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Abstract

Can a centralized school choice clearinghouse generate a stable matching if it does not allow

students to express their preferences over both programs and peers? Theoretically, we show

that a stable matching exists with peer preferences under mild conditions, but finding one via

canonical mechanisms is unlikely. We show that increasing transparency about the previous

cohort of students enrolling at each program induces a tâtonnement wherein the distributions

of former students play the role of prices. We theoretically model this process and develop a

test for match stability. We implement this test empirically in the college admissions market

in New South Wales (NSW), Australia, where we find evidence for the existence of peer pref-

erences. We show that the NSW market fails to converge over time, and that this instability

especially affects low socioeconomic status students. To address these issues, we propose a

new mechanism that improves upon the current design, and we show that this mechanism

generates a stable matching in the NSW market.
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I Introduction
Creating a stable matching–a matching in which no individual wants to leave her partner(s)

and rematch with another willing partner (or remain unmatched)–is often viewed as the chief con-

cern in many market design settings (Roth, 2002). Following the application of matching theory

to education markets (Abdulkadiroğlu and Sönmez, 2003), at least 46 countries now use central-

ized mechanisms to assign students to colleges (Neilson, 2019). The mechanisms used universally

assume that there are no complementarities in student preferences; that is, students do not have

preferences over their peers. However, a large literature has established the importance of peer ef-

fects on educational outcomes, and suggests the possibility of peer preferences at the college level.1

Given this evidence, what happens if the matching mechanism is misspecified, in that students

are only allowed to express preferences over college programs, but have preferences over both

programs and their peers?

In this paper, we seek to answer three questions: Do students have peer preferences? Does a

stable matching exist when students have peer preferences? What are the consequences of failing

to account for peer preferences in a centralized matching mechanism? We study these questions

theoretically and empirically, using data from NSW’s centralized matching market for college

admissions. Throughout our analysis, we make no normative judgments as to why students

might have peer preferences or whether they improve educational achievement.

Theoretically, we find that a stable matching exists when students have peer preferences, un-

der mild conditions. However, mechanisms used in practice that do not solicit student preferences

over peers are unlikely to yield a stable matching. Guided by a common convention in real-world

markets, we study a dynamic process in which students update their beliefs on their potential

peers at each program using information from the previous cohort’s matching. This induces a

pseudo-tâtonnement process, and we derive a simple test for convergence to a stable matching.

This process is not guaranteed to converge to a stable matching–in fact, it can possibly converge

only for subsets of agents in the market–and we discuss sufficient conditions under which it con-

verges to a stable matching in finite time.

Empirically, we use data from NSW’s college admissions market to establish the existence

1See Sacerdote (2011) for a literature review. At the college level, there is evidence of peer effects in college student
achievement. Sacerdote (2001) and Stinebrickner and Stinebrickner (2006) find that roommates have an effect on
student achievement, while Conley et al. (2018) find similar results using the study times of individuals in a social
network. At the primary and secondary school levels, a series of recent papers show that a student’s ordinal “ability"
ranking within her school and class has a negative effect on educational achievement; that is, students perform worse
when they have higher achieving peers (see Attewell (2001); Abdulkadiroğlu, Angrist, and Pathak (2014); Dobbie and
Fryer Jr. (2014); Elsner and Isphording (2017); Elsner, Isphording, and Zölitz (2018); Murphy and Weinhardt (2020);
Yu (2020); Zárate (2019); Carrasco-Novoa, Diez-Amigo, and Takayama (2021)). Abdulkadiroğlu, Angrist, and Pathak
(2014) do not find a large effect of peer ability on student performance.
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of peer preferences and to test the stability of matchings generated by the existing assignment

process. Our data suggest that students prefer not to match with a program where they are near

the bottom of the ability distribution. This pattern accords with the “big-fish-little-pond effect,"

which has been well documented in the education literature, wherein high achieving peers can

lower a student’s self concept.2 Careful recent research in specific education markets has found

that a student being lower in the “ability" distribution leads to psychic costs (Pop-Eleches and

Urquiola, 2013) and declines in achievement (Carrell, Sacerdote, and West, 2013). We use data on

admissions outcomes for more than a decade to test our theoretical predictions of convergence to

a stable matching. We verify that the top "quality" part of the market converges while the bottom

does not.

To begin our formal analysis, and to provide a foundation for our empirical findings, we

construct a matching model with a continuum of students and finitely many programs, as in

Azevedo and Leshno (2016). We depart from this model by assuming that student preferences

depend on the student’s intrinsic valuation of programs and the distribution of student abilities

at each program. We allow these preferences to be arbitrary, encompassing cases in which, for

example, students wish to attend programs that enroll the highest-ability peers, or the opposite,

where students wish to avoid more able colleagues. Our analysis extends in a straightforward

way to student preferences over the distribution of other peer characteristics.

As in an equilibrium of a club good economy (see e.g Ellickson et al. (1999) and Scotchmer

and Shannon (2015)), a stable matching is endogenously supported by the set of students at each

program; no student wishes to block the matching in favor of another program that is willing

to take her, given the students already assigned to each program. As each student is "small" in our

model, we show that a stable matching exists under a mild continuity condition as in Leshno

(2021): a sufficiently small change in the matching changes the ordinal preferences of at most a

small measure of students. Unlike in Azevedo and Leshno (2016), the set of stable matchings is

not generally a singleton.

How can a market designer ensure that a stable matching is created? Soliciting student pref-

erences as functions of the sets of students attending each program may be both too complex for

students to report (Budish and Kessler, 2020) and outside the realm of consideration for many

centralized clearinghouses (Carroll, 2018). Canonical, static mechanisms–such as the celebrated

deferred acceptance mechanism of Gale and Shapley (1962)–in which students are only able to

list ordinal preferences over programs, and not over peers–may fail to deliver a stable matching.

We show that when students do not have accurate beliefs about the preferences of other students,

these mechanisms likely fail to generate a stable matching. As a key lesson of the market de-
2See Marsh et al. (2008); Seaton, Marsh, and Craven (2009).
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sign literature–the so-called Wilson Doctrine (Wilson, 1987)–is to avoid assumptions of common

knowledge and sophistication, we therefore view this as a negative result.

We therefore focus the status-quo matching procedure. We study a discrete-time dynamic

process that mirrors that of our empirical setting: students observe the distribution of abilities at

each program in the previous cohort3 and then submit a descending ordinal ranking of programs

to a centralized matchmaker. We refer to this ranking as a student’s Rank Order List (ROL). The

centralized matchmaker then delivers a stable matching with respect to the ROLs (as well as

program capacities and program rankings over students).

Under the assumption that market fundamentals do not change over time, and that students’

beliefs of the distribution of peers in the current period mirrors the observed matching in the pre-

vious period, this market forms a discrete-time tâtonnement process. The distribution of student

scores serves the role of prices in a typical exchange economy, and students best respond to the

previous period’s “prices," just as in the original Cournot updating procedure.4 Unlike traditional

tâtonnement processes, a matching is constructed in each period. Therefore, we refer to this as the

Tâtonnement with Intermediate Matching (TIM) process.

Our main theoretical result provides a simple tool for an observer to judge the stability of a

sequence of matchings in the TIM process: the distribution of student abilities at each program is

(approximately) in steady state if and only if the market creates a (approximately) stable matching.

We identify three shortcomings of the TIM process in ensuring stability. First, it need not

converge, even when there is a unique stable matching. In these cases, it will fail to generate

a stable matching, even in the long run. Second, even if it does converge, it need not do so

immediately, and therefore, instability persists along the path to stability. Third, the process is

fragile to changes in the market; if, for example, programs enter an exit between time periods,

then little information may be transmitted across cohorts.

We suggest an alternative mechanism that more explicitly accounts for peer preferences. This

mechanism differs importantly in that it induces a tâtonnement procedure within each cohort of

students, by breaking up each cohort into small subcohorts, which each report their preferences

sequentially in order to provide information on peers to the subsequent subcohort. We call this

the Tâtonnement with Final Matching (TFM) mechanism.5 The TFM mechanism has several desir-

3This process of providing information on the previous cohort’s matching is common in many higher education
markets; for example, U.S. News and World Report publishes a popular annual publication that reveals test scores of
entering classes from the previous year at U.S. universities, as an aid to current applicants.

4This is also similar to the notion of fictitious play, proposed by Brown (1951). As Berger (2007) remarks, the
simultaneous decisions made within cohort are actually a variant of the original fictitious play framework.

5This mechanism resembles those in use in higher education markets in China, Brazil, Germany and Tunisia (see
Bo and Hakimov (2019); Luflade (2019)), but importantly requires different subcohorts of students to report their
preferences sequentially.
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able properties. First, it generates a (approximately) stable matching whenever the TIM process

converges to a stable matching in the long run, and does so without necessitating a string of un-

stable matchings for early cohorts. Second, for an appropriate starting condition, it generates a

(approximately) stable matching in a wide class of markets (i.e. in those markets where we can

guarantee the existence of a stable matching). This stands in contrast to the TIM mechanism.

Third, it is not susceptible to instability caused by changes in market primitives (such as changes

in underlying preferences or changes in the set of programs) as the mechanism does not rely on

information from the previous year’s cohort. Fourth, it induces a game in which truthfully re-

porting one’s ordinal preferences is an ε−Nash equilibrium. We show that these benefits come at

little administrative cost for students; by appropriately selecting the number of subcohorts, only

a small fraction of students will have to re-state their preferences.

Other papers have studied peer preferences in a centralized matching framework. One sub-

literature focuses on the effects of couples in matching markets (see e.g. Roth and Peranson, 1999;

Kojima, Pathak, and Roth, 2013). These papers differ from ours in that the peer preferences they

study depend only on the presence of an agent’s spouse. Another subliterature (Echenique and

Yenmez, 2007; Bykhovskaya, 2020; Pycia, 2012; Pycia and Yenmez, 2019) studies more general

forms of peer preferences with small sets of students (i.e. the set of students is not a continuum,

nor do the results look at limiting cases of many students). Both of these subliteratures primarily

focus on identifying conditions under which stable matchings exist and can be found. This con-

trasts to our setting, where a stable matching exists under very mild conditions. More similar to

our paper is contemporaneous research studying stability with peer preferences in large match-

ing markets (Greinecker and Kah, 2021; Leshno, 2021). Our model is particularly similar to that

of Leshno (2021) as both build on Azevedo and Leshno (2016). One main difference is that our

model allows for students to care about the entire distribution of peer abilities, whereas Leshno’s

assumes students care only about summary statistics of student abilities. We provide theoreti-

cal results for this case in Section II.D The focuses of our papers are also different, with Leshno

providing several results on how the continuum model is a valid approximation of large, finite

models. As a result, we do not pursue such findings in our similar setting.

We investigate the presence and impact of peer preferences on stability using data from NSW’s

centralized market for college admissions. NSW matches students to programs using the (student-

proposing) deferred acceptance algorithm. Students are ranked predominantly based on the re-

sults of a standardized test, the Australian Tertiary Admissions Rank (ATAR). In turn, each student

submits a ROL over programs. Importantly, in our setting, students have information on the

ATAR scores of the cohort admitted to each program in the previous year. We refer to this going

forward as the Previous Year’s Statistic (PYS).
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The ATAR score is a proxy for student ability as it predicts student academic performance at

the university level (Manny, Yam, and Lipka, 2019). As in our model, the PYS provides applicants

with information on the ATAR score distribution, and hence ability distribution, of students ad-

mitted to each program in the previous year. There is anecdotal evidence that students’ program

selection responds to the ATAR scores of the previous cohort. As one student says, "I was con-

templating changing from Commerce/Engineering to Science/Engineering as other people who

obtained a similar [ATAR] to myself were doing the Science double. Not many opt for commerce"

(James, Baldwin, and McInnis, 1999, p.72).

In our dataset, we observe the universe of applicant ATAR scores, applicants’ ROLs, and pro-

gram PYSs in Australia’s largest state, New South Wales, and the Australian Capital Territory

from 2003 to 2016.6 We find that students’ ROLs respond systematically to information about

prospective peer quality, and we argue that this is indicative of preferences over peer ability. More

specifically, students have ordinal ranking concerns (as in Frank, 1985; Azmat and Iriberri, 2010;

Tran and Zeckhauser, 2012; Tincani, 2018) and prefer not to rank programs that admit peers with

ATAR scores systematically above their own. The utility effect we infer from entering a program

is asymmetric, and similar to the analogous function in Card et al. (2012); students face a utility

loss only if their score is below the PYS, and the utility loss is increasing in the difference. We

call these "big-fish" preferences, in reference to the big-fish-little-pond analogy. The effect of these

preferences is large: we estimate that 25% of students would be matched to a different program

if we "removed" the peer component of preferences. We are agnostic as to the genesis of peer

preferences and whether they reflect educational value added. Although we are the first to our

knowledge to show the existence of peer preferences at the university level, recent papers find

various preferences over peer characteristics at the high school level (Rothstein, 2006; Beuermann

et al., 2019; Allende, 2020), and that these peer preferences matter above and beyond value-added

measures (Abdulkadiroğlu et al., 2020; Beuermann and Jackson, 2019).

We use the data to establish the existence of big-fish peer preferences in two ways. First, we

look across time at the response of applicants to changes in programs’ PYSs. In line with big-fish

preferences, as a program’s PYS increases, it receives fewer applications from students with lower

ATAR scores. Moreover, the response is asymmetric; students with scores greater than the PYS

are no less likely to rank the program.

Second, we look within the same applicant over time. An important feature of this market is

that students submit an ROL before learning their own ATAR score, and can modify the ROL after

receiving their score. We observe one snapshot of each applicant’s ROL immediately before they

6The Capital Territory is a small, landlocked enclave surrounded by NSW. It contains Australia’s capital city of
Canberra.
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learn their own ATAR score, and one after. Roughly one month elapses between these snapshots.

Big-fish preferences predict than an applicant will adjust her ROL to prioritize programs with

similar PYSs after learning her true ATAR score.7 Thus, we compare how students with initially

similar ROLs respond to different ATAR score results. After learning their ATAR scores, students

alter their ROLs in the following way: they systematically drop programs with PYSs far above

their own ATAR score, add new programs with PYSs closer to their own ATAR score, and promote

the rank of programs that were on their initial ROL and have PYSs closer to their own ATAR score.

The "functional form" and root causes of peer preferences potentially depend on a number

of factors that differ across markets (for a similar thesis, see Sacerdote, 2014). Peer preferences,

and differences therein, can be caused by “direct" preferences for peer ability that vary due to

cultural norms8 or student autonomy.9 But they can also vary due to “indirect" factors that are

frequently unmodeled in matching papers, such as career concerns or uncertainty about future

financial opportunities.10 We refer to any setting in which the inclusion of the peer ability dis-

tribution into students’ utility functions captures students’ ordinal preferences as a market with

“peer preferences." Our main message is agnostic to the form or cause of peer preferences; the test

we derive for stability in the presence of peer preferences relies on studying the convergence (or

lack thereof) of within-program student ability over time, and this test applies to a general class

of functional forms of peer preferences.

We demonstrate how the functional form of peer preferences can affect long-run stability by

focusing our attention on two markets representative of the literature on peer preferences: in one,

students have big-fish preferences and prefer not to be overmatched by peers, and in another,

students prefer to be amongst higher ability peers. First, we study the long-run stability of the

NSW market (with big-fish preferences). We investigate the evolution of program PYSs over time

in the NSW market, and show that volatility in program PYS decreases with time, and almost

entirely stabilizes by the twelfth year that we observe a program in the data. However, there is

significant entry and exit in the market, which does not allow all program PYSs to reach steady

state. We show theoretically and empirically that programs with high PYSs are unaffected by the

7Nei and Pakzad-Hurson (2021) also discuss how learning new information that affects preferences can impact
the stability of a higher education market.

8A long literature establishes the so-called "tall poppy" syndrome in Australia, wherein students react negatively
to those who overachieve relative to peers (see, e.g. Feather, 1989), possibly leading Australians to avoid programs
they perceive their peers to be "overachieving."

9Pop-Eleches and Urquiola (2013) and Ainsworth et al. (2020) study the same high school admissions market and
find that while students at the bottom of the ability distribution at a program suffer from psychic costs, but that
parents prefer to send their children to programs with higher-achieving students. Teske, Fitzpatrick, and Kaplan
(2007) find that older students have more involvement in school choice decisions; it stands to reason that in college
admissions markets in which students have more autonomy, the direction of peer preferences could differ.

10Dillon and Smith (2017) find that students with more information about financial aid opportunities are more
likely to select programs with higher-ability peers.
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entry and exit of programs with lower PYSs, and we note empirically that the entry and exit of

programs typically happens amongst those with lower PYSs. We show that this implies there is

long-run stability at the "top" of the market, but not at the bottom. This instability is associated

with higher attrition rates, and particularly impacts low-socioeconomic status students.

Second, we study a market for high school admissions. We model a main feature present in

Epple and Romano (1998) and Avery and Pathak (2021), which is supported empirically by Roth-

stein (2006), Beuermann et al. (2019) Beuermann and Jackson (2019), and Abdulkadiroğlu et al.

(2020)–that (parents of) students prefer schools with higher achieving peers to those with lower

achieving peers. We show that a stable matching is generated in every period–with or without

entry and exit of programs–when student preferences do not depend on other characteristics of

schools.

The remainder of paper is structured as follows: Section II introduces our model and main

theoretical results, and discusses the long-run stability of two markets; Section III discusses de-

tails of the NSW Tertiary Education System and provides evidence of peer preferences; Section

IV empirically analyzes the (lack of) stability present in the NSW market; Section V concludes.

Omitted proofs and additional results are relegated to the Appendix.

II Model

II.A Setup

Much of our setup is drawn from those of Azevedo and Leshno (2016) and Leshno (2021).

We initially discuss a static environment, and later move to a dynamic one with a new cohort of

students to be matched in each period.

A continuum of students is to be matched to a finite set of programs C = {c1, c2, ..., cN} ∪ {c0}.
c0 represents the outside option for each student. Each program c ∈ C has capacity qc > 0 measure

of seats, with qc0 = ∞. Let q = {qc}c∈C. Θ represents the set of student types, with typical element

θ. η is a non-atomic measure over Θ in the Borel σ−algebra of the product topology of Θ, and H

is the set of all such measures. We normalize η(Θ) = 1 for all η ∈ H.

We begin by defining an assignment of students to programs. An assignment α is a measurable

function α : C ∪Θ→ 2Θ ∪ 2C such that:

1. for all θ ∈ Θ, α(θ) ⊂ C,

2. for all c ∈ C, α(c) ⊂ Θ is measurable, and

3. θ ∈ α(c) if and only if c ∈ α(θ).
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Condition 1. states that a student can be assigned to a subset of programs, condition 2. states

that a program can be assigned to a subset of students, and condition 3. states that a student is

assigned to a program if and only if the program is also assigned to that student. This definition

does not take into account feasibility. Specifically, it does not rule out situations in which capacity

constraints are violated–a student can be assigned to multiple programs, and a program can be

assigned to a larger measure of students than its capacity. Therefore, not all assignments are

feasible, but this construction is a useful building block. Let A be the set of all assignments.

We further restrict assignments to take into account feasibility. A matching µ is a measurable

function µ : C ∪Θ→ 2Θ ∪ C such that:

1. for all θ ∈ Θ, µ(θ) ∈ C,

2. for all c ∈ C, µ(c) ⊂ Θ is measurable and η(µ(c)) ≤ qc, and

3. θ ∈ µ(c) if and only if c = µ(θ).

Compared to an assignment, Condition 1 adds that a student can only be matched to one

program, and condition 2 adds that the measure of students matched to a program cannot exceed

the capacity of that program. We will often refer to a student θ for whom µ(θ) = c0 as being

“unmatched." LetM be the set of all matchings.

Each student type θ ∈ Θ is given by θ = (uθ, rθ). uθ(c|α) represents the cardinal utility θ

derives from being assigned to only program c given that other students are assigned according

to assignment α ∈ A. That is, uθ(c|α) = uθ(c|α(θ) = c and {α(θ′)}θ′∈Θ\{θ}). As any matching

restricts that a student θ cannot be matched to multiple programs, uθ is sufficient to fully describe

preferences for our purposes. We normalize uθ(c0|α) = 0 for all θ ∈ Θ and α ∈ A, that is, each

student receives a constant utility from being unassigned regardless of the assignments of other

students. rθ,c ∈ [0, 1] is student θ’s score at program c. We write rθ to represent the vector of scores

for student θ at each program. As scores will only convey ordinal information in our analysis,

without loss of generality, we assume that for each η ∈ H, η{θ|rθ,c < y} = y for all y ∈ [0, 1] and

all c ∈ C, that is the marginal distribution of every program’s rankings is uniform. It will often be

useful to denote the ordinal preferences of θ ∈ Θ induced by uθ. Let P be the set of all possible

linear orders over programs c ∈ C. Let �θ|α∈ P represent θ’s induced preferences over programs

at assignment α, that is ci �θ|α cj (ci �θ|α cj) if and only if uθ(ci|α) ≥ uθ(cj|α) (uθ(ci|α) > uθ(cj|α)).
We denote an economy by E = [η, q], a distribution of student types and a vector of program

capacities.

To capture that peer preferences depend on the “ability" of students at a program, we con-

sider the distribution of scores at each program given an assignment. For each x ∈ [0, 1]N+1,
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c ∈ C, and α ∈ A, let λc,x(α) := η({θ|rθ ≤ x and θ ∈ α(c)}). Let λc(α) be the resulting

non-decreasing function from [0, 1]N+1 to [0, 1] and let Λ be the set of all such functions.11 Let

λ(α) := (λc1(α), ..., λcN(α), λc0(α)). In words, λ(α) represents the vector of ability distributions at

each program for assignment α.

We now make a number of assumptions both to remove nuisance cases and to better reflect

our desired environment.

A1 Scores and preferences are strict: for any θ ∈ Θ and c ∈ C, η({θ′ ∈ Θ|rθ′ = rθ}) = 0. For

any α ∈ A, η({θ| �θ|α is strict}) = 1.

A2 Full support for all α: Let R ⊂ [0, 1]N+1 be the support of scores induced by η, that is, R is

the set of score vectors r such that for all ε > 0, η({θ ∈ Θ|ε > ||r− rθ||∞}) > 0. Let Br(ε) be

the set of points within ε distance of r ∈ R, Br(ε) := {r′ ∈ [0, 1]N+1|ε > ||r− r′||∞}. Then for

any α ∈ A, any c, c′ ∈ C \ {c0}, and any r ∈ R, η({θ ∈ Θ|rθ ∈ R ∩ Br(ε) and c �θ|α c′}) > 0.

A3 Student preferences depend only on λ(α), that is, for any α ∈ A and any θ ∈ Θ,�θ|α=�θ|λ(α).

We restrict our focus to economies E satisfying regularity conditions A1-A3. Additionally, we

will assume the following regularity condition for certain results:

A4 Peer preferences are continuous, that is, for any ε > 0 there exists some δ > 0 such that if for

any two assignments α, α′ ∈ Awe have that supc,x |λc,x(α)−λc,x(α′)| := ||λ(α)−λ(α′)||∞ <

δ, then η({θ ∈ Θ| �θ|α 6=�θ|α′}) < ε.

A2 and A4 are richness assumptions; A2 assumes that for any student types, there exist other

types with similar scores who have arbitrarily different preferences; A4 assumes that the ordinal

rankings of the vast majority of students do not change for small changes in the composition of

peers.

Before introducing our desired solution concept of a stable matching, we discuss a multiplicity

caused by the continuum assumption. To reduce a multitude of essentially identical matchings

that differ only for a measure zero set of students, we only consider matchings µ ∈ M that are

right continuous: for any c and θ, if c �θ|µ µ(θ) then there exists ε > 0 such that µ(θ′) 6= c for all θ′

with rθ′,c ∈ [rθ,c, rθ,c + ε).

A student-program pair (θ, c) blocks matching µ if c �θ|µ µ(θ) and either (i) η(µ(c)) < qc, or

(ii) there exists θ′ ∈ µ(c) such that rθ,c > rθ′,c. In words, θ and c block matching µ if θ prefers c

to her current program (given peer preferences at µ) and either c does not fill all of its seats, or

11We endow this space with the pointwise convergence topology.
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it admits a student it ranks lower than θ. A matching is (pairwise) stable if there do not exist any

student-program blocking pairs.12

We build the tools to characterize stable matchings based on Azevedo and Leshno (2016), by

first characterizing a class of assignments defined by admission cutoffs. Cutoffs are formally de-

fined as arbitrary vectors p ∈ RN+1
+ , subject to pc0 = 0. One can construct an assignment for

a given vector of cutoffs p in the following way. First, fix an arbitrary assignment α′, and cor-

responding ability distribution λ = λ(α′). Second, let each student type θ choose her favorite

program among those where her program-specific score is weakly above the cutoff.13 This pro-

gram is called the demand of student θ, and is denoted by

Dθ(p, λ) = arg max
�θ|λ

{c ∈ C|rθ,c ≥ pc}.

The fact that pc0 = 0 means that any student can be unmatched.

We similarly define the demand for program c is given by

Dc(p, λ) = η({θ|Dθ(p, λ) = c}).

The assignment α = A(p, λ) is defined by setting α(θ) = Dθ(p, λ) for every θ ∈ Θ. By

construction, each student θ is assigned to exactly one program in assignment α = A(p, λ), but a

program may be assigned to a larger measure of students than its capacity. As we are interested in

characterizing (stable) matchings through cutoff vectors and score distributions (p, λ), we present

the following two conditions on (p, λ). As we show, the first condition alone ensures that A(p, λ)

is a matching, and both conditions together ensure that A(p, λ) is a stable matching.

Definition 1. A pair (p, λ) of cutoffs and score distributions is market clearing if for all programs c ∈ C

Dc(p, λ) ≤ qc

and pc = 0 when the inequality is strict.

Lemma 1. If a pair (p, λ) is market clearing, then A(p, λ) is a matching.

12Note that the definition of (pairwise) stability implicitly assumes the feasibility conditions required by the def-
inition of a matching, that is, that a student is matched to only one program and that a program does not have a
larger measure of assigned students than its capacity. Throughout, we shorten the name of this solution concept to
"stability."

13By assumption A1, a measure zero set of students may not have a single favorite program, and may be indifferent
between several programs. In this case let the student break ties arbitrarily, and in what follows let Dθ(p, λ) ∈
arg max
�θ|λ

{c ∈ C|rθ,c ≥ pc}. As this is relevant for at most a measure zero set of students, for notational simplicity we

proceed as if each student has a unique top choice.
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The proof of this result is immediate, as for each c ∈ C, η(α(c)) ≤ qc and for each θ ∈ Θ,

α(θ) ∈ C. If (p, λ) is market clearing, we often refer to matching µ = A(p, λ) as being market

clearing, and we denote by M the set of all market clearing matchings, that is M = {µ|µ = A(p, λ)

for some market clearing (p, λ)}. By construction, M ⊂M.

Definition 2. A pair (p, λ) represents rational expectations if it induces an assignment α = A(p, λ)

such that λ = λ(α).

The following lemma, a direct corollary of the supply and demand lemma of Azevedo and

Leshno (2016) and Leshno (2021) holds:

Lemma 2. If a pair (p, λ) is market clearing and rational expectations, then µ = A(p, λ) is a stable

matching. Define p̂c := inf{rθ,c|θ ∈ µ(c)} and let p̂ = ( p̂1, ..., p̂N, 0). If µ is a stable matching, then

( p̂, λ) are market clearing and represent rational expectations for λ = λ(A( p̂, λ(µ)).

The following result tells us that a stable matching exists in a large class of economies. Our

proof extends the technique of Leshno (2021). We construct an operator whose fixed point corre-

sponds to a stable matching, and show using a fixed-point theorem that this operator converges.14

Theorem 1. There exists a stable matching in any economy E satisfying A4.

In contrast to the standard model without peer preferences, the set of stable matchings need

not be unique.

Remark 1. The set of stable matchings is not in general a singleton.

We show this result via an example in the appendix. In it, there are sufficiently many students

who have strong peer preferences and desire classmates with higher scores, so that the “best"

program is endogenously determined by the coordination of top-scoring students.

II.B Canonical Mechanisms and Stability

Theorem 1 tells us that a stable matching exists in a broad class of economies. Can a market

maker ensure one using one of the "canonical" matching mechanisms typically studied in the

literature? The following result suggests that the answer may be "no" in many settings.

For a given economy E, define a one-shot matching mechanism ϕ as a simultaneous-move, deter-

ministic game in which each student θ submits a strict order �̃θ over programs. ϕ maps submitted

preferences �̃ = {�̃θ}θ∈Θ and scores into a matching, that is ϕ : (P × [0, 1]N+1)Θ → M. In an

abuse of notation, we represent the resulting matching from report �̃ as ϕ(�̃), the matching for

student type θ as ϕθ(�̃), and the matching for program c as ϕc(�̃).
14Grigoryan (2021) uses the same fixed-point theorem in a matching market with complementarities.
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We now state two properties on mechanisms that are frequently satisfied by canonical mech-

anisms. Note that these are both conditions involving submitted rankings �̃. A mechanism ϕ

respects rankings if for any �̃, rθ,c ≥ rθ′,c for all c implies that ϕθ(�̃)�̃θ
ϕθ′(�̃). A mechanism

respects rankings if it assigns a student type θ with higher scores at all programs than another

student type θ′ to a program that is ranked no lower (according to �̃θ) than the matching of stu-

dent θ′. A mechanism ϕ is stable if for any �̃, ϕ(�̃) is stable with respect to �̃. A mechanism

is stable if it creates a stable matching with respect to the submitted preferences. Note that any

stable mechanism ϕ must respect rankings.15

The following result says that we can expect a clearinghouse to generate a stable matching if

students have full knowledge of the distribution of student types.16 In this case, the set of stable

matchings is Nash-implemented by any stable mechanism ϕ as students are able to "roll in" peer

considerations into their ordinal rankings over programs. That is, for any stable matching µ∗,

there is an equilibrium in which each student type θ reports �̃θ =�θ|µ∗ .17

On the other hand, if students do not have full knowledge of the distribution of types, then

we should not necessarily expect a clearinghouse to generate a stable matching. We represent

the beliefs of θ ∈ Θ over measures as σθ ∈ ∆H. Let �̃ be a strategy profile, and in an abuse

of notation, let �θ|σ,�̃ represent θ’s expected ordinal rankings over programs given σ and �̃.

We say that student type θ lacks rationality for the top choice at �̃ if the �θ|σ,�̃-maximal program

is not the same as the �θ|ϕ(�̃)-maximal program.18 For any r ∈ [0, 1)N+1 let L�̃,r := {θ|rθ ≥
r and θ lacks rationality for the top choice at �̃}.

Proposition 1. Consider a one-shot matching mechanism ϕ.

1. Let ϕ be stable. Then the set of all stable matchings of economy E is identical to the set of all Nash

equilibrium outcomes of ϕ.

2. Let ϕ respect rankings and let µ∗ be a stable matching. If for any r ∈ [0, 1)N+1 and any �̃ it is the

case that η(L�̃,r) > 0 then there is no (Bayes) Nash equilibrium of ϕ that generates µ∗.

15Proof: Suppose not. Then for some �̃ there exist θ, θ′ with rθ,c ≥ rθ′ ,c for all c and c∗ = ϕθ′(�̃)�̃θ ϕθ(�̃). But then
rθ,c∗ ≥ rθ′ ,c∗ , implying that (θ, c∗) form a blocking pair. Contradiction with ϕ being stable.

16Full knowledge of the distribution of types is not a necessary condition for the clearinghouse to generate a stable
matching. A stable matching can be generated in equilibrium if student beliefs are sufficiently close to the truth,
which uses a similar logic to the convergence results we develop in Section II.C

17Moreover, as our constructive proof shows, for any stable matching µ∗ and all θ, there exists an equilibrium �̃θ

which lists only one program as acceptable such that ϕ(�̃) = µ∗; even if there is a cap on the number of programs
that students can list, which is common in many school-choice markets around the world, stable matchings can be
generated under full rationality.

18Our result will not depend on the zero measure set of students who potentially have two top-ranked programs,
and therefore, we can break ties arbitrarily.
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The presence of some students with incorrect beliefs is not necessarily enough to lead to an

unstable matching; a number of additional conditions must be met. First, these students must

have sufficiently strong peer preferences so that their incorrect beliefs change their ordinal pref-

erences over programs, for otherwise, their stated preferences would not change. Second, at least

some of these students must have sufficiently high scores at programs, as the reported preferences

of students with scores too low to match to any program will not affect the final outcome. Third,

the incorrect beliefs must affect the preferences at the "top" of some students’ rankings, because,

for example, changes in the ranking order of programs that are deemed unacceptable do not af-

fect the final matching. Informally speaking, these conditions are likely satisfied if students have

a sufficiently rich set of beliefs.

II.C Tâtonnement with Intermediate Matching and Belief Updating

Given Proposition 1, an important question is how students form beliefs over the matching

to be generated via a centralized mechanism. We model belief formation in a tâtonnement-like

process, in which beliefs over the resulting matching are updated given the matching created by

the previous cohort of students matched to programs.

Consider a discrete-time, infinite horizon model, where at every time t = 1, 2, 3, ..., the same

programs are matched to a new cohort of students. For any t, t′ ≥ 1, economies Et and Et′ are

identical, that is, the distribution of student types and program capacities are constant over time.

We therefore omit all time indices when denoting student types θ ∈ Θ and capacity vector q.

We describe the following dynamic matching process, which we call Tâtonnement with Inter-

mediate Matching (TIM). At each time period t ≥ 1, a matching µt is constructed as follows.

The market is initialized with an arbitrary assignment µ0 ∈ A. We initialize the market with

an assignment instead of a matching so as not to require students in the first cohort to be fully

informed of all particulars in the economy, for example, the capacity at each program; moreover

our results are qualitatively unchanged if we instead allow students to have (potentially hetero-

geneous) beliefs over the initial assignment µ0, but the exposition would become more cumber-

some with this additional generality.19 Incoming students at time t observe µt−1. A centralized

matchmaker solicits an ROL from each student, and then uses a stable matching mechanism to

construct matching µt.20 We assume (and later show empirical evidence that) students use infor-

mation from the previous period in a Cournot-updating fashion, that is, period t students assume

that the matching µt will equal µt−1 and they submit an ROL that best responds to µt−1. In an

19The lone exception is that in Proposition 3, a stable matching would be generated in all periods, with the possible
exception of period 1.

20Remark 2 implies that any stable matching mechanism will deliver the same matching in each period, or, more
accurately, that there exists a unique such mechanism.
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abuse of terminology, we often refer to µt, t ≥ 0 as a matching, despite the fact that µ0 is only

required to be an assignment.

An instructive observation moving forward is that, assuming each student θ reports�θ|µt−1 , µt

is the unique stable matching in an economy in which preferences are defined by µt−1. Formally,

define measure ζη,α as follows: for any open set R ⊂ [0, 1]N+1, any assignment α ∈ A and any

�∈ P , ζη,α({θ|rθ ∈ R and �θ|α′=�}) = η({θ|rθ ∈ R and �θ|α=�}) for all α′ ∈ A. In words, ζη,α

fixes the ordinal preferences of each student as they are in the original market for assignment α.

Remark 2. In an economy E = [η, q] let µt be the matching at time period t ≥ 1 in the TIM process. Then

µt is the unique stable matching in the economy E′ = [ζη,µt−1 , q].

This result follows from assumption A2 and Theorem 1 of Azevedo and Leshno (2016). It

implies that µt is the outcome of student-proposing deferred acceptance in the TIM procedure,

which is a strategy-proof mechanism in the static setting.21 Therefore, we adopt this assumption

that each student θ will submit her “true" preferences �θ|µt−1 in any stable matching mechanism.

Each µt is associated with a vector (pt, λt) where pt is the (unique) market-clearing cutoff

vector given µt−1, and λt = λ(A(pt, λt−1)).22 Note that the entire sequence of TIM matchings

{µt}t≥1 is uniquely determined by µ0.

We can formulate the TIM process through two operators. The first is P : ΛN+1 → [0, 1]N+1,

which takes an ability distribution vector λ′ and maps it into the (unique) cutoff vector that clears

the market given λ′, that is, Pλ′ = p such that (p, λ′) is market clearing. The second is S :

[0, 1]N+1×ΛN+1 → ΛN+1, which outputs an ability distribution vector λ for each program in the

present period’s market assignment, that is, S(p, λ′) = λ(A(p, λ′)).

Given an exogenous µ0 resulting from µ0, the dynamic process explained above tells us that

µt = A(pt, λt−1), where pt = Pλt−1 and λt−1 = S(pt−1, λt−2). If (pt−1, λt−1) = (pt, λt), the TIM

process has reached steady state. This implies that µt = A(Pλt−1, λt−1) = A(Pλt, λt) = µt+1, that

is, the same matching is generated in all periods t′ ≥ t in the TIM process. Note that if λt = λt−1,

then pt = Pλt−1 = Pλt = pt+1, and λt = S(Pλt−1, λt−1) = S(Pλt, λt) = λt+1. This implies that

when the ability distribution vector reaches a steady state, the TIM process reaches a steady state

in the following period.

The following result relates a steady state of the ability distribution vector (and therefore a

steady state of the TIM process) to a stable matching. If and only if the ability distribution vec-

tor is in steady state does the TIM process generate a stable matching. Moreover, if and only

if the ability distribution vector is in "approximate" steady state does the TIM process generate

an "approximately" stable matching. Before stating the result, we state a definition of ε-stability,

21See Abdulkadiroğlu, Che, and Yasuda (2015) for further details on this mechanism in the continuum model.
22The uniqueness of pt follows from Remark 2.
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which requires that fewer than ε share of students are involved in a blocking pair. Our notion of

approximate stability comes from selecting a small ε.

Definition 3. A matching µ is ε-stable if the measure of students involved in blocking pairs at µ is strictly

smaller than ε, that is, η({θ|(θ, c) block µ for some c ∈ C}) < ε.

Theorem 2. Let E be an economy, and let µ1, µ2, ... be the sequence of matchings constructed in the TIM

process given an initial µ0.

1. λ∗ is in steady-state if and only if the matching µ∗ = A(Pλ∗, λ∗) is stable.

2. For any t ≥ 1 and any δ > 0 there exists ε > 0 such that if µt is ε−stable, then ||λt − λt−1||∞ < δ.

Moreover, if E satisfies A4 then for any t ≥ 1 and any ε > 0 there exists δ > 0 such that if

||λt − λt−1||∞ < δ, then µt is ε−stable.

Consider an observer who does not necessarily know the preferences students have over peers

and who only observes panel data on the ability distribution of entering classes at programs. This

theorem provides a method for such an observer to analyze whether the market has (approxi-

mately) reached a stable matching. If and only if the ability distribution vector converges over

time is the market “settling" into a stable matching.

Will the TIM procedure necessarily converge?

A natural question arises: does the TIM procedure always converge for any µ0 in any economy

E? If so, then the TIM process (approximately) delivers a stable matching in the long run. The

first of the following two examples shows that the TIM procedure does not always converge.

Moreover, the second example provides intuition for some of the features of a market that can

lead to convergence.

Remark 3. The TIM procedure does not necessarily converge, even when there is a unique stable matching.

We show this result by counterexample, in an economy satisfying A4. First, we discuss lack

of convergence, then uniqueness of the stable matching.

Example 1. There is one program c (i.e. N = 2) with q < 1 measure of seats, and let rθ,c = rθ,c0 = rθ.

Moreover, let s(λ) represent the mean of scores of enrolled students at each program, that is,

s(λ) =
1

λc,(1,1)

∫ 1

0
ydλc,(y,y).

Each student θ receives zero utility from remaining unmatched, and receives utility vθ− f (s(λ(α)), rθ)

from matching with c at α, where
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f (s(λ), rθ) =

0 if rθ ≥ s(λ)

k if rθ < s(λ)
.

The peer preference term f (·, ·) reflects that students want to be a “big fish" and suffer loss k ∈ (0, 1)

if their score is not above average at the program. Therefore, a student θ is better off enrolling at c if and

only if vθ − f (s(λ), rθ) ≥ 0, where we break ties in favor of the student attending the program. Let each

vθ be distributed independently and uniformly over [0, 1].

Let st = s(λt) for t > 1, and initialize the TIM procedure with µ0 such that s(λ(µ0)) ≤ 1− q. Then

(p1, s1) = (1− q, 1− q
2), as µ1(c) = {θ|rθ ≥ 1− q}, that is, the top q mass of students enrolls at c

because they expect (mistakenly for some) to face no peer loss from doing so.

What about (p2, s2)? Only the 1− k fraction of students with rθ < s1 for whom vθ ≥ k prefer enrolling

in the program to remaining unmatched. All students with rθ > s1 prefer to enroll in the program to being

unmatched.

To simplify our analysis, we will deal only with the case in which the program fills all of its seats in µ2,

i.e. p2 = 1− q
2 −

q
2(1−k) . This occurs if and only if k ≤ 1− q

2−q . Therefore, the average score of the “top

half" of the students enrolled in the program is 1− q
4 while the average score of the “bottom half" of the

students enrolled is 1
2(1−

q
2 + p2). This tells us that s2 = 1

2

[
1− q

4 +
1
2(1−

q
2 + p2)

]
.

When k ≥ 4
5 , s2 ≤ 1 − q.23 But note then that (p3, λ3) = (p1, λ1), as now all students with

scores rθ > 1− q wish to enroll in the program. This creates a cycle wherein all even periods yield the same

matching, while odd periods yield another (note that p2 < p1, as k > 0). Therefore, TIM does not converge.

We now find cases in which the above economy has a unique stable matching. Assume, subject to

later verification, that there exists a stable matching µ∗ = A(p∗, λ∗) in which c fills all of its seats. Let

s∗ = s(λ∗). As all students θ with rθ ≥ s∗ will attend c, 1− s∗ mass of seats are occupied by students

who face no peer costs. In order for p∗ to satisfy market clearing, it must be that (s∗ − p∗)(1 − k) =

q − (1− s∗). As s is a function of λ, a necessary condition for rational expectations of (p∗, λ∗) is that
1+s∗

2 (1− s∗) +
p∗+s∗

2 (q− (1− s∗)) = s∗. Solving these equations yields:

p∗ =
1− q− ks∗

1− k
, s∗ =

k− kq− 2±
√

4 + k2(q− 1)2 − 4k(q2 − 3q + 1)
2k

.

Noting that k − kq − 2 < 0, only the ”plus" solution is viable. In order for the “plus" solution to

satisfy the necessary condition, it must be that (k− kq− 2)2 ≤ 4 + k2(q− 1)2 − 4k(q2 − 3q + 1), which

is shown, following a standard calculation, to hold with a strict inequality whenever q < 1.

The above demonstrates that there is at most one stable matching in which c fills all of its seats. We

23Our simplifying assumption that the program fills all of its seats requires that k ≤ 1− q
2−q , which combined with

the condition k ≥ 4
5 , requires q ≤ 1

2 .
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argue that when q is sufficiently small any stable matching must involve c filling all of its seats, by showing

that for sufficiently small q, it must be that p∗ > 0. To see this, note that all students θ with rθ > s∗ will

enroll in c. Therefore, s∗ > 1− q. For any fixed k < 1, s∗ → 1 as q → 0. This implies that as q → 0,

p∗ = 0 implies that η(µ∗(c)) → 1− k, which violates the definition of matching as too large a measure of

students is assigned to c.

By Theorem 1, there exists at least one stable matching, and our above arguments pin down the corre-

sponding cutoffs p∗ and average scores s∗ = s(λ(µ∗)) that must be identical in any two stable matchings

for sufficiently small q. But if there exist two stable matchings, µ∗ and µ′ , note that by our assumption that

student preferences depend on s(λ),�θ|µ∗=�θ|µ′ for all θ ∈ Θ. By Remark 2 it must be that µ∗(θ) = µ′(θ)

for all θ ∈ Θ. Therefore, there is a unique stable matching for sufficiently small q.

We now consider an example that is nearly identical to Example 1, and differs only in that

s(λ) represents the median of scores rθ of enrolled students instead of the mean of the scores.

Example 2. Consider Example 1 but where s(λ) represents the median of scores rθ of enrolled students at

the program, that is, sc(λ) = sup{r| λc,r

λc,1 ≤ 1
2}.

Because of the assumption of uniformly distributed scores rθ (and the intuitive similarities between the

mean and median), the pair of cutoffs and median scores at t = 1 remains the same as in Example 1, given an

upper bound on s(λ0): with s(λ0) ≤ 1− q, (p1, s1) = (1− q, 1− q
2). Additionally, p2 = 1− q

2 −
q

2(1−k) .

Note however that s2 = s1 = 1− q
2 ; all of the students with scores rθ ≥ 1− q

2 “return" to the program,

and while the set of students who attend the program with scores rθ < 1− q
2 differs in periods 1 and 2,

there are the same measure of them (filling exactly half of the seats), meaning that they do not affect the

median. By our assumption that student preferences depend only on s(λ), �θ|µ1=�θ|µ2 for all θ ∈ Θ. By

Remark 2 it must be that µ2(θ) = µ3(θ) for all θ ∈ Θ. Therefore, λ(µ2) = λ(µ3) and by Theorem 2 TIM

produces a stable matching for all t ≥ 2.

The only difference between these two examples is that peer preferences depend on the mean

of student scores in the former, and the median in the latter. The median is not affected by out-

liers: given that the top-ranked q
2 students enroll in the program for each t ≥ 1, the median is

guaranteed to stay the same in the TIM procedure. In contrast, the mean is sensitive to the entire

distribution of enrolling students: even if the top-ranked q
2 students enroll, the mean can decrease

if students with average rankings do not enroll and some with lower scores do. This can lead to a

cycle and failure of convergence to stability.

II.D Two Markets

In this section, we analyze the convergence, or lack thereof, of the TIM procedure to a stable

matching in two markets: the New South Wales college admissions market, and a public high
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school market. We make assumptions to mirror key features of each market. We present empirical

evidence to justify the assumptions for the New South Wales market in Section III and we defer

to Epple and Romano (1998), Rothstein (2006), Beuermann and Jackson (2019), Beuermann et al.

(2019), Abdulkadiroğlu et al. (2020), and Avery and Pathak (2021) for high school markets.

An important consideration in these markets is that students likely have access to only a sum-

mary statistic of the distribution of peers in previous cohorts, not the entire distribution. We there-

fore briefly provide general theoretical results, mirroring those in the previous section, in markets

in which student preferences are based only on a summary statistic of the ability distribution. As

the proofs follow straightforwardly from those of our original results, we omit them.

Definition 4. For each c ∈ C let a summary statistic of abilities at program c be a function sc : Λ →
[0, 1]. For λ ∈ ΛN+1 let s(λ) = ×c∈Csc(λ) be the vector of summary statistics.

We provide the following regularity conditions, which subsume the roles of A3 and A4.

A5 Student preferences depend only on s(λ(α)), that is, for any assignment α ∈ A and any θ,

�θ|α=�θ|s(λ(α)).

A6 For any assignment α and ε > 0 there exists some δ > 0 such that if for an assignment α′ we

have that ||s(λ(α))− s(λ(α′))||∞ < δ, then η({θ| �θ|α 6=�θ|α′}) < ε.

A7 For any matching µ ∈ M and ε > 0 there exists some δ > 0 such that if for a matching ν ∈ M

we have that ||λ(µ)− λ(ν)||∞ < δ, then ||s(λ(µ))− s(λ(ν))||∞ < ε.

We provide an analogue to Theorem 1. It is similar to the existence result in Leshno (2021).

Corollary 1. Let E be an economy satisfying A1, A2, A5−A7. Then E has at least one stable matching.

The following result mirrors Theorem 2. In an economy satisfying the required regularity

conditions, an observer of the TIM process need only verify that the summary statistics of student

abilities is in (approximate) steady state in order to determine that the market has (approximately)

converged to stability.

Corollary 2. Let E be an economy satisfying A1, A2, and A5, and let µ1, µ2, ... be the sequence of matchings

constructed in the TIM process for a given µ0.

1. s(λ∗) is in steady state if and only if the matching µ∗ = A(Pλ∗, λ∗) is stable.

2. For any E satisfying A6, any t ≥ 1 and any δ > 0 there exists ε > 0 such that if µt is ε−stable, then

||s(λt)− s(λt−1)||∞ < δ. Moreover, if E satisfies A7 then for any t ≥ 1 and any ε > 0 there exists

δ > 0 such that if ||s(λt)− s(λt−1)||∞ < δ, then µt is ε−stable.
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II.D.1 The New South Wales Market

There are two important sets of stylized facts that our modeling of the New South Wales

(NSW) market attempts to match. First, students have "big-fish" preferences: each student has

a one-dimensional ability that determines both university scores and peer preferences. Students

suffer a utility loss if their score is below an ordinal summary statistic of the distribution of peers,

but are indifferent toward their peers if their ability is above the summary statistic. Second, we

relax our initial assumption that the market is identical in each period, and instead allow for

changes due to the entry and exit of programs. In particular, more-desirable programs are long

lived, but less desirable programs enter and exit the market over time.

As before, let an economy be characterized by E = [η, q] where η ∈ H is the measure over

student types Θ, and q is the capacity vector, where for each c ∈ C = {c1, ..., cN, c0}, qc > 0 and

qc0 = ∞. Let E1, E2, ... be a sequence of economies, where for each t ≥ 1 there is a set Ct ⊂ C of

active programs, where |Ct| = Nt + 1 and c0 ∈ Ct. Et := [η, qt] where qt = ×c∈Ct q
c is the capacity

vector for active programs c ∈ Ct. Let At,Mt, At(p, λ), and Mt be the set of assignments in Et,

the set of matchings in Et, the Et market assignment for (p, λ) ∈ [0, 1]Nt+1 ×ΛNt+1, and the set of

all market clearing matchings in Et, respectively.

We continue to assume that economy E satisfies A1, which implies that each economy Et

satisfies A1. We formalize the stylized restrictions on preferences with the following three points:

AA1 Common rankings: rθ := rθ,c = rθ,c′ for any c ∈ Ct, c′ ∈ C′t with t, t′ ≥ 1, and θ ∈ Θ.

AA2 Big-fish preferences: For each c ∈ C, each θ ∈ Θ has utility function uθ(c|α) = vθ,c −
f θ,c(rθ, sc(λ(α))), where f θ,c(·, ·) ≥ 0, is nondecreasing and continuous in its second argu-

ment, and f θ,c(rθ, sc(λ(α))) = 0 if rθ ≥ sc(λ(α)).

AA3 kth highest score: We say that sc(·) represents the (kc)th highest score if there exists kc ∈ [0, 1]

such that for any market clearing matching µ ∈ Mt, sc(λ(α)) equals the supremum value of

rθ for which η({θ′ ∈ µ(c)|rθ′ > rθ}) = kc (if such a number exists, and 0 otherwise). For

each t ≥ 1 and each c ∈ Ct there exists kc where sc(·) represents (kc)th highest score.

AA1 reflects the fact that a standardized score is used by programs for admission. AA2 states

that students face an additive peer cost when assigned to a program in which their score is below

the summary statistic of the scores of their peers. AA3 represents that students have relative rank-

ing concerns. An important part of AA3 is the restriction to the set of market clearing matchings

Mt, but the restriction does not apply to other matchings. As a result, other functional forms of

the summary statistic, including where sc(·) represents the median score of students assigned to
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c can be accommodated for certain markets.24

The following reflects our stylized restrictions on entry and exit of programs. Let there be two

disjoint "blocks" of programs B1 ⊂ C \ {c0}, and B2 ⊂ C \ {c0} such that B1 ∪ B2 = C \ {c0}. To

capture that more popular programs are longer lived, we additionally make the following three

assumptions about student preferences over programs, and the entry and exit of programs.

AA4 Block one is always active: Every c ∈ B1 is an element of Ct for every t ≥ 1.

AA5 Block-correlated preferences: uθ,c > uθ,c′ for all θ ∈ Θ, all c ∈ B1, and all c′ ∈ B2.

AA6 Full support: Let R be any open subset of [0, 1]. Then for any α ∈ At and any c, c′ ∈ B1,

η({θ ∈ Θ|rθ ∈ R and c �θ|α c′}) > 0.

Certain programs are long lived (AA4) and these are precisely the more desirable programs

(AA5).25 AA6 is a relaxation of A2, ensuring full support of preferences over top-block programs.

Definition 5. We say that a sequence of economies E, E1, E2, ... is NSW if it satisfies A1,AA1-AA6.

There exists a unique stable matching for each Et, t > 0. We provide a pseudo-serial-dictatorship

mechanism in the appendix that serves as a constructive proof of existence. Any student type θ

with a sufficiently high score receives the same partner in the stable matching for each market Et,

t > 0.

Proposition 2. At any time t > 0 in a NSW market there exists a unique stable matching µ∗t . Moreover,

1. for any c ∈ B1 and any c′ ∈ Ct ∩ B2, sc(λ(µ∗t )) ≥ sc′(λ(µ∗t )),

2. for all c ∈ B1, sc(λ(µ∗t )) = sc(λ(µ∗t′)) for all t′ ≥ 1, and

3. if there exists c ∈ B1 such that rθ ≥ sc(λ(µ∗t )), then µ∗t (θ) = µ∗t′(θ) for all t′ ≥ 1.
24The reason for the restriction to the set Mt is that the TIM procedure only produces matchings µ ∈ Mt. Therefore

the sequence of matchings generated from two otherwise identical markets will be identical if their summary statistics
vectors coincide on this restricted set of matchings. This means that a wider class of summary statistics falls into the
category of the kth highest score than it might initially seem. Specifically, suppose sc(·) represents the score of the
(100 ·m)th percentile student assigned to c; for m ≤ 1 let sc(λ(α)) equal the supremum value of rθ for which η({θ′ ∈
α(c)|rθ′ > rθ}) = m · η(α(c)). Then sc(·) satisfies our definition of the kth highest statistic if for any two matchings
µ, ν ∈ Mt, η(µ(c)) = η(ν(c)) for all c ∈ Ct \ {c0}. Since η(µ(c)) does not vary in the set Mt, define kc := m · η(µ(c)),
and AA3 is satisfied. Therefore, summary statistics such as the median (see Example 2) can fit into the results of this
section. Moreover, the condition that for any two matchings µ, ν ∈ Mt we must have η(µ(c)) = η(ν(c)) is not "knife
edge" (i.e. it holds for an open set of market fundamentals): suppose that for every θ ∈ Θ and any α ∈ At it is the
case that c �θ|α c0 for all c ∈ C and there is an undersupply of seats, ∑c′∈Ct\c0

qc′ < 1 for all t ≥ 1. Then for all µ ∈ Mt,
and all c ∈ Ct \ {c0}, η(µ(c)) = qc.

25Condition AA5 is based on block-correlated preferences, discussed in Coles, Kushnir, and Niederle (2013).
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The TIM procedure in this market with entry and exit is largely analogous to that our base

model. The market is initialized with an arbitrary assignment, and in each period, the unique

market-clearing matching is constructed given the ability vector of the "incoming" assignment.

The "incoming" assignment for any program active in both the current and previous periods is

equal to that program’s matching in the previous period, but due to entry and exit, the "incoming"

assignment for programs that were not active in the previous period is allowed to be arbitrary.

Formally, for each t ≥ 0 there is an incoming assignment νt ∈ At+1. In each period t ≥ 1

a matching µt ∈ Mt is formed as follows: A time-dependent operator Pt : ΛNt+1
t → [0, 1]Nt+1,

maps an ability distribution vector λ′ into the (unique) cutoff vector that clears market Et given

λ′, that is, Pt(λ′) = p such that (p, λ′) is market clearing in Et. µt = At(Ptλt−1, λt−1), where

λt−1 = λ(νt−1). The initial assignment ν0 ∈ A1 is an arbitrary assignment, and each subsequent

assignment νt ∈ At+1 is constructed as follows: νt(c) = µt(c) for all c ∈ Ct ∩ Ct+1. For all c ∈
Ct+1 \ Ct, νt(c) is arbitrary.

Regardless of entry and exit, the summary statistics of popular programs (those in block B1)

converge to their stable levels in the TIM procedure, and except in rare cases, this convergence

occurs in finite time. Let V := {θ ∈ Θ|rθ ≥ min
c∈B1

sc
∗} be the set of students with scores higher

than the stable matching summary statistic of at least one program in block 1. We also find that

all student types θ ∈ V eventually receive their stable matching partner.

Theorem 3. In any NSW market the TIM procedure is such that there generically exists some time T < ∞

such that sc
t = sc

∗ for all c ∈ B1 and η({θ ∈ V|µt(θ) = µ∗(θ)} = η(V) for all t > T.

In contrast to the top programs and top students, it is not necessarily the case that the sum-

mary statistics of less popular programs that see entry and exit (those in B2) converge–students

with lower scores are not guaranteed to receive their stable partner in the long run. Therefore,

instability only affects students with scores below the stable matching summary statistics of all

programs in the top block.

In the special case in which B1 = C \ c0, all programs are in the top block and there is therefore

no entry or exit. Theorem 3 implies that the TIM procedure converges to the (unique) stable

matching in finite time, and indeed, all of the general results we derive in Section II.D hold.

Remark 4. Let C \ {c0} = B1, and let E = E1 = ... be a NSW economy. Moreover, for any α ∈ A
and any c ∈ C let kc ∈ [0, 1] be such that sc(λ(α)) equals the supremum value of rθ for which η({θ′ ∈
α(c)|rθ′ > rθ}) = kc (if such a number exists, and 0 otherwise). Then E also satisfies A2, A5-A7.

Given Remark 4, the question arises of how much instability is caused by entry and exit. We

study this question in the appendix, and also consider which types of students are most likely to

be "negatively" affected by instability.
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II.D.2 Pure Peer Preferences Markets

We now consider the case in which students prefer peers with higher ability, in contrast to our

modeling of the NSW market. We adopt a common assumption on peer preferences (Epple and

Romano, 1998; Avery and Pathak, 2021): student valuation of a program is entirely based on the

quality of peers at that program. We will refer to this as a pure peer preferences economy.

As ability is measured using objective outcomes such as standardized test scores, we assume

that student scores are the same for all programs, so that rθ,c = rθ for all c ∈ C. For any assignment

α ∈ A, and programs c, c′ ∈ C \ {c0} and any student type θ ∈ Θ, if α(c) 6= α(c′) then either

c �θ|α c′ for almost all θ ∈ Θ or c′ �θ|α c for almost all θ ∈ Θ. Moreover, if for almost all θ ∈ α(c)

and almost all θ′ ∈ α(c′) it is the case that rθ > rθ′ , then c �θ|α c′ for all θ ∈ Θ.26 For simplicity of

exposition, we assume that for any assignment, all programs are acceptable for all students, that

is, for any α ∈ A and any program c ∈ C \ {c0}, c �θ|α c0 for all θ ∈ Θ.

In a pure peer preferences economy, the TIM procedure generically generates a stable match-

ing in all time periods t ≥ 1.27

Proposition 3. Let E satisfy pure peer preferences. Then for almost any µ0 ∈ A, each matching µt,

generated by the TIM process for t ≥ 1 is stable.

The proof is straightforward. Given any initial assignment µ0 such that µ0(c) 6= µ0(c′) for

any c, c′ ∈ C, it will be the case that (almost) all students have the same ordinal preferences over

programs at time t = 1. Without loss of generality let c1 �θ|µ0 c2 �θ|µ0 c3 �θ|µ0 ... �θ|µ0 cN. Due to

the common scores of programs, the top qc1 scoring students will be matched to c1 in µ1, the next

top qc2 scoring students will be matched to c2 in µ1, and so on, until either all programs are full or

all students are matched. All students θ prefer to match with a lower-index program, but all such

programs are filled to capacity with higher scoring students. Moreover, note that �θ|µ0=�θ|µ1 for

almost all θ, as the most desired program under µ0, c1, remains the most desired program under

µ1, the second most desired program under µ0, c2, remains the second-most-desired program

under µ1, and so on. Therefore, µ2 = µ1 and is also stable. This logic holds for µt, t ≥ 1.28

The convergence of the TIM procedure differs from that in NSW economies; convergence

occurs immediately in a pure peer preferences economy. An interesting implication is that even

with the exit and entry of programs, the TIM procedure creates a stable matching at every time

26Note that any such economy does not satisfy assumption A2, to comport more closely with the conclusions of
Abdulkadiroğlu et al. (2020). As in Example 3, slight adjustments could be made to this market to satisfy A2. Our
conclusions in this section would not change.

27Under a similar assumption, Pycia (2012) finds that a stable matching always exists in a small, finite market.
28Note that the stable matching generated in the TIM process is not unique. For a given µ0, the ordinal prefer-

ences of students never change. Therefore, any permutation of programs leading to µ′0 will lead to a different stable
matching.
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t ≥ 1.

II.E A More Stable Mechanism

At least three problems exist with the TIM procedure. First, it need not converge, meaning

that we are not guaranteed stability in the long run. Second, even if it does converge, initial

cohorts will have unstable matchings if the convergence is not immediate. Third, as discussed

in the previous section, there may be changes to the market from year to year, which potentially

make convergence more difficult.

We present a mechanism that improves upon all three of these shortcomings of the TIM pro-

cess. This mechanism does not run across years, and instead attempts to find or approximate a

stable matching for each cohort of students. Unlike the TIM process, it suffers from neither in-

stability before reaching steady state, nor instability caused by changes in the market over time.

Moreover, as we show, it can yield an approximately stable matching even when the TIM process

does not converge.

Formalizing this mechanism involves specifying the student types in each of T submarkets,

the programs (and measure of seats) in each submarket, and how peer preferences are defined

relative to the original market. We use the subscript "t" to refer to a generic submarket below to

be evocative of the time index in the TIM process.

First, we specify student types in each submarket. For any subset Θt ⊂ Θ, let ηt represent the

induced measure over Θt. We partition Θ into sets Θ1,...,ΘT such that for each t ∈ {1, ..., T}, Θt is

constructed “uniformly at random," that is, for any θ ∈ Θt and any open neighborhood n(θ) ⊂ Θ

of θ, it is the case that ηt(n(θ) ∩Θt) = η(n(θ)) · η(Θt). We assume η(Θt)→ 0 for all t as T → ∞.

Second, we specify the programs. Each program c ∈ C is active in each submarket, but has

qc
t = qc · η(Θt) seats available. We denote the entire vector of capacities in submarket t as qt.

We use measures and capacities to formally denote a submarket t ∈ {1, ..., T} by Et = [ηt, qt].

Third, we define the ability distribution. Let At be the set of all assignments in economy Et.

For each x ∈ [0, 1]N+1, c ∈ C, and α ∈ At let the ability distribution in submarket t be denoted by

λc,x
t (α) := η({θ|rθ≤x and θ∈α(c)})

ηt(Θt)
. Let λc

t(α) be the resulting non-decreasing function from [0, 1]N+1

to [0, 1], and let Λ be the set of all such functions.29 Let λt(α) := (λc1
t (α), ..., λcN

t (α), λc0
t (α)).

The following mechanism creates a matching µt in each submarket, and iterates until near

convergence of λt(α).

Definition 6. The Tâtonnement with Final Matching (TFM) mechanism is defined by the following

steps:

step 0: Initialize the mechanism with δ > 0, T > 0, and µ0 ∈ A.
29We endow this space with the pointwise convergence topology.
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step τ = K · T + t, K ≥ 0, t ∈ {1, ..., T}: Report to student types θ ∈ Θt the distribution λ(µτ−1) and

solicit their ordinal preferences over programs. Run (student-proposing) deferred acceptance in sub-

market Et to create matching µτ.

At the first step τ such that ‖λ(µτ)−λ(µτ−1)‖∞ < δ, terminate the process above. Show all student types

θ ∈ Θ distributions λ(µτ−1) and solicit their ordinal preferences over programs. Run (student-proposing)

deferred acceptance in the aggregate market E. The outcome of deferred acceptance in the aggregate market

E is the final matching for all students.

For a given starting condition µ0 and associated ability distribution λ0 = λ(µ0), the TFM

mechanism depends on parameters δ and T. δ determines the final matching by defining the

stopping criterion, and holding δ fixed, T determines how many times each subcohort is asked to

report their preferences.

The TFM mechanism converges if the TIM procedure does so, and for sufficiently small δ,

it creates a nearly-identical matching. Moreover, the TFM mechanism can create a nearly-stable

matching even when the TIM procedure does not converge. We prove this by construction, which

may be of independent interest–we show that the TIM procedure potentially suffers from a lack

of local convergence; even if the TIM procedure creates a near stable matching in a particular time

period t, it need not create a near-stable matching in subsequent periods (see Example 7 in the

appendix). However, because the TFM mechanism terminates at any step such that the ability

distribution vector is approximately steady, it creates a near-stable matching in such cases (see

Theorem 2).

The TFM mechanism produces a nearly stable matching with good incentive properties. We

say that a student θ ∈ Θt misreports at step t if she submits a preference profile �̃θ 6=�θ|µt−1 .

We show that for any ε > 0, there exists δ > 0 defining the stopping rule such that no more

than an ε measure of students can profitably misreport their preferences, assuming their peers do

not themselves misreport. As the proof reveals, if we additionally assume that every student’s

cardinal preferences are continuous in λ,30 then this point can be strengthened to show that there

is an ε-Nash equilibrium in which all students reveal truthfully: for any µ0 and ε > 0, there exists

δ > 0 such that no student can be made more than ε better off by misreporting her preferences at

any time in the TFM mechanism, assuming other students do not misreport.31

30That is, if for all γ > 0 and all λ ∈ ΛN+1 there exists ω > 0 such that for (almost) all θ ∈ Θ and all c ∈ C,
|uθ(c|λ)− uθ(c|λ′)| < γ for any λ′ ∈ Λ with ||λ− λ′||∞ < ω.

31This mechanism does admit "babbling" equilibria in which some students report arbitrary preferences in early
periods, because they anticipate being able to correct their reports. Note, however, that students have no strict
incentive to do this, as no student’s report affects any final matching, except their own. One way to remove such
equilibria is to obscure the order in which students are solicited to submit preferences (assuming students do not
fully coordinate to ensure that the mechanism does not converge.)
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Finally, we show that for any µ0 and δ there is sufficiently large T such that if the TFM mech-

anism converges, it does so with no student being asked her preferences more than twice, and an

arbitrarily large share of students being asked only once. In other words, there are small reporting

costs associated with this mechanism over canonical, one-shot mechanisms.

We denote the outcome of the TFM mechanism (assuming the mechanism terminates) for

given (µ0, δ) as µ(µ0,δ), which is independent of T.

Proposition 4.

1. Suppose that for a given economy E satisfying A4 and a given µ0, the TIM procedure converges

to (stable) matching µ∗. Then for any ε > 0, there exists δ > 0 such that the TFM mechanism

terminates in economy E and starting condition µ0, and η({θ|µ(µ0,δ)(θ) = µ∗(θ)}) > 1− ε.

2. For any economy E, any ε > 0, and any stopping criterion δ > 0 there exists µ0 ∈ A such that the

TFM mechanism produces an ε-stable matching, even when the TIM procedure does not converge.

3. Consider any economy E satisfying A4. Fix µ0 and ε > 0. Let Θ′ ⊂ Θ be the set of students who

can profitably misreport their preferences at any step in the TFM mechanism given that (almost) no

other students misreport. There exists δ > 0 such that η(Θ′) < ε.

4. For any ε > 0 and any (µ0, δ) for which the TFM mechanism terminates, there exists T > 0 such

that no student θ is asked to report her preferences more than twice and the measure of students who

are asked to report their preferences only once is at least 1− ε.

III Empirical Application: The New South Wales Market
In this section we describe the details of the New South Wales education admissions system,

and use data from this market to illustrate how to apply our theory to an empirical setting. We

first discuss how students have "big-fish" peer preferences over a summary statistic of student

ability (AA1-AA3), and then discuss our assumptions on program entry and exit (AA4-AA6).

III.A The New South Wales Tertiary Education Admissions System

Each state in Australia has a centralized body that processes college applications within its

jurisdiction. Students in Australia apply for admission at the university-field of study (for ex-

ample, Economics at University of Melbourne) level. We refer to these university-field pairs as

“programs."32 We study college admissions in New South Wales and the Australian Capital Terri-

32Note that tuition is regulated by the government and is not university or program specific; therefore, it should
not impact applicant preferences at the program level.
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tory from 2003 to 2016.33 Roughly 40,000 new students are matched to programs per year in this

market.

Applicants receive a score known as the Australian Tertiary Admission Rank (ATAR) which mea-

sures the applicant’s academic rank relative to others in their age group and falls on a scale of

0-99.95. The ATAR score is primarily determined from standardized testing, and students are

not aware of their ATAR score at the onset of the application process. The ATAR score is a good

predictor of academic performance during undergraduate studies Manny, Yam, and Lipka (2019).

Therefore, it is a proxy for student ability.

To apply for admission, prospective students submit an ROL of up to nine programs to a

centralized admissions clearinghouse which processes applications at all major universities in

NSW.34 Applicants initially submit their ROLs before learning their own ATAR scores, but are

able to costlessly change their ROLs after learning their ATAR score. Students are incentivized to

submit initial ROLs early in the application process, as fees for stating initial ROLs increase over

time.

Students and programs are matched using the student-proposing deferred acceptance mech-

anism which takes as inputs student ROLs, program rankings, and program capacities (Guillen

et al., 2020).35 Program rankings over students are determined by the sum of an applicant’s ATAR

score and program-student specific “bonus" points, which are awarded at the discretion of the

program. Importantly, students can receive up to 10 bonus points at each program, and because

bonus points are not observed by candidates before being matched, they serve as a significant

source of admissions uncertainty.

The clearinghouse website clearly informs students that it is in their best interest to submit

truthful ROLs:

Your chance of being selected for a particular course is not decreased because you placed a

course as a lower order preference. Similarly, you won’t be selected for a course just because

you entered that course as a higher order preference. Place the course you would like to do most

at the top, your next most preferred second and so on down the list...If you’re interested in

several courses, enter the course codes in order of preference up to the maximum of nine course

33A number of changes to the matching process have occurred since 2016. Namely, students are now only able
to list five programs on their ROL, and there is now a "guaranteed entry" option for students with ATAR above a
particular threshold (Guillen et al., 2020).

34A minority of students, such as adult learners and international students who do not have an ATAR score, apply
directly to universities.

35Admissions take place in multiple rounds. We describe and analyze the process of the main round that takes
place in early January, when the majority of offers are made. There are initial rounds, where offers are made to some
programs that do not admit based on the ATAR scores of students, and there are subsequent rounds for students that
remain unmatched. As programs may elect not to enter subsequent rounds, there is a strong incentive for students
to be matched to a desired program in the main round.
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preferences.36

This algorithm, and the resulting matching, mechanically create a minimum ATAR score

above which students are “clearly in" (i.e. all students with ATARs above this level are admit-

ted to the program regardless of the number of bonus points they receive if they are not admitted

to a more preferred program) at the program level every year. Going forward, we will refer to

the clearly-in statistic for the cohort admitted in the previous year as the Previous Year’s Statistic

(PYS) for a particular program, and the clearly-in statistic for the current year as the Current Year’s

Statistic (CYS).

When listing their preferences, applicants do not know the CYS at any program. However,

they can consult programs’ PYS as a guide when submitting their ROLs–this information is made

easily available on the clearinghouse website. The figure below shows the typical information

provided to applicants during the time span covered by our data:

Figure 1: Example of Information Provided to Applicants about a Program’s Admissions

Statistics in the Previous Year

After 2018, additional summary statistics about the previous year’s ATAR distribution began

to be disclosed. For example, students applying for admission in 2016 are told the following:

“[T]he [PYS] for a course shows you the minimum selection rank needed by the majority

of Year 12 applicants when offers were made in 2015. [CYS] for 2015–16 admissions won’t be

known until selection is actually made during the offer rounds. Use [the PYS] as a guide when

deciding on your preferences."37

As students do not know the number of bonus points they receive at each program, each

applicant is uncertain ex ante about acceptance into a wide range of programs. Across programs,

roughly half of all enrolling students have ATAR scores below the CYS of their program (Bagshaw

and Ting, 2016), implying that the frequency of receiving bonus points is non-trivial.

36See https://web.archive.org/web/20150918170643/http://www.uac.edu.au/undergraduate/apply/course-
preferences.shtml , accessed 9/6/2021.

37See https://web.archive.org/web/20150911225257/http://www.uac.edu.au/atar/cut-offs.shtml , accessed
9/6/2021.
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III.B Data

We use data from the Universities Admissions Centre (UAC), which is the centralized clear-

inghouse for college admissions in New South Wales and the Australian Capital Territory. Our

data contain the universe of applications from graduating high schoolers processed by UAC for

2003-2016. Over this time period, there are on average 19 universities active per year, each offer-

ing numerous programs. For a subset of years (2010-2016) we observe applicants’ ROLs at two

points in time: the initial list submitted before they receive their ATAR score (which we call the

pre-ROL), and the final list submitted to the clearinghouse after learning their score (which we

call the post-ROL). Roughly one month separates the creation of these two ROLs. We observe the

post-ROL for all years in our sample (2003-2016). In addition, we observe the applicants’ ATAR

scores, detailed information about each program they applied to (field of study, university, and

location), and the CYS of each program. We do not have information about socioeconomic back-

ground or bonus points at the application level. We do not observe the final assigned program of

each student. Unless otherwise specified, we use the sample of post-ROLs from 2003-2016 in our

analysis.

III.C Applying Theory to Data: Assumptions and Identification Strategies

Our stylized model of the NSW market in Section II.D.1 assumes that students have “big-fish”

preferences–they suffer a utility loss if their score is below an ordinal summary statistic of their

peers’. Under this preference structure, we are able to derive an empirical test for stability in the

presence of program entry and exit. While this testable implication provides a bridge from theory

to data, it also requires specific assumptions about our empirical setting and estimates.

To apply our convergence test in an empirical setting, one must first establish the presence

and functional form of peer preferences in the data. The exact strategy one uses to identify peer

preferences will of course differ depending on the data available and institutional details.

Below we discuss what assumptions we require in our analysis of NSW data and under what

conditions they are met.

A common and crucial step in identifying student preferences in market design research is

assuming that submitted ROLs accurately reflect information about students’ ordinal rankings

over programs. What we believe the submitted ROL reveals about applicants’ true preferences

is an essentially untestable assumption. However, we can use strategic properties of the match-

ing mechanism used, restrictions on our data, and our identification strategies, to support our

assumptions. There are also stronger and weaker versions of this assumption, which lead, in

our setting, to two entirely different identification strategies. For exposition, we present both the

strong and weak case in the NSW data; below we summarize how they impact our identification
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strategy, and in Section III.D we carry out each strategy. A comprehensive table outlining the

assumptions and how they are addressed either via an identification strategy, data restriction, or

specific robustness test, is included as well (Figure 2).

1. Submitted ROLs reflect students’ ordinal rankings over programs given the PYS.

In any strategy-proof mechanism, such as deferred acceptance, students have a weakly dom-

inant strategy to report an ROL reflecting their true ordinal preferences over acceptable pro-

grams. In practice, there is often a cap placed by the market designer on the number of

programs any student can list on their ROL, as is the case in our setting. However, stu-

dents who have fewer acceptable programs than the cap retain a weakly dominant strategy

to truthfully list their ROL, and those who have more acceptable programs than the cap

will list the maximum number of allowable programs in any weakly undominated strategy

(Haeringer and Klijn, 2009).38

Therefore, a common technique is to view ROLs that list strictly fewer programs than the

cap as accurately reflecting student preferences (Hastings, Kane, and Staiger, 2009; Abdulka-

diroğlu, Agarwal, and Pathak, 2017; Luflade, 2019).

Under this stronger assumption we can identify peer preferences in the data by conditioning

our analysis on the subset (60%) of students who list fewer than the maximum number of

programs. Then we can measure cross-sectionally how application rankings respond to

changes in programs’ PYSs over time.

2. Submitted ROLs reflect students’ relative rankings over programs given the PYS.

An emerging strand of the literature argues that the assumption that students play their

weakly dominated strategy of truthfully submitting their ROL is too strong (Chen and Sön-

mez, 2006; Li, 2017; Rees-Jones, 2018; Sóvágó and Shorrer, 2018; Chen and Pereyra, 2019; Lar-

roucau and Rios, 2020; Artemov, Che, and He, 2020; Hassidim, Romm, and Shorrer, 2021),

with many of these studies finding evidence that students weigh admissions probabilities

when submitting ROLs. Fack, Grenet, and He (2019) argue students face a cost to reporting

long ROLs, and therefore, if they have little uncertainty about their admission probability

to any particular program (i.e. admission probabilities are sufficiently close to either zero

or one), they may optimally omit "reach" and "safety" programs. Even in this case, an im-

portant result from Haeringer and Klijn (2009) still applies: the relative ranking of any two

programs c and c′ on a student’s ROL will reflect her true relative ordinal preferences of c

and c′.
38This continues to hold in our setting with peer preferences under the ongoing assumption that students take the

PYS as indicative of the CYS.
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Under this weaker assumption, we look within-person at how relative rankings respond to

new information about a student’s own ability measures up with peer quality. Our second

identification thus exploits an important feature of our institutional setting–students submit

a pre-ROL before learning how their ability compares to the PYS at each program. Upon

learning this information roughly one month later after submitting pre-ROLs, each student

can change her pre-ROL to arrive at the post-ROL used to create the final matching. A partic-

ularly illuminating pattern is students’ “switching” of rankings: program c is ranked above

program c′ on a student’s pre-ROL and c′ is ranked above c on her post-ROL; switching

is not easily rationalized by probability-of-admission considerations, and indicates changes

in preferences even if students faced costs to reporting long ROLs or faced limited admis-

sions uncertainty. This identification strategy thus assumes that any changes between the

pre-ROL and post-ROL are assumed to reflect changes in a student’s ordinal ranking of pro-

grams upon learning how her own ability matches up with peers at each program.

In addition to this initial assumption, which largely guides our identification strategy, there

are also several testable assumptions that we rule out using a series of robustness tests. We list

these testable assumptions and the associated tests in Figure 2, and we also discuss them in detail

in Section III.D during our empirical analysis. Taken together, by satisfying both the testable and

untestable assumptions (via either the strategic properties of the matching mechanism, identifica-

tion strategy, data restrictions, or robustness checks), we can identify peer preferences empirically.

III.D Empirical Evidence of "Big-Fish" Peer Preferences

Descriptive Evidence

To apply our theoretical test of convergence, we first need to establish the presence of peer

preferences in the data. Table 1 displays summary statistics of applicant ATAR scores, ROLs,

and program PYSs. Rows 3-6 examine the average PYS for all programs listed by an individual,

whereas rows 7-10 focus only on the top-ranked programs. The “Avg. Pre-ATAR” PYS and score

gap rows are calculated using the pre-ROL, as opposed to the post-ROL. The "score gap" statistic

is calculated using the difference between the PYS of ranked programs and the applicant’s ATAR

score.

From Table 1, one can see that the top-ranked program tends to have a higher PYS than pro-

grams ranked lower on student ROLs. This PYS is also on average 6.1 points higher than the

applicant’s ATAR score. These statistics suggest that applicants have a general preference for

higher quality programs, insomuch as the PYS is a signal of program quality. We explore this

point further in the appendix. It also suggests that applicants understand the mechanism and are

not afraid of being penalized for prioritizing "reach" programs on their ROL.
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Figure 3 plots the proportion of top-ranked programs by score gap, that is, the program PYS

minus the applicant’s ATAR score. Two clear patterns emerge. The single-peaked nature of the

graph suggests that students have a preference for "better" programs; the value of the horizontal

axis is increasing until a positive score difference of 1. If applicants’ preferences were unrelated to

program quality, we would not expect the proportion of top rankings to increase monotonically

with the score gap.

However, students do not want to be a "small fish" in their program of entry; the downward

slope for score gaps greater than 1 suggests that while students are not afraid to rank "reach"

programs, they become gradually less attractive as the score gap increases.

This figure provides evidence that students understand the strategic properties of the match-

ing mechanism. If students believed that listing a program that rejects them hurts their admissions

chances at other programs (i.e. that the mechanism is not strategy-proof), we would not expect

to observe students ranking "reach" programs high on their ROLs. Over 75% of applicants rank

a "reach program" (defined as having a PYS that is higher than the applicant’s ATAR score) first

on their post-ROL. Moreover, if a substantial subset of students had this concern, we would an-

ticipate a discontinuous drop in the share of students ranking a program first that has a PYS just

above their ATAR score versus just below their ATAR score (assuming students place a positive

probability on receiving zero bonus points at any given program). Figure 3 plots the proportion

of top-ranked programs by the difference between the program’s PYS and the student’s ATAR

score. There is no discontinuity in the figure at 0 along the horizontal axis. Indeed, the modal

score difference is +1, suggesting that a program with a PYS just above a student’s own ATAR

score is most likely to be ranked first.

We note that students have a non-zero admission probability to any program contained on

the x-axis of this figure due to the presence of bonus points. Therefore, this shape is not easily

explained by considerations of admission probability on the part of students.

We formally explore this pattern of "big-fish" preferences using two identification strategies.

III.D.1 Across-Person Analysis

When creating their ROLs, applicants have information on who was admitted to each program

in the previous year (see Figure 1). How do changes in the distribution of last year’s enrollees

affect applicant demand for a program this year? If students have big-fish peer preferences and

believe that the PYS reflects the CYS, then this posted information will impact their program

rankings. Applicants will demote programs with PYSs that are far above their own ATAR scores.

For example, all else constant, a student will be less likely to apply to a program if the PYS is 10

points, rather than 5 points, above their own ATAR score.

We test for this empirically using changes in programs’ PYSs across time. We estimate regres-
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sions of the form:

yc,t = βPYSc,t + αc + αt + εc,t, (1)

where yc,t denotes the average student score, the number of students who apply, the percent of

students who apply, or the percent of students who apply with ATAR scores higher/lower than

the program PYS for program c in year t. We include year and program fixed effects (αc and αt,

respectively) to isolate variation in the PYS within program over time. We are interested in the

sign of β: when a program has a higher PYS, does it attract fewer low scoring applicants?

The results are presented in Table 2 and support our theory of "big-fish" preferences. When

a program’s PYS increases by one point, fewer (column 2) applicants rank the program on their

ROLs, and these applicants tend to be higher scoring (column 1). Columns 4 and 5 test these

effects discontinuously – the dependent variable splits the sample into individuals with scores

either above or below the PYS of program c, and quantifies the percentage who have ranked that

program. These two columns show that the effects in Columns 1 and 2 are driven primarily by

those with scores below the PYS, who become less likely to rank the program on their final ROL.

Additional tests and assumptions

The findings in Table 2, and particularly the differential effects noted in Columns 4 and 5

are suggestive of big-fish peer preferences. Interpreting these results as indicative of big-fish peer

preferences requires additional testable assumptions.

First, this test assumes that students react to the PYS due to peers, and not to changes in pro-

gram quality. To test this assumption, we re-run the specification while including lagged values

of a programs’ PYS in Table A.2. Lagged values of the PYS (from two and three years before the

current year) have little predictive power, indicating that responses to the PYS are not based on a

trend of changes in the PYS over time.

A second concern is that applicants do not use the PYS to learn about the skill distribution of

peers, but rather as an indication of their "fit" with a particular program. They may be uninformed

about a program and interpret the PYS as a signal, for example, of how difficult or prestigious the

program is for them. Their choices may be influenced by these updates to their program-specific

information rather than the peer preference mechanism. To rule out this channel, we interact the

PYS with program age. This test leverages the fact that applicants likely have more information

about long-standing programs. Changes in the PYS provide relatively less information about

older, established programs. Under this "program information" hypothesis, the effect of the PYS

on applicant demand should dissipate for older programs. In Table A.3 we show that effects

are generally statistically similar for old and young programs, suggesting that students are not
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learning about other characteristics of programs through the PYS.

III.D.2 Within-Person Analysis

We next measure how applicants respond to new information about their own relative ability.

We observe applicants’ ROLs at two points in time: both before and after they learn their final

ATAR score. Students are incentivized to submit preferences early through lower application

fees, before learning their ATAR score, and the overwhelming majority (99.5%) of applicants do

so. However, they can update their ROL after learning their score. If students have big-fish peer

preferences, then learning their own relative score will impact their preferences. Applicants will

deprioritize programs with PYSs that far exceed their own ATAR score.

We find that students frequently update their rankings after learning their scores, and that

these changes meaningfully affect their final matchings. This effect is especially prevalent for

lower-scoring applicants.

Figure 4 plots the average program PYS by position on the pre- and post-ROLs. Preference

number 1, on the x-axis, refers to the top-ranked program. We split the sample into high- and

low-scoring students to see if changes in rankings correlate with an applicant’s ATAR score. Ap-

plicants who have low ATAR scores (near the 25th percentile) make the largest adjustments in

rankings. On average, they replace high-PYS programs near the top of their lists with programs

that have lower PYSs, closer to their own ATAR score. On the top end of the distribution, high-

scoring applicants make a small, but statistically significant, shift toward higher PYS programs.

Due to the high scores of these applicants, this again closes the "gap" between applicant ATAR

score and program PYS. These patterns are again consistent with students who value higher "qual-

ity" programs but wish to avoid programs where peers have significantly higher scores.

We investigate how students adjust their ROLs after learning their ATAR scores to more fully

illuminate the effect of peer preferences. Students can adjust their pre-ROLs in three ways. They

can add a program, they can remove a program, or they can switch the relative rankings of two

programs. A switch is defined as an instance where program c is ranked higher than program c′

on the pre-ROL, both c and c′ are on the post-ROL, and c′ is ranked above c on the post-ROL. In

this case, c′ is promoted and c is demoted.

Switches are particularly difficult to explain without the existence of peer preferences. Even if

students omit programs because of low assessed probability of enrollment in a program, switch-

ing the relative ranking of two programs implies at least one of the ROLs is weakly dominated.

Therefore, the occurrence of switches strongly suggests that students wish to attend different pro-

grams after observing their test scores.39

39Dreyfuss, Heffetz, and Rabin (2019) study a model in which students have expectations-based loss aversion. As a
result, they may fail to rank otherwise desirable options in strategy-proof mechanisms to avoid disappointment from
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Appendix Table A.5 shows 41% of students do not submit the same pre- and post-ROL. On

average, each student makes 1.77 adjustments, which corresponds to 27% of the pre-ROL. Of the

adjustments made, switches are the most common.

Adjustments that students make–additions, removals, and switches–all result in a smaller

PYS/ATAR score gap, that is, the difference between the program PYS and the applicant’s ATAR

score. We graphically present evidence of how switches affect the PYS/ATAR score gap.40 Figure

5 considers students who switch the ranking of the program initially listed first on their pre-ROLs.

It plots the students’ ATAR scores against the PYS/ATAR score gap for top-ranked programs,

and finds that the PYS/ATAR score gap shrinks at both the top and bottom ends of the ATAR

distribution; students with ATAR scores below 85 generally promote a lower PYS program to the

first choice, while those with ATAR scores above 85 generally promote a higher PYS program. In

line with big-fish preferences, this change in sign occurs for ATAR scores such that students are,

on average, top ranking programs with PYS<ATAR on their pre-ROLs.

We quantitatively analyze changes to the ROLs through linear regressions. Specifically, we

regress indicators for whether a program was removed, added, or promoted on the PYS/ATAR

score gap between student and program.41 We run the following regressions

yc,t,i = β(PYSc,t − ATARi) + αc + Xi + εc,t,i (2)

where c represents the program, t the year, and i the student. PYSc,t − ATARi represents student

i’s score gap at program c in year t, αc represents a program fixed effect, and Xi represents a vector

of pre-ROL characteristics for student i (including the identities of the top-ranked, second-highest

ranked, and third-highest ranked programs, the average PYS across all programs, and the number

of programs included on the pre-ROL). The dependent variables studied are whether the program

rejection. They find that students will not “demote" programs where they are unlikely to receive admission–they will
refuse to rank them outright.

40All of our within-applicant empirical results are robust to restricting to students who make "only switches"
and/or make "only additions/removals."

41The sample for this table is all students who rank at most eight programs in both their pre- and post-ROLs.
Following our identifying assumptions, we do not need this restriction for the “promote" regressions, and results
are similar without it. The variable "remove" (and "add") indicate that a program is removed from (or added to) a
student’s pre-ROL after learning her ATAR score. We classify a program as "promoted" if it appears on both the pre-
and post-ROL and is in a relatively higher spot on the post-ROL than on the pre-ROL, ignoring all other adds and
drops. To define promotion, we use the following inversion algorithm:

• Keep only programs that are on both the pre- and post-ROL (i.e. remove all adds and drops from both lists),
and call these the redacted pre- and post-ROLs, respectively.

• A program is promoted if it is ranked in a higher spot on the redacted post-ROL than on the redacted pre-ROL.

Note that any switch results in one program being promoted and one program being demoted. As a result, we do
not include "demote" in this framework.
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c is removed from the pre-ROL, added to the post-ROL, or promoted in the post-ROL.

Table 3 displays the results from this regression for the "promote" independent variable, and

we show the results for "add" and "remove" in the appendix. All three support our theory of

"big-fish" preferences. Programs that are added or promoted within the ROL have PYSs that are

systematically lower than those that are removed, and are closer to the applicant’s ATAR score.

Programs that are removed have a larger score gap, that is, they are more of a "reach" program.

Specifically, over two-thirds of programs dropped had positive score gaps, and there are more

programs dropped with a positive score gap of strictly less than 10 (and for which admissions

probabilities are strictly positive) than those dropped with a negative score gap. This asymmetry

matches the switching pattern we observe; students are more likely to reprioritize programs with

PYSs below their own ATAR score than that with PYSs above their ATAR score.

These effects persist with an array of fixed effects. In Columns 3-7 we attempt to compare

the behavior of applicants who construct very similar pre-ROLs by including fixed effects for

ranking the same programs or programs with the same average PYS. For example Column 7 pro-

vides evidence of how the adjustments made by students whose pre-ROLs have the same three

programs ranked in the top three spots (in the same order) changes given different ATAR scores

received. Under our identifying assumption that pre-ROLs represent true preferences given ex-

pected ATAR scores, this provides evidence on how students with similar underlying preferences

heterogeneously adjust their ROLs following different “shocks."

Additional tests and assumptions

These findings, particularly the switching behavior, are suggestive of peer preferences. Inter-

preting these results as indicative of peer preferences requires additional assumptions.

An important assumption is that pre-ROLs reflect true student preferences (given initial be-

liefs), instead of mere placeholders. We believe this assumption is justified. First, while there is no

monetary cost to changing ROLs, there is an administrative cost to changing them, and therefore,

students minimize this cost by not fabricating the pre-ROL. Second, there is a high correlation be-

tween applicants’ pre- and post- ROLs, as seen in Appendix Table A.5. This suggests that students

do not rank an arbitrary list which they need to change completely. Finally, changes (especially

switches) to an applicant’s ROL are predicted by the difference between the realization of their

PYS of a program and their own ATAR score, which is not known at the time the pre-ROL is cre-

ated. If the initial ROL were arbitrary, then we would expect little correlation between the score

gap and ROL changes.

An alternative hypothesis is that adjustments to the pre-ROL reflect changes in preferences

over time unrelated to peer preferences. However, we do not believe the evidence supports this

hypothesis. From a timing standpoint, only one month separates our observation of the pre- and
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post-ROLs. Moreover, the fact that adjustments to students’ ROLs are predicted by their realized

test scores does not support this alternative hypothesis. Specifically, for preference changes over

time to rationalize our findings, it would have to be that programs ranked closer to a student’s

eventual ATAR score are systematically receiving a positive "shock" relative to other programs.

A third concern is that applicants do not use the PYS to learn about the skill distribution of

peers, but rather as an indication of their "fit" with a particular program. This mirrors the same

concern as in the across-person identification strategy, and our approach to rule out this channel

is similar to what we do in the across-person regression: we interact the PYS/ATAR score gap

with program age. In Appendix Table A.8 we show that effects are actually stronger for older

than young programs, suggesting that students are not learning about other characteristics of

programs through the PYS.

III.D.3 How Important Are Peer Preferences?

How much do changes in students’ ROLs affect the final matching? This question is important

for at least two reasons. First, a large effect lends credence to our identification strategies. Recent

work by Artemov, Che, and He (2020) suggests that students may include arbitrary information

on their ROLs that do not (with high probability) affect the final matching; for example, a student

may rank "reach" program she is unlikely to be admitted to in arbitrary order.42 Is this an impor-

tant threat to our identification strategy? As put forth by Artemov, Che, and He (2020), we should

not view these changes to the ROL as arbitrary if they affect the final matching. Second, a large

effect of changes to the pre-ROL on the final matching suggests that peer preferences have a large

overall impact in the market, and are an especially important consideration in ensuring stability.

Changes to the pre-ROL have a large effect on the final matching. Figure 6 plots applicants’

average probability of acceptance to each program on their final ROL using the pre-ATAR ROL (in

blue) and the post-ATAR ROL (in red).43 The approximate share of students who would have re-

ceived a different final matching under their pre-ROL than under their post-ROL is the sum of the

42This is motivated by Sóvágó and Shorrer (2018), Artemov, Che, and He (2020), and Hassidim, Romm, and Shorrer
(2021) who study "obviously dominated" choices: in some markets in which students can apply to each program
with or without funding, some students rank the unfunded version of the program above the funded version of the
program, or fail to rank the funded version at all. Artemov, Che, and He (2020) find that the vast majority of these
such oddities do not affect the final matching. While these authors seek a very specific peculiarity in ROLs, it raises
the question as to whether ROLs could include arbitrary entries that do not affect the final matching.

43For robustness, we repeat this exercise but vary how we calculate admissions probabilities. Since admissions are
calculated based on whether the sum of a student’s ATAR points and program-specific bonus points is greater than
the program’s CYS, this exercise amounts to simulating various distributions of bonus points. Figure 6 is created
assuming that the number of bonus points awarded to each student at each program is a uniform random variable
with support {0, 1, ..., 10} and is independent across students and programs. We also run an optimistic scenario in
which the number of bonus points awarded to each student at each program is 10 and a pessimistic scenario in which
the number of bonus points awarded to each student at each program is 0. A similar result holds at either extreme.

36



absolute value of the difference between the red and blue dots for each preference number.44 The

post-ROL increases the probability of getting one’s first-choice program by 22%, and of receiving

a different final matching by 25%. We find evidence that switches, the most difficult adjustment

to describe in traditional models, are even more payoff relevant than other adjustments; when we

restrict our sample to students who only make switches to their pre-ROL (i.e. do not add or re-

move and programs), we estimate an even higher fraction of students would have been matched

to a different program under their pre-ROL.

III.E Empirical Evidence of Changes in the Market

In Section II.D.1 we assume in our analysis that the set of programs changes from year to year,

but that other factors (for example, the popularity of certain fields of study, the average ability

of applicants, or the popularity of certain universities) do not change simultaneously within the

New South Wales market. We test these assumptions by looking at the distribution of additional

variables (other than the PYS) over time. Figure 7 shows that aggregate student preferences for

field of study and university campus appear to remain relatively constant over time, while aggre-

gate student preferences over programs vary more from year to year.

When we examine the distribution of programs over time, we find that there is significant

entry and exit in the set of offered programs. Moreover, our analysis in Section II.D.1 assumes

that entry and exit of programs occurs for programs that have a low PYS. Figure 8 shows the

somewhat bimodal distribution of program "age"; while some programs exist for 14 or more years,

the majority exist for fewer than four years. In addition, we plot the difference in PYS for each

age cohort relative to the youngest programs. Programs that enter and exit frequently have lower

PYSs than incumbents. In the following section, we investigate the impact of entry and exit of less

popular programs on stability.

IV Does Ignoring Peer Preferences Generate Instability in New

South Wales? Empirical Evidence
Theorem 2 and Corollary 2 state that a market delivers a (approximate) stable matching in the

long run if and only if the PYS of each program converges over time.

Figure 9 provides evidence of convergence. Panel 1 plots the interquartile range of the PYS

by year, for programs with PYSs between 65 and 75 in 2012, while Panel 2 plots the interquartile

range of the PYS by year, for programs with PYSs between 65 and 75 in 2016. In both panels,

there is smaller year-by-year change in the years immediately preceding the base year than in

44This share is approximate because the length of each student’s pre- and post-ROLs are not necessarily equal.
However, as seen in Table 1, the length of the pre- and post-ROLs are similar for most students.
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initial years. Moreover, Panel 1 suggests that this is not merely due to mean reversion; in the

years following 2012, the mean of program PYSs remains nearly constant, and less variable than

in years immediately preceding 2012. If these plots were driven largely by mean reversion of the

PYSs in the base year, we would not expect the PYSs in years 2013-2016 to remain nearly constant.

Panel 1 of Figure 10 plots the average absolute change in program PYS by program age. Pro-

grams experience larger changes earlier in time; our data allow us to track programs for up to

14 years, and we observe that programs initially have a year-to-year change of nearly 2.5 points,

while programs in years 12-14 have an average point estimate change in their PYS of half a point.

Panel 2 controls for entry and exit of programs into our data by grouping programs by the

number of years each program is observed in our data, and recreating the plot in Panel 1 for

each group. Across all groups, we observe a similar decreasing trend in the absolute change in

PYS over time, which falls to under 1 point as programs age beyond 10 years (four of five of the

groups in our data for at least 10 years have all point estimates beyond year 10 less than 1 point.)

The data suggest that while the PYSs of individual programs are converging over time, entry

and exit of programs causes instability in the market for programs are not present in the market

long enough for their PYSs to reach (near) steady state.

To discuss the impact of this instability, we focus on a related outcome: attrition. We define

attrition as occurring when a student neither graduates from their matched program, nor returns

in the following year. Whenever a blocking pair is consummated (either with a different program

or the student’s outside option), attrition occurs, and therefore, we expect attrition to be higher

at programs with students who have more blocking pairs. For privacy reasons, we do not ob-

serve attrition at the individual level, but instead merge in the attrition rate at the university-year

level. Theorem 3 and Remark 6 predict that students at programs with larger absolute changes in

the PYS are more likely to be in blocking pairs Table 4 shows that, at the program level, higher

yearly changes in the PYS are correlated with higher attrition rates. This relationship is not driven

by yearly trends or field-specific patterns; it is robust to year and field fixed effects. Is is also

not driven by program age or size. We find an even stronger relationship when we restrict to

programs-years with CYS<PYS; as we discuss in the appendix, our model predicts that only stu-

dents at these programs form “negative utility" blocking pairs and prefer being unmatched to

remaining at their current program.

We discuss in the appendix how students from low-socioeconomic backgrounds, aboriginal

students, and students with disabilities are more likely to attend programs with large absolute

changes in PYS where attrition is high.
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V Conclusion
How important is it that a matching market allows agents to fully express their preferences?

We study this question in a market in which students have preferences over their peers but cannot

express these in the matching mechanism. We show that a dynamic process that is transparent

about the composition of previous cohorts can lead to a stable matching in the long run, forming

a tâtonnement process.

Using data from New South Wales college admissions, we provide evidence for the existence

of “big-fish" peer preferences; students prefer not to attend programs where they are overmatched

by peers. The functional form of peer preferences can vary across education markets, and we

provide a simple empirical test for stability regardless of the form peer preferences take. This test

can be applied without detailed information of peer preferences, or detailed micro data.

We use our test for stability to show that long-lived programs in the NSW market converge to

stability. Theoretically, we show that key features of the NSW market guarantee this convergence

in the long run, but that entry and exit of programs causes instability for students matched to

short-lived programs. This instability does not dissipate over time and is correlated with high

attrition among students at these programs. Moreover, the failure to explicitly design the mar-

ket to account for peer preferences bears an unequal cost on students of different demographic

groups: we discuss in the appendix how low-socioeconomic status students, aboriginal students,

and students with disabilities are particularly likely to be affected by this instability.

We propose a new mechanism that more closely resembles a tâtonnement process in that it

does not match any students until peer preferences are (nearly) fully discovered. This mechanism

is an iterative process within each cohort, thus removing the causes of instability discussed above,

and is a relatively small modification to iterative mechanisms already in use in higher education

markets in China, Brazil, Germany and Tunisia (see Bo and Hakimov (2019); Luflade (2019)).

A question remains. What causes peer preferences? On one hand, peer preferences could be

caused by a direct aversion to being a “small fish in a big pond." On the other, what we observe as

peer preferences may be signs of market failures that can be addressed by market design solutions.

For example, if enrollment in individual classes is determined by class rank, a student may avoid

a desired, prestigious program in order to ensure herself a desired course load. A market that

resolves course allocation ex ante may reduce the magnitude of "peer preferences" in the match.

Studying these microfoundations is left for future research.
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Figure 2: Theory to Data – Necessary Assumptions and Tests to Identify Peer Preferences

Untestable assumption Strong version: ROL provides truthful revelation of ordinal preferences, given the PYS

・DA mechanism used is strategy proof for those with < 9 acceptable programs
・Acceptance probability ∈ (0,1)
・When creating ROL, applicants are only shown PYS

Additional conditions on 
data

・Restrict to students with ROL length < 9

Remaining Caveats

Testable assumptions 1) Applicant ROL is responsive to program PYS
2) The PYS teaches about peers, not only program 

characteristics or trends

Empirical Test
・Do changes in program PYS lead to changes 
in ROL?

・Add interaction of program age with PYS to Eq. 1

・See Eq. 1 ・Add lagged PYS to RHS of Eq. 1

Outcome in our data
・Yes -- a higher PYS causes fewer low-scoring 
students to list the program

・Effect of PYS not significantly smaller for older, 
established programs                                                                   
・Lagged PYS coefficients small and insignificant

If:

Then verify the following:

・ROL is also determined by probability of acceptance, or cost to listing "reach" programs

Features that support 
untestable assumption

Untestable assumption Weak version: ROL provides truthful revelation of relative preferences, given the PYS

・Weakly dominated to submit wrong relative order in ROL
・Acceptance probability ∈ (0,1)
・When creating ROL, applicants are only shown PYS

・Use 2 ROLs per person, one before one after

・Restrict analysis to "switches"

Testable assumptions 1) Applicant ROL is responsive to program PYS 2) The PYS teaches about peers, not only program 
characteristics or trends

Empirical Test ・Do "switches" in ROL correlate with the 
PYS/ATAR score gap? 

・Add interaction of program age with PYS to En. 
2

・See Eq. 2
Outcome in our data ・Yes -- applicants are more likely to promote 

programs with a smaller score gap.
・Effect of PYS not significantly smaller for older, 
established programs       

Testable assumptions 3) pre-ROL contains meaningful information on 
preferences, changes do not reflect "random" 
changes in preferences

4) Changes between two ROLs outcome relevant

Empirical Test ・Measure correlation between pre- and post-ROL
・Test whether changes to ROL are predicted by 
(initially unknown) applicant score

・Strong overlap between two ROLs ・20% of switches are payoff relevant -- See 
Section III.D.3

・Changes to ROL predicted by score gap

If:

Outcome in our data

・Measure what percentage of switches lead to a 
difference in ultimate match.

Then verify the following:

Additional conditions on 
data

Features that support 
untestable assumption
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Figure 3: Proportion of First-Ranked Programs, by Score Gap
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This figure focuses on the top-ranked programs listed by students after they learn their ATAR score. On the x-axis is the gap between the top-
ranked program’s PYS and the student’s ATAR score. On the y-axis is the proportion of all top-ranked programs that have that score gap. The
off-center, peaked shape of the figure suggests that students understand the mechanism and have a preference for "better" programs, but at the
same time do not want to be a "small fish" in their program of entry. The left side of the graph, which is increasing until a score difference of 1
point, suggests that students are more likely to rank "better," high-PYS programs, even if they are above their own score. There is no discontinuity
in the figure at 0, which one might expect to occur if students misunderstood the mechanism. The downward sloping right side of the graph
suggests that while students are not afraid to rank "reach" programs, they become gradually less attractive as the score gap increases.

Figure 4: Average Listed Program PYS by Rank Order, before and after Score Revelation for low-
and high-scoring students)
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These figures plot the average PYS of programs listed by applicants before and after they learn their own score. We use the pre- and post-ROL
sample from 2010-2016. The x-axis denotes the position of a program on the ROL. Both figures restrict to individuals who ranked fewer than the
maximum number of programs. The left figure restricts to students who receive ATAR scores strictly below 60 (low-scoring students), while the
right figure restricts to high-scoring students. On average, low-scoring students modify their rankings "downward" with lower PYS programs after
they learn their score. For high-scoring students, there do not appear to be large changes on average following score revelation. 95% confidence
intervals are indicated.
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Figure 5: Average Listed Program PYS before and after Score Revelation, Restricting to Switched
Programs (first ranking only)
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This figure plots the average gap between the admissions PYS for programs listed by applicants and the applicant’s ATAR score. It displays the
gap for top-ranked programs that are switched elsewhere in the list after the applicant learns their score. Lower-scoring applicants rearrange their
lists to prioritize lower PYS programs, which higher-scoring applicants rearrange their lists to prioritize higher PYS programs. We use the pre-
and post-ROL sample from 2010-2016. 95% confidence intervals are indicated.

Figure 6: Conditional Probability of Matching with Programs before and after learning Score, by
Rank Order
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We calculate an applicant’s probability of matching to each program on their ROL. We do this calculation based on both their rankings before and
after learning their ATAR score. For each student-program pair, we independently (across both students and programs) assign a number of bonus
points, assuming a uniform random variable with support {0, 1, ..., 10}. A student is matched to a program if it is the highest program on her ROL
such that her ATAR score plus assigned bonus points exceeds the CYS of the program. We use the pre- and post-ROL sample from 2010-2016. The
approximate share of students whose final matchings are changed from the counterfactual world in which that student has instead submitted her
pre-ATAR ROL as her post-ROL is

8

∑
j=1

Pr(Matched to preference number j in post-ROL)− Pr(Matched to preference number j in post- ROL if instead submitted pre-ROL).
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Figure 7: Aggregate student preferences over programs, campuses, and fields
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(b) University Campuses
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(c) Broad Field of Study
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(d) Narrow Field of Study
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This figure shows that applicant preferences for program, campus, and field of study are broadly stable across cohorts. We "fix" a group of
campuses or programs based on overall popularity, and then show that this popularity ranking is stable year to year. To create the campus graph,
for example, we use the entire panel dataset of applications. We count how many times each campus was ranked either first or second on an
applicant’s list. This provides an "overall" measure of popularity that can be used to rank the campuses. We then define groups containing the X
most popular overall campuses (each line on the graph is a different size of X). We plot the market share (as defined by how many times it was
ranked first or second on an applicant’s list) for that group of X campuses in each year. The resulting graphs show that a small group of campuses
and fields consistently remain the first or second choice for the majority of students. For example, the yellow line, which refers to the most popular
overall campus, consistently receives the top ranking for about 20% of applicants each year. The navy blue line, which refers to the group of top 5
most popular overall campuses, consistently make up about 60% of top rankings each year.
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Figure 8: Difference in PYS by length of program existence
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This figure plots the estimated difference in PYSs for programs based on how long they exist in our data, relative to programs that exist for only
one year. These estimates control for the initial calendar year in which the program enters, and the field of study. Programs that exist for 14 years,
for example, have on average a PYS that is almost 7 points above programs that only exist for 1 year. The upward sloping pattern to the point
estimates supports the hypothesis that programs entering and exiting generally have lower PYSs than the programs that are more established.
Underneath the point estimates, we also overlay a histogram that shows the distribution of years of program existence. There is somewhat of a
bimodal distribution – most programs have rapid entry and exit (i.e. they exist for only 1-3 years), whereas another significant portion exists for
14 years.

Figure 9: Convergence test for programs with ultimately similar PYSs
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The top figure groups together programs that have a similar PYS (within a 10-point band of 70) in 2012. It then follows the group’s distribution
of PYSs (as measured by the interquartile range) both forward and backward in time. It shows that programs with similar PYSs in 2012 have
converged from a more disperse distribution over time, and do not appear to diverge after 2012. The bottom figure repeats the same exercise,
instead grouping together programs with a similar PYS in 2016. In the appendix we plot a similar set of graphs (see Figure A.2) that show the
progression of the groups’ mean PYSs over time. They display a very similar pattern, in which the average PYS converges over time.
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Figure 10: Year-to-Year Variation in PYS Within Program, Over Time
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These figures provide evidence for convergence over time in program PYSs. We plot ∆c,t := |CYSc,t − PYSc,t|, a measure of PYS “instability”
against the number of years the program has existed. They show that the PYS converges with time (top figure), and that this panel is not driven
by the entry or exit of programs into the sample (bottom figure). 95% confidence intervals are indicated.
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Table 1: Applicant and ROL Summary Statistics

Variable Obs Mean Std. Dev. P25 P50 P75

Student ATAR Score 471841 72.9 18.2 60 76 88
Num. of Programs Ranked 471841 7 2.3 5 8 9

Average of All Ranked Programs

Avg. PYS 351848 79 9 72.4 78.7 85.8
Avg. Pre-ATAR PYS 205247 79.8 9 73.1 79.8 86.8
Avg. PYS/Score Gap 351848 6 13.7 -3.3 2.3 13
Avg. Pre-ATAR PYS/Score Gap 205247 7.5 14.4 -2.9 4.1 15.8

Top-Ranked Programs Only

Avg. PYS 293376 81.1 11.4 72.6 81.3 91
Avg. Pre-ATAR PYS 171860 82 11.3 74.9 82.5 91.7
Avg. PYS/Score Gap 293376 7.9 13.7 -.7 5 14.3
Avg. Pre-ATAR PYS/Score Gap 171860 9.9 14.8 0 7.1 18

This table displays summary statistics on applicant ATAR scores, ROLs, and associated program PYSs for all applicants in
the sample. Rows 3-6 examine the average PYS for all programs listed by an individual, whereas rows 7-10 focus only on
the top-ranked programs.

Table 2: Across Time Applicant Response to Program PYS

(1) (2) (3) (4) (5)

Avg. Applicant Score # of Applicants % of Applicants % of Applicants
Higher Score

% of Applicants
Lower Score

Past Year Statistic 0.344∗∗∗ -2.709∗∗∗ -0.008∗∗∗ -0.003 -0.015∗∗∗

(0.015) (0.267) (0.001) (0.001) (0.001)

Observations 14,850 14,850 14,850 14,850 14,850
This table shows the estimated β coefficients of equation (1) were yc,t is the average applicant score, the number of students who apply, the percent of students who apply, or
the percent of students who apply with ATAR scores higher/lower than the program PYS for program c in year t. Standard errors in parentheses, clustered at the program
level. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 3: Impact of Score Gap on Promote

(1) (2) (3) (4) (5) (6) (7)
Promote Promote Promote Promote Promote Promote Promote

PYS - ATAR -0.0016∗∗∗ -0.0014∗∗∗ -0.0006∗∗∗ -0.0017∗∗∗ -0.0015∗∗∗ -0.0014∗∗∗ -0.0012∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.2773∗∗∗ 0.2762∗∗∗ 0.2691∗∗∗ 0.2775∗∗∗ 0.2768∗∗∗ 0.2758∗∗∗ 0.2745∗∗∗

(0.003) (0.000) (0.002) (0.003) (0.003) (0.003) (0.003)

Program FE X
Avg. ROL PYS FE X
ROL length FE X
Top Progam FE X
Top 2 Programs FE X
Top 3 Programs FE X

Observations 579,990 579,961 578,555 579,990 579,990 579,990 579,990
The dependent variable is an indicator for whether a program was promoted from a student’s pre-ROL to the post-ROL. Column (2) includes program fixed ef-
fects, column (3) includes a fixed effect for the average PYS taken over programs on the pre-ROL, column (4) includes a fixed effect for the number of programs
listed on a student’s pre-ROL, column (5) includes a fixed effect for the top-ranked program in the pre-list, column (6) includes a fixed effect for the top two
ranked programs in the pre-list, column (7) includes a fixed effect for the top three ranked programs in the pre-list. We use the pre- and post-ROL sample from
2010-2016. Standard errors in parentheses, clustered at the program level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Relationship Between |CYS-PYS| and Attrition Rate

All Observations (N = 14,795)

Attrition Rate 0.011∗ 0.009 0.010∗ 0.020∗∗∗ 0.004
(0.005) (0.005) (0.005) (0.006) (0.015)

Only program-years with CYS-PYS < 0 (N = 4,226)

Attrition Rate 0.158∗∗∗ 0.165∗∗∗ 0.152∗∗∗ 0.138∗∗∗ 0.183∗∗∗

(0.011) (0.012) (0.012) (0.014) (0.030)

Year FE X X X X X
Field FE X X X X
Course Age FE X X X
University Size FE X X
Field Shares FE X

This table tests for the relationship between the attrition rate of a given program and its year to year change
in PYS. We find that, even with a host of controls and fixed effects, programs with more volatility in their PYS
also have higher student attrition rates. Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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APPENDIX

Natalie Cox Ricardo Fonseca Bobak Pakzad-Hurson

A Appendix
In this section, we present proofs omitted in the main text, and additional results.

Theorem 1

Proof. By Lemma 2, it suffices to show the existence of a rational expectations, market clearing
cutoff-distribution vector pair (p, λ). Define Z(p, λ) = Zd(p, λ)× Zλ(p, λ), with the first factor
defined as a vector with entries for each c ∈ C given by:

Zd,c(p, λ) =


pc

1+qc−Dc(p,λ) if Dc(p, λ) ≤ qc

pc + Dc(p, λ)− qc if Dc(p, λ) > qc

and the second defined by:

Zλ(p, λ) = λx(µ) for µ = A(p, λ)

Zλ is a mapping from [0, 1]N+1 × ΛN+1 to ΛN+1 So, to summarize, function Z is a mapping
from K = [0, 1]N × ΛN+1 → K. We endow K with the product topology, and all notions of
compactness and continuity will be relative to that topology.

The proof will involve the following steps:

1. If (p, λ) is a fixed point of Z, then (p, λ) is rational expectations and market clearing,

2. K is a convex, compact, non-empty Hausdorff topological vector space, and

3. Z is continuous.

The two last points imply, by Schauder’s fixed-point theorem, an extension of Brouwer’s fixed
point theorem, that Z has a fixed point, which by the first one gives our result. The formal state-
ment of this theorem is the following:

Theorem. (Schauder fixed-point theorem): Let K be a nonempty, convex, compact, Hausdorff topologi-
cal vector space and let Z be a continuous mapping from K into itself. Then Z has a fixed point.
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1. To see that a fixed point (p, λ) of Z implies that (p, λ) is rational expectations and mar-
ket clearing note that Zλ(p, λ) = λ implies that λ = λx(µ) for µ = A(p, λ). Therefore,
(p, λ) is rational expectations. Zd(p, λ) = p implies that for every c either Dc(p, λ) = qc or
Dc(p, λ) ≤ qc and pc = 0, so (p, λ) is market clearing.

2. It is clear that K is nonempty. To see convexity, we note that [0, 1] is clearly convex. It remains
to show that Λ is convex, which then implies the convexity of K as the product of convex
sets. To see that this is the case, we must check that for two functions λ, λ̂ ∈ Λ, any function
λ̃, defined as λ̃(α) = βλ(α) + (1− β)λ̂(α) for some β ∈ [0, 1], is in Λ. To see that this is
the case note that λ̃(α) ∈ [0, 1] for any α ∈ A and any β ∈ [0, 1], as λ(α), λ̂(α) ∈ [0, 1] and
λ̃(α) ∈ [min{λ(α), λ̂(α)}, max{λ(α), λ̂(α)}]. λ̃(·) must be also be non-decreasing; for any
x < y with x, y ∈ [0, 1]N+1 and any β ∈ [0, 1] λ̃x(α) = βλx(α) + (1− β)λ̂x(α) ≤ βλy(α) +

(1− β)λ̂y(α) = λ̃y(α) where the inequality follows from the non-decreasing property of λ(·)
and λ̂(·).

As λ̃(·) is a non-decreasing function from [0, 1] to itself, λ̃ ∈ Λ, i.e. Λ is convex.

To show that K is compact and Hausdorff, we show that Λ is compact and Hausdorff.

Lemma A.1. Λ is compact and Hausdorff.

Proof. [0, 1][0,1] is compact (in the product topology) by Tychonoff’s theorem, as it is the
product of compact spaces. To note the compactness of Λ it therefore suffices to show that
Λ is a closed subspace of [0, 1][0,1]. Let 〈λ(α`)〉`=1,2,... be a convergent Moore-Smith sequence
with limit λ, where each α` ∈ A. We need to show that λ ∈ Λ. For any x < y with x, y ∈
[0, 1]N+1 and any ` it must be the case that 0 ≤ λx(α`) ≤ λy(α`) ≤ 1. Taking the limit with
respect to ` yields that 0 ≤ λx ≤ λy ≤ 1, i.e. λ ∈ Λ. Therefore, Λ is compact.

Similarly Λ is Hausdorff: Λ ⊂ [0, 1][0,1] is Hausdorff as a subset of a Hausdorff space.

To complete the proof of the lemma, note that K is the product of compact, Hausdorff spaces
by the previous lemma. Therefore, K is compact and Hausdorff.

3. Consider pairs (p, λ) and (p′, λ′) with µ = A(p, λ) and µ′ = A(p′, λ′). Let us denote the
set of students that are assigned to program c under only one of the two assignments µ, µ′

by ∆c(µ, µ′) = {µ(c)\µ′(c)} ∪ {µ′(c)\µ(c)}. We show that the measure of ∆c(µ, µ′) bounds
both the difference in λ and Dc between the two assignments in question:

‖λ(µ)− λ(µ′)‖∞ = sup
c,x
|λc,x(µ)− λc,x(µ′)| ≤ max

c
η(∆c(µ, µ′))

‖Dc(p, λ)− Dc(p′, λ′)‖∞ = max
c
|η(µ(c))− η(µ′(c))| ≤ max

c
η(∆c(µ, µ′))
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To see that the first inequality holds, note that for any c ∈ C and x ∈ [0, 1]N+1, |λc,x(µ)−
λc,x(µ′)| ≤ max

c
η(∆c(µ, µ′)) , as for any x and c, the difference in the measure of students

with scores below x at c cannot be larger than the total measure of students who are matched
to c in only one of µ and µ′. For any c we have that η(∆c(µ, µ′)) = η({µ(c)\µ′(c)}) +
η({µ′(c)\µ(c)}) ≥ |η(µ(c))− η(µ′(c))|, and therefore the second inequality holds.

Therefore, to show continuity we must show that for any ε > 0, there exists δ > 0 such that
‖p− p′‖∞ < δ and ‖λ(µ)− λ′(µ)‖∞ < δ ⇒ max

c
η(∆c(µ, µ′)) < ε. Consider a pair (p, λ)

and take any ε > 0. By Assumption A3, there is a δ1 > 0 such that if ‖λ(µ)− λ′(µ)‖∞ < δ1

, the set of students whose preferences change, ∆(λ, λ′) = {θ| �θ|λ 6=�θ|λ′}, is such that
η(∆(λ, λ′)) < ε/2. Take now ∆(p, p′), the set of students who can be admitted to some
program c under one of p, p′ but not under the other, so that ∆(p, p′) = ∪c{θ|min{pc, p′c} ≤
rθ,c < max{pc, p′c}}. Then

∆c(µ, µ′) ⊂ ∆(p, p′) ∪ ∆(λ, λ′) (A.1)

For δ2 < ε/2N, we have that if ‖p − p′‖ < δ2, then η(∆(p, p′)) ≤ ∑c |pc − p′c| ≤ N ·
ε/2N = ε/2. Let δ = min{δ1, δ2}. Then if (p, λ) and (p′, λ′) satisfy ‖p − p′‖∞ < δ and
‖λ(µ)− λ′(µ)‖∞ < δ , we have that

η(∆(p, p′) ∪ ∆(λ, λ′)) ≤ η(∆(p, p′)) + η(∆(λ, λ′)) < ε

By Equation A.1, this implies η(∆(µ, µ′)) < ε. Thus Z is continuous and our proof con-
cludes.

Remark 1

Proof. We show this result via the following example:

Example 3. There are two programs, c1 and c2, where rθ,c = rθ for c ∈ {c1, c2, c0}. Student scores rθ are
distributed uniformly over [0, 1]. Both programs have identical capacities qc1 = qc2 < 1

2 . For i ∈ {1, 2} let

sci(λ) =
1

λci,(1,1,1)

∫ 1

0
ydλci,(y,y,y)

that is, sci(λ) is the mean score of students matched to ci in µ.
For any λ = (λc1 , λc2), all students prefer to be matched to any of the programs to being unmatched.

Most students prefer to have peers with higher scores, but there is a 2ε measure of students who have “weak
peer preferences," where ε ∈ (0, 1

2 ]: an ε measure of students who prefer c1 to c2 for any λ and an ε
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measure of students who prefer c2 to c1 for any λ, where these students are “uniformly distributed" in the
skill distribution, i.e. the measure of students who have weak peer preferences and prefer program ci with
scores in interval (a, b) is b− a. The remaining students have strong peer preferences, and strictly prefer
ci to cj if sci(λ)− scj(λ) > q

2 and λci,(1,1,1) > ε for each i ∈ {1, 2}. This example is consistent with our
regularity conditions.1

Let
pci = 1− q

1− ε
, pcj = 1− 2q

and

λci,(y,y,y) =

0 if y < pci

(1− ε)(y− pci) if y ≥ pci
, λcj,(y,y,y) =


0 if y < pcj

y− pcj if y ∈ [pcj , pci ]
q−2qε
1−ε + ε(y− pci) if y > pci

Note that given our assumption that ε ≤ 1
2 , pci ≤ pcj . Let p = (pci , pcj), p′ = (pcj , pci), λ =

(λci , λcj), and λ′ = (λcj , λci). We claim that µ = A(p, λ) and µ′ = A(p′, λ′) are both stable matchings
for sufficiently small ε. To see this, note that (p, λ) is market clearing because all students with scores
weakly above pci (except for those who have weak peer preferences and intrinsically prefer c2) prefer to
attend c1 and all remaining students with scores weakly above pcj prefer to attend c2. (p, λ) is continuous
in ε, and as ε → 0, sc1 − sc2 → q > q

2 . Given our assumption on peer preferences, this implies (p, λ)

represents rational expectations for sufficiently small ε, that is, all students with strong peer preferences
will prefer c1. Therefore, there is some ε∗ > 0 such that for all ε < ε∗, µ is stable. Leveraging symmetry,
an analogous argument implies that µ′ is also stable for all ε < ε∗.

Proposition 1

Proof.

1. Let µ∗ be a stable matching. For each θ, let �̃θ be such that µ∗(θ) is the unique acceptable
program. Because ϕ is stable, ϕ(�̃) = µ∗. To see that this is a Nash equilibrium, note that
for any θ, and any program c �θ|µ∗ µ∗(θ), stability of µ∗ implies that there is no report �θ

that will result in θ matching with c.

1Note that we have only specified student ordinal preferences in the case that the mean scores of students at the
two programs are sufficiently different, meaning there are many utility functions that satisfy our regularity assump-
tions and comport with this example. Although we have defined peer preferences in terms of s and not λ, sci (·),
i ∈ {1, 2} is continuous in λ and therefore the continuous mapping theorem implies that assumption A4 is satisfied.
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Suppose for contradiction that �̃ is a Nash equilibrium of ϕ but that µ = ϕ(�̃) is not a stable
matching. Then there exists some θ ∈ Θ and some c ∈ C such that (θ, c) form a blocking pair
(with respect to�θ|µ). By Remark 2 and the fact that ϕ is a stable mechanism, µ is the unique
stable matching with respect to the submitted preferences �̃. Let p be the associated cutoff
vector. Now consider reported preferences �̂ where �̂θ′ = �̃θ′ for all θ′ 6= θ and �̂θ lists
only program c as acceptable. There is similarly a unique stable matching µ′ with respect to
these preferences, but the cutoff vector for this stable matching must also be p, due to the
reported preferences of a zero measure set of students differing between �̂ and �̃. Since
(θ, c) block µ it must be that rθ,c ≥ pc. But then ϕθ(�̂) = c since c is a stable mechanism.
Contradiction with �̃ being a Nash equilibrium.

2. Let �̃ be a Bayes Nash equilibrium, and suppose for contradiction that ϕ(�̃) = µ∗. By
Remark 2 and the ongoing assumption that µ∗ is stable, it must be that µ∗ is associated with
some cutoff vector p, and by assumption A2 it must be that pc < 1− qc for all c ∈ C \ {c0}.

Consider the set of students with scores rθ > 1− q who lack rationality for the top choice
at �̃, L�̃,1−q. Recall that we have assumed η(L�̃,1−q) > 0. Because ϕ respects rankings, it
must be that any student type θ ∈ L�̃,1−q believes with probability one that ϕθ(�̃) = µ∗(θ)

is the �̃θ-maximal program. By the equilibrium hypothesis, it must be that the µ∗(θ) is the
�θ|σ,�̃-maximal program.

By the stability of µ∗ and the fact that rθ > 1− q for all θ ∈ L�̃,1−q it must also be the case that
µ∗(θ) is the �θ|µ∗-maximal program for all θ ∈ L�̃,1−q. Therefore, our arguments imply that
the top-ranked program according to �θ|σ,�̃ is the same as the top-ranked program accord-
ing to �θ|µ∗ for all θ ∈ L�̃,1−q. But by the assumption that any θ ∈ L�̃,1−q lacks rationality
for the top choice at �̃, the two respective top-ranked programs must differ. Contradiction.

Theorem 2

Proof.

1. “If" part If µ∗ is stable we know that it satisfies rational expectations, so S(p∗, λ∗) = λ(A(p∗, λ∗)) =

λ∗, and therefore λ∗ (and also (p∗, λ∗)) is in steady state.

“Only if" part Take an ability distribution in steady state λ∗. Then λ∗ = S(Pλ∗, λ∗), so
(Pλ∗, λ∗) satisfy rational expectations. By the definition of P, Pλ∗ is market clearing given
λ∗. Therefore, by Lemma 2, we know that µ∗ = A(Pλ∗, λ∗) is stable.

2. "If" part Take any ε > 0 and λt−1. Given that µt ∈ M, θ is involved in at least one block-
ing pair at µt if and only if Dθ(pt, λt) 6= Dθ(pt, λt−1); if (θ, c) block µt then rθ,c ≥ pc and
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c �θ|µt µt(θ), implying that Dθ(pt, λt) 6= Dθ(pt, λt−1), and if Dθ(pt, λt) 6= Dθ(pt, λt−1)

then (θ, Dθ(pt, λt)) block µt. Some subset of students whose ordinal rankings change can
block µt; η({θ|(θ, c) block µt for some c ∈ C}) ≤ η({θ| �θ|µt−1 6=�θ|µt}). By A4, there ex-
ists δ > 0 such that ‖λt−1 − λt‖∞ < δ implies η({θ| �θ|µt−1 6=�θ|µt}) < ε. Therefore, for
‖λt−1 − λt‖∞ < δ, η({θ|(θ, c) block µt for some c ∈ C}) ≤ ε as desired.

"Only if" part Fix δ > 0 and λt−1, and let B be the set of student types involved in at least one
blocking pair at µt. Take three economies Et = [ζη,µt−1 , q], Et+1 = [ζη,µt , q], and E′ = [ζ ′, q],
where measure ζ ′ is defined as follows: for any open set R ⊂ [0, 1]N+1, any matching ν,
and any �∈ P, ζ ′({θ|rθ ∈ R ∩ B and �θ|ν=�}) = η({θ|rθ ∈ R ∩ B and �θ|µt−1=�}) and
ζ ′({θ|rθ ∈ R ∩ {Θ \ B} and �θ|ν=�}) = η({θ|rθ ∈ R ∩ {Θ \ B} and �θ|µt=�}). That
is, ζ ′ specifies student types such that students involved in blocking pairs have the same
preferences as in economy Et and students not involved in blocking pairs have the same
preferences as in economy Et+1. Let µt, µt+1, and µ′ be the stable matchings in each of these
economies, respectively. Recall that by Remark 2, µt and µt+1 are the outcomes of the TIM
procedure at times t and t + 1, respectively.

We claim that µt = µ′. To see this, note that θ ∈ B if and only if Dθ(pt, λt) 6= Dθ(pt, λt−1).2

Then as ε → 0, ζ ′ → ζη,µt in the weak-* sense. By the earlier argument that µt = µ′ and
Lemma B3 of Azevedo and Leshno (2016), this implies that η({θ|µt(θ) 6= µt+1(θ)}) → 0.
Therefore, ε→ 0 implies ‖λt−1 − λt‖∞ → 0.

Local Convergence

We show that the TIM procedure does not necessarily exhibit local convergence.

Definition 7. A stable matching µ∗ = (p∗, λ∗) is locally convergent if for any ε > 0 there exists δ > 0
and T > 0 such that for any λ0 satisfying ||λ0 − λ∗||∞ < δ and any t > T, ||µ∗ − µt||∞ < ε .

This is a weaker notion of convergence, because we restrict ourselves to starting distributions
λ0 that are "close to" the stable matching distribution. Practically, if a stable matching satisfies this
condition, then we are guaranteed to create a stable matching in the long run if the initial beliefs
in the student distribution at each program is close to that in a stable matching.

Remark 5. For a stable matching µ∗ in some economy E, local convergence is not guaranteed, even if µ∗

is the unique stable matching in economy E.

Proof. We prove this remark via the following example.

2If θ ∈ B then let c ∈ C be θ’s most preferred program (according to �θ|µt ) with which she blocks µt. Then
c = Dθ(pt, λt) 6= Dθ(pt, λt−1). If Dθ(pt, λt) 6= Dθ(pt, λt−1) then (θ, Dθ(pt, λt)) is a blocking pair.
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Example 4. There is one program c with q ≥ 1, and rθ,c = rθ,c0 = rθ for all θ ∈ Θ. Let s(λ(µ)) be the
mean score rθ of students assigned to c in µ, that is

s(λ) =
1

λc,(1,1)

∫ 1

0
ydλc,(y,y)

Each student θ receives zero utility from remaining unmatched. γ < 1 fraction of students have
weak peer preferences and receive strictly positive utility from attending c regardless of λ. Students with
weak peer preferences have scores rθ that are uniformly distributed. The remaining 1− γ have strong peer
preferences and receive utility vθ − f (s(λ), rθ) from matching with the program, where

f (s(λ), rθ) =


0 if rθ ≥ 1

2 and s(λ) ≤ 1
2

0 if rθ < 1
2 and s(λ) > 1

2

k|12 − s(λ)| otherwise

A student θ is better off enrolling at the program if and only if vθ − f (s(µ), rθ) ≥ 0, where we break
ties in favor of the student attending the program. Let each vθ and each rθ be distributed independently
and uniformly over [0, 1]. The peer preference term f (·, ·) reflects that students want their own score to be
different from the average scores of their peers, and suffer loss proportional to the average score of students
if they are in the "majority" type.

Let µθ
∗ = c for all θ ∈ Θ, which is a matching since qc ≥ 1. Then λ∗ = λ(µ∗) has the property

that λ
(y,y)
∗ = y for all y ∈ [0, 1]. We first note that µ∗ = A(0, λ∗) is stable: it is market clearing (i.e.

p∗ = 0) and satisfies rational expectations, i.e. s(λ∗) = 1
2 and so all students attend c. Furthermore, it is

easy to see that this is the unique stable matching. Any market clearing matching µ′ must satisfy p′ = 0.
If s′ = s(λ(µ′)) < 1

2 all the students with scores rθ > 1
2 prefer to be matched to c while only a fraction

of the students with scores rθ ≤ 1
2 prefer to be matched to c. This implies that s(λ(A(p′ , s′))) > 1

2 > s′ .
Therefore, (p′ , λ(µ′)) does not satisfy rational expectations, and so µ′ is not stable. A similar argument
follows if s′ > 1

2 .
We claim that the TIM procedure does not converge for any s0 = s(λ(µ0)) 6= 1

2 when k ≥ 8
1−γ . Recall

that as s(·) is a function of λ, if the sequence s1, s2, ... does not converge, then neither does the sequence
λ1, λ2, ....

To show this claim, let s0 = 1
2 − δ for some δ > 0 (by the symmetry of the market, similar logic holds

if δ < 0). First suppose that kδ ≥ 1. Then in µ1, none of the students with rθ < 1
2 who have strong peer

preferences will enroll in c, and all other student types will. Therefore,

s(λ(µ1)) =
1
4(

1
2 γ) + 3

4
1
2

1
2(1 + γ)

=
3 + γ

4(1 + γ)

Similarly,
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s(λ(µ2)) =
1 + 3γ

4(1 + γ)

From there, a cycle forms: for any odd t > 1, s(λ(µt)) = s(λ(µ1)) and s(λ(µt+1)) = s(λ(µ2)),
meaning that the market does not converge to the unique stable matching.

Now suppose kδ < 1. By a similar calculation, we have that

s(λ(µ1)) =
γ + (1− γ)(1− kδ) + 3

4(1 + γ + (1− γ)(1− kδ))

For k ≥ 8
1−γ we claim that s(λ(µ1)) ≥ 1

2 + δ. To see this, note that γ+(1−γ)(1−kδ)+3
4(1+γ+(1−γ)(1−kδ))

− 1
2 − δ ≥ 0

if and only if kδ− γkδ− 8δ + 4kδ2 − 4γkδ2 ≥ 0. Since γ < 1, kδ− γkδ− 8δ ≥ 0 implies the desired
condition.

Noting the symmetry of the market, it is the case that for odd t, the sequence st, st+2, st+4... is non-
decreasing where each element is strictly larger than 1

2 and st+1, st+3, st+5, ... is non-increasing where each
element is strictly smaller than 1

2 . Therefore, the TIM process does not converge.

Proposition 4

Proof.

1. If the TIM procedure converges to µ∗ = A(p∗, λ∗), then for any stopping rule δ > 0 the TFM
mechanism must terminate, and we show that we can pick δ > 0 such that at the stopping
step of the TFM mechanism τ(δ), λτ(δ)−1 is arbitrarily close to λ∗. To see this, fix any γ > 0.
In the TIM procedure, there exists τ(γ) ≥ 0 such that ||λ∗ − λτ||∞ < γ for all τ ≥ τ(γ) by
the assumption that the TIM procedure converges to µ∗. Let ∆τ := ||λτ − λτ−1||∞, τ > 0. It
must be that ∆τ > 0 for all τ such that λ∗ 6= λτ. Moreover, ∆τ → 0 i.e. the sequence λ1, λ2, ...
must be Cauchy because it is convergent. Let δ ∈ (0, min

τ≤τ(γ)
∆τ). Then the TFM mechanism

must terminate at some τ ≥ τ(γ).

For stopping time τ(δ) the final matching in the TFM mechanism is µµ0,δ(θ) = A(Pλτ(δ)−1, λτ(δ)−1).
Therefore, the previous argument completes our proof if we can show that for any ε > 0
there exists γ > 0 such that if ||λ∗ − λτ(δ)−1||∞ < γ, then η({θ|µµ0,δ(θ) = µ∗(θ)}) > 1− ε.

To show this, first note that for any ε1 > 0 there exists some sufficiently small γ1 > 0 such
that if ‖λ∗ − λτ(δ)−1‖∞ < γ1 then η({θ| �θ|λ∗ 6=�θ|λτ(δ)−1}) < ε1, by Assumption A4.

Second, we show that for any ε2 > 0 there exists γ2 > 0 such that ‖p∗ − pτ(δ)‖∞ < ε2 if
‖λ∗ − λτ(δ)−1‖∞ < γ2. Consider two economies Eτ(δ)−1 and E∗ where program rankings
over students are identical, and student preferences over programs absorb the utility effects
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of peers characterized by λ∗ and λτ(δ)−1, respectively. That is, Eτ(δ)−1 = [ζη,µτ(δ)−1 , q] and
E∗ = [ζη,µ∗ , q]. By Remark 2, there exists a unique stable matching in each of Eτ(δ)−1 and
E∗, and these are µτ(δ) and µ∗, respectively. Theorem 2 of Azevedo and Leshno (2016) im-
plies continuity of the unique stable matching of a non-peer preferences economy in student
preferences. That is, for µ∗ and any ε2 > 0 there exists some sufficiently small γ2 > 0
such that the market clearing cutoffs in the two economies satisfy ‖p∗ − pτ(δ)‖∞ < ε2 when
‖λ∗ − λτ(δ)−1‖∞ < γ2.

A student type θ is matched to a different program in the stable matchings for the two
different markets, µ∗(θ) 6= µτ(δ)(θ), only if one of the following conditions hold: either her
preferences differ (�θ|µτ(δ)−1 6=�θ|µ∗), or the set of programs to which she can gain entry differ
(there exists c such that pc

τ(δ) ≤ rθ,c < pc
∗ or pc

τ(δ) > rθ,c ≥ pc
∗). For any ε, let ε1 + (N + 1)ε2 <

ε. We have shown that for γ = min{γ1, γ2} the former set of students has measure strictly
smaller than ε1, and for each c the measure of students in the latter set is strictly smaller than
ε2, and because there are N + 1 programs, the measure of the latter set is strictly smaller than
(N + 1)ε2. Since ε > ε1 + (N + 1)ε2, we arrive at the desired result for γ = min{γ1, γ2}.

2. Fix ε > 0 and a stable matching µ∗. The proof of point 1 of the current result implies
that there exists γ1 > 0 such that ‖λ1 − λ0‖∞ < δ when ‖λ∗ − λ0‖∞ < γ1. Therefore,
µ(µ0,δ) = A(Pλ0, λ0) for any µ0 with ‖λ∗−λ0‖∞ < γ1. For any such µ0, the proof of point 1 of
the current result additionally implies that there exists γ2 > 0 such that if ||λ∗ − λ0||∞ < γ2,
then η({θ|µµ0,δ(θ) = µ∗(θ)}) > 1 − ε. Therefore, the outcome of the TFM mechanism is
ε−stable for any stopping criterion δ if ||λ∗ − λ0||∞ < min{γ1, γ2}.

Example 4 constructively shows an example of a market such that η({θ|µµ0,δ(θ) = µ∗(θ)}) >
1− ε for any λ0 sufficiently close to λ∗, whereas the TIM procedure will not converge for
any λ0 6= λ∗.

3. Suppose the TFM mechanism terminates in period τ. Because the final matching is not
constructed in any steps steps k < τ when λk is being updated, and because each λk is
unaffected by the submitted preferences of any zero measure set of student, no student
affects the final matching by lying in any step k < τ. Therefore, we only regard the case
in which the TFM mechanism terminates for (µ0, δ), and consider incentives to misreport at
the final step.

Fix ε > 0. Termination implies that ||λτ − λτ−1||∞ < δ. By Assumption A4, for sufficiently
small δ this implies that η({θ| �θ|µτ 6=�θ|µτ−1}) < ε. Assuming (almost) all students θ′ ∈
Θ \ {θ} report preferences �θ′|µτ−1 , we have that θ can profitably misreport her preferences
only if �θ|µτ 6=�θ|µτ−1 . Therefore, η(Θ′) < ε.

4. Suppose that the TFM mechanism terminates at step τ = K · T + t. Note that the stopping
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criterion is independent of K, T, t. Therefore, we can treat τ as a constant. For sufficiently
large T, K = 0 and τ = t. Moreover, t

T = τ
T is arbitrarily small. K = 0 implies that no student

reports her preferences more than twice, and t = τ implies that the share of submarkets who
report preferences twice is τ

T . Recall our assumption that η(Θk) → 0 for all k ∈ 1, ..., T as
T → ∞. Therefore, for any ε there exists T such that

τ

∑
k=1

η(Θk) < ε.

Proposition 2

Proof. Fix a market Et. We first construct a stable matching and then prove that it is unique. The
algorithm for finding it proceeds in a series of steps ` = 1, 2, 3, .... It begins with all students
facing zero peer costs from all programs, and selecting their favorite programs. As the algorithm
progresses, the summary statistics for programs become “locked in" and students internalize the
associated peer costs in subsequent steps.

Step 1: Begin with the matching µ0 wherein µ0(θ) = c0 for all θ ∈ Θ. Therefore, s0 = s(λ(µ0))

is the zero vector. Let ν1 = At(Ptλ(µ0), λ(µ0)) be the unique market clearing matching corre-
sponding to s0. Let C1

t = {c ∈ Ct|sc(λ(ν1)) ≥ sc′(λ(ν1))∀c′ ∈ Ct}. Let D1
t = Ct \ C1

t . Con-
struct matching µ1, where µ1(θ) = ν1(θ) if ν1(θ) ∈ C1

t and µ1(θ) = c0 otherwise. Therefore,
sc

1 = sc(λ(ν1)) for all c ∈ C1
t and sc′

1 = 0 for all c′ ∈ D1
t .

Step `: Begin with s`−1 as defined in Step ` − 1 and let ν` = At(Ptλ(µ`−1), λ(µ`−1)) be
the unique market clearing matching corresponding to s`−1. Let C`

t = {c ∈ D`−1
t |sc(λ(ν`)) ≥

sc′(λ(ν`))∀c′ ∈ D`−1
t }. Let D`

t = D`−1
t \ C`

t . Construct matching µ`, where µ`(θ) = ν`(θ) if
ν1(θ) ∈ Ct \ D`

t , and µ`(θ) = 0 otherwise. Therefore, sc
` = sc(λ(ν`)) for all c ∈ Ct \ D`

t and
sc′
` = 0 for all c′ ∈ D`

t .

Terminate after the (first) step `′ in which D`′
t is empty and let µSD

t = µ`.
Note that the algorithm must terminate in at most N + 1 steps, as at each step ` at least one

program is removed from D`
t .

We first show (by induction) the following result on the above algorithm:

Lemma A.2. If c ∈ C`
t for some ` then sc

` = sc
`∗ for all `∗ > `.

Proof.
Base case: Show sc

1 = sc
2 for all c ∈ C1

t .
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No student θ with rθ ≥ sc
1 faces peer costs from any program c ∈ C1

t in matching
µ1. Therefore, all such students will attend the same program in steps 1 and 2, i.e.
µ1(θ) = µ2(θ) for all θ ∈ Θ with rθ ≥ sc

1. As there is a kc measure of students matched
to program c with scores higher than sc

1, η({θ ∈ µ1(c)|rθ ≥ sc
1}) = η({θ ∈ µ2(c)|rθ ≥

sc
1}) = kc (or 0 if η({θ ∈ µ1(c)}) = η({θ ∈ µ2(c)}) < kc). Therefore, sc

1 = sc
2.

Induction step: Assume sc
`−1 = sc

` for all c ∈ Ct \ D`−1
t . Show sc

` = sc
`+1 for all c ∈ Ct \ D`

t .

No student θ with rθ ≥ sc
` faces peer costs from any program c ∈ C`

t in matching µ`.
Moreover, by the induction hypothesis, every student θ with rθ ≥ sc

`−1 faces the same
peer costs from any program c ∈ Ct \D`−1

t . Therefore, each student θ with rθ ≥ sc
` will

attend the same program in steps ` and `+ 1, i.e. µ`(θ) = µ`+1(θ) for such students.
As there is a kc measure of students matched to each program c ∈ Ct \ D`

t with scores
higher than sc

`, η({θ ∈ µ`(c)|rθ > sc
`}) = η({θ ∈ µ`+1(c)|rθ > sc

`+1}) = kc (or 0 if
η({θ ∈ µ`(c)}) = η({θ ∈ µ`+1(c)}) < kc). Therefore, sc

` = sc
`+1.

We return to the proof of the proposition.
Proof of stability of µSD

t If the terminating step of the algorithm is `′, then by construction
µSD

t = µ`′ = ν`′ since D`′ is empty. Therefore, µSD
t = At(Ptλ(µ`′−1), λ(µ`′−1)), and so µSD

t

is market clearing. Moreover, because D`′ is empty it is the case that had we run the algo-
rithm for one more step, we would have had µ`′ = µ`′+1 by our induction argument, implying
µ`′+1 = At(Ptλ(µ`′), λ(µ`′)). Therefore, λ(µ`′) = λ(At(Ptλ(µ`′), λ(µ`′))), and so µSD

t = µ`′ is also
market clearing. By Lemma 2, µSD

t is stable.
Proof of uniqueness

To show that µSD
t is the unique stable matching, it suffices to show that sSD = s(λ(µSD

t )) is
the unique stable-matching summary statistic vector. Suppose for contradiction that there exists
a distinct stable-matching summary statistic vector s∗. Let K represent the subset of programs
that have different summary statistics in the two stable matchings, that is, K = {c|sc

SD 6= sc
∗}. By

the assumption of the existence of s∗ we know that K is non-empty. WLOG suppose that K =

{c1, c2, ..., c|K|}. Let smax = max{sc1
SD, sc1∗ , sc2

SD, sc2∗ , ..., s
c|K|
SD , s

c|K|
∗ }, and let cmax ∈ {c|sc

SD = smax or sc
∗ =

smax}. In words, smax is the largest summary statistic that differs between the two matchings, and
cmax is (one of) the program that has this summary statistic in one of the two matchings.

Consider the set of students Imax = {θ|rθ ≥ smax}. Note that the mass of students within Imax

enrolled at cmax is strictly lower than kcmax in exactly one of µSD and µ∗ and is exactly equal to
kcmax in the other. We claim that almost all θ ∈ Imax must be matched to the same program in both
matchings, µSD(θ) = µ∗(θ) for almost all θ ∈ Imax. This claim will complete the contradiction. To

A.11



see this, note that f θ(rθ, sc
SD) = f θ(rθ, sc

∗) for all θ ∈ Imax: each such student θ faces the same peer
cost from programs with higher summary statistics than smax because these summary statistics
are identical in both matchings by the definition of smax, and θ faces 0 peer costs from all other
programs ci, as rθ > sci

SD and rθ > sci∗ . By Assumption A1, only a zero measure set of students in
Imax could receive different matchings without forming blocking pairs. But if almost all θ ∈ Imax

receive the same matching, this contradicts the ongoing assumption that program cmax fills exactly
kc measure of seats from students θ ∈ Imax in one of the “stable" matchings, but it fills strictly
fewer measure seats in the other “stable" matching. Therefore, there cannot exist distinct stable-
matching summary statistic vectors.
Proof of Bullets 1.-3.

1. It suffices to show that there is no step ` in the above algorithm such that c ∈ Ct ∪ B2 is an
element of C`

t and c′ ∈ B1 is an element of D`
t . If this were the case, then by Lemma A.2,

sc
SD > sc′

SD. But then by AA2, all students face weakly larger peer costs from c than from c′.
By AA5, all students must therefore prefer c′ to c at matching µSD. But that contradicts that
sc

SD > sc′
SD.

2. This follows from the first bullet, and a nearly-identical argument to the proof of uniqueness.

3. This follows from the first two bullets and assumptions AA2 and AA5.

Theorem 3

Proof. We show that in the TIM process, the summary statistics of all programs (in B1) exactly
reach those in the stable matching in finite time. The following roapmap outlines our proof ap-
proach.

Scenario 1 : All programs are part of the first block, so that B1 = C \ {c0}

We first consider an economy with no entry and exit (Scenario 1). The proof is done by
induction on the index of programs, ordered by their stable statistics in the unique stable
matching (given no entry and exit, there is only one stable matching over time).

The Base Case states that there will be a period in which c1’s summary statistic reaches its
stable matching value sc1∗ , and that it will remain at this level for all future periods. This is
done by (Claim 1) showing that if sc1

t ever falls weakly below sc1∗ , then sc1
t′ = sc1∗ for all t′ > t.

Claim 2 shows that the maximum summary statistic among all programs cannot always lie
above sc1∗ . This completes the proof of the Base Case. The argument for the Induction Step is
similar, noting that all programs converge to their stable summary statistics "from the top."
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Scenario 2 : Not all programs are in block B1, so that B1 ( C \ {c0} (Scenario 2) extends the result
to cases with entry and exit. We show that the convergence for statistics of programs in B1

occurs regardless of the entry and exit of programs in B2, as these programs are always less
preferred to ones in B1 for high-scoring students.

We now begin the proof of the first scenario.

Scenario 1: All programs are part of the first block, so that B1 = C \ {c0}

Let µ∗ = A(p∗, s∗) be the unique stable matching, and suppose WLOG that sc1∗ ≥ sc2∗ ≥ ... ≥
scN∗ . Note that as there is no exit or entry in the current scenario (as all programs are in B1), we can
omit time indexes t for this unique stable matching. We consider the generic case in which some
(possibly) empty subset of programs C′ ⊂ C satisfy s

cj
∗ = 0 if and only if cj ∈ C′ and sci > sci+1 for

ci /∈ C′. The proof is by induction on the index of the programs.

We first address programs ci /∈ C′, i.e. those for which sci∗ > 0.
Base Case: If c1 /∈ C′, there exists t such that for all t′ > t, sc1

t′ = sc1∗ and sc1∗ > sci
t for all ci 6= c1.

Proof.
Claim 1: If sci

t ≤ sc1∗ for every program ci ∈ C, then sc1
t+1 = sc1∗ and sc1∗ > sci

t+1 for all ci ∈ C.

Proof. As sci
t ≤ sc1∗ for every program ci, (almost) all student types θ with rθ ≥ sc1∗ will satisfy

µt+1(θ) = µ∗(θ). This is because �θ|st=�θ|s∗ for all such θ because they face no peer costs at any
programs given st and s∗.

c1 will therefore enroll exactly kc1 measure of students with scores rθ ≥ sc1∗ , and each cj 6= c1

will enroll strictly fewer than kcj measure of students with scores rθ ≥ sc1∗ by virtue of the fact that
sc1∗ > s

cj
∗ . Therefore, sc1

t+1 = sc1∗ and sc1∗ > s
cj
t+1 for all cj 6= C1.

Returning to the proof of the base case, from Claim 1 we know that if sci
t ≤ sc1∗ for all ci and

some t then we are done. To show this, we assume for contradiction that there is no t such that
sci

t ≤ sc1∗ for all ci. Let sm
t = max

ci
sci

t . Therefore, the condition that there is no t such that sci
t ≤ sc1∗

for all ci is equivalent to sm
t > sc1∗ for all t.

Claim 2: If sm
t > sc1∗ for all t, then sm

1 > sm
2 > ....

Proof. Note that the assumption that sm
t > sc1∗ for all t implies that sm

t is strictly positive for all t.
For any given t consider θ with rθ ≥ sm

t . For all ci, η({θ ∈ µt+1(ci)|rθ ≥ sm
t }) < kci . This is because,

as in the proof of Claim 1, all such students θ face no peer costs, and as such, µt+1(θ) = µ∗(θ).
Because sm

t+1 > sc1∗ by assumption, no program ci enrolls enough of these top students with scores
rθ ≥ sm

t at time t + 1 to fill kci measure of seats. Therefore, for any ci ∈ C if η({µt+1(ci)}) < kci

then st+1(ci) = 0 and if η({µt+1(ci)}) ≥ kci then the score of the (kci)th highest-scoring student is
strictly less than sm

t .
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As sm
t , t ≥ 1 is a strictly decreasing sequence and sm

t ∈ (sc1∗ , 1], the sequence must converge
to S ≥ sc1∗ . Suppose for contradiction that S > sc1∗ . Let Mst

ci implicitly solve kci = η({θ|rθ ≥
sm

t and µ∗(θ) = ci}) + η({θ|rθ ∈ [Mst
ci , sm

t )}) (if there is no such value, let Mst
ci = 0), that is, Mst

ci

would be the score of the (kci)th highest-scoring student enrolled at ci in period t+ 1 if all students
with scores above sm

t attended their favorite program, and all of the students with scores below sm
t

attend program ci. Recall that for all students θ with rθ ≥ sm
t , µ∗(θ) = µt+1(θ). Therefore, Mst

ci is
an upper bound on sci

t+1. For any sm
t ≥ S > sc1∗ , it must be that there is a unique Mst

ci < sm
t for each

ci. Note also by assumption A1, it must be that Mst
ci is bounded away from sm

t when sm
t > S > s∗c1

,
i.e. there exists some δ > 0 such that sm

t −Mst
ci > δ for all ci if sm

t > S > s∗c1
. Therefore, for t such

that sm
t − S < δ (which must exist by the convergence hypothesis), sci

t+1 < Mst
ci < sm

t − δ < S,
which contradicts that sm

t is a decreasing sequence that converges to S.
Suppose for contradiction that S = sc1∗ . We know that S > s

cj
∗ for all j 6= 1. By a similar

argument to the case in which S > sc1∗ we arrive at the conclusion that there exists t such that for
all t′ > t, s

cj
t′ < S for all j 6= 1. Therefore, our contradiction hypothesis that for all t, sm

t > S is
equivalent to the condition that for all t′ > t, sc1

t′ > S.
Consider any t′ > t and suppose sc1

t > S = sc1∗ . Since s
cj
t < S = sc1∗ , we claim that sc1

t+1 < S. To
see this, note that any student θ with scores rθ ∈ [S, 1] has µt+1(θ) = c1 only if µ∗(θ) = c1; these
students face no peer costs from any program given µ∗ and face a peer cost from c1 given µt if
rθ ∈ [S, sc1

t ). Therefore, it must be that sc1
t+1 ≤ S, contradicting our assumption that for all t′ > t,

s
cj
t > S. Claim 1 completes the proof of the Base Case.

Induction Step: Suppose cj /∈ C′ and that there exists some time t such that for all t′ ≥ t all
programs ci, i < j have sci

t′ = sci∗ and sci∗ ≤ s
cj−1
∗ for i ≥ j. Then there exists t̄ such that for all t′′ > t̄,

s
cj
t′′ = s

cj
∗ and s

cj
∗ > sci

t′′ for all i < j.

Proof. The proof follows the case of the Base Case, and we therefore only summarize the argu-
ments here. Take a program cj ∈ C\{c0}:

1. If there is some time t̄− 1 such that sci
t̄−1 ≤ s

cj
∗ for every ci with i ≥ j and sck

t̄ = sck∗ for all ck

with k < j, then for all t′′ > t̄, s
cj
t′′ = s

cj
∗ and s

cj
∗ > sci

t′′ for all i < j.

2. Let sm,j
t = max

ci,i≥j
sci

t . Then if sm,j
t > s

cj
∗ for all t, sm,j

t > sm,j
t+1 > ....

3. There exists some t̄− 1 such that sm,j
t̄−1 ≤ s

cj
∗ .

The argument for the first claim is completely analogous to the one for the base case, with the
change in notation of sm

t to sm,j
t = max

ci,i≥j
sci

t .
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The second and third claims hold from the fact that the entire argument that we had before
still stands after the programs with higher stable statistics have already converged. We can just
use the same arguments with the preferences given the known statistics sck

T = sck∗ for k < j.

We finish the proof by considering programs cj ∈ C′, i.e. those for which s
cj
∗ = 0. By our

previous induction argument, there is some t such that for all t′ > t, sci
t′ = sci∗ and s

cj
t′ < sci∗ for all

ci /∈ C′ and all cj ∈ C′. The following arguments hold for all programs cj ∈ C′:

1. If there is some time t− 1 such that s
cj
t−1 = 0 for every cj ∈ C then s

cj
t = 0.

2. Let sm,0
t = max

cj∈C′
s

cj
t . Then sm,0

t > sm,0
t+1 > ....

To see that 1. holds, note that if ci ∈ C′, cj ∈ C′ for any j > i. Therefore all programs
with sufficiently-high indices have stable summary statistics lower or equal to 0, and then, by
an argument analogous to the one before, they converge to their stable value immediately. The
argument for 2. is analogous to the one from the previous case.

Therefore, it remains only to show that there exists some t̄− 1 such that sm,0
t̄−1 = 0. Given that

sm,0
t is bounded and decreasing, it must converge. By a similar argument to the one above, we

show that it cannot converge to S > 0. To show that sm,0
t cannot converge to 0 without ever

reaching it in finite time, note that our genericity condition suggests that there is at most one
program cJ ∈ C′ for which η(µ(cJ)) ≥ kcJ , and for all other programs cj ∈ C′, η(µ(cj)) < kcj . By
assumption A4 and our earlier arguments, for t̄− 2 such that sm,0

t̄−2 is sufficiently close to 0, s
cj
t′′ = 0

for all t′′ > t̄− 2 and all cj ∈ C′ \ {cJ}. This implies that scJ
t̄−1 = 0 since cJ is “less popular" at t̄− 1

than in the stable matching, which completes the argument.

This proves our result for Scenario 1, in which there is no entry or exit. We will now extend
our findings to the following scenario with entry and exit of programs.

Scenario 2: Not all programs are in block B1, so that B1 ( C \ {c0}

Proof. We already know, from Proposition 2, that any sequence of stable matchings {µ∗t }t≥1 for
any NSW market is such that for all c ∈ B1, sc(λ(µ∗t )) = sc(λ(µ∗t′)) for all t′ ≥ 1. What now needs
to be shown, then, is that different stable scores for programs in B2 do not change the stable scores
of programs in B1.

Note first that from bullet point 1. of Proposition 2, we know that for any ci ∈ B1 and cj ∈ B2

and a stable matching µ∗, sci(λ(µ∗t )) ≥ scj(λ(µ∗t )). Following the steps of Proposition 2, we see
that each program in B1 must have the same stable summary statistic in each µ∗t , t > 0 and these
values will be reached in the TIM process in finite time.
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Take a s0 vector of aggregate statistics. We will argue that s2 is the same for any program in B1 for
any entry and exit realization at period t = 2.

At period t = 1 we get s1. At period t = 2 some programs in B2 exit and enter the market,
with some perceived statistics. Denote by smin

t the lowest statistics value among programs in B1

at time t and by sN
∗ the lowest stable statistic for any program in B1. From the previous point we

know that such value exists, as all programs in B1 have the same stable statistics at any stable
matching. The argument will come down to two simple points:

(a) If smin
t ≤ sN

∗ at period t, µt′(θ) ∈ B1 for any t′ > t and any student-type θ with rθ ≥ sN
∗ .

(b) We have that smin
t ≤ sN

∗ for t = 1.

To see that point (a) holds, note that any such student-type θ with rθ ≥ sN
∗ will, at time t + 1,

rank all programs in B1 with rθ ≥ sci
t higher than any program in B2. This student must be able

to enroll at some program in B1, otherwise s∗ would not be a stable aggregate statistics vector. To
see this more clearly, note that at any stable matching, all students with scores rθ ≥ sN

∗ go to some
program in B1. Therefore for a student not to be able to get into any B1 program at t+ 1, we would
need to pmin

t > rθ ≥ sN
∗ , which is clearly not possible, as pmin

t must be lower than or equal to sN
∗ .

For point (b), note first that if smin
t ≤ sN

∗ at either t = 0 or t = 1, then we are done, by the
previous point. Suppose, then, that, smin

t > sN
∗ at t = 0 and t = 1. If smin

t > sN
∗ at t = 1 as well,

then there must be a set of students with rθ ≥ sN
∗ who did not enroll at any program in B1 at t = 1.

But then the lack of such students in B1 programs must make at least one of them have a statistic
lower than sN

∗ , and therefore smin
t ≤ sN

∗ at t = 1, a contradiction.
To conclude the proof, note that the market for programs in B1 and student-types θ with rθ ≥

sN
∗ from t = 2 onward is unaffected by entry and exit realizations of programs is B2. Therefore,

the convergence of statistics of programs in B1 happens exactly as in Scenario 1.

Remark 4

Proof. We verify each of the desired conditions separately.

A2 This follows from AA6 when C = B1 ∪ {c0}.

A5 This follows from AA2 and the construction of s(·).

A6 This follows from A1 and the continuity of f θ,c(·, ·) in its second argument for each θ ∈ Θ and
c ∈ C (see AA2).
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A7 Note that if at some µ ∈ M and ε > 0 it is the case that η(µ(c)) < qc, then sc(µ) = 0, and there
exists δ > 0 such that if ν ∈ M satisfies ||λ(µ)− λ(ν)||∞ < δ, then sc(ν) = 0. Therefore, we
focus on the case in which η(µ(c)) ≥ qc.

We say that the set of students µ(c) has a hole if there is an interval of scores (rl, rh) ⊂ (0, 1),
with rh > rl, such that η(θ|{rθ,c ≤ rl} ∩ {µ(θ) = c}) > 0 but η(θ|{rθ,c ∈ (rl, rh)} ∩ {µ(θ) =
c}) = 0. In words, there is an interval of scores in which a zero measure of students are
assigned to a program, even though there is a positive measure of students enrolled at the
program with scores below the interval. If a matching µ is such that for all c, µ(c) has no
holes, then we say that µ is score connected.

The proof is in two steps: 1) All µ ∈ M are score connected (i.e. µ is score connected if it is a
market clearing matching), and 2) If all µ ∈ M are score connected, then s(·) satisfies A7.

Step 1: All µ ∈ M are score connected.

Let µ ∈ M. Then µ = A(p, λ) for some (p, λ). Suppose for contradiction that there is a hole
(rl, rh) at µ(c) for some c ∈ C. Then there exists a positive-measure set of student types Θ′

such that rθ′,c ≤ rl and µ(θ′) = c for all θ′ ∈ Θ′. This implies that the cutoff pc is such that
pc < rl. By A2 (which follows from AA6, as shown earlier in the proof of this Remark), there
exists a positive-measure set of students Θ̂ such that rθ̂,c ∈ (rl, rh) for all θ̂ ∈ Θ̂ who strictly
prefer c to any other program at µ. This contradicts that µ ∈ M as µ(θ̂) 6= c = Dθ̂(p, λ) for
all θ̂ ∈ Θ̂.

Step 2: If all µ ∈ M are score connected, then s(·) satisfies A7.

Recall that for all c ∈ C, kc ∈ [0, 1] is such that sc(λ(µ)) equals the supremum value of rθ for
which η({θ′ ∈ µ(c)|rθ′ > rθ}) = kc (if such a number exists, and 0 otherwise).

Fix c ∈ C, ε > 0, and µ ∈ M. Because µ is score connected, µ(c) has no holes and so there
is a unique value sc(λ(µ)) ∈ [0, 1] that satisfies η({θ′ ∈ µ(c)|rθ′ > sc(λ(µ))}) = kc. Notice
also that sc(λ(µ)) is continuous in kc. Take δ > 0 and any ν ∈ M such that η({µ(c) \ (µ(c) ∩
ν(c)}) < δ and η({ν(c) \ (µ(c) ∩ ν(c)}) < δ. It suffices to show that as δ → 0, sc(λ(ν)) →
sc(λ(µ)). Let sc(λ(µ), δ) be defined implicitly by η({θ′ ∈ µ(c)|rθ′ > sc(λ(µ), δ)}) = kc +

δ and sc(λ(µ),−δ) be defined implicitly by η({θ′ ∈ µ(c)|rθ′ > sc(λ(µ),−δ)}) = kc −
δ. Then because ν is score connected (as ν ∈ M), it must be the case that sc(λ(ν)) ∈
(sc(λ(µ),−δ), sc(λ(µ), δ)). By the continuity of sc(λ(µ)) in kc, sc(λ(µ), δ)

δ→0→ sc(λ(µ)) and
sc(λ(µ),−δ)

δ→0→ sc(λ(µ)). Therefore, sc(λ(ν))→ sc(λ(µ)) as δ→ 0.
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Additional theoretical results in New South Wales markets
We have shown that the summary statistic of top-block programs converges in finite time in

any NSW market. However, the lowest-scoring students matched to top-block programs may be
affected by entry and exit, and there may not exist some T > 0 such that these students receive
their stable matching program in all t > T. The "big-fish" preferences present in NSW markets
imply that even these students do not receive a negative utility shock to their preferences. We say
that a student type θ ∈ Θ is a member of a negative utility blocking pair if there exists c ∈ Ct such
that (θ, c) form a blocking pair, and uθ(µt(θ)|νt−1) > uθ(µt(θ)|µt). The following summarizes this
statement, and is presented with proof.

Remark 6. In a generic sequence of economics E, E1, E2, ... the measure of students involved in negative
utility blocking pairs goes to zero in the TIM procedure, that is,
η({θ ∈ ⋃

c∈B1

µt(c)|θ is a member of negative utility blocking pair} → 0. Moreover, if s∗c = 0 for at most

one program c ∈ B1, then there exists some time T < ∞ such that
η({θ ∈ ⋃

c∈B1

µt(c)|θ is a member of negative utility blocking pair} = 0 for all t > T in the TIM procedure.

This result further solidifies the lack of stability at the "bottom" of the market: only students
who are matched to programs in B2 are potentially subject to a lower utility than anticipated from
their program for sufficiently large t.

We can also study how the rate of entry and exit affects the amount of instability in the mar-
ket. Consider the following thought experiment. Suppose that there is entry or exit of a new
program(s) at period t, and that the set of programs remains constant until period t + T, where
T > 0. If, starting at νt, it takes the TIM process fewer than T periods to converge, then µt′ will be
stable for periods t′ ∈ (t + T′, t + T] for some 0 < T′ < T. If T′ is much smaller than T, the market
will generate a stable matching for a large fraction of the periods between the change in the set of
programs.

The following result upper bounds T′ in this thought experiment, in markets where there
is sufficient alignment in intrinsic student values over programs, vθ,c. For notational simplicity,
we assume that B1 = C \ {c0} and show that the TIM procedure converges from any starting
condition µ0 in no more than N + 2 periods. Therefore, if entry or exit happens far less often than
once every N + 2 periods, the TIM procedure will (in most periods) generate a stable matching.

Remark 7. Let B1 = C \ {c0}. For any µ0 and δ > 0, there exists ε′ > 0 such that for any 0 < ε < ε′,
if the measure of students who have common intrinsic program preferences is strictly larger than 1− ε,
η({θ ∈ Θ|vθ,c1 > vθ,c2 > ... > vθ,cN}) > 1− ε, then µt is δ-stable for all t > N + 1.
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Proof. Let ε ∈ (0, 1) and let Eε be a NSW market where 1− ε measure of students have common
intrinsic preferences, that is η{θ|vc1,θ > vc2,θ > ... > vcN ,θ} = 1− ε. Let Ẽε be a market that differs
from Eε only in that we permute student intrinsic preference such that vc1,θ > vc2,θ > ... > vcN ,θ

for almost all θ. Let µ̃∗ and µ∗ represent the unique stable matchings in Ẽε and Eε, respectively.
Let s̃∗ and s∗ represent the vector of kth highest scores at each program in stable matchings µ̃∗ and
µ∗, respectively. The following steps together prove our desired result.

Step 1: For any δ > 0 there exists ε′ > 0 such that for all ε < ε′, ||s∗ − s̃∗||∞ < δ.

Step 2: For any i 6= j such that s̃ci∗ > 0, there exists δ > 0 such that |s̃ci∗ − s̃
cj
∗ | > δ. Similarly, there

exists ε′ such that for any ε < ε′, |sci∗ − s
cj
∗ | > δ.

Step 3: Given any µ0, s̃N+1 = s̃∗ in the TIM process in market Ẽε.

Step 4: For any δ > 0 and µ0, there exists ε′ > 0 such that for ε < ε′, ||s̃t − st||∞ < δ for all
t ≤ 3N + 1.

Step 5: For any µ0 there exists ε′ > 0 such that for any ε < ε′, the TIM process in Eε yields sN+1

such that ||sN+1 − s∗||∞ < δ. Continuing on in the TIM process, s3N+1 = s∗.

We now prove each step in the order presented:

Step 1: For any δ > 0 there exists ε′ > 0 such that for all ε < ε′, ||s∗ − s̃∗||∞ < δ.

Proof. The statement follows from the pseudo-serial dictatorship mechanism presented in Propo-
sition 2. By construction, s̃c1∗ ≥ s̃c2∗ ≥ ... ≥ s̃cN∗ . For any γ1 > 0, exists ε1 such that for all
ε < ε1, 1− γ1 measure of students attend the same program in the first step of the mechanism in
economies Eε and Ẽε, respectively, by Lemma B.3 of Azevedo and Leshno (2016). Remark 4 finds
that µ1 is score connected and therefore (following Step 2 of that remark), for sufficiently small γ1,
|sc1

1 − s̃c1
1 | < δ, where sc1

1 and s̃c1
1 are the summary statistic of program c1 in the first stage of the

mechanism in economies Eε and Ẽε, respectively. By Proposition 2, it is the case that sc1
1 = sc1∗ and

s̃c1
1 = s̃c1∗ . By induction it follows by this argument that there exists εi > 0 such that for all ε < εi,
|sci∗ − s̃ci∗ | < δ. Then, take ε′ = min{ε1, ..., εN} to complete the claim.

Step 2: For any i 6= j such that s̃ci∗ > 0, there exists δ > 0 such that |s̃ci∗ − s̃
cj
∗ | > δ. Similarly, there

exists ε′ such that for any ε < ε′, |sci∗ − s
cj
∗ | > δ.

Proof. If s̃ci∗ > 0 then s̃
cj
∗ > s̃ci∗ for j < i. This follows because vcj,θ > vci,θ for almost all θ, and

therefore at most a measure zero set of students with scores rθ ≥ s
cj
∗ can be matched to ci, η({θ ∈

µ̃∗(ci)|rθ ≥ s
cj
∗ }) = 0. By similar logic, s̃

cj
∗ < s̃ci∗ if j > i. Let N′ represent the subset of programs

such that s̃ci∗ > 0 for all i ∈ N′. Therefore, any δ ∈ (0, min
i∈N′

sci∗ − sci+1
∗ ] satisfies our requirement.
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That there exists ε′ such that for any ε < ε′, sci∗ − sci+1
∗ > δ for all i ∈ N′ follows from the

previous argument and the conclusion of Step 1.

Step 3: Given any µ0, s̃N+1 = s̃∗ in the TIM process in market Ẽε.

Proof. Fix t > 0, and suppose that all cj with j < i ≤ N are such that s̃
cj
t = s̃

cj
∗ . If s̃ci

t ≤ s̃ci∗ then
s̃ci

t′ = s̃ci∗ for all t′ ≥ t + 1. To see this, consider the set of students {θ|rθ ≥ s̃ci∗ }. All such students
θ will have µ̃t+1(θ) = ck for k ≤ i by Assumption AA2 and the fact that intrinsic preferences
are fully aligned in market Ẽε. Therefore, s̃ck

t ≤ s̃ci∗ for all k > i. By Scenario 1 from the proof of
Theorem 3, this implies that s̃ci

t′ = s̃ci∗ for all t′ ≥ t + 1.
The following induction argument shows that s̃N+1 = s̃∗.

Base Case: s̃c1
2 = s̃c1∗ and s̃c2

2 ≤ s̃c2∗ .
By the fact that intrinsic preferences are fully aligned, it is the case that s̃c1∗ = max{1− kc1 , 0}.

Therefore, for any µ0, s̃c1
1 ≤ s̃c1∗ . We then have that almost every student θ ∈ {θ|rθ ≥ s̃c1∗ } will

have µ2(θ) = c1. Moreover, because sc1
1 ≤ sc1∗ and students have big-fish preferences (Assumption

AA2), it must be the case that η({θ|µ̃2(θ) = c1} ∩ {θ|rθ ≥ s̃c2∗ }) ≥ η({θ|µ̃∗(θ) = c1} ∩ {θ|rθ ≥
s̃c2∗ }). As a result, s̃c2

2 ≤ s̃c2∗ .

Induction Case: If at time period t > 1 it is the case that s̃
cj
t = s̃

cj
∗ for all j < i ≤ N (if there exists

0 < j < i) and s̃ci
t ≤ s̃ci∗ then s̃ci

t+1 = s̃ci∗ and s̃ci+1
t+1 ≤ s̃ci+1

∗ if i + 1 ≤ N.
It remains only to show that if i+ 1 ≤ N, then s̃ci+1

t+1 ≤ s̃ci+1
∗ . This follows a similar logic as in the

base case; η({θ|µ̃t+1(θ) = ck, k < i + 1} ∩ {θ|rθ ≥ s̃ci+1
∗ }) ≥ η({θ|µ̃∗(θ) = ck, k < i + 1} ∩ {θ|rθ ≥

s̃ci+1
∗ }). As a result, s̃ci+1

t+1 ≤ s̃ci+1
∗ .

Step 4: For any δ > 0 and µ0, there exists ε′ > 0 such that for ε < ε′, ||s̃t − st||∞ < δ for all
t ≤ 3N + 1.

Proof. Fix µ0 and δ > 0. Define µt and µ̃t as the matchings formed at t for economies Eε and Ẽε,
respectively. By Lemma B.3 of Azevedo and Leshno (2016) for any γ1 > 0 there exists ε1 such that
for all ε < ε1, η({θ|µ1(θ) 6= µ̃1(θ)} < γ1. Assumption A2 implies that for sufficiently small γ1,
||s1 − s̃1||∞ < δ. By repeated application of Remark 2 and Lemma B.3 of Azevedo and Leshno
(2016), there exists εt such that for all ε < εt, η({θ|µt(θ) 6= µ̃t(θ)} < γt. Assumption A2 implies
that for sufficiently small γt, ||st − s̃t||∞ < δ. To complete the result, let ε′ = min

t≤3N+1
εt.

Step 5: For any µ0 there exists ε′ > 0 such that for any ε < ε′, the TIM process in Eε yields sN+1

such that ||sN+1 − s∗||∞ < δ. Continuing on in the TIM process, s3N+1 = s∗.
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Proof. The first statement holds by the results of Steps 1, 3, and 4.
Again letting N′ represent the subset of programs such that s̃ci∗ > 0 for all i ∈ N′, Steps 2 and

4 imply that for sufficiently small ε, sci
t − sci+1

t > δ for all i ∈ N′ and all t ∈ {N + 1, ..., 3N + 1}.
Therefore, it remains only to show that s3N+1 = s∗. By the argument in the last paragraph,

we know that either sc1
N+1 > s

cj
N+1 for all j 6= 1 or sN+1 = s∗ = {0, 0, ..., 0}. If sc1

t ≤ sc1∗ , we have
that sc1

t+1 = sc1∗ , by the proof of Theorem 3. If sc1
t > sc1∗ , we have that sc1

t+1 ≤ sc1∗ . From Steps 1-4, it
must be the case that sc1

N+1 > sc1∗ > s
cj
N+1 for all j 6= 1 for sufficiently small ε. By Assumption AA2,

it must be that η({θ|c1 �θ|sN+1 cj for all j 6= 1 AND rθ > sc1∗ }) ≤ kc1 . By the argument presented
before, this means that sc1

t+2 = sc1∗ . The argument for the other programs hold analogously, with
each program ci reaching its steady-state summary statistic at most two periods after program
ci−1.

This bound is tight; there exist markets in which convergence does not occur in fewer than
N + 2 periods. To see this, let E be a NSW market in which kci < qci for each ci ∈ C and in which
is an undersupply of seats: ∑i qci < 1.

Programs are almost universally ranked by students and more popular programs are more
“competitive": η{θ|vc1,θ > vc2,θ > ... > vcN ,θ} = 1− ε for some small ε and kci < kcj for 0 < i < j.
Moreover, peer preferences are strong: f θ(rθ, sci) > vc1 whenever rθ < sci − ε.

For sufficiently small ε, it is the case that sc1∗ > sc2∗ > ... > scN∗ > 0. We show that for a given
starting condition µ0 and sufficiently small ε, the market does not (approximately) converge in
strictly fewer than N + 1 periods.

Let µ0 be such that sci
0 > sc1∗ + ε for all i. Then by our assumption on peer preferences, and

our assumption that kci < kcj for 0 < i < j, no program ci fills kci seats at t = 1, η(µ1(ci)) < kci .
Therefore, sci

1 = 0 for all ci ∈ C.
At t = 1, all students of sufficiently high score attend their stable partner for sufficiently small

ε: µ1(θ) = µ∗(θ)for all θ ∈ {θ|rθ > sc1∗ }. This follows because students face no peer costs at any
program due to sci

1 = 0 for all ci ∈ C. However, by Steps 3 and 4 of the proof of Remark 7, sc2
2 < sc2∗ .

As a result, sc2
t does not reach steady state until t = 3.

We can continue this argument to show that for each 0 < t ≤ N, sct
t < sct∗ , which implies that

st = sN+1 only for t ≥ N + 1.

B Additional evidence, figures, and tables
Table A.1 studies student preference for program "quality" in a regression framework. The

dependent variable is the number of times a program is ranked by applicant post-ROLs in a given
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year, while the main regressor is the program PYS. We include field of study and year fixed effects
to isolate cross-sectional variation. We find that programs with higher PYSs are more likely to be
ranked by students. This suggests a preference for higher-quality programs amongst applicants.

Across Person

Table A.3 shows the impact of the PYS on applicant demand for very young (2 years old)
versus very old programs (14 or more years old) in our sample. Specifically, we estimate the
following regression:

yc,t = βPYSc,t + γAgec,t + λAge Knownc + δ0PYSc,t × Agec,t + δ1PYSc,t ×Age Knownc

+ δ2Agec,t ×Age Knownc + δ3PYSc,t × Agec,t ×Age Knownc + αc + αt + εc,t
(A.2)

where yc,t denotes the average applicant score, the number of students who apply, the percent of
students who apply, or the percent of students who apply with ATAR scores higher/lower than
the program PYS for program c in year t. Agec,t is the number of years we observe a program in
the sample and Age Knownc is a dummy that is equal to one if the program is established within
our sample period and we can thus be certain of its age. We again include year and program fixed
effects (αc and αt, respectively) to isolate variation in PYS that is happening within program over
time. Table A.3 presents the linear combination of coefficients of Equation A.2 for (i) 2 year old
program where we know the true age, i.e. that start within our sample period (Age Knownc=1)
and (ii) programs that we observe for every year in the sample, i.e. programs that are in existence
for 14 or more years (Age Knownc=0).

We note that the outcomes in Columns 2, 3, and 5 are nearly identical between the oldest and
newest programs and the effect in Column 1 is larger for the oldest programs, which we would
not expect if students cared about their fit with a program and not their peers. One anomalous
finding is the negative, but noisy coefficient in Column 4 for the oldest programs. This is at least
in part due to a small sample issue (as we discuss later in Figure 8, the oldest programs typically
have the highest PYS value, implying that a small fraction of students have ATAR scores above
the PYS of these programs). This is supported by the nearly-identical point estimates in Columns
3 and 5 across the oldest and youngest programs (i.e. holding the point estimates in Columns 4
and 5 fixed, if there were a significant fraction of students with ATAR scores above the PYS of the
oldest programs, we would mechanically expect a more negative coefficient in Column 3). Finally,
we note that the coefficient in Column 4 for programs that are known to be exactly 13 years old is
statistically indistinguishable from 0.

Within Person

We estimate impact of the PYS/ATAR score gap on applicant demand for very young (2 years
old) versus very old programs (7 or more years old) in our sample. Specifically, we estimate the
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following regression:

yi,c,t = β(PYSc,t − ATARi) + γAgec,t + λAge Knownc + δ0(PYSc,t − ATARi)× Agec,t

+ δ1(PYSc,t − ATARi)×Age Knownc + δ2Agec,t ×Age Knownc

+ δ3(PYSc,t − ATARi)× Agec,t ×Age Knownc + εi,c,t

(A.3)

where yc,t denotes an indicator for "promote." Agec,t is the number of years we observe a program
in the sample and Age Knownc is a dummy that is equal to one if the program is established within
our sample period and we can thus be certain of its age. Table A.8 presents the linear combination
of coefficients of Equation A.3 for (i) 2 year old program where we know the true age, i.e. that
start within our sample period (Age Knownc=1) and (ii) programs that we observe for every year
in the sample, i.e. programs that are in existence for 7 or more years (Age Knownc = 0).

We note that the coefficient on our outcome of interest ("promote") in all columns is larger
and statistically significant for the oldest programs, which we would not expect if students cared
about their fit with a program and not their peers.

Additional results on program attrition

We find evidence that failing to explicitly design the market to incorporate peer preferences is
borne in stability terms by students from less advantaged demographic backgrounds. We merge
in data on gender, ethnicity, and socioeconomic status at the university-year level.3 We test for a
significant relationship between yearly absolute changes in PYS and the share of low-SES students
in Table A.4. This relationship is positive and significant—a one percentage point increase in
share of low-SES students at a university is associated with an increase in the yearly PYS change
measure of 0.012 points. The average yearly absolute change in PYS is 0.35, so from a percentage
view this is a 3.4% increase off the mean. This relationship is robust to controls for year, field of
study, program age, and university size. The relationship is several times the magnitude when
we restrict to program-years with CYS<PYS, that is, those that admit negative utility blocking
pairs. We find a similar pattern when looking at the share of minority, disabled, and rural-based
students across universities with more- or less-volatile PYSs (see appendix Figure A.1).

These results suggest that programs with non-steady state statistics are more likely to serve a
lower SES population, and are subject to higher attrition rates. While these results do not them-
selves convincingly show causality in either direction, the results do show that the population
most impacted by nonconvergence has a lower socioeconomic status, and includes those who are
less likely to complete their studies at their initial program.

3Due to student privacy concerns, we are not able to merge demographic characteristics at the individual level.
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Table A.1: Relationship between program PYS and popularity amongst applicants

Program ranked at all
(1) (2) (3) (4)

PYS 0.78∗∗ 0.85∗∗ 0.92∗∗ 1.00∗∗

(0.28) (0.29) (0.31) (0.32)

Year FE X X
Field FE X X

Program ranked first
(1) (2) (3) (4)

PYS 0.30∗∗∗ 0.32∗∗∗ 0.36∗∗∗ 0.38∗∗∗

(0.08) (0.08) (0.09) (0.09)

Year FE X X
Field FE X X

This table shows the positive relationship between a program’s PYS and the chance that it is included on an appli-
cant’s ROL. The dependent variable in the top panel is the number of times a program is ever ranked (any position) in
a given year. The dependent variable in the bottom panel is the number of times a program is ranked first in a given
year. Columns (2)-(4) include year and field of study fixed effects – this isolates cross sectional variation in the PYS
across programs in a given year and field. The positive coefficients indicate that applicants generally prefer to rank
programs with higher PYS’s. We refer to this as a preference for program quality. Standard errors in parentheses,
clustered at program level. * p < 0.05, ** p < 0.01, *** p < 0.001

Table A.2: Across Time Applicant Response to Program PYS, including Lagged PYS Values

(1) (2) (3) (4) (5)

Avg. Applicant Score # of Applicants % of Applicants % of Applicants
Higher Score

% of Applicants
Lower Score

Past Year Statistic 0.294∗∗∗ -2.608∗∗∗ -0.010∗∗∗ -0.007∗∗∗ -0.017∗∗∗

(0.018) (0.286) (0.001) (0.002) (0.002)

2 Years Ago Statistic 0.040∗ -0.186 -0.000 0.003∗ 0.001
(0.016) (0.193) (0.001) (0.001) (0.001)

3 Years Ago Statistic 0.073∗∗∗ -0.565∗ 0.001 0.003∗∗ -0.002
(0.015) (0.239) (0.001) (0.001) (0.001)

Observations 8,673 8,673 8,673 8,673 8,673

This table shows the estimated β coefficients of a regression similar to (1) where we additionally include the 2 and 3 Years Ago Statistic of the
program. yc,t is the average applicant score, the number of students who apply, the percent of students who apply, or the percent of students
who apply with ATAR scores higher/lower than the program PYS for program c in year t. Standard errors in parentheses, clustered at program
level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.3: Impact of PYS on Applicant Demand for New and Established Programs

(1) (2) (3) (4) (5)

Avg. Applicant Score # of Applicants % of Applicants % of Applicants
Higher Score

% of Applicants
Lower Score

2 Year Old Programs 0.274 ∗∗∗ -2.002 ∗∗∗ -0.007 ∗∗∗ -0.003 -0.014 ∗∗∗

(0.023) (0.197) (0.001) (.002 ) (0.001)

14+ Year Old Programs 0.367 ∗∗∗ -1.867 ∗∗∗ -0.008 ∗∗∗ -0.039 ∗ -0.015 ∗∗∗

(0.029) (0.657) (0.002) (0.022) (0.003)

Observations 14,850 14,850 14,850 14,850 14,850

This table shows the linear combination of estimated coefficients for Equation A.2 for (i) 2 year old programs (ii) 14 or more year old programs. For
2 year old programs we restrict on programs that start within our sample period where we can thus be certain of their true age (Age Knownc=1).
For 14 or more year old programs we restrict on those programs that are already in existence when our sample starts and that we then observe for
every consecutive year in our sample, meaning they will be at least 14 or more years old (Age Knownc=0). Standard errors in parentheses, clustered
at the program level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.4: Relationship Between |CYS-PYS| and Share of Low SES Students

All Observations (N = 14,795)

Share Low SES 0.012∗∗∗ 0.010∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.027∗∗

(0.003) (0.003) (0.003) (0.003) (0.009)

Only program-years with CYS-PYS < 0 (N = 4,226)

Share Low SES 0.064∗∗∗ 0.061∗∗∗ 0.059∗∗∗ 0.055∗∗∗ 0.162∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.020)

Year FE X X X X X
Field FE X X X X
Course Age FE X X X
University Size FE X X
Field Shares FE X

This table tests for the relationship between the share of students with a low socioeconomic background of a
given program and its year to year change in PYS. We find that, even with a host of controls and fixed effects,
programs with more volatility in their yearly admissions statistic also have higher share of low SES students.
Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Figure A.1: Demographics and |PYS− CYS|

We test whether the instability generated by disregarding peer preferences is borne primarily by students from less
advantaged demographic backgrounds. We merge in data on gender, ethnicity, and socioeconomic status at the
university-year level. We divide our sample of university programs into quintiles, based on the size of their yearly
absolute changes in PYS. We find that programs with the highest levels of instability are at universities with a larger
share of low-SES students. These universities also tend to serve more students with disabilities, those from rural
areas, and those with indigenous backgrounds. While these results do not claim to show causality in either direction,
they show that the population most impacted by non-convergence has a lower socioeconomic status.
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Table A.5: Summary Statistics of Adjustments to pre-ROL

Variable Obs Mean Std. Dev. P25 P50 P75

Only Switchers 167352 0.12 0.32
Only Adders 167352 0.07 0.25
Only Removers 167352 0.03 0.16

Any switch 167352 0.23 0.42
Any add 167352 0.27 0.44
Any remove 167352 0.2 0.4
Any change 167352 0.43 0.5

Nr. of switches 167352 0.7 1.8 0 0 0
Nr. of adds 167352 0.63 1.32 0 0 1
Nr. of removes 167352 0.47 1.18 0 0 0
Nr. of changes 167352 1.81 2.85 0 0 3

Share of final list switched 167352 0.13 0.25 0 0 0.2
Share of final list added 167352 0.09 0.18 0 0 0.13
Share of final list removed 167352 0.06 0.14 0 0 0
Share of final list changed 167352 0.28 0.36 0 0 0.6

This table summarizes adjustments students make to their submitted ROLs once they learn
their final ATAR score. Rows denoted by "Only..." present the share of students who con-
duct only the stated adjustment to their pre-ROL. Rows denoted by "Any..." present the
share of students who conduct the stated adjustment to their pre-ROL. Rows denoted by
"Nr...." present the average number of the stated adjustments to the pre-ROL across stu-
dents. Rows denoted by "Share..." present the average across students of the ratio of the
number of the stated adjustments made to the length of the pre-ROL. We use the pre- and
post-ROL sample from 2010-2016.
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Table A.6: Impact of Score Gap on Add

(1) (2) (3) (4) (5) (6) (7)
Add Add Add Add Add Add Add

PYS - ATAR -0.0018∗∗∗ -0.0015∗∗∗ -0.0015∗∗∗ -0.0019∗∗∗ -0.0015∗∗∗ -0.0013∗∗∗ -0.0010∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.1161∗∗∗ 0.1143∗∗∗ 0.1124∗∗∗ 0.1169∗∗∗ 0.1144∗∗∗ 0.1129∗∗∗ 0.1113∗∗∗

(0.002) (0.000) (0.001) (0.002) (0.002) (0.001) (0.001)

Program FE X
Avg. ROL PYS FE X
ROL length FE X
Top Progam FE X
Top 2 Programs FE X
Top 3 Programs FE X

Observations 579,990 579,961 578,555 579,990 579,990 579,990 579,990

The dependent variable is an indicator for whether a program was added to a student’s post-ROL. Column (2) includes program
fixed effects, column (3) includes a fixed effect for the average PYS taken over programs on the pre-ROL, column (4) includes
a fixed effect for the number of programs listed on a student’s pre-ROL, column (5) includes a fixed effect for the top-ranked
program in the pre-list, column (6) includes a fixed effect for the top two ranked programs in the pre-list, column (7) includes a
fixed effect for the top three ranked programs in the pre-list. We use the pre- and post-ROL sample from 2010-2016. Standard
errors in parentheses, clustered at the program level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.7: Impact of Score Gap on Remove

(1) (2) (3) (4) (5) (6) (7)
remove remove remove remove remove remove remove

PYS - ATAR 0.0002∗∗∗ 0.0002∗∗∗ 0.0007∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.0793∗∗∗ 0.0793∗∗∗ 0.0764∗∗∗ 0.0790∗∗∗ 0.0791∗∗∗ 0.0790∗∗∗ 0.0790∗∗∗

(0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001)

Program FE X
Avg. ROL PYS FE X
ROL length FE X
Top Progam FE X
Top 2 Programs FE X
Top 3 Programs FE X

Observations 579,990 579,961 578,555 579,990 579,990 579,990 579,990

The dependent variable is an indicator for whether a program was removed from a student’s pre-ROL. Column (2) in-
cludes program fixed effects, column (3) includes a fixed effect for the average PYS taken over programs on the pre-ROL,
column (4) includes a fixed effect for the number of programs listed on a student’s pre-ROL, column (5) includes a fixed
effect for the top-ranked program in the pre-list, column (6) includes a fixed effect for the top two ranked programs in
the pre-list, column (7) includes a fixed effect for the top three ranked programs in the pre-list. We use the pre- and post-
ROL sample from 2010-2016. Standard errors in parentheses, clustered at the program level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001
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Table A.8: Impact of Score Gap on Promote for New and Established Programs

(1) (2) (3) (4) (5) (6) (7)
Promote Promote Promote Promote Promote Promote Promote

2 Year Old Programs 0.00048 0.00035 0.00078 0.00042 0.00059 0.00077 0.00095
(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)

7+Year Old Programs -0.00184∗∗∗ -0.00162∗∗∗ -0.00080∗∗ -0.00187∗∗∗ -0.00179∗∗∗ -0.00168∗∗∗ -0.00151∗∗∗

(0.0003) (0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Program FE X
Avg. ROL PYS FE X
ROL length FE X
Top Progam FE X
Top 2 Programs FE X
Top 3 Programs FE X

Observations 579,990 579,961 578,555 579,990 579,990 579,990 579,990

This table shows the linear combination of estimated coefficients for Equation A.3 for (i) 2 year old programs (ii) 7 or more year old pro-
grams. For 2 year old programs we restrict on programs that start within our sample period where we can thus be certain of their true age
(Age Knownc=1). For 7 or more year old programs we restrict on those programs that are already in existence when our sample starts and
that we then observe for every consecutive year in our sample, meaning they will be at least 7 or more years old (Age Knownc=0). Standard
errors in parentheses, clustered at the program level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure A.2: Convergence test for matching in 2012 and 2016
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The top panel groups together programs that have a similar PYS (within a 10-point band of 70) in 2012. The group’s
average PYS both forward and backward in time follows. It shows that programs with similar PYSs in 2012 have
converged from a more dispersed distribution over time, and continue to converge even after 2012. The bottom
figure repeats the same exercise, instead grouping together programs with a similar PYS in 2016. 95% confidence
intervals are indicated.
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