Skip to main content

Secondary navigation:

Department of Physics

Dr. Krzysztof Kempa

professor of physics


Phone: 617-552-3592
Higgins Hall 230E


Ph.D., Theoretical Physics, University of Wroclaw, Poland
M.S., Electrical Engineering: Semiconductor Technology, Technical University of Wroclaw, Poland

Areas of Research

Electronic and electromagnetic properties of nanostructures. Plasmonics. Metamaterials and coaxial media. Application of nanostructures and nanodevices in optoelectronics, photovoltaics and biotechnology. Computational physics.

Selected Other Activity

  • Co-founded Solasta, a solar company (2007)
  • Organizer of the International Conference on Physics and Applications of Nanotubes (NT02), Boston College (2002)
  • Co-founded NanoLab, a nanotechnology company (2000)

Selected Publications

  1. B. Han, Q. Peng, R. Li, Q. Rong, Y. Ding, E. M. Akinoglu, X. Wu, X. Wang, X. Lu, G. Zhou, J.-M. Liu, Z.F. Ren, Q. Wang, M. Giersig, A. Herczynski, K. Kempa, and J. Gao, “Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics“, (accepted in Nature Communications, 2016)

  2. E. M. Akinoglu, B. Han, M. Giersig, J. Gao, and K. Kempa, “Physics of Transparent Conductors” (accepted in Advances in Physics).

  3. J. Kong, A.H. Rose, C. Yang, J. M. Merlo, M.J. Burns, M. Naughton, and K. Kempa, “Hot electron plasmon-protected solar cell”, Opt. Express 23, A1087-A1095 (2015). DOI:10.1364/OE.23.0A1087

  4. N. T. Nesbitt, J. M. Merlo, A. H. Rose, Y. M. Calm, K. Kempa, M. J. Burns, and M. J. Naughton,  “Aluminum Nanowire Arrays via Directed Assembly”, Nano Lett. 2015, 15, 7294−7299| DOI: 10.1021/acs.nanolett.5b02408

  5. J. He, T. Hogan, T.R. Mion, H. Hafiz, Y. He, S.-K. Mo, C. Dhital, X. Chen, Q. Lin, Y. Zhang, M. Hashimoto, H. Pan, D. H. Lu, M. Arita, K. Shimada, R. S. Markiewicz, Z. Wang, K. Kempa, M. J. Naughton, A. Bansil, S. D. Wilson, R. He, “Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin-orbit correlated metal”, Nature Materials. Published online 27 April 2015|DOI: 10.1038/NMAT4273

  6. A. Teng, K. Kempa, M.M. O¨zer, S. M. Hus, P. C. Snijders, G. Lee, and H. H. Weitering, “Quantum oscillations in the surface excitations of ultrathin Mg(0001) films”, Phys. Rev. B 90, 115416, (2014).

  7. B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, Bio-inspired networks for optoelectronic applications, Nature Comm., 5, Article number 5674, (2014)/DOI: 10.1038/ncomms 6674

  8. K. Kempa, “Equivalence of the plasmon energy and the surface energy barrier in simple metals”, Plasmonics, October 2014/DOI: 10.1007/s11468-014-9796-y

  9. A. H. Rose, B. M. Wirth, R. E. Hatem, A. P. Rashed Ahmed, M. J. Burns,
    M. J. Naughton, and K. Kempa, “Nanoscope based on nanowaveguides”, Optics Express 22, 5228 (2014) DOI:10.1364/OE.22.005228

  10. E. M. Akinoglu, T. Sun, J. Gao, M. Giersig, Z.F. Ren, and K. Kempa, “Evidence for critical scaling of plasmonic modes at the percolation threshold in metallic nanostructures”, Appl. Phys. Lett. 103, 171106 (2013).

  11. B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Li, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. F. Ren, and K. Kempa, “Uniform Self-Forming Metallic Network as a High-Performance Transparent Conductive Electrode”, Advanced Materials (2013); DOI: 10.1002/adma.201302950.

  12. K. Kempa, “Plasmonic protection of the hot electron energy”, Phys. Stat. Solidi RRL 7, 465 (2013).

  13. W.-C. Chen, N. I. Landy, K. Kempa, and W. J . Padilla, “Extraordinary-optical-transmission Channel in Babinet Metamaterials”, Advanced Optical Materials, 1, 177403 (2013).

  14. Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of Plasmonics”, in Advances in Physics, Vol. 60, No. 5, September–October 2011, 799–898.