the recursion

ξjtΠjt = (1 − α)SjtYt − (τt − τ̂t)Et
∂ ln (Et)
∂ ln (Ajt)

+ 1
Rt+1

[
ξjt+1Πjt+1 +

∑
i

ξit+1Πit+1git+1φijt+1
]
, (A.64)

which gives us Equation (68) of Proposition 5. By construction, prices on the production side of the
economy are set in equilibrium. Finally, the Planner sets the lump-sum taxDt to balance the government’s
budget (27) in each period.

B Details on Calibration & Simulation

B.1 Details on Numerical Representations

This appendix contains details on how I can represent equilibrium outcomes of my model in terms of
fundamentals: technology, policy, and structural parameters. I make the parametric assumptions of
Section 2.5. First, I will define what I call pseudo prices. These follow

p̃jt ≡
(
rj + ωjτt

)α
/A1−α

jt . (B.1)
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From Equation (A.3), we have that pseudo prices are proportional to prices and satisfy

pjt =
( 1
α

)α( 1
1 − α

)1−α(γwℓt

Υ

)1−α

p̃jt. (B.2)

We can define similar pseudo prices at higher levels using ideal price indices

p̃θt ≡
(
p̃1−σ

θct + p̃1−σ
θdt

) 1
1−σ (B.3)

P̃t ≡ Ω−1
t

(∑
θ

νθp̃
1−λ
θt

) 1
1−λ , (B.4)

which must also be proportional to their corresponding price.
Next, combining the intermediate production function (4), equilibrium intermediate output (A.1),

and labor supply (6) gives us
γwℓt

Υ = (1 − α)Yt

L
. (B.5)

Combining the final pseudo price (B.4) with the fact that output is the numeraire, we have for output

Yt = α
α

1−αLP̃
−1

1−α

t . (B.6)

Next, using the demand conditions for sectors (A.7) and goods within sectors (A.9), we can derive
income shares for sectors and goods within sectors. We have

Sθt ≡ pθtEθt

Yt
= νθp̃

1−λ
θt

Ω1−λ
t P̃ 1−λ

t

(B.7)

Sθ
et ≡ pθetYθet

pθtEθt
= p̃1−σ

θet

p̃1−σ
θt

, (B.8)

where e ∈ {c, d}. The income share for technology j = θe is then Sjt = Sθt · Sθ
et. The input demand

condition (17) implies
Λjt = αSjtYt

rj + ωjτt
, (B.9)

which gives us total emissions via Et =
∑

j ωjΛjt and consumption via ct = Yt −
∑

j rjΛjt.
I define clean quantity shares by sector as qθ

ct ≡ Yθct/(Yθct + Yθdt). To map between clean income
shares and clean quantity shares, note that the demand condition within sectors (A.9) implies that

Sθ
ct = pθctYθct

pθctYθct + pθdtYθdt
= 1

1 +
(
(1 − qθ

ct)/qθ
ct

)σ−1
σ

. (B.10)

Finally, to map my model of innovation to the empirical evidence that informs my choice of the
elasticity of innovation with respect to scientists η, first define technology specific R&D expenditures
as R&Djt = wstsjt. To consider the elasticity of patents with respect to R&D expenditure, plug this
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definition into the innovation production function (10) and note

zjt = χj

(R&Djt

wst

)η

ϕjt (B.11)

⇒ ∂ ln (zjt)
∂ ln (R&Djt)

= η,

where I am taking the mass of innovations zjt as the object in my model analogous to patents. Next, to
consider the elasticity of R&D expenditure with respect to the price of research, note that the optimality
condition of the research problem (A.5) implies

ηχj

(R&Djt

wst

)η

ϕjt = R&Djt (B.12)

⇒ ∂ ln (R&Djt)
∂ ln (wst)

= − η

1 − η
,

which gives a demand elasticity of unity when η = 0.5.

B.2 Details on Selection of US Policy in the 2010s

This appendix provides further details on my procedure for selecting subsidies that describe US climate
policy throughout the 2010s. These subsidies are an input into the simulations of Section 5.4. To
determine the clean input subsidy for the transportation sector ξ̄car,c, consider public spending on the
subsidy as a proportion of total spending in the transportation sector. We have

ξ̄car,crcar,cΛcar,ct

pcar,tEcar,t
= ξ̄car,c

1 − ξ̄car,c

αpcar,ctYcar,ct

pcar,tEcar,t
= ξ̄car,c

1 − ξ̄car,c

αScar
ct , (B.13)

where the first equality comes from the input demand condition (17).
Let ˆcredcar,ct denote data on federal spending on the plug-in electric vehicle tax credit as a proportion

of total spending in the transportation sector. The numerator comes from US Congressional Research
Service Report IF11017, which contains federal outlays on the tax credit for the years 2011 to 2018.
This report was published in 2019 and contains projections out to 2022, but I only include spending
that occurred before the report was published. The denominator comes from the series on motor vehicle
output discussed in Section 5.3. Next, I take estimates of clean income shares in the transportation sector
Ŝcar

ct from my data on clean quantity shares using the mapping from Equation (B.10). Plugging these
data series into Equation (B.13), we have

ξ̄car,c

1 − ξ̄car,c

2018∑
t=2011

αŜcar
ct =

2018∑
t=2011

ˆcredcar,ct, (B.14)

which allows me to back out the value ξ̄car,c = 0.011.
To determine innovation subsidies {ξj}, consider public spending on each subsidy as a proportion

of total spending on R&D. Using the optimality condition of the research problem (A.5) and scientist
supply (12), we have

(ξj − 1)zjtΠjt

wst

∑
j sjt

= ξj − 1
ξj

sjt

ηS
. (B.15)
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As discussed in the main text, I normalize the innovation subsidy on the general technology to one as
only relative innovation subsidies influence the composition of scientists across technologies.

Let ˆpubrdjt denote data on public spending on R&D in technology j as a proportion of total spending
on R&D. The numerator comes from IEA data on public spending on R&D by technology. This series
goes until 2015. Table B.1 contains information on the assignment of spending types to the technologies
in my model. The denominator comes from the BEA. I then set innovation subsidies to match this series
according to

ξj − 1
ξj

2015∑
t=2010

sjt

ηS
=

2015∑
t=2010

ˆpubrdjt. (B.16)

Unlike clean input subsidies, which can be set directly from the data, finding the innovation subsidies that
match the data requires simulating the model to solve Equation (B.16), so I calibrate separate innovation
subsidies for the versions of the model with and without spillovers. In the model with spillovers this
yields (ξcar,c, ξcar,d, ξelec,c, ξelec,d) = (1.005, 1.015, 1.057, 1.013), and in the model without spillovers this
yields (ξcar,c, ξcar,d, ξelec,c, ξelec,d) = (1.212, 1.005, 1.293, 1.016). The clean innovation subsidies are higher
in the model without spillovers because clean technologies receive less R&D overall, so the same public
R&D spending requires higher subsidy rates.

Table B.1: Assignment of Public R&D Spending to Technologies

Transportation Electricity Generation
Description Codes Description Codes

Clean Clean
Vehicle Batteries/Storage Technologies 1311 Renewable Energy Sources 3
Advanced EV/HEV/FCV Systems 1312 –Excluding Biofuels 34
Electric Vehicle Infrastructure 1314 Nuclear 4

Dirty Dirty
Advanced Combustion Engines 1313 Coal 22
Oil & Gas (1/2) 21 Oil & Gas (1/2) 21

Notes: Clean electricity generation is assigned all of the spending in the renewables category except biofuels. I assign
spending in the oil and gas category equally between dirty transportation and electricity generation because these fuels are
used in both sectors. Data on public R&D spending by technology comes from the IEA.

B.3 First-Best Simulation Solution Method

To simulate the first-best policy path, I solve a root-finding problem. I make the parametric assumptions
of Sections 2.5 and 5.2. Using the results described in Appendix B.1, my economy can be reduced to the
sequence {τ1t, τ2t, C1t, C2t, {ξ̃jt, Ajt}}.

For the carbon price, combining atmospheric carbon concentrations (70), the damage function (73),
and the social cost of carbon (61) gives us

τt = ϱ
∑
t̂≥t

t̂−t∏
ŝ=1

1
Rt+ŝ

Yt̂

(
ψp + (1 − ψp)ψ0ψ

t̂−t
)
. (B.17)

This allows us to write the carbon price τt as a two-dimensional recursion {τ1t, τ2t}, which provides
separate Pigouvian corrections for the permanent and transitory component of carbon pollution. These
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follow

τ1t = ϱψpYt + 1
Rt+1

τ1t+1 (B.18)

τ2t = ϱ(1 − ψp)ψ0Yt + 1
Rt+1

ψτ2t+1. (B.19)

The sum of these two components gives us the carbon price τt = τ1t + τ2t. The recursive formula-
tion for {C1t, C2t} is given by Equations (71) and (72), and these together sum to atmospheric carbon
concentrations Ct = C1t + C2t.

Innovation subsidies times income shares {ξ̃jt} follow the recursive formula described in Equation
(A.55), and technology {Ajt} follows the law of motion (8). Note that the research condition (25) and
scientist supply (12) allow us to write {sjt} as a function of {ξ̃jt} and {Ajt−1}. That is, we have

(1 − η) ln (s̄t) = ln (Ξ̃t) − η ln (V) − Φ ln (Āt−1) (B.20)

where s̄jt ≡ sjt/sJt are relative scientists, Ξ̃t ≡ ξ̃jt/ξ̃Jt are relative innovation subsidies times income
shares, and Vj ≡ νθ(j)/νθ(J) are relative CES shares. Scientist supply (12) then pins down the scale of the
scientist allocation. Furthermore, as I describe in Appendix B.1, all of the other endogenous outcomes of
the economy, such as output Yt, consumption ct, income shares Sjt, and emissions Et, can be written as
functions of τt and {Ajt}.

In summary, the root system follows

τ1t = ϱψpYt + 1
Rt+1

τ1t+1 (B.21)

τ2t = ϱ(1 − ψp)ψ0Yt + 1
Rt+1

ψτ2t+1

C1t = ψpEt + C1t−1

C2t = (1 − ψp)ψ0Et + ψC2t−1

ξ̃jt = Sjt

γ − 1 + Yt+1/Yt

Rt+1

[
ξ̃jt+1 +

∑
i

ξ̃it+1git+1φijt+1
]

ln (Ajt) = ln (γ)χ
( sjt

νθ(j)

)η

ϕjt + ln (Ajt−1).

The state variables {C1t, C2t, {Ajt}} are backward-looking, so I specify initial conditions using the strate-
gies described in Sections 5.2 and 5.3. The policy variables {τ1t, τ2t, {ξ̃jt}} are forward-looking, so I
specify a terminal condition by assuming the economy is in steady-state beyond my final period T . My
simulation extends for 500 periods; long enough for the economy to be near its steady-state. Denote
carbon prices relative to output by τ̃t ≡ τt/Yt. These achieve a steady-state which follows

τ̃1 = ϱψp

1 − R̃−1
(B.22)

τ̃2 = ϱ(1 − ψp)ψ0

1 − ψR̃−1
, (B.23)

where, as before, R̃ ≡ R/(1 + g) is the Planner’s growth-adjusted intertemporal marginal rate of substi-
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tution, evaluated at the steady-state. From this, we can see that carbon prices asymptote to infinity as
the economy continues to grow, so emissions and the income shares of dirty technologies must go to zero.
Hence, the growth rate of output gy goes to the growth rate of technology g because climate damages
asymptote to a constant as the transitory component of carbon concentrations decays to zero. There-
fore, I assume that both consumption and output grow at rate g in the periods beyond my simulation.
Terminal carbon prices then follow τ1T +1 = (1 + g)YT τ̃1 and τ2T +1 = (1 + g)YT τ̃2.

By Corollary 3, the steady-state for {ξ̃j} follows

ξ̃′ = 1
γ − 1S

′
[
(1 − R̃−1)I − gR̃−1φ

]−1
. (B.24)

To select the steady-state income shares S and growth rate g, we can derive steady-state relative tech-
nology by combining Equations (A.35) and (B.20) to achieve

ln (Āss) = ηΦ−1[ ln (Ξ̃) − ln (V)
]
, (B.25)

which, combined with the requirement that dirty income shares are zero, defines a fixed-point problem
to solve for steady-state {ξ̃j}. Note that the growth rate g comes from Equation (9).

Finding the steady-state when there are no cross-technology spillovers φ = 0 is special case because
the inverse of Φ does not exist. In that case, we have ξ̃j = Sj/(γ − 1)(1 − R̃−1), which implies ξ̃j = 0
for dirty technologies because they have zero income share. Thus, scientists for dirty technologies must
also be zero. The steady-state scientist condition (A.35) and scientist supply (12) can be satisfied by
setting sj = νθ(j) for all clean technologies. Plugging this into Equation (B.20) gives us that income
shares for clean technologies also follow Sj = νθ(j). From Equation (B.7), this implies that Āj = 1 for
clean technologies and Āj = 0 for dirty technologies.

B.4 Second-Best Simulation Solution Method

To simulate the second-best policy path, I use a similar strategy as in the first-best, reducing the economy
to the sequence {τ1t, τ2t, C1t, C2t, {ξ̃jt, Ajt}}.

Carbon concentrations {C1t, C2t} and technology {Ajt} follow the same laws of motion as before. The
two components of the social cost of carbon {τ1t, τ2t} follow the same recursion as before, except now it
is τ̂t that influences production decisions.

Manipulating Equation (68), we have that second-best innovation subsidies times income shares {ξ̃jt}
follow the recursive formula

ξ̃jt = Sjt

γ − 1 − τt − τ̂t

(γ − 1)(1 − α)
Et

Yt

∂ ln (Et)
∂ ln (Ajt)

+ Yt+1/Yt

Rt+1

[
ξ̃jt+1 +

∑
i

ξ̃it+1git+1φijt+1
]
. (B.26)

As before, we can write {sjt} as a function of {ξ̃jt} and {Ajt−1} using Equation (B.20), but now that
innovation subsidies can be negative, we will set sjt = 0 whenever ξ̃jt ≤ 0. For the effect of innovation
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on equilibrium emissions, we can use the results of Appendix B.1 to derive

Et

Yt

∂ ln (Et)
∂ ln (Ajt)

= α
∑

θ

ωθdSθdt

rθd + ωθdτ̂t

[
(1 + (1 − α)(1 − λ))Sjt (B.27)

+ 1(θ = θ(j))(1 − α)(λ− σ)Sθ
jt

+ 1(θd = j)(1 − α)(σ − 1)
]
.

In summary, the root system follows

τ1t = ϱψpYt + 1
Rt+1

τ1t+1 (B.28)

τ2t = ϱ(1 − ψp)ψ0Yt + 1
Rt+1

ψτ2t+1

C1t = ψpEt + C1t−1

C2t = (1 − ψp)ψ0Et + ψC2t−1

ξ̃jt = Sjt

γ − 1 − τt − τ̂t

(γ − 1)(1 − α)
Et

Yt

∂ ln (Et)
∂ ln (Ajt)

+ Yt+1/Yt

Rt+1

[
ξ̃jt+1 +

∑
i

ξ̃it+1git+1φijt+1
]

ln (Ajt) = ln (γ)χ
( sjt

νθ(j)

)η

ϕjt + ln (Ajt−1),

where endogenous outcomes, such as emissions Et, are determined by τ̂t, rather than the social cost
of carbon. The state variables {C1t, C2t, {Ajt}} are backward-looking, so I specify initial conditions as
before. The policy variables {τ1t, τ2t, {ξ̃jt}} are forward-looking, so I again assume the economy is in
steady-state beyond my final period T . The steady-states for the two components of the social cost of
carbon relative to output again follow Equations (B.22) and (B.23).

Denote by Tjt ≡ τt−τ̂t

1−α
Et

Yt

∂ ln (Et)
∂ ln (Ajt) the component of the innovation subsidy that reflects the pollution

distortion, excluding (γ − 1). Similar to Corollary 3, the steady-state for {ξ̃j} follows

ξ̃′ = 1
γ − 1

(
S′ − T ′)[(1 − R̃−1)I − gR̃−1φ

]−1
. (B.29)

The question, then, is the steady-state behavior of T . I will assume that τ̂t either converges to a weakly
positive constant or grows to infinity. If it grows to infinity, I will assume it remains below the social cost
of carbon, so the asymptote of τ̂t/Yt is below τ̃1 + τ̃2. We have

Tj = (τ̃1 + τ̃2 − τ̂t/Yt)
α

1 − α
Yt

∑
θ

ωθdSθd

rθd + ωθdτ̂t

[
(1 + (1 − α)(1 − λ))Sj (B.30)

+ 1(θ = θ(j))(1 − α)(λ− σ)Sθ
j

+ 1(θd = j)(1 − α)(σ − 1)
]
.

Thus, there are two cases. If τ̂t grows over time, then dirty income shares must be zero in steady-state
and we will have T = 0⃗. If τ̂t converges to a weakly positive constant, then T will diverge to infinity
unless steady-state dirty income shares are zero. Without a growing carbon price, this requires steady-
state relative dirty technologies to be zero as well. In either case, T = 0⃗ and steady-state {ξ̃j} is the
solution to the fixed-point problem defined by Equation (B.29), but in the latter case, we have the added
restriction that steady-state relative dirty technologies must be zero.
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C Additional Tables & Figures

Figure C.1: Tesla Mule 1

Notes: Tesla engineers modifying a gas-powered Lotus Elise to make a prototype electric vehicle.
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Figure C.2: Bell Labs Solar Cell

Notes: Bell Telephone Laboratories July 1954 Ad. Red box added to emphasize the description of knowledge spillovers.
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Figure C.3: Linearized Transition Path Accurately Approximates Full Simulation
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Notes: Technology’s transition path following the policy reform of Section 6.1. The left panel displays the linearized path
using Proposition 2, while the right panel displays the fully simulated path.

Figure C.4: Determinants of Steady-State Policy Impact
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Notes: Impact of the policy reform of Section 6.1 as a function of the level of cross-technology knowledge spillovers and the
elasticity of substitution between clean and dirty goods. Vertical dotted lines represent the benchmark calibration.
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Figure C.5: Determinants of Increasing Returns to Innovation
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Notes: Spectral radius of the transition matrix as a function of the level of cross-technology knowledge spillovers and the
elasticity of substitution between clean and dirty goods. The spectral radius passes one when spillovers reduce to 66%
of their calibrated level or the elasticity of substitution increases to 2.3. Vertical dotted lines represent the benchmark
calibration.

Figure C.6: Technology Path ($190 Carbon Price)
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Notes: Impact of introducing a carbon price at the EPA’s proposed SCC ($190) and clean innovation subsidy equivalent to
a 30% tax credit (ξc = 1.43). Dotted lines indicate laissez-faire paths.
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Table C.1: Impact of Policy Reform ($190 Carbon Price)

No Spillovers Calibrated Spillovers Double Spillovers

Long-Run Impacts

Relative Clean Technology by Sector
%∆B̄car 0% +218.81% +56.98%
%∆B̄elec +∞% +216.11% +63.9%
Clean Income Shares by Sector
∆Scar

c 0 pp +17.93 pp +13.94 pp
∆Selec

c +100 pp +21.25 pp +16.98 pp
Emissions Intensity
%∆ω̄ -87.42% -93.49% -84.39%

Transitional Impacts

Half-Lives of Convergence by Sector

t
(1/2)
car – 149 years 21 years
t
(1/2)
elec – 145 years 25 years

Carbon Emissions by Year
%∆E2035 -73.79% -79.76% -81.43%
%∆E2060 -76.22% -83.75% -82.68%

Degree of Increasing Returns to Innovation

Spectral Radius
max|κj | 1.01 0.994 0.978

Notes: Impact of introducing a carbon price at the EPA’s proposed SCC ($190) and clean innovation subsidy equivalent
to a 30% tax credit (ξc = 1.43). Changes in relative technology are listed in log points. For path dependent economies,
long-run impacts refer to corner, rather than interior, steady-states.
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Figure C.7: Clean Income Share Path ($190 Carbon Price)
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Notes: Impact of introducing a carbon price at the EPA’s proposed SCC ($190) and clean innovation subsidy equivalent to
a 30% tax credit (ξc = 1.43). Dotted lines indicate laissez-faire paths.

Figure C.8: Pollution Path ($190 Carbon Price)
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Notes: Impact of introducing a carbon price at the EPA’s proposed SCC ($190) and clean innovation subsidy equivalent to
a 30% tax credit (ξc = 1.43). Dotted lines indicate laissez-faire paths.
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Figure C.9: Carbon Price Necessary for Clean Growth (No Spillovers)
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Notes: Direction of innovation as a function of the carbon price when the spillover network has been shut down. Values
above zero indicate a sector is in its clean basin of attraction. Carbon prices are in addition to a clean innovation subsidy
equivalent to a 30% tax credit (ξc = 1.43). Vertical dotted lines reference the Biden Administration’s SCC ($51) and the
EPA’s proposed SCC ($190). Transportation switches to clean growth with a carbon price of about $245, while electricity
generation switches without a carbon price.

Figure C.10: Clean Innovation Subsidy Necessary for Clean Growth (No Spillovers)

1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

3

Clean Innovation Subsidy

In
iti

al
%

∆
in

R
el

at
iv

e
Te

ch
no

lo
gy

Transport
Electricity

Notes: Direction of innovation as a function of the clean innovation subsidy when the spillover network has been shut down.
Values above zero indicate a sector is in its clean basin of attraction. Clean innovation subsidies are in addition to a carbon
price at the Biden Administration’s SCC ($51). Vertical dotted line references clean innovation subsidy equivalent to a 30%
tax credit (ξc = 1.43). Transportation switches to clean growth with a subsidy of 1.62, while electricity generation switches
with a subsidy of 1.04.
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Figure C.11: Half-Lives of Convergence (Double Spillovers)
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Notes: Transition speeds following the policy reform of Section 6.1. Cross-technology spillovers have been doubled.

Figure C.12: Half-Lives of Convergence (No Within-Sector Spillovers)
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Notes: Transition speeds following the policy reform of Section 6.1. Within-sector spillovers are shut down by transferring
them to the diagonal of the gross spillover network.
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Figure C.13: Degree of Increasing Returns Doesn’t Depend on Policy Reform
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Notes: Eigenvalues of the transition matrix as a function of carbon prices and clean innovation subsidies. In each case, the
other policy instrument is kept at its value from the policy reform of Section 6.1.

Figure C.14: First-Best Temperature Path
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Notes: Temperature increases follow from the equation ∆Tt = Γ ln (Ct/C̄)/ ln (2), with Γ = 3. See Footnote 45 for further
discussion. Outside emissions come from the 2010 RICE model. The dotted line indicates the laissez-faire path.
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Figure C.15: First-Best Policy Path (High Damages)
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Notes: Optimal policy when climate damages are quadrupled. Dashed-dotted lines represent the benchmark calibration.
Both cases use the low discount rate. Innovation subsidies are listed as a fraction of the baseline innovation wedge.

Figure C.16: First-Best Policy Path (No Spillovers)
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Notes: Optimal policy when the spillover network is shut down. Dashed-dotted lines represent the benchmark calibration.
Both cases use the low discount rate. Innovation subsidies are listed as a fraction of the baseline innovation wedge.
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Figure C.17: Second-Best Temperature Path
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Notes: Temperature increases follow from the equation ∆Tt = Γ ln (Ct/C̄)/ ln (2), with Γ = 3. See Footnote 45 for further
discussion. Outside emissions come from the 2010 RICE model. Policy paths use the low discount rate. The external carbon
price τ̂ is a proportion of the social cost of carbon, so 100% is the first-best. The dotted line indicates the laissez-faire path.

Figure C.18: Second-Best Policy Path (High Discounting)
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Notes: Optimal second-best policy with the high discount rate. The external carbon price τ̂ is a proportion of the social
cost of carbon, so 100% is the first-best. Innovation subsidies are listed as a fraction of the baseline innovation wedge.
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