

Reliable Broadcast in Practical Networks:

Algorithm and Evaluation
Yingjian Wu

Computer Science Department

Boston College

Supervisor: Lewis Tseng

In partial fulfillment of the requirements of the degree of the

Bachelor of Arts in Computer Science

May 15th 2020

Abstract

Reliable broadcast is an important primitive to ensure that a source can reliably broadcast

a message to all the non-faulty nodes in either a synchronous or asynchronous network. This

network system can also be failure prone, meaning packets can be dropped or the packets can be

corrupted. The faulty server can perform different faulty behaviour such as sending wrong

messages, and not sending any message. In 1987, Bracha first proposed reliable broadcast

protocols, and since then different reliable broadcast protocols had been designed in order to

achieve different goals, such as reducing round and bit complexity.

In a practical network, there are several constraints such as limited bandwidth or high

latency. Thus We aim to design new reliable broadcast protocols that consider these practical

network constraints. More specifically, we use cryptographic hash functions and erasure coding

to reduce communication and computation complexity.

Finally, We also designed a general benchmark framework that can be used to test

reliable broadcast algorithms. We evaluated new algorithms we have designed and implemented

using this benchmark platform. and the algorithms showed superior performance in practical

networks.

Contents:

1. Introduction, Motivation, Main Contribution 3

2. Preliminaries 6

2.1 Model and Notation 6

2.2 Reliable Broadcast Properties 7

2.3 Five types of Messages 7

3. Hash Reliable Broadcast Algorithm 8

3.1 Hash-HRB[3f+1] 9

3.2 Hash-HRB[5f+1] 10

4. Erasure Code Broadcast Algorithm 11

4.1 MDS Preliminary 11

4.2 EC-BRB[3f + 1] 11

4.3 EC-BRB[4f + 1] 14

4.4 EC-CRB[f+1] 16

5. Architecture of RMB and Evaluation 17

5.1 Architecture of RMB 17

5.2 Performance Evaluation 19

6. Conclusion 23

7. Reference 24

1. Introduction:

We consider the reliable broadcast problem in an asynchronous network system with n

number of servers (n-f number of non-faulty server, f faulty server) with each message size

having L bits. Some properties need to be satisfied by a reliable broadcast algorithm. First, if the

source is non-faulty, then all non-faulty nodes eventually deliver the same message, which is

broadcasted by the non-faulty source. Second, if the source is faulty, all the non-faulty nodes

should either not deliver or deliver the same message.

Since the proposal of Brach's reliable broadcast algorithm [3], many broadcast algorithms

[3,4,5] have been proposed to reduce computation, rounds and bits complexity. However, based

on our knowledge, their results are only proved in a theoretical perspective and are not tested in a

practical network system assuming computational power and bandwidth constraints. In order to

study how practical system constraints affect reliable broadcast algorithms, we implemented

several broadcast algorithms from previous papers as the baseline for the new algorithms we

have designed.

In order to carefully and thoroughly benchmark reliable broadcast algorithms, We have

designed a benchmark tool on top of Mininet [8]. Mininet allows us to manipulate the networks

such as bandwidth constraint, cpu computation for each node, and network topology. The goal of

our paper is to understand the performance of reliable broadcast protocols in a practical

asynchronous network system. Basically, a reliable broadcast protocol is a problem in distributed

computing, focusing on sending messages to different processes or servers under the presence of

nodes having byzantine behaviours such as send the wrong message or stop failure.

Motivation:

The following are our observations when trying to apply previous fault tolerant RB

protocols in practice:

1. Existing reliable broadcast algorithms are not efficient in terms of bandwidth usage

and/or computation (Table1)

2. Most Reliable Broadcast protocols assume unlimited bandwidth, and use flood

mechanisms to send redundant messages over the network. (Table 1)

3. In many real world applications, source may not reside in the same system as other

nodes. In such a case, bandwidth limitation is often much higher between source and

other nodes compared to nodes in the same network system. One of the examples is that

the source can be a client, and the rest of the nodes are in the same data center with an

optimized network system.

Main Contributions:

First, we proposed a family of reliable broadcast algorithms.

1. Crash-tolerant erasure-based reliable broadcast

2. Byzantine hash reliable broadcast

3. Byzantine erasure code reliable broadcast

Table 1 provides a summary of both theoretical and practical results of different reliable

broadcast algorithms. The bottleneck below indicates the scenario that may throttle the

performance of the individual algorithm. We used cryptographic hash for our hash reliable

broadcast and [n,k] MDS-code for erasure based algorithms. MDS-code known as maximum

distance separable code, where n represents individual block length and k represents the

dimension of the codeword.

Our algorithms have bit complexity O(nL + nfL). When source is non-faulty, then our

algorithms achieve O(nL). However, when source can equivocate, the bit complexity becomes

O(nL + nfL). Furthermore, our algorithm when using erasure code achieves O(nL / k) bits

complexity between source node and others. Since most practical systems have a small number

of faulty servers, our algorithms perform well in practical systems.

Table 1:

Algorithm Bit
Complexity

System
Size(Resilie
nce)

Round
Complexity

Error-free Uses MDS
codes

Bottleneck

CRB[7] O(n^2L) > f 1 Yes No

EC-CRB O(n^2L/k) > f 2 Yes Yes MDS-Code

Bracha[3] O(n^2L) > 3f 3 Yes No flooding

Raynal[5] O(n^2L) > 3f 2 Yes No flooding

Patra[4] O(nL) > 3f 8 Yes Yes local
computation

Hash-BRB[
3f+1]

O(nL)+O(nf
L)

> 3f 3 No No Hash Fun

Hash-BRB[
5f+1]

O(nL)+O(nf
L)

> 5f 2 No No Hash Fun

EC-BRB[3f
+1]

O(nL)+O(nf
L)

> 3f 3 No Yes Hash Fun +
Coding

EC-BRB[4
F+1]

O(nL)+O(nf
L)

> 4f 3 No Yes Hash +
Coding

Second, We built a benchmark platform called Reliably-Mininet-Benchmark (RMB)

specifically to benchmark the performance of broadcast algorithms. Future developers can use

this platform easily as they only need to write their own protocols without worrying about

benchmark calculation and network settings.

Special Recognition:

 Sapta Kumar analyzes the theoretical performance for all algorithms in table1 and

proofread the proof of the new Algorithms.

Haochen (Roger) Pan helps designing reliable broadcast protocols, formulate proof and

mininet setup.

Prof. Tseng leads the project and designs reliable broadcast protocols.

Organization of the Paper:

Section 2: System Models, notations and problem specification

Section 3: Hash-Based Reliable Broadcast protocol

Section 4: Coded-Based Reliable Broadcast protocol

Section 5: Design of our benchmark tool (RMB) and benchmark result.

2 PRELIMINARIES

2.1 Model and Notation

Our network system models [7,9] contain a number of nodes, which are connected to all

the other nodes inside the network. Furthermore, this is an asynchronous system, which can a

maximum of f number of faulty nodes.

Network: “Asynchronous” means that individual nodes have their own clock instead of a

uniform clock. In our network assumption, we assume reliable channels meaning no packet

should be dropped. Our protocol also ensures authentication, which is that individual nodes can

have the access of the sender of a packet. In an asynchronous network, the delay for a packet

varies, meaning sometimes a packet can take a really long time to arrive at the final destination.

However, if a sender is non-faulty, then its message will be eventually received by other nodes

inside the network.

Fault Model : Our network system tolerates up to f number of faulty nodes. A Byzantine

node can perform arbitrary behavior such as not sending a packet, shutting itself down, or

sending wrong messages to other nodes inside the network. Furthermore, our protocol also

allows the source nodes to be faulty so a faulty source node can even equivocate the messages.To

equivocate a message, a faulty source will send a message m1 to a partition of nodes and m2 to

another partition of nodes, or can send nothing to the third partition of nodes.

Notations : For each message m that a non-faulty source wants all non-faulty nodes to

reliably accept, m is associated with a tuple (s,h), where s is the identifier of the sender and h is

the h-th instance of the reliable broadcast. In all of our algorithms, we use MsgSet i [𝑠, h] to

denote the set of messages that the node 𝑖 collects, in which are candidates that can be identified

with (𝑠, h). When the context is clear, we omit the subscript 𝑖. We use Counter[∗] to denote a

local counter of certain type of messages that is initialized to 0. We use H(∗) to denote the

cryptographic hash function.

2.2 Reliable Broadcast Properties

We adopted the definition and properties of reliable broadcast from [1,3,4] .

Reliable-Broadcast(m,h): a source reliably broadcast a message at round h.

Reliable-Accept(m,h): When a non-faulty node has received enough number of certain

types of messages, the server would relable-accept this message, meaning for the hth round,

message m is the one to be accepted.

A reliable broadcast protocol is correct if it satisfies the following properties.

 1. (Non-faulty Broadcast Termination) . If a non-faulty source 𝑠 with a message 𝑚 of

index h performs Reliable-Broadcast(𝑚, h), then all non-faulty nodes will eventually

Reliable-Accept(𝑠, 𝑚, h).

2. (Validity) . If a non-faulty source 𝑠 does not perform Reliable-Broadcast(𝑚, h) then no

non-faulty node will ever perform Reliable-Accept(𝑠, 𝑚, h).

3. (Agreement) . If a non-faulty node performs Reliable- Accept(𝑠, 𝑚, h) and another

non-faulty node will eventually perform Reliable-Accept(𝑠,𝑚′,h) then 𝑚 =𝑚′.

4. (Integrity) . Anon-faultynodereliablyacceptsatmost one message of index h from a

source 𝑠.

5. (EventualTermination) . If a non-faulty node performs Reliable-Accept(𝑠, 𝑚, h), then

all non-faulty nodes eventually per- form Reliable-Accept(𝑠, 𝑚, h).

Note that it is possible when a faulty source node broadcasts a message, non-faulty nodes

will never accept the message, and this is different from synchronous systems, where each

non-faulty node needs to output a value.

2.3 Five types of Messages:

As mentioned before, individual nodes inside the network when receiving different types

of messages need to do certain action. These different types of messages are required for the

correctness of our algorithm.

MSG : This is the message directly received from the source, and if the message sender
is different from the source, then the server should never accept the message.

ECHO : This message tells individual servers what messages other servers have
received from other servers. Note that we use broadcast H(m) here instead of m in order to
reduce bit complexity.

ACC : This message tells other servers that one server is ready to accept a message.
Again, the server sends H(m) instead of m throughout the process.

REQ : Sometimes, due to network delay or faulty source equivocate, a server may never
receive the real message. Thus it needs to send a REQ to other servers to get the real
message.

FWD : This message helps servers who have sent a REQ message, meaning the REQ
senders have not received the real message, to get the information of the real message.

3. Hash Reliable Broadcast:

Below, We presented the first algorithm using a cryptographic hash function. Indicated
by the name as “3f+1”, this means that in order to ensure the reliable-broadcast properties, we
need n >= 3f + 1.

Hash Function: One of the assumptions we have made for our hash function is that it is
collision free. However, this is not really practical in that if one server has unlimited computed
power, it can construct a faulty message say m’, such that H(m) = H(m’). Even though hash
function has such limitations, it has still been a widely adopted technique. For example, Bitcoin
[10] has adopted the hash function for the miners when the miners try to solve puzzles. Thus,

hash functions could also be applied under our reliable broadcast context. Since all the nodes
run the same hash function, If a hash function is chosen appropriately, computation of a collision
message takes time. Furthermore, if the broadcast process is fast, finding a collision message
before reliable-accept in the same round is nearly impossible in practical network settings

3.1: Hash-BRB[3f+1]

3.1.2 Pseudo code:

3.1.3 Proof of the correctness

In this section we are going to prove that Hash-BRB[3f+1] satisfied Property 1 - 5 of
reliable broadcast mentioned in 2.2.

We begin with three important lemmas, the first two lemmas follow directly from the
reliable and authenticated channel.

Lemma1 . If a non-faulty source 𝑠 performs Reliable-Broadcast(𝑚,h), then MsgSet i [𝑠, h]
⊆ {𝑚} at each non-faulty node 𝑖.

Lemma2 . If a non-faulty node 𝑠 never performs Reliable-Broadcast (𝑚, h), then
MsgSet i [𝑠, h] = ∅ at each non-faulty node 𝑖.

Lemma3. If two non-faulty nodes 𝑖 and 𝑗 send(ACC,𝑠,H(𝑚),h) and (ACC, 𝑠, H(𝑚′), h)
messages, respectively, then 𝑚 = 𝑚′.

Proof Property 1 - 4: Here we are going to prove with contradiction. Supposed server i
is the first server to send (ACC, s, H(m), h) and server j is the first server to send (ACC, s H(m’),
h) messages. Since both of them are the first servers to send their corresponding ACC message,
server i and j send the ACC through line 8 in Algorithm 3.

Now let's first look at server i. According to line 6, server i must have collected at least n
- f echo messages and at least n - f - f >= f + 1 are from non-faulty servers. This means that
server j can at most collect 2f Echo messages that are corresponding to message m’. However,
since individual servers can only send one type of message in each round, it is impossible for
server j to send Acc in line 8. Thus we have a contradiction.

Thus from the above proof, we show that Property 1-4 are satisfied.
Now let’s look at property 5, which is the guarantee of eventual termination.
Proof Property 5 : Supposed server i has reliably accepted the message (line 13,

Algorithm 3). Then it has received at least n - f messages from other servers. Among these
messages at least n - f - f >= f + 1 messages are from non-faulty servers. These f + 1 messages
will eventually be received by all the non-faulty nodes. Supposed that a server never gets the
original message directly from the source, then it will get the original message by sending REQ
messages to those f + 1 servers (line 14 Algorithm 2). After eventually receiving these f + 1 Acc
messages from the non-faulty servers, the remaining non-faulty servers will also broadcast the
same ACC message as server i. Thus eventually all the non-faulty servers will receive at least n -
f number of ACC messages, which implies that all the non-faulty servers will reliably accept
message m (line 13, Algorithm 3).

3.2 Hash-BRB[5f+1]
Inspired by a recent paper [5] that sacrifices resilience for lower message and round

complexity, we adapt Hash-BRB[3f+1] in a similar way. More specifically, we can get rid of the
ACC Phase. We need 5f + 1 in order to ensure that at least n - 2f > 3f non faulty nodes have

received the same message, basically an idea of majority quorum. By increasing n to be at least
5 f + 1, this algorithm successfully reduces the round complexity to 2.

4. Erasure Code Reliable Broadcast:

One of the drawbacks in Hash-BRB[3f+1] is that the bit complexity is still high. For
example, when a source broadcasts a message, the bit complexity is O(nl). Thus, instead of
using hash, We tried to use Erasure Code to further reduce bit complexity.

4.1: MDS Erasure Code Preliminaries
For completeness, we first discuss basic concepts and notations from coding theory. We

use linear [n,k] MDS (Maximum Distance Separable) erasure code over a finite field F𝑞 to
encode the message. n represents the total number of codes we need, and k represents the total
number of elements needed to decode back a message.

When encoding operation is performed, m is first divided into k pieces with each size
L/k, which then will output n coded elements.

At the beginning of the algorithm, the source broadcasts one unique message to each
server. We use ENC i to denote the coded element sending to the ith server, where 1 <= i <= n.

4.2 EC-BRB[3f+1]
This algorithm requires n >= 3f + 1 in order to ensure the reliable broadcast properties.

One of the downsides of this algorithm is that this algorithm requires exponential calculation
when permuting all the possible coded elements. The complexity is . When f is small, the ()O n

f+1

computation complexity is minimal but as f increases, this algorithm does not scale.
Notice that between algorithm 12 and 16, it is possible that one server decodes faulty

messages and includes them into the message set.

4.2.1 Pseudo Code

4.2.2: Proof of correctness

The proof of this algorithm is similar to our proof for our hash based reliable broadcast
algorithm.

We begin with three important lemmas, the second lemmas follow directly from the
reliable and authenticated channel. But now the first lemma is much more complicated as the
original message needs to be decoded back from the codes

Lemma1 . If a non-faulty source 𝑠 performs Reliable-Broadcast(H(𝑚), c k , h), then
MsgSet i [𝑠, h] ⊆ {𝑚} at each non-faulty node 𝑖.

proof of Lemma 1:
A non-faulty server j will eventually include a message into its message set in line

16 or in line 32. Since there are at least n - f >= 2f + 1> f + 1, server i can get the message back
in line 16 by the echo message from other servers.

Lemma2 . If a non-faulty node 𝑠 never performs Reliable-Broadcast (H(𝑚), c k , h), then
MsgSet i [𝑠, h] = ∅ at each non-faulty node 𝑖.

Lemma3. If two non-faulty nodes 𝑖 and 𝑗 send(ACC,𝑠,H(𝑚),h) and (ACC, 𝑠, H(𝑚′), h)
messages, respectively, then 𝑚 = 𝑚′.

Proof Property 1 - 4: Here We are going to prove with contradiction. Supposed server i
is the first server to send (ACC, s, H(m), h) and server j is the first server to send (ACC, s H(m’),
h) messages. Since both of them are the first servers to send their corresponding ACC message,
server i and j send the ACC through line 8 in Algorithm 3.

Now let's first look at server i. According to (line 7 Algorithm 13), server i must have
collected at least n - f echo messages and at least n - f - f >= f + 1 are from non-faulty servers,
which also implies that they can decode back the original message m, where H(m) = H. This
means that server j can at most collect 2f Echo messages that are corresponding to message m’.
However, since individual servers can only send one type of message in each round, it is
impossible for server j to send Acc in line 9 Algorithm 13. Thus we have a contradiction.

Thus from the above proof, we show that Property 1-4 are satisfied.
Now let’s look at property 5, which is the guarantee of eventual termination.
Proof Property 5 : Supposed server i has reliably accepted the message (line 14,

Algorithm 13). Then it has received at least n - f (ACC, s, H(m),h] messages from other servers.
Among these messages at least n - f - f >= f + 1 messages are from non-faulty servers. These f +
1 messages will eventually be received by all the non-faulty nodes. Supposed that a server never
gets the original message directly from the source, then it will get the f + 1 codes by sending
REQ messages to those f + 1 servers (line 23 Algorithm 12). After eventually receiving these f +
1 Acc messages from the non-faulty servers, the remaining non-faulty servers will also broadcast
the same ACC message as server i. Thus eventually all the non-faulty servers will receive at least
n - f number of ACC messages, which implies that all the non-faulty servers will reliably accept
message m (line 14, Algorithm 13).

4.3 EC-BRB[4f+1] (Written by Prof.Tseng)

In order to solve the scalability problem presented in EC-BRB[3f+1], resilience needs to
be sacrificed such that in this algorithm, n >= 4f + 1 and k = n - 3f;

4.3.1 Pseudo code

4.4 EC-CRB[f+1]
This algorithm does not handle byzantine failure but is practical in the sense that in most

of the systems, nodes do not have byzantine behavior. The common failure case for a server is
simply shutting down.

4.4.1 Pseudo Code:

4.4.2 Proof of Correctness and Complexity:
Correctness: As long as k >= n - f, individual servers can get back the original message

from these k elements. In the worst case, f number of servers can crash, and the other servers
have to wait for all the coded elements from other servers.

Round complexity is 2; one round for the source to other nodes, and an extra round for
individual servers to send their coded elements received from the source to other servers.

Message complexity is O(n^2), as all the servers need to send n messages to other
nodes in one round.

Bit complexity is O(n^2L / k). since individual code has size O(L/k).

5 Evaluation:

Various reliable broadcast algorithms have been implemented in Golang. We used Golang

as it is a lightweight language for distributed programming. We further evaluate our algorithms

using the benchmark tool we built called RMB (Reliable mininet Benchmark). RMB is

appropriate for evaluating protocols over a network within a datacenter or a cluster. In this

section, we will first introduce the architecture of RMB and then present as well as analysis on

the results we collect.

5.1 Architecture of RMB

RMB is built on top of Mininet. The architecture of RMB is presented in Figure 2. The

Github repo for RMB is at https://github.com/yingjianwu199868/HRB

The generator layer helps to generate data, collect data and calculate statistics such as

throughput and latency. The protocol layer contains the RB protocols that we implement. RMB is

extensible in the sense that developers can easily write their own reliable broadcast algorithms

without worrying about network communication and benchmark. The only thing they need to do

is to conform to the communication protocol between generator and the manager. Finally, the

network layer is simulated by Mininet and the network manager that we implement. RMB users

can easily use the script we provide to configure the network conditions, e.g., delay, jitter,

bandwidth, network topology, etc. Each RMB component runs inside a container, and the entire

RMB is simulated on a single machine using mininet. These layers are implemented in Go and

python scripts are provided to launch RMB.

https://github.com/yingjianwu199868/HRB

Configuration file : Protocol parameters can be specified in a yaml file, including

information including number of trusted nodes, number of faulty nodes, whether source

byzantine or not, etc. Benchmark managers, protocol and generator are invoked by a python

script. Advanced users can also use another yaml file to control the network parameters such as

network topology, link bandwidth, and individual node computational power.

Mininet: The bottom layer (gray boxes in figure 2) is a virtualized network, created by

Mininet [20, 26]. Mininet is a battle-tested software that is widely used in prototyping

Software-De ned Networks (SDNs). The python start-up script calls the Mininet library to start a

virtual network consisting of hosts, links, switches and a controller before the start of simulation.

A virtual host (container) emulates a node with an OS kernel in a real system. Other three layers

of RMB (essentially, Linux applications) run on each host inside Mininet. Hosts do not

communicate with each other directly, instead, they connect to switches through Mininet links.

Switches are also connected to each through links.

Manager Layer: We have one (network) manager for each host, which is to manage

data communication between the protocol layer and other hosts in the network. There are four go

routines for separate re- sponsibilities: (i) receiving messages from the protocol layer, (ii)

receiving messages from other hosts, (iii) sending to the protocol layer, and (iv) sending

messages to other hosts. Another responsibility is to control the faulty behavior if the current

node is configured to be Byzantine node, e.g., randomly corrupt messages.

Protocol Layer (RB Algorithms): The middle layer implements the protocol that we

want to evaluate. For our purpose, we implement RB protocols here. Each instance is paired up

with a manager we discussed above, and thus does not need to know explicitly the existence of

other manager/protocol instances. Such a design choice allows researchers to implement new

protocols and benchmark them at ease. In our RB protocols, there are two goroutines in this

layer. One is responsible for sending messages to the manager layer, and the other one is

responsible for reading messages from the manager layer and then performing corresponding

action. That is, we implemented an event-driven algorithm as in our pseudo-code. Note that we

make minimal assumptions in this layer; hence, potentially, future RMB users can implement

their favorite programming language and the algorithms do not have to be event-driven. For the

hash function, We used Golang default package hmac512 , and for the erasure coding, We used

an open source package written by Klaupost.

Application Layer (Workload Generator): The top layer implements the workload

generator in RMB. There are two roles: (i) issue reliable-broadcast commands following a

specified workload (e.g., size, frequency), and (ii) collect and calculate statistics (latency and

throughput).

5.2 Performance Evaluation

Simulation Setup : We perform the performance evaluation using RMB on a single

virtual machine (Google Cloud Platform instance) with 24vCPU and 48 GB memory. By default,

the round trip time between individual nodes is between 0.06 ms and 0.08 ms.

We have done various benchmarks under different scenarios, and have picked 3 of them

that give some practical insights.

Evaluation 1 (Different network Topologies) : RMB allows developers to easily evaluate

different protocols with different network parameters. We first test our protocols with 5 servers

and 0 faulty servers under three different network topologies. (1) Linear topology: 5 switches

with one host per switch. (2) Tree Topology: tree depth: 3 and fan-out = 2. (3) Fat tree topology:

5 edges, with each host per edge.

depth here means the height of the tree and fanout means number of children for each server.

Fat tree topology is much more complicated that the previous two topologies because

oversubscription of links can prevent failure in the network.

For each data point below, the source broadcast 2000 messages with each message size

1024 bytes. The throughput is calculated as the number of reliable-accept / seconds. We have

also implemented a simple non-fault tolerant broadcast as our baseline. The result is presented in

table 2, 3, 4.

Under these three different network topologies, when bandwidth consumption is not

limited, Bracha outperforms our algorithms as our algorithm incurs computational power.

However, as expected, when bandwidth consumption is limited, our algorithms except

EC-BRB[3f+1] outperforms Bracha. Moreover, Hash-BRB[3f+1] is 50% of Broadcast’s

performance.

Evaluation2 (Synchronous vs Asynchronous) : Even though a synchronous algorithm

does not work in an asynchronous network, it serves as a good baseline (Some might adapt

synchronous algorithms to work in a practical setting. For example, in [27], it is argued that the

proposed synchronous algorithms are appropriate in a datacenter setting .) In this set up we adopt

the single-switch topology, with n = 4, message size 1024 bytes, and 2000 messages broadcast.

We compared our algorithms with two synchronous algorithms called Digest, which used hash

and NCBA, which used coding. The result is shown in Table 5.

Interestingly, the throughput performance is close, and Hash-BRB even beat Digest and

NCBA by around 20%, even though we get rid of the most expensive stage in Digest and NCBA,

which is the dispute control phase, which helps to detect and then blacklist faulty nodes.

Evaluation3 (Hash vs EC): In the final set of experiments, we provide guidance for

choosing the best algorithms under an application scenair. We used a single switch topology, n =

20, and 100 rounds of reliable broadcast. Each experiment is with the following setup:

exp1: f = 4, source’s bandwidth limitation = 0.4 Mbits/s, message size = 1096 bytes.

exp2: f = 4, source’s bandwidth limitation = 4 Mbits/s, message size = 1096 bytes.

exp3: f = 1, source’s bandwidth limitation = 0.4 Mbits/s, message size = 1020 bytes

exp4: exp3: f = 1, source’s bandwidth limitation = 4 Mbits/s, message size = 1020 bytes.

The result is presented in Table 6.

The result in table 6 conforms to our theoretical analysis.

(i) When bandwidth limitation is high, Hash-RRB performs worse than the other two.

(ii) EC-BRB[3f+1] performs better with larger f.

(iii) EC-BRB[4f+1] performs better with smaller f.

6.Conclusion:

In this honor thesis, seeing the importance of bridging theoretical algorithms into

practical network systems, we have designed and presented a family of reliable broadcast

algorithms using techniques such as cryptographic hash function and MDS codes. We have

also implemented other reliable broadcast algorithms from the previous paper as a baseline for

our designed protocol. Furthermore, we have built a benchmark tool that is designed for

benchmarking the performance of reliable broadcast protocols. This benchmark tool called RMB

is extensible and future developers only need to write their own protocol codes without worrying

about network configuration and benchmark statistics calculation. Finally, we have used RMB to

benchmark the algorithms we have implemented in different scenarios. Based on the

benchmark results, we have also included some practical insights on when to choose different

algorithms based on different situations.

References

[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. 2005. Optimal Resilience Asyn- chronous

Approximate Agreement. In Principles of Distributed Systems, Teruo Higashino (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 229–239.

[2] Hagit Attiya and Jennifer L. Welch. 2004. Distributed computing - fundamentals,

simulations, and advanced topics (2. ed.). Wiley.

[3] GabrielBracha.1987.AsynchronousByzantineAgreementProtocols.Inf.Comput. 75, 2 (Nov.

1987), 130–143. https://doi.org/10.1016/0890-5401(87)90054-X

[4] Damien Imbs and Michel Raynal. 2015. Simple and E cient Reliable Broad- cast in the
Presence of Byzantine Processes. CoRR abs/1510.06882 (2015). arXiv:1510.06882
http://arxiv.org/abs/1510.06882

[5]Damien Imbs and Michel Raynal. 2016. Trading o t-resilience for e ciency in asynchronous
Byzantine reliable broadcast. Parallel Processing Letters 26, 04 (2016), 1650017.
[6] Arpita Patra and C. Pandu Rangan. 2011. Communication Optimal Multi-valued
Asynchronous Byzantine Agreement with Optimal Resilience. In Information Theoretic Security
- 5th International Conference, ICITS 2011, Amsterdam, The
Netherlands,May21-24,2011.Proceedings.206–226. https://doi.org/10.1007/978-3- 642- 20728-
0_19
[7] Michel Raynal. 2018. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic
Approach. Springer. mhttps://doi.org/10.1007/978-3-319-94141-7
[8] Mininet. http://mininet.org/
[9] Nancy A.Lynch 1996. Distributed Algorithms. Morgan Kaufmann
[10] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography
Mailing list at https://metzdowd.com (03 2009).

http://mininet.org/

