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Abstract

The dramatic rise of productivity dispersion in the U.S. since the 90s can be explained
by the emergence of destructive innovations. Empirically, I �nd these innovations per-
sistently destroy the rival �rms’ sales, and leads to hump-shaped impulse response of
productivity dispersion. I propose a technology-ladder model to invesigate the chan-
nel through which destructive innovation a�ects productivity dispersion. The model
predicts that the �rm with low R&D cost exerts higher R&D e�ort when there is no de-
structive innovation shock; upon the shock, the low-cost �rm responds by raising its
R&D e�ort, and the high-cost �rm by lowering. Therefore, the greater di�erence in R&D
transforms into a hump-shaped impulse response of the technology gap. Empirical tests
using U.S. publicly listed �rms as sample con�rms the heterogeneous responses of R&D
as implied by my theory.



1 Introduction

Since around 1990, there has been a dramatic and persistent rise in productivity disper-
sion across �rms in the U.S., Canada and other OECD countries. This is documented by a
series of recent researches1 using di�erent empirical strategies and datasets and has become
a stylized fact. As it is now clear that this upward trends in productivity dispersion in these
developed economies cannot be accidental or classi�ed as some one-time events, economists
have started the inquiry of its cause, this paper is one of these e�orts.

Having observed the coincidence of the time series of productivity dispersion and the
market value of major innovations2 in the U.S. economy, I propose a theory in which the ar-
rival of major innovations contributes to the dispersion of �rm productivity. Whenever a �rm
achieves high-valued, major innovations, it brings negative impact on the optimized pro�t of
its competitors, which has its renowed name as creative destruction since Schumpeter (1942).
In response to such shock, the a�ected �rms reoptimize their R&D strategies. If the direction
of the adjustment of R&D is conditional on pre-shock R&D, in a way that �rms with high
pre-shock R&D responds to the destructive innovation shock by increasing R&D e�ort, and
the low pre-shock R&D �rms responds in the opposite fashion, then cross-�rm R&D e�orts
will be more dispersed as a result of the destructive innovation. This will transform into a
larger productivity dispersion. In this paper, I provide a theoretical framework to reproduce
the above mechanism, and present empirical evidence in support of it.
Overview

I start by an empirical investigation of the impact the high-valued innovations to the sales
of competing �rms. I detrend the �rm-year market value of patents provided by Kogan et al.
(2017), and obtain the 95% percentile for each industry. Any �rm whose yearly new patents’
value exceeds its industry-speci�c 95% percentile is said to be a major innovator in that year3.
An major innovation shock is de�ned as the event that there is at least one major innovator in
an industry-year cell. Using the local projection method developed by Jordà (2005), I identify
the impulse response function of �rm-level and industry-level sales to the major innovation

1For the empirical evidence on the increasing productivity dispersion in the U.S., see Kehrig (2015), Barth
et al. (2016) and Decker et al. (2018). For that of Canada, see Gouin-Bonenfant (2020). Evidence for other OECD
countries include Andrews, Criscuolo and Gal (2016) and Berlingieri, Blanchenay and Criscuolo (2017).

2The market value of an innovation refers to the value of the corresponding patent estimated by Kogan et al.
(2017), who measure such values by stock market’s responses to the news of granting of patents.

3A recent work, Celik and Tian (2020), also construct the "tail innovation" index in similar way, but using
the distribution of number of citations rather than patent values. The idea of "tail innovations" goes further
back to Acemoglu, Akcigit and Celik (2014)
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shock, and �nd that there is a persistent drop of around 50% in sales at both levels. Placebo
tests indicate this plunge in sale is likely due to the shock, which is thus called the destructive
innovation shock interchangeably in the rest of this paper. Applying the same methodology
to the impulse response of productivity dispersion to the destructive innovation shock, I
�nd hump-shaped response function of industry-level productivity dispersion under various
de�nitions (the inter-quartile range, 90-10 percentile, and standard deviation). Again, placebo
tests are in favor of the causal interpretation between the destructive innovation shock and
higher productivity dispersion.

Having shown the rise in productivity dispersion as a response to the destructive inno-
vation shock, I proceed to seek for a theoretical explanation of the mechanism. The class of
models of technology ladders, or quality ladders, is by its nature suitable for this question.
In this type of models, the positions of �rms (usually two) along a "ladder" of technology is
stochastically determined by their R&D e�orts. From that, the technology gap between the
two �rms can be calculated, and serves as an analogy of the productivity dispersion observed
from the data. To the best of my knowledge, I am (at least among) the �rst to study the
response of technology gap to the destructive innovation shock using a technology-ladder
model. I start by characterizing the equilibrium without shock in a baseline model, where the
�rms’ R&D e�orts and technology gap are continuous-time Markov processes, whose corre-
sponding Markov chains are of �nite states. I prove that when two �rms are exactly identical,
then the expected technology gap is zero under the limiting distribution. Intuitively, the two
�rms have equal chance to be the leader or laggard at any degree. Otherwise, if one �rm’s
marginal R&D cost is strictly lower than the other’s, then the expected technology gap of
the low-cost �rm is strictly positive under the limiting distribution. In other words, the low-
cost �rm is expected to be the leader in technology. For this claim I prove the special case
where the maximum technology gap is one, due to the complexity of the dynamical system.
However, numerical experiments support the extention of the proposition to any �nite upper
bound of gap. My work with the baseline model bene�ts from Aghion et al. (2001), Aghion
et al. (2005) and Ludkovski and Sircar (2016), though the technology gap is the focus of none
of them.

I extend the baseline model to study the impact of the destructive innovation shock. When
such shock happens, the optimized pro�t earned by each �rm for the same technology gap is
reduced. This is to re�ect the aforementioned fact that major innovations destroy rival �rms’
sales. I introduce the concept of distances to the technology frontier to formally model this
idea. When there is no shocks, as in the baseline model, the leading �rm (or both if they are
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neck-to-neck) is on the technology frontier, thus its distance to the frontier is zero. Upon
the shock, both �rms are pushed backwards from the technology frontier, with their relative
position to each other – or technology gap – unchanged. The degree of destruction of the
shock is increasing in how far the leading �rm is pushed away from the technology frontier.
Firms hit by the shock can recover the loss in pro�t by advancing towards the technology gap,
and this is done through innovations whose arrival rates are functions of the R&D e�orts.
The concern is what are �rms’ instantaneous responses to the destructive innovation shock
in their R&D decisions. I prove that when the degree of shock is su�ciently large, both �rms
will lower their R&D e�orts; if the degree of shock is extremely small, however, the leading
�rm will increase its R&D e�ort. Again, due to the complexity of this stochastic dynamical
system, to the question how �rms’ respond to shocks with intermediate degrees I have no
analytical answer, and I shall attempt to provide a numerical one.

I pin down the values of model parameters by calibration and estimation, and solve the
value and policy functions numerically using the value function iteration method. The policy
function of each �rm is a mapping from the two �rms’ distances to the technology frontier
to the �rm’s R&D e�ort. With that I simulate the system where the arrival of innovation
is a Poisson process, with state-dependent arrival rate given by the policy functions. I hit
the system with a destructive innovation shock with a degree consistent with the empirical
impulse response function, and observe the responses of R&D e�orts taking average over
all repetitions. It turns out that the low-cost �rm responds by raising R&D e�ort, and the
high-cost �rm by lowering. This instantly increases the di�erence in the two �rms’ R&D
e�orts, which gradually converges to the pre-shock level. The heterogeneous responses in
R&D results in a hump-shaped curve of the technology gap after the shock, resembling those
obtained empirically using the local projection method.

To bring my proposed mechanism to data, I empirically test for heterogeneity of �rms’
R&D responses to the destructive innovation shock. The results suggest that �rms with high
R&D intensity (RDI) in the past incline to raise their RDI in the year after a destructive in-
novation shock, while �rms with low past RDI are found to lower their RDI in response to
the same shock. This evidence coincides with the patterns from the simulation, and thus
veri�es the channel through which the destructive innovations contributes to productivity
dispersion.
Contribution to Literature

This paper contributes to the understanding of the source of productivity dispersion, and
claims that the rapidly rising productivity dispersion observed in U.S. since the 90’s can be
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explained by the emergence of destructive innovations, in response to which within-industry
R&D e�orts becomes more dispersed. This provides a new, data-backed perspective to the
extant literature explaining the productivity dispersion by other factors, such as the surge of
entry (Foster et al. (2019)), or the life-cycle of businesses (Haltiwanger, Jarmin and Miranda
(2013); Decker et al. (2016)).

My paper is also related to the question that how we should see productivity dispersion
in a normative way. The prominent work of Hsieh and Klenow (2009) has made productiv-
ity dispersion the synonym of resource misallocation. A recent work of Gouin-Bonenfant
(2020) shows that productivity dispersion leads to lower labor share. Kehrig (2015) and Ca-
ballero and Hammour (1994) together imply the negative cyclical productivity dispersion
may be associated with the cleansing e�ect during recessions. My theory holds that given
the heterogeneous responses in R&D described above, productivity dispersion is inevitable
by-product of creative destruction. And although I do not study �rm entry or exit due to the
nature of my data4, it is easy to see that how these heterogeneous responses incentivize those
�rms with the lowest productivity to exit. Thus productivity dispersion, instead of a sign of
misallocation, can be a process of reallocation, in the sense of Acemoglu et al. (2018).

My theory contributes to the literature of the technology ladder models tracing back to
Segerstrom, Anant and Dinopoulos (1990), Grossman and Helpman (1991) and Aghion and
Howitt (1992), by studying the behavior of the gap along the technology ladder between two
�rms under the limiting distribution. The contributions of my empirical work is to show
the dynamic destruction of major innovations to rival �rms’ sales. The similar question is
answered by Klette and Kortum (2004), Broda and Weinstein (2010) and Garcia-Macia, Hsieh
and Klenow (2019), all in di�erent lines5.
Layout

The remainder of this paper is organized as follows. Section 2 establish an empirical
strategy to identify major innovations, and employs the local projection method to obtain
the impulse response functions of sale as well as productivity dispersion to the arrival of
major innovation. Section 3 sets up the baseline model to study the behavior of R&D e�orts
and technology gap under the limiting distribution. Section 4 extends the baseline model to
analyze the impact of the destructive innovation shock. Section 5 and 6 assign parameter val-
ues through calibration and estimation, solve the baseline and extended models numerically,

4Entering into or disappearing from the Compustat database is not good proxies for �rms’ entry or exit.
5Innovations are found to be destructive to �rms (who exit) in Klette and Kortum (2004), to products in Broda

and Weinstein (2010), and to jobs in Garcia-Macia, Hsieh and Klenow (2019).
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and portray the responses of variables of interest to the destructive innovation in simula-
tions. Section 7 provides empirical evidence in support of the proposed mechanism. Section
8 concludes.

2 Impulse Responses to Destructive Innovations

This section documents empirical �ndings on the destructiveness of high-valued inno-
vations to rival �rms, and the enlargement of within-industry productivity dispersion as a
result. These facts shed light on the cause of the upward trend of productivity dispersion
over U.S. manufacturing �rms in recent decades (see Figure 1)6, and motivate a theoretical
treatment of the underlying mechanism to be presented in Sections 3 and 4.
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Panel (a) shows the annual inter-quartile range of TFP over all sampled �rms; panel (b) shows the natural log of all �rm-year patent
values from major innovators. Both time series are in 5-year moving average.

Figure 1: Productivity dispersion and patent value from major innovators

2.1 Identifying Destructive Innovators

Destructive innovators, interchangeably referred to as major innovators in this paper, are
those �rms who have made high-valued innovations in a year relative to other �rms in the
same industry. The rest of this subsection formalizes this conceptual de�nition, constructs
the major innovation index, whose impact on rival �rms’ sales as well as on productivity
dispersion is later studied.

6External evidence of the rising productividy dispersion in the U.S. is listed in Section 1; for that of the
ascending innovation measures during the same period, see Figure IV in Kogan et al. (2017).
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Data
Information on the �rm-year patent values is from the database constructed by Kogan

et al. (2017), where the economic value of each single patent from U.S. listed �rms is measured
by the response from the stock market in a short time window upon the news of patent
granting, and the patent values are normalized to 1982 million dollars and aggregated to �rm-
year cells. This dataset is merged with CRSP/Compustat Merged Database to incorporate
�rm fundamentals (sales, R&D expenditures, etc.). The NBER-CES Manufacturing Industry
Database is also used for its documentation of industry-year level labor share, which helps
to obtain cost-share based revenue total factor productivity (TFPR, or TFP).

Merging the above three databases yields an unbalanced panel dataset ranging in years
from 1970 to 2010, covering 4,074 U.S. manufacturing �rms from 135 industries de�ned by
4-digit Standard Industrial Classi�cation (SIC) codes. The details on data description and
pre-processing are left to the appendix.
Major Innovators

Firstly, to make patent values from di�erent years comparable, remove the year �xed
e�ect by running the regression

)B<8, 9 ,C = U + XC + D8, 9 ,C , (1)

where )B< is the �rm-year patent value with the same notation as in Kogan et al. (2017).
Subscripts 8, 9 , C are the �rm, industry and year indicators, respectively. XC is the year �xed
e�ect and D the error term. The residual from the above regression, denoted by )B<res, is
orthogonal to the year �xed e�ects and thus used as the detrended �rm-year patent values.

Industries may have di�erent standards in the degrees above which a �rm-year patent
value should be considered high. To account for this, for each industry 9 ′, I pool all the de-
trended patent values)B<res

8, 9 ,C
, and take the industry-speci�c 95th percentile over

{
)B<res

8, 9 ,C
| 9 = 9 ′

}
,

denote it as 2 9 ′ . A �rm 8 from industry 9 is thus said to be a major innovator at year C if and
only if )B<res

8, 9 ,C
≥ 2 9 . The indicator variable "��rm identi�es major innovators according to

the above criterion:

"��rm
8, 9 ,C =


1 if )B<res

8, 9 ,C
≥ 2 9 ;

0 otherwise.
(2)

The industry level major innovation indicator "� 9 ,C obtains value 1 if and only if there is at
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least one major innovator in industry 9 at year C:

"� 9 ,C =


1 if max

8

{
"��rm

8, 9 ,C

}
≥ 1;

0 otherwise.
(3)

2.2 Destructiveness of Major Innovations

I employ the local projection method (Jordà (2005)) to study the dynamic impact of major
innovations on rival �rms’ sales7, which is meausred at both �rm and industry levels. To make
sure the identi�cation strategy captures the impact of major innovations on other �rms, I
exclude �rms who have been major innovators in past ten years, with ten being the maximum
period examined in the impulse response function (IRF). Formally, the �rm- and industry-level
sales are thus de�ned as follows:

(8, 9 ,C = sales8, 9 ,C × 1
{

max
B=C−10,··· ,C

"��rm
8, 9 ,B = 0

}
, (4)

and
( 9 ,C =

∑
8

(8, 9 ,C . (5)

And their corresponding regression speci�cations are

log
(
(8, 9 ,C+ℎ

)
= Uℎ8 + XℎC + Vℎ"� 9 ,C + $ℎ^8, 9 ,C + ,ℎ^ 9 ,C + Dℎ8, 9 ,C , (6)

and
log

(
( 9 ,C+ℎ

)
= Uℎ9 + XℎC + Vℎ"� 9 ,C + ,ℎ^ 9 ,C + Dℎ9,C . (7)

In the above expressions, U8 and U 9 are �rm and industry �xed e�ects; XC is the year �xed ef-
fect; "� 9 ,C the major innovation indicator de�ned in (3); ^8, 9 ,C and ^ 9 ,C the �rm- and industry-
level set of control variables. The industry-level controls are �rm number in the industry-year
cell, and the Her�ndahl-Hirschman Index (HHI)8, both at one-year lag. The �rm-level controls

7Jordà (2005) identi�es shocks �rst by regressing variable of interest H at time C + ℎ on lagged values of H.
Since I identify the shocks directly, the speci�cations here are in line with those as in Ramey (2016).

8The HHI is a standard index to measure the degree of within-industry concentration, de�ned as ��� 9 ,C =∑
8

(
<B8, 9 ,C

)2, where <B is the market share in percentage. For details, see Her�ndahl (1950) and Hirschman

(1945).
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include TFP9, market share, capital stock, employment – all at one-year lag, and �rm age.
The coe�cients

{
Vℎ

}10
ℎ=0 captures the dynamic impact of major innovations on the market

sizes of other competing �rms from the current year to ten years later. The �gure below plots
the estimated V̂ℎ with ℎ = −5, · · · , 0, · · · , 10, where negative ℎ’s are for placebo test to see if
the impulse responses are truly caused by the shock.

-5 0 5 10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-5 0 5 10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Panel (a) plots the IRF estimated using speci�cation (6); panel (b) using speci�cation (7). Shaded areas are 90% con�dence bands,
determined by robustness standard errors clustered at the industry level.

Figure 2: Impulse responses of �rm- and industry-level market size to major innovations

From Figure 2, major innovations are persistently destructive to rival �rms’ sales. The
downward pretrend implies that such impact is in place two years prior to the occurance
of major innovation. To this, one explanation is that these major innovators don’t wait until
their �led patents to be granted to utilize their new technologies, in which case the treatment
e�ect is before the documentation of the treatment (at ℎ = 0).

2.3 Macro Impact ofDestructive Innovations onTechnological Changes

The destructive innovations may have implications on multiple aspects of the macro econ-
omy, among which that on technological changes is of concern. As Figure 3 shows, the
destructive innovations broadens the within-industry productivity dispersion under three
di�erent meausres.

9Firm-year TFP is estimated using cost-share based method, to which a recent detailed treatment is Foster
et al. (2017). Details on the methodology are left to the appendix.
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Figure 3: Impulse responses of productivity dispersion to major innovations

The above impulse response functions are obatined through local projection regressions,
whose speci�cations is the same as that of (7). The only di�erence is the explained variables,
which are three canonical measures of productivity dispersion: interquartile range (IQR), the
10-90 percentile range, and the standard deviation of TFP. All of them are calculated at the
industry-year level.

Figure 3 suggests the major innovations are responsible for a persistent expansion of
productivity dispersion in the industry where they occur. This is consistent with the resem-
blance between the time paths of patent values from major innovators and the measure of
productivity dispersion in Figure 1. To explore the mechanism by which destructive innova-
tions contributes to productivity dispersion, I propose a theory in the following two sections
where �rms have heterogeneous responses in R&D to destructive innovations.

3 Technology Ladder and Heterogeneous Climbers

In this section I introduce a dynamic model of R&D racing under duopolistic market where
�rms’ R&D strategies endogenously generate technological progress and technology gap in
the stationary equilibrium. In the next section, I will extend the model to study �rms’ re-
sponses in R&D to destructive innovations, and their implications on the evolvement of pro-
ductivity dispersion.

My model is closely related to Aghion et al. (2001) in the sense that �rms compete by
climbing the technology ladder10. The major contribution of my more generalized model is

10Also known as the quality ladder as in Grossman and Helpman (1991).
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twofold: �rstly, I assume heterogeneous R&D capacities among �rms, and thus study the
behavior of technology gap in the stationary equilibrium; secondly, I propose a way to incor-
porate destructive innovations into this class of models.

3.1 Model Setup

Technology and Pro�t
Two �rms, indexed by 5 ∈ {�, �}, consist a duopolistic industry. Time is continuous:

C ∈ [0,∞). At every instant of time C, �rm 5 ’s pro�t �ow c 5 (C) depends on the locations of the
two �rms on a technology ladder with countably in�nite steps: n(C) = (=� (C), =� (C)) ∈ N2

+.
The higher = 5 (C), the more advanced in technology �rm 5 is. The relationship between �rms’
pro�t and their positions on the ladder are assumed to be as follows:

Assumption 1 The pro�t function c 5 (n(C)), 5 ∈ {�, �} has the following properties:
1. Time-invariancy: for any ñ ∈ N2

+, and any B, C ∈ [0,∞), c 5 (n(B) = ñ) = c 5 (n(C) = ñ).
2. Monotonicity: c 5 (n) is strictly increasing in the technology gap Δ= 5 B = 5 − =− 5 .
3. Symmetry: for any =1, =2 ∈ N+, c� (=1, =2) = c� (=2, =1).
4. Zero-sum: for any ñ ∈ N2

+, c� ( ñ) + c� ( ñ) = c > 0.

Under these assumptions, the pro�t �ow of either �rm is uniquely determined by the cur-
rent technology gap, regardless of time, the absolute number of steps, or �rm label; whoever
holding certain relative leading position on the technology ladder earns the same pro�t. This
feature allows me to reduce the strategy space from uncountably in�nite, as dependent on
the continuous time, to �nite as on the technology gap. How this is done will be shown in
details in Lemma 1.

Among the literature regarding technology ladder, Aghion et al. (2001) assumes demands
faced by the two �rms are induced by constant elastisity of substitution (CES) production
function; Ludkovski and Sircar (2016) studies a similar problem in Cournot duopolistic mar-
ket; in Aghion et al. (2005) there is Betrand competition. The �rst three properties of As-
sumption 1 are satis�ed in all these models, while Assumption 1.4 holds in the last reference.
Innovation

Firms exert R&D e�orts to climb upwards along the technology ladder, to leave the laggard
(or follower) farther behind or to catch up with the leader. Either way, an arrival of innovation
increases the �rm’s technology gap relative to its rival, and grants it higher pro�t �ows.

When an innovation arrives, the innovator moves one step ahead along the technol-
ogy ladder. The occurance of innovations is stochastic: for each �rm 5 , the location it
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is on the technology ladder is a random variable governed by a Poisson counting process{
# 5 (C); C > 0

}
. Steps # 5 (C) and #− 5 (C) are independent at any C > 0, unless in the special

case where the absolute value of the technology gap, |# 5 (C)−#− 5 (C) |, equals its upper bound.
What’s di�erent there will soon be elaborated.

At any time C, the Poisson hazard rate (or more intuitively, the arrival rate of innovation)
for �rm 5 is _ 5 (C) = _0 5 (C) + ℎ · 1{Δ= 5 < 0} where 0 5 (C) ≥ 0 is the R&D e�ort chosen by
�rm 5 . The parameter ℎ controls the rate of imitation11 of the laggard: the laggard has a �xed
positive rate to move one step ahead by imitating the leader, and that rate is independent of
its own R&D e�ort. Therefore, at time C, the conditional probability mass function (PMF)
of �rm 5 ’s count of coming successful innovaton, or its advancement along the technology
ladder by some future instant B > C, is12

Pr
{
# 5 (B) − # 5 (C) = : |= 5 (C)

}
=

[∫ B

C
_ 5 (g)3g

] :
exp

[
−

∫ B

C
_ 5 (g)3g

]
:!

, : = 0, 1, 2, · · · .
(8)

Can the technology gap between two competing �rms be in�nitely large? It would be
unimaginable in reality. For example, the horse-drawn vehicles and automobiles were once
close competitors as means of transportation, today they are no longer deemed to be on the
same market. In this spirit I assume that there is an upper bound < ∈ N+ of technology gap
Δ= 5 for 5 ∈ {�, �}. If the leader is at this maximum gap when an innovation arrives, the
follower will also jumps a step upwards automatically and simultaneously, so that the gap
remains to be <, and shall never exceed it13. Therefore, the leader has no incentive to do any
R&D when the maximum gap is reached. The automatic catch-up at the maximum gap can
be understood with two scenarios. First, there is a spillover from expired patents where the
learning of old-fashioned technologies by the laggard imposes no concerns to the far-reaching
leader. In the second instance, the laggard �rm is so dropped behind that it is replaced by
an outsider who is just one-step ahead of it when the leader succeeds in innovating. As

11Some authors use the name "spillover" instead of "imitation" to refer the same phenomenon in which the
laggard automatically advances in technology.

12See Gallager (1995), Chapter 2, page 43, Theorem 2.
13In Aghion et al. (2001), the maximum technology gap (called the lead size in their paper) is implicitly

determined by restriction on stationary distribution. In Aghion et al. (2005), it is set to be 1. In Ludkovski and
Sircar (2016), the largest gap possible is pinned down by the fact �rms stop doing R&D at some point due to
marginal cost bounded away from zero.
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a result, the space for technology gap Δ=� (C) B =� (C) − =� (C)14 is �nite, and denoted by
M B [−<,−< + 1, · · · ,−1, 0, 1, · · · , < − 1, <].

Doing R&D incurs cost, the cost function k 5 (C) = k 5
(
0 5 (C)

)
is �rm-speci�c and satis�es

the following properties:

Assumption 2 For any 5 ∈ {�, �}, and 0 5 ≥ 0, the R&D cost function k 5 (0 5 ) satis�es:
1. k 5 (0) = 0;
2. k 5 is second-order di�erentiable;
3. k 5 is strictly increasing;

4. k 5 is strictly convex.

These assumptions are standard as regards cost functions. Assumption 2.1 means there
is no �xed cost to do R&D; Assumption 2.4 ensures that the marginal cost of R&D is strictly
increasing.
Strategy and Payo�

A strategy pro�le in this R&D racing game is (a(C))C≥0 = (0� (C), 0� (C))C≥0 ∈ R2
++× [0,∞)

that fully speci�es each �rm’s R&D e�ort at any instant. For an arbitrary strategy pro�le,
�rm 5 ’s expected discounted sum of net pro�t �ow, also called performance measure for ease,
is

J5 = ET

{∫ ∞

0
4−dC

[
c 5 (T(C)) − k 5

(
0 5 (C)

) ]
3C

���n(0), (a(C))C≥0} , (9)

where d is the discount factor. The expectation is over the stochastic process (T(C))C≥0 =
(#� (C), #� (C))C≥0, whose realization (n(C))C≥0 = (=� (C), =� (C))C≥0 pins down the path of the
steps of the two �rms on the technology ladder. The evolvement of T(C) is governed by PMF
(8) and the R&D strategy pro�le (a(C))C≥0 that determines the arrival rates of innovations.

Given the strategy played by its competitor, �rm 5 chooses its own strategy to maximize
its performance measure in (9), whose optimized value de�nes the value function:

E 5

(
n(0);

(
0− 5 (C)

)
C≥0

)
= sup
(0 5 (C))C≥0

ET

{∫ ∞

0
4−dC

[
c 5 (T(C)) − k 5

(
0 5 (C)

) ]
3C

���n(0), (a(C))C≥0} .
(10)

The performance measure and the value function, expressed as the discounted sum of
net pro�t �ows, have clear economic intuition. However, the game in this form is highly

14Similarly, the technology gap from the standpoint of �rm � is Δ=� (C) B =� (C) − =�(C) = −Δ=�(C). For the
ease and clarity of discussion, in the rest of this paper, I refer to "technology gap" as Δ=�(C) from �rm A’s view,
unless otherwise speci�ed.
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untractable. In the following equilibrium analysis, I will simplify this stochastic game through
a transformation into a �nite-state equivalent.
Equilibrium Concepts

In this dynamic stochastic game, the Nash equilibrium (NE) is a strategy pro�le from
which no player has the incentive to deviate:

De�nition 1 ANash equilibrium is a pair of strategies
(
0∗
�
(C), 0∗

�
(C)

)
C≥0, where given

(
0∗− 5 (C)

)
C≥0

,

the strategy
(
0∗
5
(C)

)
C≥0

is the solution to �rm 5 ’s optimization problem (10).

Speci�cally, if
(
0∗− 5 (C)

)
C≥0

is a Markov strategy, in which action 0 (− 5 C) depends solely on
the state of technology gap Δ=− 5 (C) = =− 5 (C) − = 5 (C), then �rm 5 ’s strategy in the NE must
also be Markovian:

Lemma 1 In any Nash equilibrium, for any 5 ∈ {�, �}, suppose B ≥ 0, and C ≥ 0 satisfy B ≠ C
and Δ=− 5 (B) = Δ=− 5 (C). If 0∗− 5 (B) = 0

∗
− 5 (C) and 0

∗
5
(C) is right-continuous, then 0∗

5
(B) = 0∗

5
(C).

Proof. Fix an arbitrary time B ≥ 0, and let C be such that Δ= 5 (B) = Δ= 5 (C) and B ≠ C. Since �rm
− 5 plays a Δ=− 5 -dependent strategy, by Assumption 1 and performance measure 9,then �rm
5 faces the same optimization problem. Thus by the strict convexity of R&D cost function, it
implies that the set

{
C |B ≠ C,Δ= 5 (B) = Δ= 5 (C), 0∗5 (B) ≥ 0

∗
5
(C)

}
has zero measure, and it must

be empty set if 0∗
5
(C) is right-continuous.

�

The restriction on right-continuous strategies15 is to exclude the case where there are
discontinuity points of the �rst kind in the time paths of R&D e�orts, which is mathematically
possible but of no economic interest.

Lemma 1 says if in the NE, one �rm plays strategy contingent on its technology gap, the
other must do the same16. Using this property, I reduce the strategy space from an uncount-
ably in�nite set (of continous time) to a �nite set (of technology gap). In the rest of this paper,
most discussion will be based on the latter approach, except for a few contexts in which the
time-path interpretation is more convenient for analytical purposes.

The above reduction in dimension of the strategy space leads to the second equilibrium
concept, the Markov sub-game perfect equilibrium (MPE). The following de�nition is in line
with the equilibrium concept developed by Tirole (1988) and Maskin and Tirole (2001)17.

15In Lemma 1, the condition 0∗− 5 (C) = 0
∗
− 5

(
Δ=− 5 (C)

)
implies that

(
0∗− 5 (C)

)
C≥0

is right-continuous.
16Since Δ= 5 = −Δ=− 5 , to say �rm 5 ’s strategy is Δ=− 5 -contingent is equivalent to saying that it is Δ= 5 -

contingent.
17For a textbook treatment and more examples, see Miao (2014).
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De�nition 2 A Markov sub-game perfect equilibrium is a pair of state-contingent strategies{
0∗
�
(Δ=�), 0∗� (Δ=�)

}
Δ=�=−Δ=�∈M , where given 0∗− 5 , the strategy 0

∗
5
is the solution to �rm 5 ’s

optimization problem:

sup
{0 5 (Δ= 5 )}Δ= 5 ∈M

EΔ# 5

{∫ ∞

0
4−dC

[
c 5

(
Δ# 5 (C)

)
− k 5

(
0 5

(
Δ# 5 (C)

) ) ]
3C

��Δ= 5 (0), {a(Δ= 5 )}} .
(11)

In the rest of this paper, for analytical tractability as well as numerical computability, I
shall restrict my discussion to the class of MPE.

3.2 Existence of the Markov Perfect Equilibrium

I have shown how the in�nite-horizon game can be transformed to a �nite-state equiva-
lent, in this subsection I shall discuss the existence and characterization of the MPE. Denote
by random variable / the time interval between the current instance and the next arrival of
innovation from either �rm � or �; and by / 5 the �rm-speci�c arriving time. Due to the
memoryless property based on Poisson PMF (8), the value function in MPE can be re-written
as

E 5
(
Δ= 5

)
=E/

{ ∫ /

0
4−dC

[
c 5 (Δ= 5 ) − k 5

(
0∗5 (Δ= 5 )

)]
3C

+ 4−d/1{/ = / 5 }E 5
(
Δ= 5 + 1

)
+ 4−d/1{/ = /− 5 }E 5

(
Δ= 5 − 1

) }
, (12)

where event {/ = / 5 } means the next innovation is achieved by �rm 5 . This stochastic Bell-
man equation can be further simpli�ed through removing the expectation operator, which
is then easy to compute for a numerical solution of the equilibrium. The existence of equi-
librium is guaranteed by the application of Kakutani’s Fixed-Point Theorem. The technical
detals are left to the appendix.

Proposition 1 A Markov sub-game perfect equilibrium 0∗
5
(Δ= 5 ) for 5 ∈ {�, �} and Δ= 5 =

−Δ=− 5 ∈ M exists, and is the solution to the following optimization problem:

E 5 (Δ= 5 ) = sup
0 5 ≥0

1
_(0 5 + 0∗− 5 ) + ℎ · 1{Δ= 5 ≠ 0} + d

{
c 5 (Δ= 5 ) − k(0 5 )

+ (_0 5 + ℎ · 1{Δ= 5 < 0})E 5 (Δ= 5 + 1) + (_0∗− 5 + ℎ · 1{Δ= 5 > 0})E 5 (Δ= 5 − 1)
}

(13)
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for all Δ= 5 < <, with boundary conditions

0∗5 (<) =0; (14)

E 5 (<) =
1

_0∗− 5 + ℎ + d

{
c 5 (<) + (_0∗− 5 + ℎ)E 5 (< − 1)

}
. (15)

Proof. See Appendix.
In the above, 0∗

5
and E 5 are the policy function and value function in the MPE. Equa-

tion (13) shows the state-contingent value function transformed from (11); and the boundary
conditions are from the fact that the leading �rm, at the maximal technology gap, has no in-
centive to do R&D. This is because it gains nothing from an innovation due to the automatic
advancing of its competitor.

The �rst order condition of (13) with respect to R&D e�ort implicitly determines the
policy function 0∗

5
. Substitute it back to the value function, and the game is characterized by

the following system of non-linear equations. This is later used to �nd the numerical solution
of the model.

Corollary 1 The value funtions E 5 (Δ= 5 ) and policy functions 0 5 ∗ (Δ= 5 ) for 5 ∈ {�, �} are
solution to the system of equations:

E 5 (Δ= 5 ) =
1

_

[
0∗
5
(Δ= 5 ) + 0∗− 5 (−Δ= 5 )

]
+ ℎ · 1{Δ= 5 ≠ 0} + d

{
c 5 (Δ= 5 ) − k 5

(
0∗5 (Δ= 5 )

)
+

[
_0∗5 (Δ= 5 ) + ℎ · 1{Δ= 5 < 0}

]
E 5 (Δ= 5 + 1)

+
[
_0∗− 5 (−Δ= 5 ) + ℎ · 1{Δ= 5 > 0}

]
E 5 (Δ= 5 − 1)

}
, if Δ= 5 < <; (16)

3k 5

(
0∗
5
(Δ= 5 )

)
30 5

=_
[
E 5 (Δ= 5 + 1) − E 5 (Δ= 5 )

]
, if Δ= 5 < <; (17)

0∗5 (<) =0; (18)

E 5 (<) =
1

_0∗− 5 + ℎ + d

{
c 5 (<) + (_0∗− 5 + ℎ)E 5 (< − 1)

}
. (19)

Proof. This is directly from Proposition 1, with �rst order conditions with respect to R&D
e�orts.

�

Equation (17) conveys clearly the principle which pins down the equilibrium R&D e�orts:
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the marginal cost of R&D should be equal to the increment of �rm value from innovation,
scaled by the marginal arrival rate of innovation _. Since the R&D cost function is strictly
convex, the intuition is that if the �rm value increases more from innovation, or if the next
innovation is expected to arrive sooner, then the �rm exerts higher R&D e�orts in the equi-
librium.

In the system in Corollary 1, there are (8< − 4) unknowns18, and the same number of
equations. By Proposition 1, the MPE exists, thus so does the solution to this system.

3.3 Stationary Distribution of the Technology Gap

This subsection intensively uses concepts and resultsregarding Markov processes to study
the limiting behavior (when C → ∞) of the technology gap in the MPE. Notice that the state
space of gap Δ=�,M = {−<,−< + 1, · · · ,−1, 0, 1, · · · , < − 1, <}, has 2< + 1 components.
Let M8 be the 8th component in M, 8 = 1, · · · , 2< + 1. The transition rate of the process
(Δ#� (C))C≥0 from stateM8 to an adjacent stateM 9 , where 9 = 8 − 1 or 9 = 8 + 1, is denoted
by @8, 9 , whose value is determined according to the following rule:

@8, 9 =


_0∗

�
(M8) + ℎ · 1{M8 < 0}, if 9 = 8 + 1;

_0∗
�
(−M8) + ℎ · 1{M8 > 0}, if 9 = 8 − 1.

(20)

When |8− 9 | = 1, the arrving time / 5 of innovation by �rm 5 , as mentioned in value function
(12), follows an exponential distribution with rate @8, 9 . It means that between two successive
jumps of process (Δ#� (C))C≥0, toM8 andM 9 respectively, the expected time it takes in the
MPE is 1/@8, 9 . Similarly, the rate with which (Δ#� (C))C≥0 leaves its current stateM8 is @8 B
@8,8+1 + @8,8−1, a property of the sum of Poisson processes.

Now de�ne the transition rate matrix & to be a square matrix of dimension (2< + 1) ×
(2< + 1), whose components @8, 9 satisfy (20) if |8 − 9 | = 1; @8, 9 = −@8 if |8 − 9 | = 0; and @8, 9 = 0
if |8 − 9 | > 1. The last case is because it is impossible for the technology gap to jumps with
size greater than one. The �gure below is a graphical representation in accordance with the
&-matrix.

18There are (2< − 1) states, under each four unknowns: 0∗
�

, 0∗
�

, E� and E� .
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−m −m+ 1 · · · −1 0 1 · · · m− 1 m

λa∗A(−m) + h λa∗A(−1) + h λa∗A(0) λa∗A(m− 1)

λa∗B(−m) + hλa∗B(−1) + hλa∗B(0)λa∗B(m− 1)

Figure 4: Transition rates across states of technology gap

In this way, the &-matrix governs the jump process of the technology gap, from which
distribution of the time between two jumps onto certain states can be inferred. However, the
&-matrix is unclear on the probability distribution over the new states when there is a jump.
To study the distribution of the technology gap when C is su�ciently large, another matrix
describing such probability is in need, and it can be derived from the &-matrix.

When the technology gap jumps, the probability over where it heads is given by the jump

matrix %. One way to construct it is through the entries of the &-matrix:

De�nition 3 The jump matrix % is de�ned as follows:

% =
(
?8, 9 : 8, 9 ∈ {1, · · · , 2< + 1}

)
, (21)

where

?8, 9 =


−@8, 9/@8,8, if 8 ≠ 9 , @88 ≠ 0;

0, if 8 ≠ 9 , @88 = 0.
(22)

?8,8 =


0, if @88 ≠ 0;

1, otherwise.
(23)

Just like with discrete-time Markov chains, the stationary distribution `(<),< ∈ M is de�ned
by the invariance under multiplication by the %-matrix:

De�nition 4 A 1× (2<+1) vector ` is a stationary distribution over state spaceM if and only

if:

(1) `% = `;
(2)

∑
<∈M

`(<) = 1.

The stationary distribution ` has its name from the invariance property. It is also called
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the limiting distribution out of the fact19:

`(<) = lim
C→∞

Pr(Δ#� (C) = <), ∀< ∈ M . (24)

Thus when time C is su�ciently large, the probability that the technology gapΔ#� (C) assumes
certain value < doesn’t depend on the initial gap Δ=� (0). And so the limiting distribution
` provides the probablistic behavior of the technology gap in the long-term. In the rest of
the paper, when calculating moments of variables that are state-dependent on the technol-
ogy gap, it is this limiting distribution I shall use. And I will use the terms "stationary" and
"limiting" interchangeably according to which �ts the context better.

For a jump matrix %, if the associated Markov chain is irreducible and recurrent, then the
stationary distribution ` in De�nition 4 exists and is unique. From Figure 4 it is obvious that
these conditions are met. Moreover, the stationary distribution can be explicitly expressed
using the transition rate matrix &:

Proposition 2 In the MPE, the stationary distribution ` of technology gap (Δ#� (C))C≥0 exists
and is unique. Speci�cally, `(<) = −b8@8,8 , where < = M〉 and b8 is the 8-th component of the

solution to b& = 0.

Proof. See Theorems 3.5.1 and 3.5.2 in Norris (1998)20.
�

Therefore, when there is a solution to equilibrium R&D strategies
{
0∗
�
(Δ=�), 0∗� (Δ=�)

}
Δ= 5 ∈M ,

the stationary distribution can be calculated through either De�nition 4 or Proposition 2.

3.4 Expected Technology Gap under Limiting Distribution

This subsection explores the expected technology gap under the limiting distribution. I
contrast two cases: in one the R&D costs of the two �rms are identical; in the other, �rm
�’s marginal R&D cost is pointwise lower than that of �rm �. I start with the �rst case, the
following result it obvious, but nonetheless necessary as a baseline.

Proposition 3 If k� (0) = k� (0) for all 0 ≥ 0, then lim
C→∞

E [Δ#� (C)] = 0.

Proof. This is from the symmetry of the game, details are left to the Appendix.
19See Theorem 5.11 in Cinlar (1975).
20These theorems are about the existence and uniqueness of the invariant measure, between whicn and the

limiting distribution there is a one-to-one mapping.

18



If two �rms face the same cost on any level of R&D, the expected technology gap under
the limiting distribution is zero. This is not surprising since the �rms are identical, so are
their strategies, and hence there is no reason for asymmetry in the long term.

The more interesting case is where �rms have heterogeneous R&D costs. Without loss of
generality, let �rm � be more e�cient in R&D than �rm �. Particularly, assume the marginal
R&D cost of �rm � is strictly lower than that of �rm � at all R&D e�ort levels. With its
supremacy in R&D capacity, �rm �’s value function exceeds its rival’s over all possible states:

Lemma 2 If
3k� (0)
30�

<
3k� (0)
30�

for all 0 > 0, then for any < ∈ M, E� (<) > E� (<).

Proof. See Appendix.
The low-cost �rm is not necessarily more R&D intensive at every state. However, in the

simple case where the maximum technology gap is one, it is true that �rm �’s R&D e�ort
dominates �rm �’s at all states.

Lemma 3 In the case < = 1, if the following two conditions hold, then 0∗
�
(<) > 0∗

�
(<) for

< = −1, 0.
(1)

3k� (0)
30�

<
3k� (0)
30�

for all 0 > 0; and
(2) The discount factor d and the arrival rate multiplier _ are su�ciently small.

Proof. See Appendix.
Naturally, the di�erence in R&D e�orts leads to asymmetric probability masses on state

spaceM under the limiting distribution.

Proposition 4 In the case< = 1, under the conditions in Lemma 3, in the limiting distribution,

the probability mass function of technology gap satis�es `(1) > `(−1).

Proof. By the de�nition of &-matrix and Lemma 3, the transition rate matrix & is

& =


−

(
_0∗

�
(−1) + ℎ

)
_0∗

�
(−1) + ℎ 0

_0∗
�
(0) −

(
0∗
�
(0) + 0∗

�
(0)

)
_0∗

�
(0)

0 _0∗
�
(−1) + ℎ −

(
_0∗

�
(−1) + ℎ

)
.

 (25)

The invariant measure b is the solution to b& = 0, whose components satisfy

b (1)
b (−1) =

_0∗
�
(0)

_0∗
�
(0) ·

_0∗
�
(−1) + ℎ

_0∗
�
(−1) + ℎ > 1. (26)
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By De�nition 3, 4 and Proposition 2, `(1) = b (1)
(
_0∗

�
(−1) + ℎ

)
> b (−1)

(
_0∗

�
(−1) + ℎ

)
=

`(−1).
�

Intuitively, if the marginal R&D cost of one �rm is pointwisely lower than the other’s,
then under the limiting distribution, the low-cost �rm’s has a larger chance of being the
leader (`(1)) than does its rival (`(−1)). It’s implication on the technology gap is direct.

Corollary 2 In the case < = 1, under the conditions in Lemma 3, lim
C→∞

E [Δ=� (C)] > 0.

Proof. This follows from Proposition 4.
With heterogeneous R&D costs, the expected technology gap is no longer zero, but strictly

positive. Due to the complexity of the non-linear system, this statement is proved under the
simple case where the maximum gap is one. Meanwhile, parameter restriction in Lemma
3 results from the lack of analytical expressions of equilibrium R&D e�orts and �rm values.
When it comes to numerical experiments in later sections, Proposition 4 and Corollary 2 hold
with arbitrary �nite < > 1 and all randomized sets of parameters used for trial.

4 Extended Model with Destructive Innovation Shock

In the baseline model, the only state variable is the technology gap, whose expected value
under the limiting distribution depends on the R&D cost functions of the two �rms. In this
section, I extend the baseline model to incorporate the destructive innovation shock, and
examine its impact on R&D e�orts and the technology gap.

4.1 Modelling Destructive Innovation

The destructive innovation shock is exogenous and unanticipated. When hit by it, both
�rms lag behind the technology frontier by a certain degree re�ecting the magnitude of the
shock, and are left with a smaller aggregate pro�t. Such conceptualization is justi�ed by the
impulse response functions of total sales of �rms hurt by the major innovation shock (Figure
2).

Denote �rm � and �’s distances to the technology frontier on the technology ladder by
3� and 3�. For either �rm 5 ∈ {�, �}, 3 5 ∈ {0, 1, 2, · · · }, where 3 5 = 0 means that �rm 5

is on the technology frontier. Therefore, min{3�, 3�} = 0 if and only if there is currently no
destructive innovation shock. It is equivalent to saying that min{3�, 3�} > 0 if and only if
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there has been a destructive innovation shock from which the two �rms have yet to recover,
as the most advanced between them is still behind the frontier.
Pro�t Function

To capture the idea that the destructive innovation shock destroys the two �rms’ pro�ts
simultaneously, assume when such shock occurs, the distances of the two �rms to the tech-
nology frontier increase by the same degree. The larger this degree, the smaller total pro�t
is for the two �rms to share. This is summarized in the following assumption:

Assumption 3 Given distances to technology frontier 3 5 and 3− 5 , the pro�t of �rm 5 is

c 5 (3 5 , 3− 5 ) = (1 − Xmin{3 5 , 3− 5 })c̃(3− 5 − 3 5 ), (27)

where X ∈ (0, 1), function c̃ satis�es Assumption 1.

When there is no shock, i.e. min{3�, 3�} = 0, the pro�t function and the whole game are
reduced to those analyzed in the previous section. To see that the baseline model is a special
case, note that the technology gap Δ= 5 is the di�erence between the distances, 3− 5 − 3 5 . If
there is shock, the distance of the leading �rm to the technology frontier is the degree of
destruction to the total pro�t. Since c̃ in pro�t function (27) satis�es Assumption 1, after the
shock, the reduced total pro�t is divided between the two �rms according to the technology
gap between them, just like in the baseline model.

The upper bound of the degree of shock is the largest integer such that the pro�t remains
non-negative: � = max{= ∈ N : X= ≤ 1}. The distance of one �rm from the technology
frontier can thus never exceeds � + <, the sum of the upper bounds of shock and of the
technology gap.
Destructive Innovation Shock

The arrival of the destructive innovation shock is unanticipated by the �rms, neither is
it taken into consideration when �rms form their strategies. Formally, by occurance of the
shock, I mean the following:

De�nition 5 A destructive innovation shock with magnitude � ∈ {1, · · · , �} occurs at time C

if and only if:

(1) There exists some g > 0 such that for any B ∈ (C − g, C), min{3� (B), 3� (B)} = 0; and
(2) For 5 = �, �, 3 5 (C) − lim

B→C−
3 5 (B) = �.

Transition of States
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Since the state space is now two-dimensional, the evolvement of state (3�, 3�) is more
complex than in the baseline model. The exhaustive discussion of all possible transisions
after an arrival of innovation is as follows:

Case 1: 3 5 (C) = 3− 5 (C) = 0. There is no destructive innovation shock and the two �rms
are neck-to-neck on the technology frontier. If the next innovation is made by �rm 5 at time
B, then 3 5 (B) = 0 and 3− 5 (B) = 1, meaning that it becomes the leader and still on the frontier.

Case 2: 3 5 (C) = 0 and 0 < 3− 5 (C) < <. There is no destructive innovation shock and the
�rm 5 is the leader. If the next innovation is done by the leader at time B, then 3 5 (B) = 0 and
3− 5 (B) = 3− 5 (C) + 1; if it is the laggard who innovates, 3 5 (B) = 0 and 3− 5 (B) = 3− 5 (C) − 1.

Case 3: 3 5 (C) = 0 and 3− 5 (C) = < > 0. The only di�erence from case 2 is that now the
leader 5 has no incentive to do R&D, just like in the baseline model. Therefore, the next
innovation must be from the laggard − 5 .

Case 4: 3 5 (C) > 0 and 3− 5 (C) > 0. There has been a destructive innovation shock at least
as late as time C. If the next innovation is from �rm 5 at time B, then 3 5 (B) = 3 5 (C)−1. For the
other �rm − 5 , if 3− 5 (C) = 3 5 (C) +<, then 3− 5 (B) = 3− 5 (C) − 1 out of the automatic catching
up at the maximum technology gap; otherwise it remains where it was: 3− 5 (B) = 3− 5 (C).

To formalize the above rules of transition, for �xed 5 ∈ {�, �}, let
(
3 5 (C), 3− 5 (C)

)
be the

state at time C. Suppose the next innovation arrives at time B > C. If the next innovation is
done by �rm 5 , the new state

(
3 5 (B), 3− 5 (B)

)
is given by the transition function ) 5

) 5
(
3 5 (C), 3− 5 (C)

)
=


(
3 5 (C), 3− 5 (C) + 1

)
, if 3 5 (C) = 0 ∧ 0 ≤ 3− 5 (C) < <;(

3 5 (C) − 1, 3− 5 (C)
)
, if 3 5 (C) > 0 ∧ 3 5 (C) − 3− 5 (C) > −<;(

3 5 (C) − 1, 3− 5 (C) − 1
)
, if 3 5 (C) > 0 ∧ 3 5 (C) − 3− 5 (C) = −<.

(28)

Similarly, if the next innovation is from �rm − 5 21,
(
3 5 (B), 3− 5 (B)

)
will be

)− 5
(
3 5 (C), 3− 5 (C)

)
=


(
3 5 (C) + 1, 3− 5 (C)

)
, if 3− 5 (C) = 0 ∧ 0 ≤ 3 5 (C) < <;(

3 5 (C), 3− 5 (C) − 1
)
, if 3− 5 (C) > 0 ∧ 3− 5 (C) − 3 5 (C) > −<;(

3 5 (C) − 1, 3− 5 (C) − 1
)
, if 3− 5 (C) > 0 ∧ 3− 5 (C) − 3 5 (C) = −<.

(29)
In this way, for either �rm 5 , function ) 5 returns the updated state upon the arrival of inno-
vation depending on who the innovator is.

21I shall not discuss the case where both �rms innovate simultaneously, as such an event has zero probability.
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As in the baseline model, I allow for the imitation e�ect, with which the gap between the
two �rms shrinks by one step at a �xed rate ℎ ≥ 0 regardless of �rms’ R&D e�orts.

4.2 Analysis of Equilibrium

In the extended model, given the initial distances to the technology frontier
(
3 5 (0), 3− 5 (0)

)
and any arbitrary strategy pro�le

(
0 5 (C), 0− 5 (C)

)
C≥0 specifying the time paths of R&D e�orts

of both �rms from the beginning to in�nity, the performance measure of �rm 5 is, similar to
its counterpart in the baseline model (9), the expected discounted sum of its net pro�t �ow:

J5
(
3 5 (0), 3− 5 (0)

�� (0 5 (C), 0− 5 (C)) C≥0) = E {∫ ∞

0
4−dC

[
c 5

(
3 5 (C), 3− 5 (C)

)
− k 5

(
0 5 (C)

) ]
3C

}
.

(30)
Again, an equilibrium is a state-dependent strategy pro�le

(
0∗
�
(C), 0∗

�
(C) |3� (0), 3� (0)

)
C≥0,

such that given its rival’s strategy
(
0∗− 5 (C)

)
C≥0

, �rm 5 ’s strategy
(
0∗
5
(C) |3� (0), 3� (0)

)
C≥0

max-
imizes its performance measure:(

0∗5 (C) |3� (0), 3� (0)
)
C≥0
∈ argmax
(0 5 (C))C≥0

J5
(
3 5 (0), 3− 5 (0)

�� (0 5 (C), 0∗− 5 (C))
C≥0

)
. (31)

As in the baseline model, the state space of the extended model can be reduced from
uncountably in�nity in time to a �nite subset of the two �rms’ distances to the technology
frontier (3�, 3�). Again, I will restrict the discussion on equilibrium to the Markov Perfect
Equilibrium, in which the state-dependent equilibrium value of performance measure of �rm
5 is characterized by its value function E 5 (3 5 , 3− 5 ), and its equilibrium strategy the policy
function 0∗

5
(3 5 , 3− 5 ).

The argument for the existence of a Perfect Markov Equilbrium in the extended model is
similar to that for the baseline model given by Proposition 1, only with an additional state
variable. The proposition below lays out the system of equations to which the value functions
E 5 and policy functions 0∗

5
consist a solution:

Proposition 5 There exists a Perfect Markov Equilibrium 0∗
5
(3 5 , 3− 5 ) for 5 ∈ {�, �}, where

(3 5 , 3− 5 ) ∈ {0, · · · , �+<}2,min{3 5 , 3− 5 } ≤ � and |3 5 −3− 5 | ≤ <. Moreover, the equilibrium

strategy pro�le satis�es the following system of equations:

E 5 (3 5 , 3− 5 ) =
1

_

[
0∗
5
(3 5 , 3− 5 ) + 0∗− 5 (3− 5 , 3 5 )

]
+ ℎ · 1{3 5 ≠ 3− 5 } + d

{
c 5 (3 5 , 3− 5 )
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− k 5
(
0∗5 (3 5 , 3− 5 )

)
+

[
_0∗5 (3 5 , 3− 5 ) + ℎ · 1{3 5 > 3− 5 }

]
E 5

(
) 5 (3 5 , 3− 5 )

)
+

[
_0∗− 5 (3− 5 , 3 5 ) + ℎ · 1{3 5 < 3− 5 }

]
E 5

(
)− 5 (3 5 , 3− 5 )

) }
(32)

3k 5

(
0∗
5
(3 5 , 3− 5 )

)
30 5

=_
[
E 5

(
) 5 (3 5 , 3− 5 )

)
− E 5 (3 5 , 3− 5 )

]
(33)

0∗5 (0, <) =0 (34)

The proof of the above proposition is skipped, as it acquires nothing more than a trivial
modi�cation of that of Proposition 1.

Due to the lack of an explicit expression of �rm value function, it is di�cult to see the
impact of destructive innovation shock in a qualitative way. However, it can be shown that
with �xed technology gap between the two �rms, a step farther from the technology frontier
always means lower value for either �rm.

Lemma 4 For all 5 ∈ {�, �} and (3 5 , 3− 5 ) ∈ N2
+, E 5 (3 5 , 3− 5 ) > E 5 (3 5 + 1, 3− 5 + 1) if and

only if E 5 is de�ned at (3 5 , 3− 5 ) and (3 5 + 1, 3− 5 + 1).

Proof. See Appendix.

Corollary 3 For all 5 ∈ {�, �} and (3 5 , 3− 5 ) ∈ N2
+, E 5 (3 5 + 1, 3− 5 ) < E 5 (3 5 , 3− 5 ) <

E 5 (3 5 , 3− 5 + 1) if and only if E 5 is de�ned at all of these states.

The proof of Corollary 3 is similar to that of Lemma 4.
Directly from Lemma 4, the destructive innovation shock lowers the values of both �rms,

and the degree of such destruction is increasing in the magnitude � as in De�nition 5:

Proposition 6 If there is a destructive innovation shock at time C > 0, for all 5 ∈ {�, �},
E 5

(
3 5 (C), 3− 5 (C)

)
< lim
B→C−

E 5
(
3 5 (B), 3− 5 (B)

)
, and lim

B→C−
E 5

(
3 5 (B), 3− 5 (B)

)
− E 5

(
3 5 (C), 3− 5 (C)

)
is strictly increasing in the magnitude of shock, � ∈ {1, · · · , �}.

Proposition 6 corresponds to the empirical observation in section 2.2, where high-valued
innovations are found to be associated with the loss in sales of rival �rms. The model here not
only accounts for this fact, but also claims that the degree of loss is in positive proportion to
the magnitude of the destructive innovation shock. As a caveat, in empirical work, it would be
di�cult to distinguish between the magnitude of shock, �, from the stepwise destructiveness
X as in pro�t function (27).
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4.3 Responses of R&D to Destructive Innovations

In this subsection I employ the extended model to study �rms’ responses in R&D e�orts
to the destructive innovation shock, especially to see if there is heterogeneity directions of
such responses. This is interesting because the heterogeneous responses in R&D may help to
explain the comovement between the patent value from major innovations and productivity
dispersion (Figure 1).

Without explicit expressions of �rms’ R&D e�orts as functions of state variables, the
model is silent on the responses in R&D to the destructive innovation shock of any arbitrary
degree, and I shall later let numerical experiments speak on that question. In the following I
analyze the R&D responses to shocks with extreme degrees.

When the magnitude of shock, �, is su�ciently large, so that the aggregate gross pro�t
of the two �rms is vanishingly small, both �rms reduce their R&D e�orts in response to the
shock, regardless of the functional form or parameters of the R&D cost functions.

Proposition 7 If X > 0 is small enough, there exists �̂ ∈ {1, · · · , �}, such that if there is a

destructive innovation shock with magnitude � ≥ �̂ at time C > 0, 0∗
�
(C) < lim

B→C−
0∗� (B) and

0∗
�
(C) < lim

B→C−
0∗� (B).

Proof. See Appendix.
Proposition 7 claims that when the magnitude of the shock is large enough, both �rms will

respond by reducing their R&D e�orts. When the destruction to pro�t is so overwhelming
and there is a long way to go before the loss can be recovered, both �rms will �nd the marginal
value of an innovation lower than before, thus adjust their R&D e�orts downward.

At the other extreme, when the magnitude of shock is minimal, the �rm on the technology
frontier will always respond by increasing its R&D e�ort.

Proposition 8 If a destructive innovation shock with magnitude 1 occurs at time C > 0 and

lim
B→C−

3 5 (B) = 0, then 0∗
5
(C) > lim

B→C−
0∗5 (B).

Proof. See Appendix.
Upon being hit by the shock with degree 1, the current �rm value is strictly lower for the

leading �rm, as can be seen from Lemma 4. However, this loss can be fully recovered by one
innovation, whose marginal value is hence higher than that before the shock. This is why at
least the leader has incentive to do more R&D after small shocks.

From the above two propositions, it is clear that when X in Assumption 3 is small enough,
for each �rm 5 , there is a minimal threshold of magnitude of destructive innovation shock,
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above which its response will be to lower R&D e�ort. Denote that minimum threshold by
�̂ 5 (3 5 , 3− 5 ) to re�ect the fact that it depends on the state just prior to the shock. Speci�cally,
if �rm 5 is on the technology frontier prior to the shock, �̂ 5 (0, 3− 5 ) is strictly greater than
1.

Suppose there is a leader and a laggard just prior to the destructive innovation shock.
Without loss of generality, let them be �rm � and �, respectively. Following the above anal-
ysis, if it is the case that �̂� (0, 3�) > �̂� (3�, 0), then there exists magnitude of shock �
satisfying �̂� (3�, 0) ≤ � < �̂� (0, 3�) to which the leader responds by higher R&D e�ort
and the laggard lower. consequently, in a period after the shock, the expected technology gap
is strictly higher than that prior to the shock. This is the channel through which the innova-
tion shock contributes to enlarged technology gap, and it explains the empirical observation
of greater productivity dispersion that is likely to be caused by high-valued innovations from
competing �rms (Figure 3). The above pattern is found in simulation of the extended model
in Section 6, and con�rmed empirically in Section 7.

5 Model Parameterization

To ready the extended model for numerial experiments and see how �rms in my model
react to the destructive innovation shock in the simulation, in this section I assign data-based
parameter values. I will use the baseline model in Section 3 for calibration and generalized

method of moments (GMM) estimation22. This is valid because the sole extra parameter in the
extended model is the destructiveness of the shock, X, in the pro�t function (27). The choice
of its value doesn’t a�ect the other parameters in the stationary equilibrium without shock.

To begin with, use the conventional values of the discount factor d = 0.1 and the mul-
tiplier on the R&D e�ort _ = 1, from Ludkovski and Sircar (2016) and Aghion et al. (2005),
respectively23.

So far the analytical results do not rely on speci�cations of pro�t functions c 5 (Δ= 5 ) and
R&D cost functions k 5 (0 5 ) for 5 ∈ {�, �}. However, I need to adopt explicit functional

22An alternative approach, simulatedmethod of moments (SMM), is also feasible. However, the GMM is prefer-
able in this case as stationary distribution of the states is available. It is computationally easier and free of
additional assumptions required by SMM. For the latter, see Du�e and Singleton (1993). Strebulaev and Whited
(2012) provides a practical guide for both approaches.

23In Aghion et al. (2005), the arrival rate of innovation equals the R&D e�ort = (0 5 in my notation) plus the
rate of spillover ℎ. This is equilvalent to setting _ = 1 in my model.
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forms of them to pin down paramters, for which my choices are:

c 5 (Δ= 5 ) =
c

2

(
1 +

Δ= 5

<

)
, (35)

k 5 (0 5 ) =
^ 5

2
025 . (36)

The pro�t function c 5 is linearly increasing in the technology gap Δ= 5 of �rm 5 with slope
c

2<
. If the �rm is at the largest possible gap, Δ= 5 = <, it takes all the pro�t c on the market;

if it lags behind to the extreme degree, i.e. Δ= 5 = −<, it has zero pro�t. It is easy to verify
that pro�t function (35) satis�es Assumption 1. For the numerical experiments in the next
section I use the value < = 5 and it doesn’t have qualitative in�uence on the outcome24.
The quadratic R&D cost function (36) is standard in the literature and satis�es Assumption 2.
Without loss of generality, impose the constraint that the marginal R&D cost (thus also the
R&D cost) of �rm � is strictly less than that of �rm �: 0 < ^� < ^�.

Combining the R&D cost function (36) and the �rst-order condition (17) of the R&D e�ort,
the parameter ^ 5 for 5 = �, � can be calibrated as follows:

^ 5 =
E 5 (Δ= 5 + 1) − E 5 (Δ= 5 )

0∗
5
(Δ= 5 )

=

[
E 5 (Δ= 5 + 1) − E 5 (Δ= 5 )

]2 /2
k 5

(
0∗
5
(Δ= 5 )

) ∀ Δ= 5 , (37)

where the second equality is from equation (36). In the data, the equilibrium R&D cost k 5 (0∗)
can be approximated using �rm-year R&D intensity. And I use the �rm-year value of patents,
scaled by sale, as the proxy of the increment in �rm value from innovaton on the numerator.
This is because the stock market’s reponse to patent grants in Kogan et al. (2017) itself re�ects
the value added to the �rm by innovations.

I use �rms with RDI between the second and third deciles of the industry-year cell to
calibrate ^�, and use those between the seventh and eighth deciles for that of ^�. The range
between the two groups of �rms is consistent with the fact that the productivity dispersion
is often measured by the inter-quartile range.

The details regarding the moment conditions are left to the appendix. The calibrated
values are ^� = 0.0868 and ^� = 0.1057. In the data, the �rms with high R&D intensity on

24I refrain from calibrating or estimating the maximum gap < because it is di�cult to say what one unit
of gap corresponds to in reality. And the choice of its value in the literature is arbitrary. Therefore in this
paper I am not aiming to pin down this parameter, but would like to emphasize that if one is to add < into the
parameterization as an extra degree of freedom, the �tting of the model will be no worse than with the arbitrary
choice of < = 5.
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average are found to have lower R&D cost, as would be predicted by Lemma 3.
The two parameters remains to be determined are c and ℎ. The former is the total gross

pro�t of the two �rms, and the later the rate of imitation with which the laggard automatically
advances one step along the technology ladder independent of its R&D e�ort. For these
two parameters there are no analytical moment conditions similar to (37). However, with
stationary distribution available from De�nition 3 and Proposition 2, it is feasible to estimate
them by GMM. There needs to be two target moments: the �rst one I pick is the expected
ratio of the RDI of low-cost �rms to that of the high-cost �rms; the second is the expected
ratio of the value of innovation between the two types of �rms. Again, the technical details
on the procedure of the estimation are left to the appendix. The estimated parameter values
are c = 0.0924 and ℎ = 0.0772.

Table 1 summarizes the list of the model parameters determined as above.

Table 1: Model Parameters

Parameter Description Source Value
d discount factor Ludkovski and Sircar (2016) 0.1
_ multiplier on R&D e�ort Aghion et al. (2005) 1
< maximum technology gap assigned 5
^� R&D cost parameter of �rm � calibrated 0.0868
^� R&D cost parameter of �rm � calibrated 0.1057
c total pro�t GMM 0.0924
ℎ rate of spillover GMM 0.0772

The table below reports the performance of calibration and estimation in �tting moments.
The perfect �tting of the �rst two moments is due to the explicit expression of ^ 5 in (37),
where ^ 5 is consistent over all states Δ= 5 thus invariant to the stationary distribution.

Table 2: Fitting of Moments

Description Data Model
Mean of ratio (37) of low-cost �rms 0.0868 0.0868
Mean of ratio (37) of high-cost �rms 0.1057 0.1057
Average ratio of R&D intensities, low-cost to high-cost �rms 3.9053 3.9040
Average ratio of innovation values, low-cost to high-cost �rms 3.4108 3.4094

In Table 2, the �rst two moments informs ^� and ^�, respectively. The latter two moments
jointly informs c and ℎ in the GMM estimation. The baseline model does a satisfactory job
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in �tting the selected moments from the data, thus justi�es the usage of its extended version
to study the impact of destructive innovation shocks.

6 Quantitative Analysis

With the model parameters obtained in Section 5, I proceed by showing the performance
of the model in simulation. I will �rstly show the numerical solutions of the value functions
and policy functions of the two �rms in the baseline model from Section 3, where the sole
state variable is the technology gap25. Then I turn to the numerical study of the extended
model from Section 4, where the state is two-dimensional in �rms’ distances to the technology
frontier. The simulation of this extended model helps in understanding the pattern of �rms’s
responses in R&D to the destructive innovation shock, and its implication on the dynamics
of technology gap.

6.1 Numerical Solution of the Baseline Model

The baseline model is numerically solved using value function iteration26. Firstly set a
initial value function v0 = {E0,� (<), E0,� (<)}<∈M , for example E 5 (<) = 0 for all < ∈ M
and 5 ∈ {�, �}. Then calculate the policy function a∗0 = {0∗0,� (<), 0

∗
0,� (<)}<∈M according

to equations (17) and (18). For the next step, update value function E1, 5 (<) using v0 and a∗0
on the right-hand side in (16) and (19) to get v1. Keep iterating until the sequence of value
functions {v: }∞:=0 converges. The outcome of the iteration is plotted in the �gure below:

The left panel of Figure 5 conveys two messages. Firstly, for either the low-cost �rm (�rm
� in this example) or the high-cost �rm (�rm �), the value function is strictly increasing
in its technology gap. This is intuitive as a �rm bene�ts from a large technology gap not
only from a high pro�t �ow when it stays at the current state, but also from the chance of
jumping to an even larger gap where pro�t is higher. Secondly, for any state < ∈ M =

{−<,−< + 1, · · · , < − 1, <}, it is the case that E� (<) > E� (<), meaning the low-cost �rm’s
25Strictly speaking, there are two state variables in the baseline model: the gaps of �rm � and �. However,

recall that there is a bijection between these two, as by de�nition one is the opposite to the other: Δ=� =

=� − =� = −(=� − =�) = −Δ=� .
26The function forms of the pro�t and R&D cost functions are the same as (35) and (36) which I use for model

parameterization.
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Figure 5: Numerical solution of the baseline model

value strictly dominates that of the high-cost �rm’s. This is consistent with Lemma 227, whose
explanation is that in the equilbrium, the low-cost �rm can achieve a performance measure
at least the same as the high-cost �rm, and from that there’s still room for improvement by
optimizing.

It is not the case, however, that the low-cost �rm will always choose higher R&D e�ort
than the high-cost �rm, as is suggested by the right panel. The �gure of policy functions
implies that unconditionally, the low-cost �rm is more likely to be the leader (since 0∗

�
(0) >

0∗
�
(0)); but conditional on being the leader with gap Δ= 5 ≥ 3, the high-cost �rm would make

greater e�ort to maintain its advantage. One possible incentive behind this is the high-cost
�rm treasures the chance of being the leader more because it is more rare for it.

From above it is obvious that Lemma 3 doesn’t extend to cases where the maximum tech-
nology gap< > 1. Nonetheless, arguments similar to Proposition 4 and Corollary 2 still holds
in the example here with < = 5. That is, for any < ∈ {1, 2, · · · , 5}, the stationary probabil-
ity that the low-cost �rm is at state < is strictly higher than that at −<: `� (<) > `� (−<),
∀< > 0. Consequently, the expected technology gap of the low-cost �rm under the stationary
distribution is strictly positive: E [Δ=� (C)] > 0. This can be seen from the following �gure
depicting the stationary distribution of �rm �’s technology gap.

27In the special case of quadratic R&D costs k 5 (0 5 ) =
^ 5

2
02
5

with ^� < ^� , the condition in Lemma 2 that
3k�(0)
30�

<
3k� (0)
30�

for all 0 > 0 is satis�ed.
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Figure 6: Stationary distribution of �rm �’s technology gap

From Figure 6, for any < > 0, the stationary probability for �rm �’s technology gap to
be Δ=� = < is greater than that of Δ=� = −<. And its expected technology gap is calculated
to be 3.4073, thus the low-cost �rm is expected to be the leader in the long run. So far, the
properties of the the numerical solution are in accordance with the theoretical arguments for
the baseline model.

6.2 Numerical Solution of the Extended Model

With the destructive innovation shock absent, the baseline and the extended models are
equivalent. From now on, I use the extended model to see how the two �rm with heteroge-
neous R&D costs respond to the destructive innovation shock, and how would that impact
the dynamics of the technology gap.

Since the pro�t function is di�erent from that in the baseline model, there needs to be a
new speci�cation in the form of equation (27), where I arbitrarily assign X = 0.05, and

c̃ 5 (3 5 , 3− 5 ) =
c

2

(
1 +

3− 5 − 3 5
<

)
. (38)

Thus one degree of the destructive innovation shock reduce the total pro�t of the two �rms by
5 percent. And just like in the baseline model, the share of the total pro�t by �rm 5 ∈ {�, �} is
linearly increasing in its technology gap, which is equivalent to the di�erence in the distances
to the technology frontier: Δ= 5 = 3− 5 − 3 5 . The R&D cost function admits the same form as
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in the baseline model (36). This is how the whole dynamical system reduces to the baseline
model without the shock.

The value function E 5 (3 5 , 3− 5 ) and policy function 0∗
5
(3 5 , 3− 5 ) are again solved numer-

ically using value function iteration. Since they are now two-dimensional, the outcomes are
represented with heatmaps as follows, where black blocks correspond to zero value. The sym-
metric o�-diagonal black areas re�ect the restriction that the absolute di�erence between 3�
and 3� cannot exceed the maximum technology gap < = 5.
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For �rm 5 the horizontal and vertical axes are the distances to the technology frontier of its own and of its
rival’s, 3 5 and 3− 5 , respectively. The two panels in the same row share a common color bar.

Figure 7: Numerical solution of the extended model

Compare panels (a) and (b) in Figure 7, for either �rm, its value is higher when it’s closer
to the technology frontier, or when its leading position is more prominent. More precisely,
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for any �xed 3 5 , the value function E 5 (3 5 , 3− 5 ) is increasing in its technology gap 3− 5 − 3 5 .
Also, for any integers 31, 32 ∈ {0, 1, · · · , 20}, it always holds that E� (31, 32) > E� (31, 32).
Both of these two patterns extend those shown by panel (a) of Figure 5 for the baseline model.

From panels (c) and (d) it is clear that the equilibrium R&D e�ort of either �rm is not
monotone in technology gap. Firm � (the low-cost �rm) tends to exert higher R&D e�ort
when it is lagged behind, as the high values in panel (c) is below the diagonal; for �rm �

(the high-cost �rm) it is the opposite: its high R&D e�orts are seen when it’s at the leading
position. This coincides with the patterns of R&D e�orts in the baseline model, as is shown
by panel (b) of Figure 5.

An interesting contrast between the two rows of Figure 7 is that, for the value functions,
�x any colored grid (3 5 , 3− 5 ) < (20, 20), it is always the case that E 5 (3 5 , 3− 5 ) > E 5 (3 5 +
:, 3− 5 + :) for any integer : > 0 with which the value function is de�ned. It means a �rm’s
value function is strictly decreasing in the degree of the destructive innovation shock, as
stated by Lemma 4. This is not true for the policy functions: it is easy to see in panel (c) that
the equilibrium R&D e�ort of �rm � increases in the degree of shock (darker color towards
red along the diagonal) before it �nally decreases. The same can be found in panel (d) but is
less obvious due to the small scale of change in color.

Furthermore, a closer inspection will show that the areas where the shock causes �rm
� to raise its R&D e�ort are those would lead �rm � to cut down its R&D. This veri�es
the existence of certain magnitudes of the destructive innovation shock, to which the �rms
respond by adjusting R&D in opposite directions, as conjectured in the end of Section 4.

6.3 Simulation

As the �rst step of simulating the continuous-time dynamical system characterized in
Section 4, I discretize the time horizon to ) = 1, 000 periods. The simulation is repeated by
� = 50, 000 times. For each repetition 1, I create two vectors of dimension 1×) , 3̂�,1 , 3̂�,1 to
restore the realization of the distances to the technology frontier. Set 3̂�,1 (1) = 3̂�,1 (1) = 0
for all 1 = 1, 2, · · · , �, such that for all repetitions the system begins with the state that the
two �rms are neck-to-neck on the technology frontier.

By the Markov property of the equilibrium, at each period C = 1, 2, · · · , ) , the R&D e�ort
chosen by �rm 5 depends on the current state 3̂ 5 ,1 (C) only. Store the time-paths of R&D
e�orts of �rms � and � in vectors 0̂�,1 and 0̂�,1 . Obviously, for any C = 1, 2, · · · , ) , 0̂ 5 .1 (C) =
0∗
5

(
3̂ 5 ,1 (C), 3̂− 5 ,1 (C)

)
, where 0∗

5
(3 5 , 3− 5 ) is �rm 5 ’s policy function. For each repetition 1,
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from C = 2 on, the probability distribution of the state
(
3̂�,1 (C), 3̂�,1 (C)

)
is determined by the

last period’s state and R&D e�orts
(
3̂�,1 (C − 1), 3̂�,1 (C − 1)

)
. The details on discretization

and updating rule of state are left in the appendix.
For each repetition, let there be a destructive innovation shock at C = 50028 with degree

� = 10. That means after the realization of the state
(
3̂�,1 (500), 3̂�,1 (500)

)
, I change it to(

3̂�,1 (500) + 10, 3̂�,1 (500) + 10
)

29. The choice of degree � = 10 is to be consistent with the
empirical �nding in Section 2, that the major innovation destroys about 50% of its rivals’ sales
on average over a ten-year horizon. Thus in the extended model with the destructiveness of
one degree of shock X = 0.05 as in (27), it requires a shock with degree 10 to be a proper
analogy. The values of X and � are not essential for the simulation qualitatively.

With the above design of shock, from C = 1, · · · , 499, the leading �rm is on the technology
frontier, thus the dynamical system is equivalent to that of the baseline model in the sense
the technology gap and distances satisfy < 5 = 3− 5 − 3 5 and min{3 5 , 3− 5 } = 0. At C = 500,
the two �rms are pushed backward from the technology frontier by ten steps simultaneously,
while their relative positions remain unchanged. From this period on, until one �rm returns
to the frontier, the system can no longer be described by the baseline model, but only by the
extended model.

The impulse response of expected R&D e�orts to the destructive innovation shock is
approximated by the mean of the simulated paths:

0̂ 5 (C) =
1
�

∑
1≤1≤�

0̂ 5 ,1 (C), (39)

where 0̂ 5 (C) without repetition subscript 1 is the mean of the simulated R&D e�ort of �rm 5

at period C. For C ≥ 500, it serves as the simulated impulse response function of �rm 5 ’s R&D
to the shock. Similarly, the simulated technology gap of �rm 5 , Δ=̂ 5 , is calculated as

Δ=̂ 5 (C) =
1
�

∑
1≤1≤�

[
3̂− 5 ,1 (C) − 3̂ 5 ,1 (C)

]
. (40)

The following �gure reports the time paths of Δ=̂� (C), 0̂� (C) and 0̂� (C):

28I leave some periods for the stochastic processes to evolve and approach to the limiting distribution.
29The R&D e�orts at C = 500 are determined after the shock happens.
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Figure 8: Simulation of the impact of destructive innovation shock

In panel (b), upon being hit by the shock, the low-cost �rm instantly increases its R&D
e�ort, and the high-cost �rm responds by reducing its R&D e�ort. For a period afterward,
the di�erence in R&D e�orts is higher than the pre-shock level. This causes a hump-shaped
increase in the technology gap, as shown in panel (a). Such change in technology gap is grad-
ual rather than a jump because the path of gap must travel through all the intermediate states
before reaching a higher level. In longer horizon, as the the di�erence in R&D converges back
to the pre-shock level, the technology gap also closes.

Compare the simulaton results with the empirical �ndings. Panel (a) in Figure 8 resembles
the impulse responses in Figure 1, Section 2, in that the response of productivity dispersion
to the shock is gradual and persistent. Such consistency between the model’s products and
empirical observations suggests that the heterogeneous responses of �rm-level R&D is a rea-
sonable mechanism explaining the higher productivity dispersion as the e�ect of destructive
innovation shock. The next section present empirical evidence con�rming the heterogeneous
responses of R&D in panel (b). Regression models in that section identify �rms’ responses of
current year’s R&D intensity to last year’s destructive innovation shock, which exhibit the
heterogeneity in line with that in panel (b).
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7 Empirical Evidence onHeterogeneousResponses inR&D

to Destructive Innovation

In this section I provide supportive evidence in favor of the claim from the extended model
and its simulation, that �rms with di�erent R&D capacities will respond to the destructive
innovations in opposite directions. Particularly, as the following empirical investigation re-
veals, it is the case that the high-capacity (low R&D cost) �rm responds positively with its
R&D intensity, while the low-capacity (high R&D cost) �rm negatively. The approaches in
this section extends Chen and Ming (2020).

The ability to conduct R&D activities, or the R&D cost function of a �rm, is unobservable
from the data. However, Lemma 3 predicts that low-cost �rms invest more in R&D than high-
cost �rms. Thus the implication to be tested is formulated as follows: �rms with high R&D
intensity (RDI) will respond to destructive innovation shocks by increasing its RDI; while
�rms with low RDI will do the opposite.

The R&D intensities of �rms in di�erent industries are not directly comparable, because
each industry may have its own standard about which levels of RDI should be considered high
or low. Thus the value of industry-year empirical cumulative distribution function (ECDF) is
used for comparison of RDI across �rms. The ECDF value in RDI of �rm 8 in industry 9 at
year C is de�ned as follows:

4235 '��8, 9 ,C =

∑
8′ 1{log('��8′, 9 ,C) < log('��8, 9 ,C)}∑

8′ 1{log('��8′, 9 ,C) ∈ R}
. (41)

In this way, 4235 '�� ∈ [0, 1) gives the percentage of �rms in an industry-year cell with RDI
below a certain �rm, thus it serves as a measure comparable across industries and years. The
regression speci�cation is as follows:

log('��8, 9 ,C) = U8+XC+V"� 9 ,C−1+W"� 9 ,C−1×4235 '��8, 9 ,C−1+[4235 '��8, 9 ,C−1+,^8, 9 ,C+D8, 9 ,C ,
(42)

where U8 and XC are �rm and year �xed e�ects, respectively; "� is the major innovation
index de�ned in (3). The set of control variables is denoted by ^, which includes the ECDF
of revenue TFP obtained in the same way as in (41), market share, number of �rms in the
industry-year cell, and the Her�ndahl-Hirschman index. The alternative setting ^ = ∅ will
also be used for robustness check.

With this speci�cation, the coe�cient W of the cross-term "� × 4235 '�� is of interest.
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It captures the heterogeneity in the reponses of current RDI from �rms sorted by past RDI,
to the destructive innovation shocks. For example, if the estimated Ŵ is signi�cantly posi-
tive, the interpretation should be that �rms with high RDI in the past reponds to destructive
innovations by raising RDI, as compared to �rms with low past RDI.

One concern about the above approach is that there may be high year-to-year �uctuation
in one �rm’s ranking of its RDI relative to others from the same industry, thus the ECDF
value in the last year could fail to re�ect a �rm’s long-term performance which is more infor-
mative on its capacity to do R&D. I thus perform an additional robustness check by replacing
the ECDF of annual RDI (4235 '��) in regression (42) by the ECDF of a three-year moving
average of RDI, denoted by 4235 '��MA3:

4235 '��MA3
8, 9 ,C =

∑
8′ 1{

∑C
B=C−2 log('��8′, 9 ,B) <

∑C
B=C−2 log('��8, 9 ,B)}∑

8′ 1{
∑C
B=C−2 log('��8′, 9 ,B) ∈ R}

. (43)

The outcome of regression (42) is reported in the following table:

Table 3: Responses of R&D Intensity to Destructive Innovation Shocks

log('��C) (1) (2) (3) (4)
"�C−1 −0.181 −0.234∗∗ −0.143 −0.201∗

(0.110) (0.116) (0.109) (0.106)
"�C−1 × 4235 '��C−1 0.343∗ 0.369∗∗

(0.174) (0.180)
4235 '��C−1 1.376∗∗∗ 1.444∗∗∗

(0.128) (0.136)
"�C−1 × 4235 '��MA3

C−1 0.242 0.281∗
(0.161) (0.161)

4235 '��MA3
C−1 0.894∗∗∗ 0.949∗∗∗

(0.090) (0.097)

Control variables NO YES NO YES
'2 0.229 0.396 0.188 0.372
# 26, 555 26, 555 18, 233 18, 233

Notes: Standard errors clustered at the industry level are in parenthesis. ∗∗∗, ∗∗ and ∗ indicate
signi�cance at the 1%, 5% and 10% levels. For columns 1 and 2, observations of �rms who
were major innovators in the last year are excluded; for columns 3 and 4, those of �rms who
have been major innovators in the past three years are excluded.

In Table 3, columns 1 and 2 use the ECDF values based on the one-year lag measure
de�ned by (41); columns 3 and 4 based on the alternative three-year moving average coun-
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terpart. For all speci�cations other than that of column 3, the coe�cient of interest, which
is on the cross-term between the major innovation indicator and the ECDF value of past RDI
(in the second and fourth rows), are signi�cantly positive. Again, this is in support of the
existence of heterogeneity in �rms’ reponses in their RDI to destructive innovation shocks.
Speci�cally, it is shown that �rms with higher RDI in the past invest more in R&D in response
to such shocks.

The �rst row in Table 3 captures the negative impact of the destructive innovations over
all �rms’ RDI. Combining these estimated values with those reported in the second or fourth
rows, it appears that the destructive innovations cause the least R&D intensive �rms to drop
their R&D intensity by about 20 percent; and they cause the most R&D intensive �rms to
increase their RDI by a degree ranging from 8.0 to 16.2 percent. For some �rms with past
RDI close to the industry median, the destructive innovation shock should have little or no
impact on their current choice of R&D input. The above empirical evidence on the directions
of heterogeneous R&D adjustment is consistent with the simulation in the previous section.

Since the treatment – the destructive innovation – is assigned at the industry level, the
standard errors in Table 3 are clustered at the industry level using the method as in Liang
and Zeger (1986), which according to Abadie et al. (2017) is conservative. Actually, under
alternatives like robust standard errors or �rm-level standard errors, the esimated coe�cients
reported in that table will all be signi�cant at 1% level.

In regression (42), the e�ect of destructive innovation on the conditional expectation of a
�rm’s R&D intensity is linearly increasing in the value of ECDF of its past RDI. In the rest of
this section I will loosen this linearity constraint with non-parametric regressions, and study
the responses of �rms sorted into di�erent deciles by their past RDI.

To do so, �rstly divide the observations of R&D intensity from each industry-year cell
into ten intervals by the industry-year speci�c deciles, 2B9 ,C , B = 1, · · · , 10, where

2B9 ,C = argmax
8′

{
log('��8′, 9 ,C) : 4235 '��8′, 9 ,C ≤ B/10

}
(44)

in which the variable 4235 '�� is de�ned by (41). Thus 2B9 ,C , B = 1, · · · , 10 are the ten deciles
of log('��) in industry 9 at year C. And secondly, generate ten dummy variables 2B

8, 9 ,C
from

B = 1 to B = 10, de�ned as follows:

218, 9 ,C =


1 if log('��8, 9 ,C) ≤ 219 ,C
0 otherwise

(45)
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2B8, 9 ,C =


1 if 2B−19 ,C < log('��8, 9 ,C) ≤ 2B9 ,C and 2 ≤ B ≤ 9

0 otherwise
(46)

2108, 9 ,C =


1 if log('��8, 9 ,C) > 299 ,C
0 otherwise

(47)

For example, 23
8, 9 ,C

= 1 means that �rm 8’s log-RDI at year C falls between the second and third
deciles among the log-RDIs from all �rms in industry 9 at the same year. Finally, use the
following speci�cation to identify the responses in RDI to destructive innovations of �rms in
di�erent groups partitioned by (45) to (47):

log('��8, 9 ,C) = U8 + XC +
10∑
B=1

WB"� 9 ,C−1 × 2B8, 9 ,C−1 +
10∑
B=1

[B2
B
8, 9 ,C−1 + ,^8, 9 ,C + D8, 9 ,C . (48)

Similar to speci�cation (42), U8 and XC are �rm and year �xed e�ects. "� stands for the
major innovation indicator; ^ the same set of control variables. The single term"� is omitted

because the group of cross-dummies
{
"� 9 ,C × 2B8, 9 ,C

}10
B=1

is fully saturated, thus including "� 9 ,C
incurs perfect multicolinearity.

The estimates {ŴB}10B=1 captures the decile-grouped, potantially heterogeneous responses
of RDI to destructive innovations. Their estimated values and 90% con�dence intervals are
plotted in the �gure below.

The interpretation of ŴB in speci�cation (48) is similar to V̂+ Ŵ in (42), which is the impact
of destructive innovations on RDI of �rms in decile group B. The message from Figure 9
is consistent with that from Table 3: such impact will be the reduction in RDI for low-RDI
�rms, as well as the increase in RDI for high-RDI �rms. For �rms with past RDI close the
the median (from the second to the �fth deciles in the industry-year cell, to be precise), there
is no signi�cant impact from destructive innovation on current RDI. This is also true for the
most R&D intensive �rms in the 10-th decile group, about its reason I do not have an tested
explanation. All these patterns are robust whether control variables are included or not.

To summarize, my theoretical model in Section 4 predicts opposite responses of �rms’
R&D to destructive innovation shock. However, as the parameter values and functional forms
are undetermined, I don’t give su�cient conditions on the range of the magnitude of shock
which triggers this type of heterogeneous responses. Assigned with data-based parameter
values and reasonable speci�cation of functions, the simulation produces the predicted op-
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Figure 9: Decile-grouped responses of �rm RDI to major innovations

posite directions of instantaneous responses in R&D e�orts, and persistently larger gap in
both R&D and technology (8). This prediction is further con�rmed by empirical tests docu-
mented in this section, suggesting the model captures the channels through which destructive
innovations impact the dynamics of productivity dispersion.

8 Conclusion

This paper invesigates the role of destructive innovations as a source of the rapidly ris-
ing productivity dispersion in the U.S. since 1990. A �rm’s achievement with high-valued
innovations in a certain period destroys its rival �rms’ sales, to which the industry-level pro-
ductivity dispersion responses by a hump-shaped increase. To explore the mechanism, I build
a model where �rms’ positions along a technology ladder, as well as their technology gap, are
stochastically determined by their R&D e�orts. I simulate the impact of the destructive in-
novation shock, to which the �rm with low R&D cost responds by raising its R&D e�ort, and
the high-cost �rm by lowering. Thus the cross-�rm R&D di�erence jumps instantaneously,
and converge gradually to its pre-shock level. During this process, the technology gap, re-
�ecting the dynamic changes in R&D e�orts, exhibits a hump-shaped impulse response. This
heterogeneity in impact on R&D provides an theoretical explanation on the relationship be-
tween destructive innovation and productivity dispersion, and is con�rmed by empirical tests
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showing heterogeneous responses of R&D by �rms with high and low past R&D intensities,
as implied by the theory.

Restricted by the nature of data, I do not discuss the pattern of �rm exit and entry in
response to destructive innovations. It would be reasonable to postulate though, if allowed,
�rm(s) close to the edge of zero value will exit upon the shock, thus the aggregate productivity
would improve either by selection or reallocation. This might be a future work worthwhile
if data permits.
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Appendices

A Data

A.1 Data Source

Firm Fundamentals
I use CRSP/Compustat Merged (CCM) Database for �rm fundamentals reported at the

annual frequency. Individuals in this database is a subset of U.S. publicly listed �rms. They
can be identi�ed in two ways: either by CRSP’s permanent company and security identi�ers
(permco or permno), or by Compustat’s permanent company identi�er (gvkey). Variables to
be used include R&D expense (xrd), sale (sale), number of employees (emp), book value of
capital (ppent), value added output (ouput) and etc.
Industry-level Cost Shares and Prices De�ators

The industry-level cost shares and prices de�ators are obtained from the NBER-CES Man-
ufacturing Database, which can be merged to the CCM database mentioned above by the
four-digit SIC codes. The NBER-CES database informs on industry-level payroll (pay), value
added (vadd), shipment price de�ator (piship), investment price de�ator (piinv) and etc.
These variables combined with those �rm fundamentals are used to estimate revenue TFP, I
shall elaborate how in later subsection.
Patent Value

To evaluate the outcome of �rms’ R&D activities, I employ the patent value dataset pub-
lished by Kogan et al. (2017). They estimate the private value (or market value) and scienti�c
value of each U.S. patent issued from 1926 to 2010 that can be matched to a publicly list �rm.
Their approach is to measure the patent value by the response of the stock market to the news
of the issuance in a short (two days) time window. They then aggregate patent-level value to
�rm-year level, and the outcome can be matched to the CCM database through permanent
company and security identi�er.

The di�erence between the �rm-year private patent value (tsm) and the �rm-year scien-
ti�c patent value (tcw) is that for the latter patents are weighted by the number of forward
citations. In this paper I use the variable of private value following the argument that it is the
private – instead of scienti�c – value, that the managers care about when it comes to R&D
decisions.

The authors also provided scaled private value (v7) and scienti�c value (v6) of patents,
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which are �rm-year patent value divided by book assets.
GDP De�ator

In Kogan et al. (2017), patent values are normalized to 1982 million dollars. Thus when
I match them to R&D expenditure (RDE)30, I would like to normalize the latter to the same
year as well. For this purpose I use the annual GDP Implicit Price De�ator in United States,
available at the website of Federal Reserve Economic Data (FRED).

A.2 Data Pre-processing

For the CRSP/Compustat merged data, I restrict the sample to U.S–based �rms that pro-
vide �nal versions of statements. We omit regulated utilities (SIC codes 4900 to 5000) and
�nancial �rms (SIC codes 6000 to 7000), get rid of �rm-year observations with values of ac-
quisitions greater than 5% of assets, and keep only if the �rm exists in the data for at least
two years. I also drop observations with negative or missing book value of assets, book value
of capital, number of employees, capital investment or revenue. Because Compustat records
end-of-year captal values, we shift the reported book value forward one year.

For each industry de�nded by a four-digit SIC code and year in the NBER-CES database, I
compute the following two variables: the labor share in value added (payroll cost divided
by value added, with variable name labshare), the ratio of value added to gross output
(vaddfrac). I then replace these two variables by their respective 10-year moving average,
and generate the capital share (capshare) as the residual of the labor share, where I make the
underlying assumption that the production function is homogeneous of degree one in labor
and capital.

Finally, merge the above two datasets by industry and year indicator (gvkey and year,
respectively), and then merge with it the Kogan et al. (2017) �rm innovation value dataset by
the permanent company and security identi�er (permno) and year. This yields an unbalanced
panel dataset, whose time spans annualy from 1970 to 2010, and covers 4,074 �rms (identi�ed
by Compustat’s permanent company identi�er, gvkey) out of 135 four-digit SIC industries.
There are 43,800 observations in total.

A.3 Construction of Key Variables

Revenue Total Factor Productivity (TFPR)
30Data on RDE is used for calibration in Section 5,

47



The revenue TFP in this paper is estimated using the cost-share based approach. De�ne
variable capital to be the book value of capital (ppent in CCM) de�ated by the investment
de�ator (piinv from the NBER-CES database). And de�ne variable output as sale multi-
plied by the value added to gross output ratio (vaddfrac), and then de�ated by the shipments
de�ator (piship). The level of TFPR is calculated as follows:

C 5 ?8, 9 ,C = exp
[
log(>DC?DC8, 9 ,C) − 20?Bℎ0A4 9 ,C log(20?8C0;8, 9 ,C) − ;01Bℎ0A4 9 ,C log(4<?8, 9 ,C)

]
.

(A.1)
The unit of the variable tfp generated as above is million dollars, the same as that of

output and capital. In this way, tfp is the residual of revenue that is not explained by the
factors capital and labor in a production function homogeneous of degree one, whose factor
shares are invariant across �rms in each industry.
R&D Expenditure (RDE) and Intensity (RDI)

The CCM database provides �rm-year observations of R&D expenses (xrd), I scale it by
�rm size, approximated by sale, to get the RDI. When the level of RDE is need, the original
variable xrd is normalized to 1982 million dollars using the GDP de�ator, the outcome is
named rde.

In Section 7 where R&D intensity is concerned, I take the natural log of RDI (lnrdi) as the
explained variable instead of using the level of it, because the latter is highly right-skewed,
with mean 448.56 and the maximum as high as 2568440. This may be the result of the fact
some �rms may have sales close to zero at times when their RDE is far from zero. For the
same reason, in Section 2, the natural log of sale (lnsale) is used as the explained variable
in the local projection models.
Control Variables

Throughout the empirical studies in this paper (Sections 2 and 7), the sets of �rm- and
industry-level control variables are consistent, and are elaborated as follows. The �rm-level
controls are:

1. Firm age (age): current year minus the year of �rst appearance of the �rm.

2. One-year lag of revenue TFP (tfp).

3. One-year lag of capital (capital).

4. One-year lag of number of employees (emp).
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5. One-year lag of market share (mkshare). The market share is the ratio of the �rm-year
sale to the sum of sales from all �rms in its industry-year cell.

There are two industry-level control variables:

1. One-year lag of number of competitors (compt). The number of competitors is the
count of �rms in the industry-year cells.

2. One-year lag of the Her�ndahl-Hirschman Index (HHI) (hhi). The description of HHI
is in footnote 3 on page 4.

A.4 Descriptive Statistics

The standard descriptive statistics of variables mentioned in the previous subsection re-
ported in Table 4 below. The statistics of RDI is from the sample after dropping outliers,
whose reason was introduced previously in subsection A.3. The last two variables are calcu-
lated at the industry-year instead of �rm-year level because of the way they are constructed.

Table 4: Descriptive Statistics of Key Variables

Variable name Mean Std. Dev. Min Max
tsm 612.38 4101.60 0.00 154092.1
v7 0.16 0.39 0.00 12.67
rde 40.84 228.51 0.00 7250.38
lnrdi 1.80 1.96 −5.64 14.76
lnsale 4.32 2.32 −6.91 12.96
age 12.07 10.73 1 60
tfp 25.46 124.59 0.00 5475.91
capital 384.92 2627.27 0.00 95284.93
emp 6.47 27.94 0.00 853
mkshare 0.11 0.21 0.00 1
compt 8.77 12.33 1 133
hhi 5188.16 2772.35 430.05 10000
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B Proofs

B.1 Proof of Proposition 1

In stochastic Bellman equation (12), the composite arriving time / ∈ (0,∞) follows ex-
ponential distribution:

�/ (I) =1 − Pr(/ > I) = 1 − Pr(/� > I, /� > I)
=1 − exp

[
−

(
_(0∗� + 0

∗
�) + ℎ · 1{Δ=8 ≠ 0}

)
I
]
. (B.1)

Let. = 4−d/ < 1, it can be shown that. follows a Beta distribution: . ∼ Beta(_/d, 1), where
_ B _(0∗

�
+ 0∗

�
) + ℎ · 1{Δ=8 ≠ 0}.

�. (H) =Pr
(
/ ≤ − ln H

d

)
=

∫ − ln H
d

0
_4−_I3I = 1 − H_/d; (B.2)

5. (H) = −
_

d
H (_/d)−1 =

1
B(_/d, 1)

H (_/d)−1, (B.3)

where B(G, H) =
∫ 1
0 C

G−1(1 − C)H−13C is the Beta function.
Therefore, in (12),

E/

[∫ /

0
4−dC3C

]
=
1
d

[
1 − E/

(
4−d/

)]
=

1
d
[1 − E. (. )]

=
1

_(0∗
�
+ 0∗

�
) + ℎ · 1{Δ=8 ≠ 0} + d ; (B.4)

E/
[
4−d/1{/ = /8}

]
=E/

[
4−d/

]
E/ [1{/ = /8}] = E. (. )Pr(/8 < /−8)

=
_(0∗

�
+ 0∗

�
) + ℎ · 1{Δ=8 ≠ 0}

_(0∗
�
+ 0∗

�
) + ℎ · 1{Δ=8 ≠ 0} + d ·

_0∗
8
+ ℎ · 1{Δ=8 < 0}

_(0∗
�
+ 0∗

�
) + ℎ · 1{Δ=8 ≠ 0}

=
_0∗

8
+ ℎ · 1{Δ=8 < 0}

_(0∗
�
+ 0∗

�
) + ℎ · 1{Δ=8 ≠ 0} + d . (B.5)

Substitute equations (B.4) and (B.5) into Bellman equation (12), I derive the optimization
system as in Proposition 1. The boundary conditions are from the fact that a �rm has no
incentive to do R&D at the maximal technology gap <.

The existence of a Markov Perfect Equilbrium is guaranteed by the application of Kaku-
tani’s Fixed-Point Theorem. An easy representation is Theorem 5.11.15 in Corbae, Stinch-
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combe and Zeman (2009).
�

Proof of Proposition 3

By the symmetry of the game, �rms � and � have the same value function and policy func-
tion31. Therefore, {Δ=� (C)} and {Δ=� (C)} have the same limiting distribution `. By de�nition
of the technology gap, Δ=� (C) = −Δ=� (C), thus for any < ∈ M, `8 = lim

C→∞
Pr(Δ=� (C) = <) =

lim
C→∞

Pr(Δ=� (C) = −<) = lim
C→∞

Pr(Δ=� (C) = −<) = `2<+2−8 . SinceM8 = −M2<+2−8 , lim
C→∞

E [Δ=� (C)] =
2<+1∑
8=1

`8M8 = 0.

�

B.2 Proof of Lemma 2

Suppose the opposite, i.e. there exists <0 ∈ M, such that E� (<0) ≤ E� (<0). Obviously,
0∗
�
(<) ≠ 0∗

�
(<) for some <, otherwise E� (<) > E� (<) for all < because �rm � has lower

marginal cost of R&D.
By De�nition 2, denote the strategy pro�le by

{
0∗
�
(Δ=�), 0∗� (Δ=�)

}
, that E� (<0) ≤ E� (<0)

means

E�
(
<0

�� {0∗�, 0∗�})
=EΔ#�

{∫ ∞

0
4−dC

[
c� (Δ#� (C)) − k�

(
0∗� (Δ#� (C))

) ]
3C

��Δ#� (0) = <, {0∗�, 0∗�}}
≤EΔ#�

{∫ ∞

0
4−dC

[
c� (Δ#� (C)) − k�

(
0∗� (Δ#� (C))

) ]
3C

��Δ#� (0) = <, {0∗�, 0∗�}}
=E�

(
<0

�� {0∗�, 0∗�}) . (B.6)

Now let �rm � play �’s strategy, and denote �rm �’s best response by 0br
�

. Compare �rm
�’s original strategy 0∗

�
and 0br

�
, there are three cases:

Case 1: 0br
�
(<) = 0∗

�
(<) for all <. In this case, it is easy to see from inequality (B.6) that

E�
(
<0

�� {0∗
�
, 0br

�

})
> E�

(
<0

�� {0∗
�
, 0∗

�

})
because the positions of the two �rms are mirrored,

and �rm � has strictly lower marginal cost than �rm �.
Case 2: 0br

�
(<) > 0∗

�
(<) for some <. This contradicts that equilibrium strategy 0∗

�
is the

31Otherwise it’s easy to show there is contradiction by switching �rm labels
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best response to 0∗
�

. This is because �rm � faces the same problem when � plays 0∗
�

as �
faces in the original MPE. However, the marginal cost of R&D is strictly higher for �rm �,
thus 0br

�
(<) > 0∗

�
(<) is impossible.

Case 3: 0br
�
(<) ≤ 0∗

�
(<) for all <, and this inequality holds strictly for some <. This

implies that for any C > 0 and any : ∈ {1, 2, · · · , <},

Pr
(
Δ#� (C) = : |Δ#� (0) = <;

{
0∗�, 0

br
�

})
≥Pr

(
Δ#� (C) = : |Δ#� (0) = <;

{
0∗�, 0

∗
�

})
=Pr

(
Δ#� (C) = : |Δ#� (0) = <;

{
0∗�, 0

∗
�

})
(B.7)

The last equality is derived from the symmetry of this dynamical system: once the initial
states and R&D are �ipped and strategies of players � and � swapped, the random variable
Δ# 5 (C) is governed by the same stochastic process which Δ#− 5 (C) initially follows. For the
same reason,

Pr
(
Δ#� (C) = : |Δ#� (0) = <;

{
0∗�, 0

br
�

})
≤ Pr

(
Δ#� (C) = : |Δ#� (0) = <;

{
0∗�, 0

∗
�

})
(B.8)

for any C > 0 and any : ∈ {−<,−< + 1, · · · , 0}.
In either case 1 or case 3, J�

(
<0

�� {0∗
�
, 0br

�

})
> E�

(
<0

�� {0∗
�
, 0∗

�

})
, i.e. �rm � can achieve

a strictly higher performance measure by deviating from 0∗
�

to 0∗
�

, however it chooses not
to, which contradicts the rational agent assumption. Therefore, the major premise, that the
existence of <0 ∈ M such that E� (<0) ≤ E� (<0), is false.

�

B.3 Proof of Lemma 3

Firstly, if 0∗
�
(−1) ≤ 0∗

�
(−1), it must be that 0∗

�
(0) < 0∗

�
(0). To see this, notice that from

Corollary 1,

E 5 (1) − E 5 (0) =
1

_0∗− 5 (−1) + d + ℎ

[
c 5 (1) +

(
_0∗− 5 (−1) + ℎ

)
E 5 (0) −

(
_0∗− 5 (−1) + ℎ

)
E 5 (0) − dE 5 (0)

]
=

1
_0∗− 5 (−1) + d + ℎ

[
c 5 (1) − dE 5 (0)

]
. (B.9)
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Suppose 0∗
�
(−1) ≤ 0∗

�
(−1), from Corollary 1, Lemma 2 and equation (B.9),

3k�
(
0∗
�
(0)

)
30�

=_[E� (1) − E� (0)] =
_

_0∗
�
(−1) + d + ℎ [c� (1) − dE� (0)]

<
_

_0∗
�
(−1) + d + ℎ [c� (1) − dE� (0)] = _[E� (1) − E� (0)]

=
3k�

(
0∗
�
(0)

)
30�

, (B.10)

Where the fact c� (<) = c� (<) for any < ∈ M comes from Assumption 1. Since
3k� (0)
30�

<
3k� (0)
30�

, inequality (B.10) implies 0∗
�
(0) < 0∗

�
(0). Now that 0∗

�
(−1) ≤ 0∗

�
(−1)

and 0∗
�
(0) < 0∗

�
(0), for either < = −1 or < = 0,

3k�
(
0∗
�
(<)

)
30�

<
3k�

(
0∗
�
(<)

)
30�

, thus

[E� (1) − E� (1)] − [E� (−1) − E� (−1)] = [E� (1) − E� (−1)] − [E� (1) − E� (−1)]
=[E� (1) − E� (0) + E� (0) − E� (−1)] − [E� (1) − E� (0) + E� (0) − E� (−1)]

=

(
3k�

(
0∗
�
(0)

)
30�

+
3k�

(
0∗
�
(−1)

)
30�

)
−

(
3k�

(
0∗
�
(0)

)
30�

+
3k�

(
0∗
�
(−1)

)
30�

)
<0. (B.11)

On the other hand, from Corollary 1, in the case < = 1, I have

E� (1) − E� (1) =
1

_0∗
�
(−1) + d + ℎ

[
c(1) +

(
_0∗� (−1) + ℎ

)
E� (0)

]
− 1
_0∗

�
(−1) + d + ℎ

[
c(1) +

(
_0∗� (−1) + ℎ

)
E� (0)

]
; (B.12)

E� (−1) − E� (−1) =
1

_0∗
�
(−1) + d + ℎ

[
c(−1) − k�

(
0∗� (−1)

)
+

(
_0∗� (−1) + ℎ

)
E� (0)

]
− 1
_0∗

�
(−1) + d + ℎ

[
c(−1) − k�

(
0∗� (−1)

)
+

(
_0∗� (−1) + ℎ

)
E� (0)

]
.

(B.13)

Equations (B.12) and (B.13) implies

[E� (1) − E� (1)] − [E� (−1) − E� (−1)]

=
1

_0∗
�
(−1) + d + ℎ

[
c(1) + c(−1) + k�

(
0∗� (−1)

)
+

(
_0∗� (−1) + ℎ

)
(E� (0) + E� (0))

]
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− 1
_0∗

�
(−1) + d + ℎ

[
c(1) + c(−1) + k�

(
0∗� (−1)

)
+

(
_0∗� (−1) + ℎ

)
(E� (0) + E� (0))

]
(B.14)

From k 5 (0) = 0 in Assumption 2 and that
3k� (0)
30�

<
3k� (0)
30�

for all 0 ≥ 0, it’s easy to
show that k� (0) < k� (0) for all 0 > 0. Therefore, in equation (B.14), [E� (1) − E� (1)] −
[E� (−1) − E� (−1)] > 0 when arrival rate multiplier _ > 0 is small enough, which contradicts
inequality (B.11). Therefore, 0∗

�
(−1) ≤ 0∗

�
(−1) is negated.

Now that 0∗
�
(−1) > 0∗

�
(−1), similar to inequality (B.10), it’s easy to see that

3k�
(
0∗
�
(0)

)
30�

>

3k�
(
0∗
�
(0)

)
30�

when the discount factor d > 0 is small enough, which implies 0∗
�
(0) > 0∗

�
(0).
�

B.4 Proof of Lemma 4

De�ne the lower contour set C 5
(
E |3 5 , 3− 5

)
the set of all strategy pro�les {0� (C), 0� (C)}∞C=0

by which the performance measure of �rm 5 is no greater than E:

C 5
(
E |3 5 , 3− 5

)
B

{
{0� (C), 0� (C)}∞C=0 : J5

(
3 5 , 3− 5

�� {0 5 (C), 0− 5 (C)}∞C=0)} (B.15)

It is important that both contour sets C� and C�, whenever non-empty, have their elements
in the same order of the strategies of �rms � and �, otherwise any operation of these two
sets is meaningless.

Fix 3� and 3�, suppose for each 5 ∈ {�, �}, value function E 5 is de�ned at (3 5 , 3− 5 )
and (3 5 + 1, 3− 5 + 1). By pro�t function in Assumption 3, for any arbitrary strategy pro�le
{0̃� (C), 0̃� (C)}∞C=0,J5

(
3 5 , 3− 5

�� {0̃� (C), 0̃� (C)}∞C=0) > J5 (
3 5 + 1, 3− 5 + 1

�� {0̃� (C), 0̃� (C)}∞C=0) . There-
fore, for 5 ∈ {�, �},

C 5
(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 , 3− 5

)
( C 5

(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 + 1, 3− 5 + 1

)
(B.16)

and

mC 5
(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 , 3− 5

)
∩ mC 5

(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 + 1, 3− 5 + 1

)
= ∅, (B.17)

where mC means the boundary of set C.
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By de�nition, the equilibrium strategy pro�le
{
0∗
�
(C), 0∗

�
(C) |3� + 1, 3� + 1

}∞
C=0 belongs to

C 5
(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 + 1, 3− 5 + 1

)
, but not to C 5

(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 , 3− 5

)
, which

means

C 5
(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 + 1, 3− 5 + 1

)
\ C 5

(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 , 3− 5

)
≠ ∅. (B.18)

Now discuss whether the equilibrium strategy pro�le at state
{
0∗
�
(C), 0∗

�
(C) |3�, 3�

}∞
C=0

belongs to C 5
(
E 5 (3 5 + 1, 3− 5 + 1) |3 5 , 3− 5

)
. If it doesn’t, by the de�nition of lower contour

set, it implies E 5 (3 5 , 3− 5 ) > E 5 (3 5 + 1, 3− 5 + 1) and the proof thus �nishes. If it does, by
(B.17) and (B.18), �rm 5 can deviate to any strategy in the non-empty di�erence set in (B.18),
where for any strategy − 5 can choose, �rm 5 will end up with a strictly higher performance
measure than E 5 (3 5 , 3− 5 ), which contradicts that

{
0∗
�
(C), 0∗

�
(C) |3�, 3�

}∞
C=0 consists of the

optimal strategies for both �rms.
�

B.5 Proof of Proposition 7

Suppose the state prior to the shock is (3�, 3�). For either �rm 5 ∈ {�, �}, by Lemma
4, both E 5 (3 5 + : − 1, 3− 5 + :) and E 5 (3 5 + :, 3− 5 + :) are monotonically decreasing in :
and bounded below by zero. Therefore, as X→ 0+, lim

:→∞
E 5 (3 5 +:−1, 3− 5 +:) and lim

:→∞
E 5 (3 5 +

:, 3− 5 +:) exists and are equal. This implies lim
:→∞

[
E 5 (3 5 + : − 1, 3− 5 + :) − E 5 (3 5 + :, 3− 5 + :)

]
=

0, or that for any Y > 0, there exists �̃ (Y) such that for both 5 = � and 5 = �, E 5 (3 5 + : −
1, 3− 5 + :) − E 5 (3 5 + :, 3− 5 + :) < Y if : ≥ �̂ (Y). By Proposition 5 and the strict increasing-
ness of R&D cost function k 5 (Assumption 2), this implies that for either �rm, the equilibrium
R&D e�ort satis�es 0∗

5
(3 5 , 3− 5 ) > 0∗5 (3 5 + :, 3− 5 + :) for : large enough.

�

B.6 Proof of Proposition 8

Without loss of generality, suppose lim
B→C−

3� (B) = 0. Firstly discuss the case where lim
B→C−

3� (B) <
<. By updating rule (28) and �rst-order condition (33), lim

B→C−
0∗� (B) = k

−1
� (_ [E� (0, 3� + 1) − E� (0, 3�)]),

and 0∗
�
(C) = k−1

�
(_ [E� (0, 3� + 1) − E� (1, 3� + 1)]). By Lemma 4, E� (0, 3�) > E� (1, 3� + 1).

By the strict Monotonicity of k� as in Assumption 2, 0∗
�
(C) > lim

B→C−
0∗� (B).

If lim
B→C−

3� (B) = <. By boundary condtion (34), lim
B→C−

0∗� (B) = 0. Again by �rst-order
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condtion (33), 0∗
�
(C) > 0. Thus 0∗

�
(C) > lim

B→C−
0∗� (B) holds.

�

C Model Parameterization

C.1 Calibration

To determine parameter ^ 5 , 5 ∈ {�, �} as in the R&D cost function (36), I use equation
(37) derived from the �rst-order condition with respect to the R&D e�ort. The R&D cost
k 5 (0) is approximated empirically by R&D intensity from the data, and the change in �rm
value induced by the technological progress is approximated by the �rm-year innovation
value scaled by sale. The latter is justi�ed by the way patent values are estimated – the
change in �rm value on the stock market explained by the news of new patent. It is scaled
by �rm-year sale because it is to which R&D expenditure is scaled to get the RDI.

In this way, denote �rm-year innovation value, RDE and sale by CB<8, 9 ,C , A348, 9 ,C and
B0;48, 9 ,C , respectively, and ^ 5 is calibrated by

^� =
1
�)

∑
9 ,C

1
# 9 C

∑
8

(
CB<8, 9 ,C/B0;48, 9 ,C

)2
A348, 9 ,C/B0;48, 9 ,C

× 1{288, 9 ,C = 1}; (C.1)

^� =
1
�)

∑
9 ,C

1
# 9 C

∑
8

(
CB<8, 9 ,C/B0;48, 9 ,C

)2
A348, 9 ,C/B0;48, 9 ,C

× 1{238, 9 ,C = 1}, (C.2)

where � are ) are the numbers of industries and years in the sample, and # 9 C the number
of �rms in industry-year cell ( 9 , C). Indicators 1{28

8, 9 ′,C = 1} and 1{23
8, 9 ′,C = 1} are de�ned

in (46), and is used to distinguish low- and high-cost �rms in data. Here it means that I’m
treating the �rms with log-RDI between the second and third deciles in its industry-year
cell as representative for the low-cost �rm in my model; and those between the seventh and
eighth deciles for the high-cost �rm. In the model, the low-cost �rm, in expectation, exerts
more R&D e�ort than the high-cost �rm under the stationary distribution.

The sample mean is �rstly taken within each industry-year cell, then averaged again
across all such cells. This is to be consistent with the approach for the GMM estimation
which will be introduced as follows.
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C.2 GMM Estimation

With any arbitrary set of model parameters \, the numerical solution of the policy func-
tions

{
0∗
�
(Δ=� |\), 0∗� (Δ=� |\)

}
Δ=�=−Δ=�∈M is conditional on \. By Proposition 2, the station-

ary distribution `(< |\), < ∈ M is also a function on parameter set \. Letting \ = (c, ℎ), the
two parameters remains undetermined, I construct selected moments using the stationary
distribution, and calculate their weighted distance to their counterparts in the data. This dis-
tance is then minimized over the parameter space to pin down the value of \. The following
is a step-by-step summary of my approach regarding the GMM estimation.

1. There needs to be two targeted moments to estimate the two parameters: total pro�t
c > 0 and imitation rate ℎ > 0. One of the chosen moment is the expected ratio of the
low-cost �rm’s R&D e�ort to that of the high-cost �rm’s:

q1 = E

[
0∗
�
(Δ=�)

0∗
�
(Δ=�)

]
. (C.3)

And the other one is the expected ratio of the low-cost �rm’s innovation value to that
of the low-cost �rm’s:

q2 = E

[
(E� (Δ=�) − E� (Δ=� − 1)) × 1{Δ=� > −<}
(E� (Δ=�) − E� (Δ=� − 1)) × 1{Δ=� > −<}

]
. (C.4)

2. With a �xed set of parameters \, I solve the baseline model numerically, and obtain the
stationary distribution `(\) using the transition rate matrix & and jump matrix % as
in (21). Then I compute the moments using `(< |\) as follows:

q1(\) =
<∑

<=−<
`(< |\)

0∗
�
(< |\)

0∗
�
(−< |\) ; (C.5)

q2(\) =
<∑

<=−<+1
`(< |\) E� (< |\) − E� (< − 1|\)

E� (−< + 1|\) − E� (−< |\)
. (C.6)

3. Now calculate the corresponding moments from data, denoted Φ = (Φ1,Φ2). While
doing so I use R&D intensity to approximate the R&D cost k, and innovation value
scaled by book value of asset, v732, as the proxy of the change in �rm value induced by

32The variable name v7 is from the dataset of Kogan et al. (2017).
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innovation.

Φ1 =
1
�)

∑
9 ,C

∑
8 A388, 9 ,C × 1{288, 9 ,C = 1}∑
8 A388, 9 ,C × 1{238, 9 ,C = 1}

; (C.7)

Φ2 =
1
�)

∑
9 ,C

∑
8 E78, 9 ,C × 1{288, 9 ,C = 1}∑
8 E78, 9 ,C × 1{238, 9 ,C = 1}

; . (C.8)

Take the calculation ofΦ1 for example. Firstly for each industry-year cell ( 9 , C), take the
sum of RDI over the eighth and third decile groups, respectively. Secondly, compute the
ratio of these two sums, which is equivalent to computing the ratio of the means of the
RDI in the eighth group to that in the third group, because the number of observation in
each decile group is by de�nition equal. Finally, compute the mean of this ratio across
all industry-year cells. This is the sample counterpart of moment (C.3), the expected
ratio of R&D costs. The similar can be said about (C.8).

4. Let ,̂ be the covariance matrix of the two ratios

∑
8 A388, 9 ,C × 1{288, 9 ,C = 1}∑
8 A388, 9 ,C × 1{238, 9 ,C = 1}

and

∑
8 E78, 9 ,C × 1{288, 9 ,C = 1}∑
8 E78, 9 ,C × 1{238, 9 ,C = 1}

,

invert it to get ,̂−1. The distance between q(\) =
(
q1(\), q2(\)

)
and Φ is a function

of the parameters to be estimated:

&(\) =
(
q(\) −Φ

)′
,̂−1

(
q(\) −Φ

)
(C.9)

which is to be minimized over the parameter space (c, ℎ), and the minimizer is the
estimated values. Since the dimension is low, I use the grid search method to �nd the
local minimizer reported in the paper.
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