
BOSTON COLLEGE

SENIOR THESIS

Assisting Federated Learning with

Vehicular Clouds

Author:

Yicheng Shen

Supervisor:

Lewis Tseng

May 21, 2021

i

Abstract
Department of Computer Science

Assisting Federated Learning with Vehicular Clouds

by Yicheng Shen

In recent years, Federated Learning (FL) emerged as a machine learning tech-

nique that avoids the step of centralizing local data from edge devices in a

data center. Collecting only the gradients computed from local on-device

data, FL enables edge devices to upload less bytes during communication

and protects users’ privacy. Moreover, FL algorithms are suitable for many

use cases, such as recommendation systems, decision making, risk control,

and pattern recognition.

This thesis aims to integrate vehicular clouds with FL in order to improve

the performance of FL. Smart vehicles nowadays are equipped with more

and more computing power. As their on-board computers do not operate at

full-speed at all times, we can use their excess computing power to perform

training. We present a system named VC-SGD (Vehicular Clouds-Stochastic

Gradient Descent) that supports FL by using vehicular clouds and edge de-

vices. Our three-layer architecture consists of a cloud server, some edge

servers which are deployed with vehicular clouds, road-side units, base sta-

tions, etc., and many edge devices which are workers. In addition, this the-

sis investigates the data collection problem by simulating real-time location-

specific data. We implement a simulator which utilizes SUMO to simulate

vehicle mobility and MXNet to perform machine learning tasks. Finally, we

used the simulator to evaluate the performance of VC-SGD.

ii

Acknowledgements
I would like to express my gratitude to my supervisor, Lewis Tseng, who

has been patient in guiding my entire research process and gave me count-

less wise suggestions when I encountered obstacles. My research and the-

sis would not have been possible without the support from Professor Tseng.

I also would like to thank my great research teammate, Anran Du, who is

smart and dedicated. I will remember the numerous times we worked to-

gether over Zoom and will be glad to collaborate with you again in the fu-

ture.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Background . 1

1.2 Main Contributions . 2

2 Preliminaries 4

2.1 Problem Formulation . 4

2.2 Vehicular Clouds . 6

3 VC-SGD 7

3.1 Architecture . 7

3.2 Algorithm Preliminary . 10

3.3 Algorithm Framework . 11

4 Evaluation 13

4.1 Simulator . 13

4.2 Experiment Setup . 15

4.3 Experimental Results . 17

5 Summary and Future Work 20

Bibliography 21

1

Chapter 1

Introduction

1.1 Background

In recent years, an increasing number of machine learning algorithms are

being utilized for various applications. These emerging applications serve

many different important functionalities, such as decision making in smart

environments and ambient intelligence [2], pattern recognition as in object

and scene understanding in augmented reality [13], and face recognition in

real-time identity verification. The focus of this thesis is on a significant fam-

ily of machine learning algorithms, federated learning (FL). More specifically,

we aim to assist FL by using vehicular clouds.

FL was introduced by Google [5]. FL is different from standard machine

learning due to its decentralized nature. Standard machine learning requires

data to be centralized in one single machine or data center. In contrast, FL

avoids the step of sending local data on edge devices to central servers. In-

stead of sending data to central servers, edge devices send gradients com-

puted from local data to central servers to update the model. This approach

is special since it allows training machine learning models without sharing

data, thus providing a promising feature that preserves users’ privacy. From

users’ perspective, their data are not shared with third parties and the train-

ing is performed only locally on their devices.

Chapter 1. Introduction 2

In the field of edge-based FL systems, one aspect that needs more inves-

tigation is using real-time location-specific data to train a machine learning

model [17, 12, 14]. This problem is challenging because of two factors. Firstly,

it requires a real-time data stream classifier that is adaptive to concept drift

(change of patterns and hence, the machine learning model). Besides, the

data is location-specific in the sense that data collected from different lo-

cations contain different unique characteristics. Such an online training is

important for pervasive systems, as the characteristics and patterns in such

systems tend to change over time and evolve due to varying environments

and/or user interactions. However, the existing systems, e.g., [9, 15, 8], do

not provide a thorough and satisfying solution (as detailed in Section 2).

1.2 Main Contributions

We address the problem by proposing a novel system, named VC-SGD, which

integrates edge-based FL and vehicular clouds. Looking at our system from

a high-level, we use a vehicular cloud as a virtual edge server. In VC-SGD,

a vehicular cloud is formed by a cluster of nearby vehicles; a virtual edge

server serves functionalities of collecting information regarding data at a spe-

cific location, performing aggregation of gradients, and communicating with

the cloud server and edge devices.

VC-SGD is an effective system because the virtual edge servers enable

users to collect important location-based data for the real-time training of

machine learning models. When physical edge servers are not available, the

virtual edge servers which are enabled by the vehicular clouds in VC-SGD

will serve as backups, thus improving the availability of edge servers. With-

out vehicular clouds, it will be difficult to collect information in some areas

that do not have a physical edge server. In extreme cases, some location-

specific data will never be trained and used to update the model. In VC-SGD,

Chapter 1. Introduction 3

virtual edge servers powered by vehicular clouds serve as a solution to this

problem.

According to the architecture of VC-SGD, we build a simulator for both

the investigation of the problem related to real-time location-specific data

and the evaluation of our system’s performance. The simulator combines

vehicle mobility simulation and machine learning training. It utilizes SUMO

to simulate continuous traffic flows on a real world map and uses MXNet to

run machine learning.

We also investigate the “data collection” problem, specifically for collect-

ing and using real-time and location-specific data. This is implemented as a

feature of the simulator: to achieve the real-time location-specific character-

istics, the data are partitioned based on classes and the partitions are placed

on different regions in the map. This feature will be explained in more details

in Section 4.1.

Lastly, we evaluate the performance of VC-SGD. The evaluation results

obtained from experiments ran on our simulator demonstrate that VC-SGD

helps improve both accuracy and efficiency.

4

Chapter 2

Preliminaries

In standard edge computing frameworks, there are notions of edge devices,

edge servers, and central servers. We consider the standard three-level archi-

tecture [17, 12]. The bottom level consists of the edge devices (e.g., IoT de-

vices, sensor nodes, mobile phones, high-end vehicles, etc.) used by clients

or end users. The middle layer is the “edge or fog computing layer,” which

consists of the edge servers in the form of proxy servers, routers, road-side

units, cloudlets, or base stations, etc. These nodes are capable of provid-

ing essential storage, communication, and computation capabilities. The top

level is the cloud computing layer, which consists of the cloud data center(s)

and servers.

2.1 Problem Formulation

Our target scenario focuses on pervasive applications that use real-time location-

specific data. Particularly, users may have distinct behaviors given their lo-

cation. In the system, each edge device collects location-specific data at its

current location in a real-time fashion, and all the nodes, including servers,

jointly aim to learn an online machine learning model using a FL algorithm.

During the training process, users’ data is trained locally and is never trans-

mitted out of the device; hence, data privacy is preserved.

Chapter 2. Preliminaries 5

Example applications: Object detection and identification is essential for

many pervasive systems such as augmented reality-based applications and

intelligent transportation systems for improving road safety.

Data Collection Problem: Most of the existing systems [17, 12, 14] assume

that the datasets are already collected and did not consider how to collect

real-time and location-specific data so that the ML/FL algorithms can be

trained efficiently. Concretely, we are interested in cost-effective approaches

for supporting efficient data collection.

Limitation of Existing Solutions: The lack of study on the “data collection”

problem limits the applicability of edge-based FL to pervasive systems. In

the original use case of FL algorithms [5], the training data is specific to each

mobile phone (or more precisely the phone owner’s data); hence, the phone

can eventually obtain all the necessary data for training a machine learning

model with a desirable accuracy. However, in the scenarios with real-time

location-specific data, the original system in [5] faces a serious issue: the ma-

chine learning model trained using an FL approach can never achieve a satis-

fying accuracy and/or speed in the case that the information regarding some

important data is never used for training. This situation is possible based on

the following observations:

• Training a satisfying ML model for various purposes, including object

detection and identification applications, requires a huge amount of di-

verse and comprehensive image data, e.g., distinct objects from differ-

ent angles and lighting.

• On one hand, typical edge devices are not powerful enough to store a

complete history of high-resolution images or data collected for a long

period of time. Hence, by the design of the three-level edge-based FL,

only data near edge servers is used for training. On the other hand,

Chapter 2. Preliminaries 6

cloud servers will be the bottleneck [15, 8] if the devices upload all the

collected data due to the large size of data.

• Important information can be captured by sensors on edge devices from

anywhere and at any moment. It is impossible to predict which data or

data at which location is important in advance; hence, it is unrealistic

to deploy edge servers to cover all the “important data.”

2.2 Vehicular Clouds

As vehicles become more and more powerful, they can be used as resources

to run machine learning tasks. Nowadays, many smart vehicles are equipped

with on-board units with decent computing power. When the on-board units

are idle or not running at full capacity, we can make use of these resources

by assigning edge computing tasks to them. In this setting, the integration of

vehicular clouds will be suitable and effective.

Vehicular clouds (VC) [4, 11] is an emerging research direction that inves-

tigates the synergy in the concept of cloud/edge computing and connected

vehicles. The key purpose is to provide “cloud services” such as communica-

tion, storage, and computation, by leveraging resources of the on-board units

on high-end and connected vehicles. Recent works have proposed to use

vehicular clouds for various intensive computation services, such as MapRe-

duce computation, [6], [1]. To our knowledge, no prior work has investigated

the integration of VC with edge-based FL.

7

Chapter 3

VC-SGD

We propose our framework, named VC-SGD, which integrates FL and vehic-

ular clouds. VC-SGD supports a general family of FL algorithms, stochas-

tic gradient descent (SGD). Prior works [9, 15, 8] have studied SGD in var-

ious settings in the edge computing paradigm, but as we have discussed

in Section 2, they did not consider the data collection problem for real-time

location-specific data. We attempt to address and tackle this issue in our de-

sign of VC-SGD. In this section, we will show the architecture and algorithm

of VC-SGD.

3.1 Architecture

VC-SGD has a three-layer architecture shown in Figure 3.1.

• The top layer consists of a cloud server. It sends the most up-to-date

parameters of the machine learning model to edge servers and collects

computed gradients sent from edge servers. In addition, when enough

gradients are collected from edge servers, it updates the machine learn-

ing model.

• The middle layer consists of two types of edge servers: physical ones

and virtual ones. The physical edge servers are infrastructures, such as

Chapter 3. VC-SGD 8

FIGURE 3.1: The architecture of VC-SGD. The stationary ve-
hicular clouds enable the deployment of virtual edge servers.
By assumption, each location potentially has a unique dataset;
hence, in the figure, devices near two edge servers in different

locations collect data from different real-time datasets.

roadside units, base stations, etc. The virtual edge servers are the vehic-

ular clouds, which are formed by multiple nearby vehicles. The edge

servers periodically receive parameters of the model from the cloud

server. Then, they are responsible for sending parameters of the model

to edge devices. Moreover, they need to collect and aggregate gradients

uploaded by the edge devices. After each aggregation, they upload the

aggregated gradients to the cloud server.

• The bottom layer consists of edge devices, such as mobile devices, on-

board units equipped on vehicles, etc. The tasks for the edge devices

are collecting real-time location-specific data, running machine learn-

ing training on the data, and uploading gradients to edge servers.

Chapter 3. VC-SGD 9

Our design integrates vehicular clouds as virtual edge servers in the mid-

dle layer. This enhancement is the key difference from the standard three-

level edge-based FL. In the integration of vehicular clouds, we make an es-

sential design choice to focus on the stationary vehicular cloud. That is, the

position of a vehicular cloud is fixed. According to the previous work [7], this

type of vehicular cloud is able to provide more stable storage and commu-

nication capacity, in dealing with localized data, than the dynamic vehicular

cloud, i.e., which moves with a cluster of vehicles.

Because a vehicular cloud is formed by a cluster of nearby vehicles, in

the case that not enough number of vehicles is around, a stationary vehicular

cloud might disappear. SGD is inherently robust to tolerate missing informa-

tion from disappeared vehicular clouds in this case.

Stationary vehicular clouds are designed to be at locations where many

vehicles frequently stop at. For example, near intersections or parking lots,

vehicles stay still for a period of time before they depart and stationary vehic-

ular clouds can be formed by these vehicles. A typical stationary vehicular

cloud is able to cover a range around an intersection and handle edge devices

within its range. Therefore, VC-SGD in fact needs to utilize many vehicular

clouds to support the training of FL algorithms efficiently.

The main benefit of utilizing stationary vehicular clouds is that we are

able to provide more “coverage” with a minimal change to the existing edge-

based FL. As long as the edge devices has the capability to communicate with

the connected vehicles (inside a vehicular cloud), they can run essentially

the same FL algorithm; otherwise, a simple relay mechanism is necessary. In

short, in most cases, edge devices can behave the same regardless of commu-

nicating with a physical or virtual edge server. This modular design enables

VC-SGD to use a general set of FL algorithms, e.g., [17], [12]. In the rest of the

thesis, we will refer to the stationary vehicular clouds as virtual edge servers.

The original FL system in [5] does not have the layer of edge servers;

Chapter 3. VC-SGD 10

however, as identified in prior works [17, 12], this cloud-based solution is not

scalable. Prior solutions [9, 15, 8] used edge servers to improve scalability,

but they assumed that the physical edge servers are able to collect all the

important data. However, the collection of the important data has not been

investigated. Therefore, VC-SGD complements prior systems by addressing

the “data collection” problem of real-time location-specific data.

3.2 Algorithm Preliminary

As the first step, VC-SGD supports a widely adopted training mechanism –

distributed Stochastic Gradient Descent (SGD) algorithms – which are pop-

ular in the optimization and machine learning literature, e.g., [3]. Given a

cost function Q, the SGD algorithm is designed to output an optimal param-

eter θ∗ in a d-dimensional space such that the cost function is minimized. An

SGD algorithm executes in an iterative fashion, where in each round t, the

algorithm computes the gradient of the cost function Q at parameter θt and

updates the parameter using the gradient descent approach.

Each physical edge server or virtual edge server j has a local cost func-

tion Qj, which captures the characteristics of the real-time location-specific

data. That is, each distinct location has a different set of data pattern. The

distributed SGD algorithm aims to minimize the overall cost function and

compute θ∗ such that the sum of all the cost functions is minimized:

θ∗ = argmin
θ∈Rd

n

∑
j=1

Qj(θ). (3.1)

A popular distributed framework to parallelize the computation is the

parameter server model, in which the parameter server distributes the compu-

tation tasks to workers and aggregates their computed gradients to update

the parameters (of the machine learning model) in each round [16]. In edge

Chapter 3. VC-SGD 11

computing, it is difficult for a single cloud to manage all the devices; hence,

various edge-based training paradigms have been proposed [17, 12].

In our three-layer edge computing architecture (as shown in Figure 3.1),

both (virtual) edge servers and the cloud server need to perform the aggre-

gation, but only the cloud server will update the parameters of the model. In

the usage scenario, each gradient computation is over a small batch of data

samples; hence, the computation is very efficient, even on a small device.

Moreover, there is a trend for deploying highly specialized chips for fast and

energy-efficient deep learning tasks, e.g., TPU (Tensor Processing Unit) from

Google. We believe that in the near future, edge devices will be fully capable

of performing such a gradient computation.

For brevity of presentation, we assume a synchronous system, i.e., each

worker and server proceed in a lock step. We stress that it is simple to gener-

alize the assumption about synchrony.

3.3 Algorithm Framework

We present a framework for integrating a distributed SGD algorithm with

our three-layer architecture. In the following workflow, all the servers and

edge nodes proceed in synchronous rounds, and execute the following steps

in each round t ≥ 0:

1. Cloud server sends parameter θt to all edge servers.

2. Edge server j forwards θt to nearby workers wt
j,k.

3. Each worker wt
j,k randomly chooses a (small) data batch from its local

dataset that is collected using on-device sensors from its current loca-

tion, and computes a local estimate gradient gt
j,k.

4. Worker then sends gt
j,k back to the edge server j.

Chapter 3. VC-SGD 12

5. Upon collecting enough gradients from nearby workers, edge server j

computes and sends an aggregated gradient gt
j to cloud server.

6. Upon collecting aggregated gradients from all the edge servers, cloud

server then updates the parameter using the gradient descent approach

with step size η:

θt+1 = θt − η
n

∑
j=1

gt
j .

The framework is general in the sense that prior algorithms [15, 8] can be

easily integrated by replacing the needed parameters and aggregation rules.

If the FL algorithms are robust to stale data, then at step 3, we can make the

convergence faster with a simple modification: if the worker has enough stor-

age space, then the worker may also choose to use some (stale) data collected

at other places to form a batch for training in this round. In our preliminary

design, if the virtual edge server does not have enough vehicles inside its

range, then the computed gradients will be discarded. Most FL algorithms

are robust to this type of intermittent data loss.

13

Chapter 4

Evaluation

4.1 Simulator

We build a simulator to help investigate the collection of real-time location-

specific data and evaluate the performance of VC-SGD. Our simulator uses

Simulation of Urban Mobility (SUMO), which is a continuous traffic simula-

tion package designed to handle large networks, for simulating the mobility

pattern of the edge devices and vehicles. It also uses the MXNet framework

for real machine learning training.

As mentioned in our problem formulation in Section 2, we need to ensure

two important features of data collection: the data should be collected in a

real-time and location-specific fashion in our simulation. To achieve these two

features, we partition the map in our simulation. The map shown in Figure

4.1 is generated by SUMO OSMWeb Wizard and is based on the actual map

of an area around the Boston Common located in downtown Boston. We

visualize the traffic data on the map by plotting traces of vehicles as dots and

many connected dots form the contour of the roads.

The map is partitioned into 10 regions shown in different colors by using

a clustering algorithm and an algorithm of Voronoi diagram. The partition is

based on historical traffic data. First, we run a density-based clustering algo-

rithm, named DBSCAN, on the traffic data generated by SUMO. We select 10

clusters with the most traffic and find their centers which are shown as black

Chapter 4. Evaluation 14

FIGURE 4.1: Illustration of Partitioned Map with Zone Data.

dots in Figure 4.1. We consider these 10 center points as seeds in Voronoi

diagram and generate the partitioned map using Euclidean distance as the

metric.

In each distinct partition on the map, the data will be different. We achieve

this by processing the dataset and assigning each partition with different

batches of data before training starts in our simulation. Therefore, the location-

specific feature of data is established. During the simulation, when an edge

device travels through one of the partitions, it will obtain a batch of data.

This simulates the edge device’s sensors gathering information from its sur-

roundings, thus establishing the real-time feature of data.

In our experiment, we place both physical and virtual edge servers at

pre-selected locations with high traffic flows based on historical traffic data.

Note that the icons of edge servers shown in Figure 4.1 do not represent their

actual selected locations. They are used to demonstrate that physical edge

servers are not present in every partition of the map. This simulates the real

circumstance where the infrastructures do not have full coverage in remote

areas. The virtual edge servers play important roles in the regions that are

not covered by physical edge servers.

Chapter 4. Evaluation 15

4.2 Experiment Setup

We first design an experiment that runs on our simulator to verify that our

design can effectively handle primitive applications. One common theme of

the advanced machine learning algorithms used in pervasive applications is

image recognition. If one cannot successfully solve the image recognition

task, then the more advanced tasks such as object detection, object recogni-

tion, and image segmentation are close to impossible to be solved.

For our preliminary evaluation, we start with the popular benchmark

dataset, MNIST handwritten digits [10], which contains 60k training exam-

ples and 10k testing examples. There are 10 classes, which are the digits from

0 to 9, in the dataset. The task for edge devices is to train on examples in the

dataset and collectively improve the model for recognition of handwritten

digits.

Our machine learning model is a Sequential model with 3 dense layers.

The learning rate is set to 5 ∗ 10−4. We use top-1 accuracy on the testing

set and the cross-entropy loss function on the training set as the evaluation

metrics. The accuracy is evaluated by comparing the prediction made by our

trained machine learning model with the test set.

Before we start our experiment and the training, we process the MNIST

dataset to simulate the real-time and location-specific features by doing the fol-

lowing steps:

1. Classify training examples into 10 sets according to their classes (0-9).

2. From each set, reserve x% of examples as "zone data" and take out the

remaining (100− x)% of examples.

3. Mix the examples taken out from all 10 sets together for usages as

mixed data.

4. Assign 1
10 of the mixed data to each set.

Chapter 4. Evaluation 16

5. For each set, assign the training examples in the set to one of the parti-

tions on the map.

6. In each set, shuffle and batch the examples prior to the start of each

round.

In step 2, "zone data" means that the data examples are all from one class.

In terms of the MNIST dataset, "zone data" means labels of the data are the

same digit. In step 4, after evenly distributing the mixed data to every set,

each set has a portion of "zone data" and a portion of mixed data. After step

6, each partition uses a queue to contain the batched training examples and

an edge device will fetch a batch as it travels through one of the partitions.

After steps of processing, the MNIST data stream (collected by each edge

device) is non-i.i.d. or “disjoint local.” That is, data batches at each queue

draw from a slightly different distribution. Concretely, a queue is configured

to contain x% of data from the “zone data” (data from a pre-assigned class)

and (100− x)% of mixed data from the remaining data in the dataset.

Experiment Parameters
Number of vehicles 647
Peak number of vehicles 43
Duration 3864 seconds
Edge server range 100 meters
Minimum number of vehicles in a VC 5
Number of physical edge servers (RSU) 5
Number of virtual edge servers (VC) 0, 3, or 6
Batch size 100
Number of rounds 100
Number of accumulative gradients 10

TABLE 4.1: Parameters used in the experiment.

Table 4.1 shows the parameters used in our experiment. The vehicle mo-

bility simulated by SUMO generates a total of 647 vehicles traveling through

the map. The duration from the first vehicle entering the map to the last ve-

hicle leaving the map is 3,864 seconds. In the peak second that has the most

Chapter 4. Evaluation 17

traffic, there are 43 vehicles on the map simultaneously. When all the vehi-

cles exit the map, we start the traffic flow over from the beginning in order

to guarantee continuous flow of vehicles during our experiment. We assume

the edge server’s communication range has a radius of 100 meters. Edge de-

vices can only communicate with edge servers within edge servers’ range.

We also set the minimum number of vehicles to form a vehicular cloud at the

pre-selected location to be 5.

The batch size is set to 100, meaning that each edge device obtains a batch

of 100 location-specific data examples as it enters a partition. The number of

accumulative gradients is 10, which suggests that the cloud server and the

edge servers need to wait for 10 gradients to perform an aggregation. We

run training for 100 rounds; exhausting all data batches in all partitions on

the map means completion of a round. Prior to a new round, data will be

shuffled and batched again.

4.3 Experimental Results

The evaluation runs on the Google Cloud Platform (GCP). The machine type

is e2-standard-4, which has 4 vCPUs and 16GB memory. The system is ubuntu-

1804-bionic-v20210514. We run experiments according to our experiment

setup and report the average results of 5 runs for each set of parameters.

Figure 4.2 presents the results. We test 3 different combinations of RSUs

(physical edge servers) and VCs. In all 3 cases, the number of RSUs is set

to 5; we vary the number of VCs to evaluate the effect of introducing differ-

ent number of VCs.

With more VCs, the model collectively trained by edge devices achieves

a higher accuracy. Moreover, with more “zone data” – i.e., each zone has a

higher proportion unique data – our framework VC-SGD performs better, in

terms of both accuracy and convergence speed. This is because with the help

Chapter 4. Evaluation 18

from VCs, edge devices have a higher chance to train with the real-time data

they collect and upload their computed gradients.

100 101 102

Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
ac

cu
ra

cy

Accuracy: 50% zone data and 50% mixed data
5 RSU + 0 VC
5 RSU + 3 VC
5 RSU + 6 VC

100 101 102

Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
ac

cu
ra

cy

Accuracy: 75% zone data and 25% mixed data
5 RSU + 0 VC
5 RSU + 3 VC
5 RSU + 6 VC

100 101 102
Round

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Cr
os
s-
en

tro
py

 lo
ss

Loss: 50% zone data and 50% mixed data
5 RSU + 0 VC
5 RSU + 3 VC
5 RSU + 6 VC

100 101 102
Round

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Cr
os
s-
en

tro
py

 lo
ss

Loss: 75% zone data and 25% mixed data
5 RSU + 0 VC
5 RSU + 3 VC
5 RSU + 6 VC

0 VC 3 VC 6 VC
0

1

2

3

4

Se
co
nd

×105 Time: 50% zone data and 50% mixed data

0 VC 3 VC 6 VC
0

1

2

3

4

Se
co
nd

×105 Time: 75% zone data and 25% mixed data

FIGURE 4.2: Results of Mean-based FL with 50% Zone data
(Left column); Results of Mean-based FL with 75% Zone data

(Right column).
Plots of Top-1 accuracy (First row); Plots of Cross-entropy
loss (Second row); Plots of total time (number of timesteps in

SUMO) used to complete 100 rounds (Third row).

In the cases with more VCs, the time used to complete 100 rounds is

shorter, as shown in the third row of Figure 4.2, because more available

VCs can enable more edge devices to contribute to the training in the same

Chapter 4. Evaluation 19

amount of time. When no VC is used, edge devices can only upload gradients

when they pass by the physical edge servers. Under this circumstance, many

edge devices cannot train their local data and upload gradients because of

the lack of edge servers. In our simulation, they cannot collect new data if

they do not complete training their existing local data. So, each round takes

much longer when the number of VCs is 0. In contrast, with VCs, edge de-

vices can gather and train new data more frequently because they are more

likely to pass by edge servers. Therefore, introducing more VCs help im-

prove performance and efficiency.

Recall that edge devices will discard data if they are not near any physical

or virtual edge server. This is a reasonable assumption adopted in the liter-

ature [17, 12], because (i) the number of edge devices will become too large

to be handled directly by the cloud server; and (ii) the edge devices do not

typically have a large enough space to store prior data. This is why we be-

lieve that it is important to use the concept of vehicular virtual edge server to

address the data collection problem, and enable FL algorithms for pervasive

systems.

20

Chapter 5

Summary and Future Work

We propose VC-SGD to assist FL with vehicular clouds, and use a customized

simulator to evaluate its efficacy. VC-SGD addresses the missing link in the

literature – collecting and training with real-time location-specific data.

VC-SGD can be extended to more future directions and we can investigate

more about the following topics:

• Extensive evaluation: we have only implemented a mean-based FL into

our simulator; we plan to extend our simulator to more FL algorithms

and study practical trade-offs such as communication cost, different

synchrony assumption, and the impact of traffic pattern.

• Advanced problems and integration with pervasive systems: we will study

the efficacy of FL algorithms for more advanced problems such as ob-

ject detection, and integrate the results with pervasive systems.

• Robustness: failures, or even attacks, are bound to happen in edge-base

FL systems. Making VC-SGD more robust is an important challenge.

• Explorations of deployment on actual vehicles: VC-SGD is currently run on

our simulator, but it will be important to evaluate its performance on

vehicles in reality; the amount of computing power it requires and its

energy consumption will be future problems to consider.

21

Bibliography

[1] Samiur Arif et al. “Datacenter at the Airport: Reasoning about Time-

Dependent Parking Lot Occupancy”. In: Parallel and Distributed Sys-

tems, IEEE Transactions on 23 (Nov. 2012). DOI: 10.1109/TPDS.2012.47.

[2] Juan Augusto Wrede. “Ambient Intelligence: The Confluence of Ubiq-

uitous/Pervasive Computing and Artificial Intelligence”. In: Intelligent

Computing Everywhere (Jan. 2007). DOI: 10.1007/978-1-84628-943-

9_11.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-

bridge University Press, 2004. DOI: 10.1017/CBO9780511804441.

[4] Mohamed Eltoweissy, Stephan Olariu, and Mohamed Younis. “Towards

Autonomous Vehicular Clouds”. In: May 2012. DOI: 10.1007/978-3-

642-17994-5_1.

[5] “Federated Learning: Collaborative Machine Learning without Central-

ized Training Data”. In: Google AI Blog (Apr. 2017).

[6] Ryan Florin et al. “Reasoning About Job Completion Time in Vehicular

Clouds”. In: IEEE Transactions on Intelligent Transportation Systems 18.7

(2017), pp. 1762–1771. DOI: 10.1109/TITS.2016.2620434.

[7] Takamasa Higuchi, Falko Dressler, and Onur Altintas. “How to Keep

a Vehicular Micro Cloud Intact”. In: June 2018, pp. 1–5. DOI: 10.1109/

VTCSpring.2018.8417759.

https://doi.org/10.1109/TPDS.2012.47
https://doi.org/10.1007/978-1-84628-943-9_11
https://doi.org/10.1007/978-1-84628-943-9_11
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1007/978-3-642-17994-5_1
https://doi.org/10.1007/978-3-642-17994-5_1
https://doi.org/10.1109/TITS.2016.2620434
https://doi.org/10.1109/VTCSpring.2018.8417759
https://doi.org/10.1109/VTCSpring.2018.8417759

Bibliography 22

[8] Seyyedali Hosseinalipour et al. From Federated Learning to Fog Learning:

Towards Large-Scale Distributed Machine Learning in Heterogeneous Wire-

less Networks. June 2020.

[9] Yutao Huang et al. “When deep learning meets edge computing”. In:

Oct. 2017, pp. 1–2. DOI: 10.1109/ICNP.2017.8117585.

[10] Yann Lecun et al. “Gradient-Based Learning Applied to Document Recog-

nition”. In: Proceedings of the IEEE 86 (Dec. 1998), pp. 2278 –2324. DOI:

10.1109/5.726791.

[11] Euisin Lee et al. “Vehicular Cloud Networking: Architecture and De-

sign Principles”. In: IEEE Communications Magazine 52 (Feb. 2014), pp. 148–

155. DOI: 10.1109/MCOM.2014.6736756.

[12] Alberto Marchisio et al. “Deep Learning for Edge Computing: Current

Trends, Cross-Layer Optimizations, and Open Research Challenges”.

In: July 2019, pp. 553–559. DOI: 10.1109/ISVLSI.2019.00105.

[13] Rui Pascoal, Ana Almeida, and Rute Sofia. “Mobile Pervasive Aug-

mented Reality Systems -MPARS: The Role of User Preferences in the

Perceived Quality of Experience in Outdoor Applications”. In: ACM

Transactions on Internet Technology 20 (Dec. 2019). DOI: 10.1145/3375458.

[14] Yaohua Sun et al. “Application of Machine Learning in Wireless Net-

works: Key Techniques and Open Issues”. In: IEEE Communications

Surveys Tutorials PP (June 2019), pp. 1–1. DOI: 10.1109/COMST.2019.

2924243.

[15] Zeyi Tao and Qun Li. “eSGD: Communication Efficient Distributed

Deep Learning on the Edge”. In: USENIX Workshop on Hot Topics in Edge

Computing (HotEdge 18). Boston, MA: USENIX Association, July 2018.

URL: https://www.usenix.org/conference/hotedge18/presentation/

tao.

https://doi.org/10.1109/ICNP.2017.8117585
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/MCOM.2014.6736756
https://doi.org/10.1109/ISVLSI.2019.00105
https://doi.org/10.1145/3375458
https://doi.org/10.1109/COMST.2019.2924243
https://doi.org/10.1109/COMST.2019.2924243
https://www.usenix.org/conference/hotedge18/presentation/tao
https://www.usenix.org/conference/hotedge18/presentation/tao

Bibliography 23

[16] Joost Verbraeken et al. “A Survey on Distributed Machine Learning”.

In: ACM Computing Surveys 53 (Mar. 2020), pp. 1–33. DOI: 10.1145/

3377454.

[17] Xiaofei Wang et al. “Convergence of Edge Computing and Deep Learn-

ing: A Comprehensive Survey”. In: IEEE Communications Surveys Tu-

torials PP (Jan. 2020), pp. 1–1. DOI: 10.1109/COMST.2020.2970550.

https://doi.org/10.1145/3377454
https://doi.org/10.1145/3377454
https://doi.org/10.1109/COMST.2020.2970550

	Abstract
	Acknowledgements
	Introduction
	Background
	Main Contributions

	Preliminaries
	Problem Formulation
	Vehicular Clouds

	VC-SGD
	Architecture
	Algorithm Preliminary
	Algorithm Framework

	Evaluation
	Simulator
	Experiment Setup
	Experimental Results

	Summary and Future Work
	Bibliography

