
Learning Experiences on Blockchain Related

Projects

Xuheng Duan

Computer Science Department

Boston College

Supervisor

Lewis Tseng

In partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science

May 15, 2020

Abstract

Today, blockchain technology becomes a hot topic and attracts peo-

ple’s attention worldwide. Initially, blockchain was introduced in 2008

by Satoshi Nakamoto as a secure system for bitcoin. Today, there

are public blockchain projects like Ethereum and Bitcoin that enables

anyone to process secure peer-to-peer transactions. Meanwhile, there

are also private blockchain projects like Hyperledger Fabric[1], which

restricts the participants and realizes secure communications between

corporations.

Throughout the past year, I studied the Hyperledger blockchain system

and encountered numerous difficulties. Moreover, witnessing so many

different sorts of blockchain projects, one would like to understand and

compare different blockchain performance at scale. Thus, I also studied

three different benchmark tools, namely Blockbench[2], Caliper++[3]

and Hyperledger Caliper[4], and focused on the latter two. At last, we

used Mininet[5] to emulate a virtual network and tested the perfor-

mance of Ethereum. Overcoming the struggles, I document my learn-

ing outcomes and share my experience on these open-source projects

with those who would like to engage the field of blockchain.

Contents

1 Introduction 1

1.1 Hyperledger Fabric . 1

1.2 Hyperledger Caliper . 2

1.3 Caliper++ . 2

1.4 Mininet and Ethereum . 3

2 Hyperledger Fabric 4

2.1 Structure and concepts . 4

2.1.1 Organization and Peers . 4

2.1.2 Orderer and Channel . 5

2.1.3 Certificate Authority(CA) and Membership Service Provider

(MSP) . 5

2.2 Related Work and Suggestions . 6

3 Hyperledger Caliper and Caliper++ 10

3.1 Structure and concepts . 10

3.2 Related Work and Notes . 11

4 Ethereum and Mininet 14

4.1 Ethereum . 14

4.2 Basic structure . 14

4.3 Related Work . 15

4.4 Data and Results . 16

4.4.1 Network Latency . 16

4.4.2 Different Topology and Network Failures 18

4.4.3 Heterogeneous Machines . 19

4.4.4 Large-scale Test . 19

5 Other Errors 20

6 Summary 21

ii

CONTENTS

References 22

iii

1. Introduction

The thesis includes four different major parts, corresponding to four different sys-

tems: Hyperledger Fabric, Hyperledger Caliper, Caliper++, and Mininet/Ethereum.

In the introduction part, I will briefly talk about the basic concepts and structures

of the four systems. Then, in the major sections, I included detailed discussion,

some related work, and working notes. Lastly, there is a short summary at the

end of the thesis.

1.1 Hyperledger Fabric

Admittedly, traditional public blockchain systems have proven their utility. How-

ever, many enterprise use cases require a private environment in which the permis-

sionless blockchain project could not provide. For instance, in finance transactions,

users need to know each other’s identities in order to avoid money laundering or

financial fraud. Although many developers adapted earlier public blockchains for

business scenarios, the projects still have some inherent problems. As a solu-

tion, Hyperledger Fabric[6] was designed for enterprise use, combining novel and

unique philosophies. It aims to build a secure network where all participants must

be identified. Older blockchain projects like bitcoin have issues of low transaction

throughput and high latency of transactions because it relies on miners to pack-

age and verify the data. However, Hyperledger Fabric designs orderers to arrange

the transactions, which brings the transaction speed to a new level. Using mod-

ular architecture and smart contracts, Hyperledger Fabric also makes it easy for

participants to customize the network.

1

1.2 Hyperledger Caliper

1.2 Hyperledger Caliper

Hyperledger Caliper[7] is one of the official benchmark frameworks. Treating the

blockchain system as a whole, Caliper can target the SUT(System Under Test)

by user-defined chaincodes and integrate the system responses into a meaningful

report. Caliper consists of two important configuration files: benchmark files and

network files. In a benchmark file, users can define different parameters they want,

such as transaction numbers and transactions per second. Furthermore, users are

able to customize their own chaincode and plug it in the Caliper, which would be

called later during benchmark phase. On the other hand, Caliper uses a network

configuration file to contact the SUT. The network file usually defines the network

topology, nodes’ endpoints, and smart contracts Caliper should deploy or interact

with.

1.3 Caliper++

Although Caliper version 0.2 is powerful, it still has some disadvantages. For in-

stance, it could only perform on local, predefined networks. It is also hard to run

on large-scale and distributed networks. In addition, Caliper has a benchmark

client closely connected to Fabric transaction workflow, so the client would need

to wait for endorsing peers before they validate the responses, which would poten-

tially influence the benchmark results. Thus, another development team designed

Caliper++ that extended the functions of the original Caliper. The redesigned

Caliper++ supports additional functionalities for benchmark Kafka-based[8] Fab-

ric network at scale. To be more specific, it contains scripts that could generate

configuration files for Fabric network topology and brings up a large scale of net-

work across any number of cluster nodes. It successfully solved the problem that

hindered Caliper and brought new ideas to design a distributed benchmark frame-

work.

2

1.4 Mininet and Ethereum

1.4 Mininet and Ethereum

Mininet[9] is a battle-tested software that is widely used in prototyping and evalu-

ating Software-Defined Networks(SDNs). It has the capability to illustrate realistic

simulation of physical network topology, and it also supports many extensible con-

figurations. Another world-famous Blockchain project, Ethereum, supports cus-

tomized applications. We deployed Go-Ethereum(Geth) network on the mininet

and raised some meaningful results.

3

2. Hyperledger Fabric

2.1 Structure and concepts

A typical Hyperledger Fabric transaction will undergo the following steps: the

peer initializes a transaction and uses the user’s cryptographic credentials to sign

the transaction proposal. Then, the transaction will be sent to the orderer, and

the orderer would verify and arrange the transaction, sending them back to peers

as well as commiting the verified transaction to the world state.

Figure 2.1 Hyperledger Fabric Workflow

In this section, I will discuss in detail the various components of Hyperledger

Fabric: organization, peers, orderer, channel, CA and MSP.

2.1.1 Organization and Peers

Fabric network contains organizations, which is also known as the consortium.

Under organizations, the network deploys peers, which are the fundamental units

4

2.1 Structure and concepts

of Hyperledger Fabric. The peers usually are assigned names in the format of

peerX.orgX.example.com, where X is a number. Similar to miners in public

blockchain systems, Hyperledger Fabric uses peer units to accomplish validat-

ing transactions and to commit data to the ledger. Meanwhile, the peers also

run chaincodes(smart contracts), which contain user-defined codes, to manage the

assets.

2.1.2 Orderer and Channel

Different from public blockchain systems, Fabric uses orderers to complete con-

sensus work. After peer units have completed validating the transactions, orderers

would receive the endorsed blocks from peers, and then start to reach a consensus.

Eventually, orderer nodes would add the blocks to the ledger, finishing the entire

process. Peers could update their own data from the world state at other times.

On top of orderers, a network needs multiple channels to operate. Channels give

Hyperledger Fabric the ability to build private communications between desired

organizations while not interfering with the other organizations. As a result, a

channel creates a black box and private ledger for consortiums that are invited to

the channel.

2.1.3 Certificate Authority(CA) and Membership Service

Provider (MSP)

CA and MSP are used to verify one’s identity in Hyperledger Fabric. The CA

would issue cryptographic materials for the network components, like orderers,

organizations, and peers. These materials, usually a pair of public and private

keys, would be later used to enroll components’ admin, as well as peers. After the

network generates cryptographic materials, it also needs MSPs to identify which

certificates are needed and to issue valid identities for their members. Using the

metaphor I learned before, certificates are similar to the credit cards that can tell

whether or not an individual is able to pay(and this is created by the bank, which

is parallel to CA in Hyperledger Fabric), and MSPs are the list of accepted credit

cards that individual can use in a store.

5

2.2 Related Work and Suggestions

2.2 Related Work and Suggestions

To successfully launch a functional Hyperledger Fabric network, one needs to

address several components and set up the running environment correctly: pre-

requisites, crypto materials, channel configurations, and chaincode. After we suc-

cessfully install the chaincode on the Fabric network, we could query against our

ledgers and retrieve the data.

Some necessary packages are:

• Git: used to download binaries and repositories from Github

• Docker and Docker-Compose: used to establish Fabric network

• Go Language/Java/Javascript/Node/Python: Hyperledger Fabric supports

different languages.

• Npm: for package management

Check each package’s version to make sure they are installed correctly.

Figure 2.2 Prerequisites for Hyperledger Fabric ver2.0

6

2.2 Related Work and Suggestions

Then, we need to generate crypto materials using cryptogen and configtxgen

tools. Cryptogen tool consumes a YAML file, named crypto-config.yaml, which

contains the topology of the network, and output a folder that contains the cer-

tificates and keys for orderers. On the other hand, configtxgen tool consumes

configtx.yaml, which contains the definition for the network, and output the gene-

sis block of the fabric network. The complicated part is generating configurations

for channels. Basically, for one single channel, we need to do the followings: gen-

erate channel transaction artifact for the channel, and update anchor peers for the

channel members. In our case, we need to update the anchor peers for organiza-

tion 1 and organization 2. Later, we will use these materials to create channels

and interact with them.

Figure 2.3 Channel Configurations for Hyperledger Fabric ver2.0

Hyperledger Fabric relies on Docker to spin up the network. Fabric will initial-

ize a number of Docker containers to simulate the peers in the network. At this

point, we have already started a Hyperledger Network. However, the network will

not be functional unless we also set up the channels and install the chaincodes.

Every time we want to create a new channel, we have to first define the channel

in configtx.yaml, then use configtxgen tool to generate the channel configuration

files based on the materials we defined in configtx.yaml, and ultimately create the

channel with the specific channel configuration files.

Finally, the Fabric network interacts with the ledger through chaincodes, and

we need to install chaincodes on all the participants of the channel before we

can use them. Hyperledger Fabric supports different languages for the chain-

codes(Java, Go and Node.js). Notice that all the peers on the same channel

should agree with the same chaincode package. Figure 2.4 and 2.5 show the in-

stallation of chaincodes on the network. In my case, we can query the chaincodes

to show the quantity of our account and move the desired amount of value from

one account to the other one. Initially, both account a and b have value of 100.

7

2.2 Related Work and Suggestions

Figure 2.4 Create and Join Channel for Hyperledger Fabric ver2.0

In figure 2.6, we move 10 values from the account a to b, and then we asked the

ledger to see if the final result is correct.

Figure 2.5 Install Chaincode for Hyperledger Fabric ver2.0

Figure 2.6 Install Chaincode for Hyperledger Fabric ver2.0

Figure 2.7 Invoke Chaincode for Hyperledger Fabric ver2.0

Following the official guidance is the most straightforward way to start with

Hyperledger Fabric. The official BYFN[10] tutorial explains most of the concepts

8

2.2 Related Work and Suggestions

one needs to know about setting up a functional Hyperledger Fabric network.

However, completing the tutorial does not provide one enough knowledge nor ex-

perience to construct a customized network. Hereby, I will include some difficulties

I confronted, and I will also shine some lights to way to learn Hyperledger Fabric

efficiently.

First, Hyperledger Fabric relies heavily on Docker containers, so it will be help-

ful to have some understandings of Docker. Specifically, the Docker configuration

file plays an important role in defining the Fabric network. Although BYFN pro-

vided predefined Docker YAML files, it is still critical for one to understand and

adjust the files for specific circumstances. On the other hand, while initialing

the network, it is usually helpful to check the log of each container to examine

the problems. The Docker documentation[11] consists of everything one needs to

know.

Furthermore, if one simply follows the official tutorial, there will be a natural

tendency to omit some essential parts of Hyperledger Fabric. When I first tried to

set up a customized network, I experienced many problems regarding CA, MSPs,

and cryptographic materials for organizations. To name a few, in official BYFN,

the example used pre-built binaries(crytogen) to assign certificates. However, one

needs to manually generate extra certificates and move them to correct paths

under the new hosts when adding new organizations to the network. Without

predicting such onerous work, I was stuck by CA and MSP multiple times during

the deployment phase, even later in Caliper work. Other than that, I experienced

multiple deprecated binaries. Since the version of Hyperledger Fabric documenta-

tion does not synchronize with the version of Hyperledger Fabric, it’s natural to

have the wrong version in some packages.

9

3. Hyperledger Caliper and

Caliper++

3.1 Structure and concepts

Hyperledger Caliper has three major parts, Workload Module, Benchmark configu-

ration file, and network configuration file. Caliper itself does not have any tangible

benchmark implementation. Alternatively, workload modules are responsible for

generating transactions and submits them against the System Under Test (SUT).

These Workload Modules are Node.js codes that utilize outside APIs. Thus, be

careful with the Node.js version when one uses Caliper. The current stable version

should be either Node.js 8 or Node.js 10. Benchmark configuration file consists of

detailed information about the benchmarks, like how it should be executed and

what’s the desired transaction rate. By default, Hyperledger Caliper contains two

types of benchmark scenarios. One of which mimics the bank environment and

the other one contains various simple and straightforward tests again SUT, like

plain query and open functions. Lastly, network configuration files define the SUT

network topology. Since Caliper itself is a benchmark workframe, which does not

generate the SUT itself, it is users’ responsibility to construct a functional SUT

with accessible endpoint addresses. Similarly, Caliper itself utilized files from

BYFN.

When I touched Hyperledger Caliper, it was still on version 0.2 and has little

documentation on distributed benchmarks. Thus, another development team de-

signed Caliper++[3]. Their contributions include the followings: they extended

Hyperledger Caliper by adding support for distributed benchmarking. Further-

more, the development team designed scripts that can start Fabric with varying

10

3.2 Related Work and Notes

sizes and configurations. With Caliper++ the team successfully showed that en-

dorsing peers in the Hyperledger Fabric network with Kafka ordering service is

the bottleneck.

Figure 3.1 The architecture of Caliper

3.2 Related Work and Notes

While reproducing the results in Understanding the scalability of Hyperledger Fab-

ric[3], I confronted numerous problems. I successfully resolved some of these dif-

ficulties by contacting the author and querying on the technical forums. Hereby,

I would like to share these problems here and help successors to avoid them.

Caliper++ is built upon Hyperledger Caliper, and thus it shares the same

structure of Hyperledger Caliper. The first problem appeared when I tried to

generate certificates. In Caliper++ instructions, it simply said “generate two

config files” with yarn genConfig command and bring up the network. This was

misleading to me because, in the paper, the author described that their script could

automatically generate the configuration file and bring up the Hyperledger Fabric

network. Thus, unsurprisingly, I jumped into errors when I simply executed the

command. After I conducted with one of the authors, Dumitrel Loghin, it turns

out that they established a Hyperledger Fabric network on the cluster, which was

not included in the paper. The configuration file merely serves as a connection

point between one’s network and Caliper++. Therefore, my task shifts to building

up a functional Hyperledger Fabric network in a cluster.

Caliper++ used Docker Swarm to link the virtual machines into a united

cluster. Unluckily, personally I don’t have previous experience on Docker Swarm,

11

3.2 Related Work and Notes

and thus Docker Swarm was not a viable option to me. But, there could be multiple

ways to build up a cluster for the Hyperledger Fabric network. To establish a

cluster, I chose between Google Cloud Platform and virtual machines as nodes.

After setting up the machines, I need to connect these nodes together, making

sure they could communicate with each other. In my case, I set up two virtual

machines in VirtualBox, with Ubuntu 16.04 LTS. [12] and [13] guided me complete

this task. Meanwhile, users need to emulate the network so that virtual machines

could connect to the internet and receive an external IP address. [14] showed

how to set up network cards. After ensuring that both machines could talk with

each other by Secure Socket Shell(ssh), I used example configuration files from

Hyperledger Fabric official site to construct the network. Everything was smooth

and neat until when I tried to adjust the YAML files into a more complex network

topology. Although articles like [15] and [16] explained how to configure one’s

own Hyperledger Fabric network, unfortunately, I could not resolve the problems

I encountered later.

Hyperledger Fabric network needs certificates on every host. Therefore, before

using Caliper[4] or Caliper++, users need to assign the Hyperledger Fabric arti-

facts, including certificates, crypto information, and other binaries to every host

and under correct paths. Manually allocating these materials is unrealistic, and I

did not figure out an easy way that could help me to do that. On the other hand,

making sure hosts in the distributed system could contact each other properly is

challenging. Most of the time, connection requests from one host will be denied by

another one due to diverse problems. There is no easy way to solve them, except

by carefully examining the bug and getting help from others.

Figure 3.2 illustrates a typical report generated by Hyperledger Caliper. The

report would express the SUT on the right side of the page, under “System Under

Test” section. In the figure, I targeted Caliper against Hyperledger Caliper version

1.4.1 and set up the network topology with 2 organizations, one peer each. The

orderer type was solo, and the network was on a single host. Finally, the world

state was maintained by GoLevel Database. On the other hand, the report section

shows us what kind of benchmark was performed by the chaincode. In my case, I

simply queried the ledger, fetched the responses, and calculated the latency.

12

3.2 Related Work and Notes

Figure 3.2 Hyperledger Caliper report

13

4. Ethereum and Mininet

Finally, we did some work on Ethereum and Mininet[9]. Mininet is a software that

creates realistic virtual networks and enables users to adjust related parameters

inside of it. We measured how some common factors, like bandwidth, delay, jitter

and network loss influence the ethereum network.

4.1 Ethereum

Ethereum[17], an open-source, blockchain-based project, features its function of

smart contract that allows users to deploy decentralized customized applications

on the Ethereum network. Similar to its brother, Bitcoin, Ethereum also supports

its corresponding cryptocurrency, Ether. In our work, we used one of the Ethereum

implementation, Go-Ethereum[18], also known as Geth, to build up our projects.

We want to detect how the Ethereum network will be influenced under different

network conditions.

4.2 Basic structure

We choose Mininet[9] to simulate the network, and further adapt the network with

Ethereum. Thus, the entire structure looks like this: running Mininet on a virtual

machine (Google Cloud Platform), the single machine provides the basic environ-

ment. Then, we built an Ethereum environment on the top of it, which includes

hosts and miners. In addition, users could configure configurations of mininet in a

single YAML file. We predefined several topologies, including single switch, linear

and fat-tree topology. Furthermore, mininet provides many potentials to control

the network environment, and we chose several most significant ones from them,

14

4.3 Related Work

which are bandwidth, delay, jitter, and network loss.

Figure 4.1 The architecture of the project

4.3 Related Work

We created two virtual instances on Google Cloud Platforms to perform our eval-

uations. The source code could be found on github[19]. Both instances equipped

Ubuntu 18.04.4 LTS as their operating system. One has 16 vCPU and the other

one gets 96 vCPU, aiming for large-scale network tests. First of all, benchmarking

work requires root permission, and the related repositories should be put under

the root directory. Check figure 4.2 for a visual example. Then, we created sev-

eral scripts to help the benchmark process. Under nw3/mngeth/, there is a script

named setup.sh, which will install the prerequisites and prepare the environment

for the user. Mainly, the script will install important packages like Golang, Go-

Ethereum, Python, and Mininet.

Users could change the network factors and running times in configuration files.

To be more specific, v2 config.yaml file controls mininet topology and configura-

tions, and v2 start.py contains the code to get the topology and instantiate the

benchmark. Users could easily modify the topology under “class” tag and adjust

the network factors of links in v2 config.yaml file. Right now, the script supports

bandwidth, delay, jitter, and loss. The run.sh script will fire up the framework.

The run.sh script will further call the prerun2.sh and analysis.py. In prerun2.sh,

the script will initialize the Geth network based on the genesis block we defined in

15

4.4 Data and Results

the json file, and miners. Finally, analysis.py will fetch the log data and calculate

the result. Check figure 4.3 for a sample result we get.

Figure 4.2 Enter Root Directory

Figure 4.3 Sample Result from Analysis.py

4.4 Data and Results

4.4.1 Network Latency

We first test the network latency on the impact of throughput. Each experiment

is conducted in a Geth network with 4 miners and 3 threads each, for 150 rounds.

16

4.4 Data and Results

Here the throughput is measured as the number of blocks that are successfully

appended to the main (canonical) chain per second. Latency is measured as the

duration between (i) the time a miner reports it has mined a potential block; and

(ii) the time the miner reports its block has reached the canonical chain. In this

set of experiments, we use a single switch topology.

Figure 4.4 describes the impact of added latency(link latency) on network

latency.

Figure 4.4 Geth Latency vs. Link Latency

Meanwhile, figure 4.5 presents the throughput under added latency (inside

Mininet) from 30ms to 150ms. The latency between the host and the switch is

called the “added latency” that we use Mininet to simulate. We can see that the

throughput is quite stable with moderate latency. Then we enlarged the added

latency to 500ms and 1000ms. Check figure 4.6 for more details.

Figure 4.5 Geth Throughput vs. Link Latency

17

4.4 Data and Results

Figure 4.6 Geth Latency vs. Large Link Latency

4.4.2 Different Topology and Network Failures

Other than normal network delay, we also tested the system with various hardware-

level topologies and different failure patterns.

Table 4.1 presents Geth’s latency and throughput numbers in different topology

with 2% and 4% packet loss rate. Each topology has 5 miners with each link

having 500ms delay and 10ms jitter. The FatTree topology has three layers (core,

aggregate, and edge) and one can adjust the number of switches in each layer and

the number of hosts under each edge switch. For links, one can tune the network

delay, jitter, loss, and bandwidth constraint, and for hosts, one can configure the

CPU constraint and the maximum number of physical cores to use. Our result

indicate that fat-tree, while suffering slightly higher latency, is more robust to

network loss. We have not observed similar study and analysis before.

Table 4.1: Geth performance vs. Network Failures

Fat-
Tree
2%loss

Fat-
Tree
4%loss

Linear
2%loss

Linear
4%loss

throughput
(blocks/sec)

0.82 0.8 0.82 0.76

avg. latency
(sec)

9.83 9.69 9.53 9.67

med. la-
tency (sec)

9.29 9.17 8.86 9.17

95th latency
(sec)

15.14 14.93 15.24 14.48

18

4.4 Data and Results

4.4.3 Heterogeneous Machines

Table 4.2 presents Geth’s latency and throughput numbers with heterogeneous

hosts, i.e., each host has a different computation power. In this particular evalu-

ation, we have a Fat-tree topology with 500ms added latency per link, no jitter,

and no package loss. The relative computation power of each host is listed in the

table. The evaluation runs for 3153.27s, and the whole system generates 2023

valid blocks.

Table 4.2: Geth’s performance with heterogeneous machines

Overall host1 host2 host3 host4 host5
relative
comp.
power

1 0.1 0.1 0.27 0.27 0.26

throughput
(blocks/sec)

0.64 0.02 0.01 0.27 0.01 0.33

avg. latency
(sec)

24.23 268.31 330.15 13.35 17.27 10.27

med. la-
tency (sec)

11.16 270.8 332 12.46 18.36 9.66

95th latency
(sec)

28.78 424.79 511.6 22.71 24.03 16.41

4.4.4 Large-scale Test

Finally, we extend our framework on a virtual instance with 96 vCPUs and 360 GB

memory. The network adopts a Fat-Tree topology with 30 hosts, 500 ms added

latency per link, no jitter, and no package loss. Table below presents the result.

As expected, the throughput is similar regardless of the number of hosts due to

the design of PoW protocol with a fixed difficulty. Table 4.3 shows the result.

Table 4.3: Large-scale Test

runtime(sec) 808.68
total valid blocks 549

throughput (blocks/sec) 0.68
avg. latency (sec) 12.02
med. latency (sec) 11.66
95th latency (sec) 19.13

19

5. Other Errors

Here I include some common errors, as well as some general tips for successors:

• Docker Socket: Sometimes one will get permission denied from Docker dae-

mon socket. This might be caused by various reasons, but highly likely be-

cause of the low level of permission.[20] explained some potential solutions

and sudo chmod 666 /var/run/docker.sock solved my issue.

• Node.js Version: Hyperledger Fabric and Hyperledger Caliper have a re-

stricted requirement for Node.js version. They do not support the latest

version of Node (currently 14.0.0), but only version 8.x.x or 10.x.x. Thus,

check the Node.js version before you start running them.

• Cluster: As mentioned before, Caliper and Caliper++ used Docker Swarm

to set up the cluster. Thus, I would recommend to learn and use swarm in

the first place. Otherwise, Kubernetes is also a viable option.

• Bash Script: Hyperledger Fabric includes a heavy amount of scripts. Thus,

learning how to read script files is also critical. [21] is the bash cheat sheet

I used.

• Research and choose the right tools. I did not do enough study before

deciding which tool to use, and thus wasted a good amount of time switching

from plan to plan. Thus, make a good plan of action is the most important

part of a project.

• Don’t hesitate to ask. It would save me much time if I asked the author

of the paper about the cluster and network earlier. Furthermore, the tech

forum and community provided me a lot of assistance as well.

20

6. Summary

In general, this paper concentrates on the Hyperledger Fabric, Hyperledger Caliper,

Caliper++, as well as Ethereum and mininet. Each part consists of the basic con-

cepts of the system, and the related work. Summarizing the errors I made and

giving out some advices, I hope my thesis provides enough information to those

who wish to enter the field of Blockchain, specially Hyperledger Fabric. Mean-

while, realizing my inadequacies in decision making, I also write some general

suggestions to help others to improve.

Foremost, I would like to express my sincere gratitude to my advisor, Prof.

Lewis Tseng, for the support and guide, for his patience, motivation, and en-

couragement. Nevertheless, I would like to thank my fellow, Haochen Pan, and

Yingjian Wu, for their consistent help and assistance.

21

References

[1] T. L. Foundation, Hyperledger fabric, 2020. [Online]. Available: https://
www.hyperledger.org/projects/fabric.

[2] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan, “Block-
bench: A framework for analyzing privateblockchains”, 2017. doi: http:

//dx.doi.org/10.1145/3035918.3064033.

[3] N. Q. Minh, D. Loghin, and T. T. A. Dinh, “Understanding the scalability
of hyperledger fabric”, 2019. [Online]. Available: https://bcdl.comp.nus.
edu.sg/papers/understanding_the_scalability_of_hyperledger_

fabric.pdf.

[4] Hyperledger, Measuring blockchain performance with hyperledger caliper,
Mar. 2018. [Online]. Available: https://www.hyperledger.org/blog/

2018/03/19/measuring-blockchain-performance-with-hyperledger-

caliper.

[5] Mininet, http://mininet.org/. [Online]. Available: http://mininet.org/.

[6] Hyperledger fabric: A blockchain platform for the enterprise, Available at
https://hyperledger-fabric.readthedocs.io/en/latest/index.html,
Lastest Version: 2.1.

[7] Caliper, Mar. 2020. [Online]. Available: https://github.com/hyperledger/
caliper.

[8] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging sys-
tem for log processing”, 2011, NetDB, Vol. 11, pp. 1–7.

[9] M. Team. (). Mininet, an instant virtual network on your laptop, [Online].
Available: http://mininet.org/.

[10] Building your first network. [Online]. Available: https://hyperledger-

fabric.readthedocs.io/en/latest/build_network.html?highlight=

byfn.

[11] D. Inc, Docker documentation, Available at https://docs.docker.com/.

[12] G. Szabo, Virtualbox host-only network - ssh to remote machine, 2018. [On-
line]. Available: https://code- maven.com/virtualbox- host- only-

network-ssh-to-remote-machine.

[13] Setup 2 ubuntu boxes in virtualbox to communicate with each other, 2018.
[Online]. Available: https://code-maven.com/setup-2-ubuntu-boxes-
in-virtualbox-to-communicate-with-each-othere.

22

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://doi.org/http://dx.doi.org/10.1145/3035918.3064033
https://doi.org/http://dx.doi.org/10.1145/3035918.3064033
https://bcdl.comp.nus.edu.sg/papers/understanding_the_scalability_of_hyperledger_fabric.pdf
https://bcdl.comp.nus.edu.sg/papers/understanding_the_scalability_of_hyperledger_fabric.pdf
https://bcdl.comp.nus.edu.sg/papers/understanding_the_scalability_of_hyperledger_fabric.pdf
https://www.hyperledger.org/blog/2018/03/19/measuring-blockchain-performance-with-hyperledger-caliper
https://www.hyperledger.org/blog/2018/03/19/measuring-blockchain-performance-with-hyperledger-caliper
https://www.hyperledger.org/blog/2018/03/19/measuring-blockchain-performance-with-hyperledger-caliper
http://mininet.org/
 https://hyperledger-fabric.readthedocs.io/en/latest/index.html
https://github.com/hyperledger/caliper
https://github.com/hyperledger/caliper
http://mininet.org/
https://hyperledger-fabric.readthedocs.io/en/latest/build_network.html?highlight=byfn
https://hyperledger-fabric.readthedocs.io/en/latest/build_network.html?highlight=byfn
https://hyperledger-fabric.readthedocs.io/en/latest/build_network.html?highlight=byfn
 https://docs.docker.com/
https://code-maven.com/virtualbox-host-only-network-ssh-to-remote-machine
https://code-maven.com/virtualbox-host-only-network-ssh-to-remote-machine
https://code-maven.com/setup-2-ubuntu-boxes-in-virtualbox-to-communicate-with-each-othere
https://code-maven.com/setup-2-ubuntu-boxes-in-virtualbox-to-communicate-with-each-othere

REFERENCES

[14] B. Linkletter, How to emulate a network using virtualbox, Jan. 2017. [On-
line]. Available: https : / / www . brianlinkletter . com / how - to - use -

virtualbox-to-emulate-a-network/.

[15] N. Afraz. (). Hyperledger caliper on multiple hosts, [Online]. Available:
https://medium.com/@nima.afraz/hyperledger-caliper-on-multiple-

hosts-6bcd07492e07.

[16] N. D. J. (). Adapting hyperledger caliper to custom hyperledger fabric net-
works, [Online]. Available: https : / / medium . com / tallyx / adapting -

hyperledger - caliper - to - custom - hyperledger - fabric - networks -

3ffa650215a0.

[17] V. Buterin et al., “A next-generation smart contract and decentralized ap-
plication platform”,

[18] Go-ethereum, 2020. [Online]. Available: https://github.com/ethereum/
go-ethereum.

[19] HaochengPan, Nw3, Mar. 2020. [Online]. Available: https://github.com/
haochenpan/nw3.

[20] devdojo. (Aug. 2019). How to fix docker: Got permission denied, [Online].
Available: https://www.digitalocean.com/community/questions/how-
to-fix-docker-got-permission-denied-while-trying-to-connect-

to-the-docker-daemon-socket.

[21] cs.washington.edu, Bash shell reference, Available at https://courses.cs.
washington.edu/courses/cse391/17sp/bash.html.

23

https://www.brianlinkletter.com/how-to-use-virtualbox-to-emulate-a-network/
https://www.brianlinkletter.com/how-to-use-virtualbox-to-emulate-a-network/
https://medium.com/@nima.afraz/hyperledger-caliper-on-multiple-hosts-6bcd07492e07
https://medium.com/@nima.afraz/hyperledger-caliper-on-multiple-hosts-6bcd07492e07
https://medium.com/tallyx/adapting-hyperledger-caliper-to-custom-hyperledger-fabric-networks-3ffa650215a0
https://medium.com/tallyx/adapting-hyperledger-caliper-to-custom-hyperledger-fabric-networks-3ffa650215a0
https://medium.com/tallyx/adapting-hyperledger-caliper-to-custom-hyperledger-fabric-networks-3ffa650215a0
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/haochenpan/nw3
https://github.com/haochenpan/nw3
https://www.digitalocean.com/community/questions/how-to-fix-docker-got-permission-denied-while-trying-to-connect-to-the-docker-daemon-socket
https://www.digitalocean.com/community/questions/how-to-fix-docker-got-permission-denied-while-trying-to-connect-to-the-docker-daemon-socket
https://www.digitalocean.com/community/questions/how-to-fix-docker-got-permission-denied-while-trying-to-connect-to-the-docker-daemon-socket
https://courses.cs.washington.edu/courses/cse391/17sp/bash.html
https://courses.cs.washington.edu/courses/cse391/17sp/bash.html

	1 Introduction
	1.1 Hyperledger Fabric
	1.2 Hyperledger Caliper
	1.3 Caliper++
	1.4 Mininet and Ethereum

	2 Hyperledger Fabric
	2.1 Structure and concepts
	2.1.1 Organization and Peers
	2.1.2 Orderer and Channel
	2.1.3 Certificate Authority(CA) and Membership Service Provider (MSP)

	2.2 Related Work and Suggestions

	3 Hyperledger Caliper and Caliper++
	3.1 Structure and concepts
	3.2 Related Work and Notes

	4 Ethereum and Mininet
	4.1 Ethereum
	4.2 Basic structure
	4.3 Related Work
	4.4 Data and Results
	4.4.1 Network Latency
	4.4.2 Different Topology and Network Failures
	4.4.3 Heterogeneous Machines
	4.4.4 Large-scale Test

	5 Other Errors
	6 Summary
	References

