
Form	E-1-A	for	Boston	College	Core	Curriculum	
	

Department/Program	:	_Computer	Science	
	
	

NOTE:	It	is	only	in	the	last	year	that	courses	in	Computer	Science	could	be	used	to	satisfy	the	
University	Core	Requirement	in	Mathematics.		At	present	only	one	course	in	our	program,	Computer	
Science	1	(CSCI1101)	and	its	Honors	variant	(CSCI1103)	can	be	used	for	this	purpose.		In	the	Fall	
semester	of	2019,	CSCI1701,	one	part	of	a	new	pair	of	Enduring	Questions	courses,	will	be	taught	by	the	
Computer	Science	department—nothing	quite	like	this	has	been	offered	in	the	Computer	Science	
department	before.	This	accounts	for	the	somewhat	provisional	nature	of	several	of	the	responses	
below,	especially	where	CSCI1701	is	concerned.	

	
1) Have	formal	learning	outcomes	for	the	department’s	Core	courses	been	developed?	What	are	they?	

(What	specific	sets	of	skills	and	knowledge	does	the	department	expect	students	completing	its	Core	
courses	to	have	acquired?)	

For	CSCI1101	a	specific	set	of	outcomes	has	been	developed	by	the	group	of	instructors	teaching	the	
course.		Attached	to	this	document	is	a	recent	working	version	of	these	outcomes	used	by	the	
instructors	in	2018-2019.	

CSCI1701	will	be	taught	for	the	first	time	in	the	Fall	of	2019.		There	is	a	preliminary	version	of	the	course	
syllabus,	but	the	definitive	version	is	still	in	development.		Since	this	course	is	organized	around	a	
specific	application	area,	the	course	content,	and	to	some	extent	the	associated	skills	and	knowledge,	is	
in	part	driven	by	the	application	questions.	

	

Where	are	these	learning	outcomes	published?	Be	specific.	(Where	are	the	department’s	expected	
learning	outcomes	for	its	Core	courses	accessible:	on	the	web,	in	the	catalog,	or	in	your	department	
handouts?)	

The	attached	document	concerning	CSCI1101	circulated	among	the	instructors,	but	some	version	of	the	
desired	outcomes	appears	in	the	individual	syllabi	for	each	section.	A	less-detailed	description	of	
learning	outcomes	appears	in	the	course	description	posted	on	the	department’s	website.	

https://www.bc.edu/content/bc-web/schools/mcas/departments/computer-
science/academics/courses.html

Learning	outcomes	for	CSCI1701	will	appear	in	the	course	syllabus.		It	is	not	yet	known	if	this	precise	
course	will	be	taught	a	second	time.		We	expect	that	Computer	Science	will	continue	to	participate	in	
the	Enduring	Questions	and	Complex	Problems	courses.		While	there	will	be	a	common	thread	to	the		
learning	outcomes,	these	will	vary	to	some	degree	with	the	particular	offering.	

	

	

2) Other than GPA, what data/evidence is used to determine whether students have achieved the
stated outcomes for the Core requirement? (What	evidence	and	analytical	approaches	do	you	use	to	
assess	which	of	the	student	learning	outcomes	have	been	achieved	more	or	less	well?)	

	

Since	CSCI1101	is	also	a	required	introductory	course	for	the	major,	we	have	tended	to	assess	it	through	
that	lens,	looking	at	how	well	it	prepares	students	for	the	next	course.		The	evidence	here	is	gotten	
through	observation	of	the	students’	work	and	discussion	of	what	skills	the	students	have	acquired	
satisfactorily	in	the	first	course,	where	they	appear	to	be	deficient,	etc.			

3) Who interprets the evidence? What is the process?		(Who	in	the	department	is	responsible	for	
interpreting	the	data	and	making	recommendations	for	curriculum	or	assignment	changes	if	
appropriate?	When	does	this	occur?)	

	

We	hold	a	year-end	meeting	of	the	department	where	curriculum	matters	are	discussed.		For	CSCI1101,	
the	team	of	instructors	for	the	course	meets	to	discuss	how	the	students	are	faring,	and	this	often	
translates	into	recommendations	for	curricular	change.	

	

4) What were the assessment results and what changes have been made as a result of using this
data/evidence? 	(What	were	the	major	assessment	findings?	Have	there	been	any	recent	changes	to	
your	curriculum	or	program?	How	did	the	assessment	data	contribute	to	those	changes?		

	

About	6	years	ago,	we	made	a	major	change	to	CS1	by	switching	the	language	in	which	it	was	taught	
from	Java	to	Python.		This	change	was	based	on	some	years	of	observation	by	CS1	instructors	that	led	us	
to	conclude	that	Java	put	some	significant	learning	obstacles	for	introductory-level	students	at	the	very	
beginning	of	the	course.		After	a	year	or	two	of	experience	with	Python,	we	eliminated	the	unit	in	
CSCI1101	concerning	object-oriented	programming	in	Python,	because	we	found	that	it	crowded	out	
other	material,	and	tended	to	be	confusing	rather	than	helpful	for	continuing	students	who	went	on	to	
study	object-oriented	programming	in	Java.	

	

5) Date	of	the	most	recent	program	review.	(Your	latest	comprehensive	departmental	self-study	and	
external	review.)	

	April,	2019.	

CS 1 – Topics	

0) Binary/Hex/Ascii

1) Numeric types (integer & float)

a. Know the difference between integer and float, and how to convert between types
b. Be familiar with arithmetic operators and expressions

2) Strings
a. String slicing methods
b. Other string methods: upper(), lower(), len()

3) Iteration – for loop and while loop
a. Be familiar with for loops and while loops and the break command for "escaping" from them.

4) Conditional statements (if-elif-else statements
a. Be familiar the relational operators: >, <, >=, <=, ==, and, !=
b. Be familiar with how to construct complex expressions using and & or operators
c. Be familiar with the basic if-elif-else statement, and nested conditional statements.

5) Defining function of your own
a. You should be able to write a function and know the difference between printing the result

vs using the return statement.
6) Lists

a. Be familiar with creating lists, traversing lists, and using the in operator with lists.
b. Be familiar with built-in list functions: append, remove, len. etc
c. Know that lists are mutable, and can be updated.
d. Basic List Comprehension
e. Multidimensional lists
f. Python tuples versus Python lists

7) Recursion/Iteration
a. You should be able to define what recursion is, i.e. when a function calls itself.
b. You should be able to write simple recursive functions (be sure to define a base case and a

general case).
c. You should be able to trace the calls of a recursive function.
d. You should be able to write iterative and recursive versions of functions

8) Searching Algorithms (Linear Search & Binary Search)
a. Be able to write binary search and trace the calls of the function.

9) Sorting Algorithms (Bubble/PushDown, Selection, Insertion, Merge/Sort)
10) Python Functions
 General: abs bin chr float hex in int len list max min ord range raw_input randint
 sqrt str sum type also any math functions

 Additional Functions For Strings: capitalize(), count(“”) find([“”, index]), islower(), isnumeric(),
 isupper(), replace(“”,””) , upper(), lower()

 Additions Functions For lists: append(x), count (x), index(), insert(i,x), pop(x), remove(x),
 reverse(), sort(x), split(), strip()

11) Basic Exception Handling

12) Dictionary Concept and Structure

13) File Handling

	

	

	

