Significant Findings from the C/NOFS Satellite Mission

March 2012

Air Force Research Laboratory, RVBXP

R. Pfaff, NASA

W. J. Burke, J. Retterer
Boston College

Integrity ★ Service ★ Excellence
Overview

• Introduction
 • C/NOFS mission
 • Equatorial irregularities
• C/NOFS during Solar Min and Solar Max
 • Post midnight irregularities and large depletions
 • Climatology of irregularities
• Storm effects
• Discussion/Conclusion
 • More irregularities are observed over Africa than anywhere else on Earth
 • Lingering questions
C/NOFS: Equatorial satellite and ground stations to nowcast and forecast EDP and scintillation continuously

Mission Components:

- Satellite with 6 sensors in equatorial LEO orbit
 - 13 deg Inclination
 - 400 to 850 Km altitude
- Ground-based instruments
- Models (PBM0d)
- Data Center
Introduction
Equatorial Plasma Irregularities

- Plasma moves easily along field lines; upward plasma drift supports plasma against gravity \(\rightarrow\) unstable configuration
- E-region “shorts out” electrodynamic instability during day. At night, E-region conductivity too small to short-out E field
- Instability in plasma grows to form EPBs. Irregularities within EPBs affect radar systems and disrupt communication & navigation
C/NOFS Satellite Instruments

GPS Receiver
- C/NOFS Occultation Receiver for Ionospheric Sensing and Specification (CORISS)
- Developed by Aerospace (P. Straus, PI)
- Measures: Remote sensing of LoS TEC

Electric Field Instrument
- Vector Electric Field Instrument (VEFI)
- Developed by NASA/GSFC (R. Pfaff, PI)
- Measures: Vector AC and DC electric as well as magnetic fields
- Includes lightning detector

Planar Langmuir Probe (PLP)
- Developed by AFRL/RV BX (P. Roddy, PI)
- Measures: Ion Density, Ion Density Variations, Electron Temperature

RF Beacon
- Coherent EM Radio Tomography (CERTO)
- Developed by NRL (P. Bernhardt, PI)
- Measures: Remote sensing of RF scintillations and LoS TEC

Ion Velocity Meter (IVM)
- Developed by Univ. of Texas at Dallas (R. Heelis, PI)
- Measures: Vector Ion Velocity, Ion Density, Ion Temperature

Neutral Wind Meter (NWM)
- Developed by Univ. of Texas at Dallas (G. Earle, PI)
- Measures: Vector Neutral Wind Velocity
Irregularities Detected by PLP

Day 148, 28 May 2010 15:46:59 UT orbit 11464

PLP in situ densities
- 1 sec averages
- 1 min averages
- Altitude
- Spectrogram of PLP
- High Rate Data 10m – 20km

- Example of equatorial plasma bubbles (EPBs)
- During solar min, C/NOFS rarely saw irregularities at dusk -- when they were expected.
- However, irregularities were often present below the satellite, as deduced from ground-based scintillation measurements.
Solar Minimum
Large Depletions Seen at Dawn

Unexpected depletion in ambient density observed just before sunrise (~05:00 LT) occurs frequently in solar min, mostly during June-July.

From de La Beaujardièr et al., GRL, 2009
Modeling N_e Depletions with PBMod

Measured V_i from several orbits assimilated into PBMod model; simulation results match observed N_e if VEFI data used, but not with empirical model used for V_i.

Assimilating actual wind might provide even better results than using empirical wind.

From Su et al., GRL, 09
Formation of Broad Plasma Depletions through Merging Process

In situ density and ion vertical drift for 4 consecutive C/NOFS orbits

(a) C/NOFS Orbit
Orbit 803
Orbit 804
Orbit 805
Orbit 806

(b) Ion Density
$\text{Ni (cm}^{-3}\text{)}$
19:42-20:21 UT
21:19-21:58 UT
00:33-01:12 UT

(c) Ion Vertical Velocity
$V_{\text{vert}} \text{ (m/s)}$

Large plasma depletions are due to multiple bubbles merging

From Huang et al., JGR, 2011
Formation of Broad Plasma Depletions through Merging Process

Example of bubble merging Detected by C/NOFS on 21 June 2008

From Huang et al., JGR, 2011
Equidistant EPBs

Orbits 730 & 731, Day 156, 04 June 2008

Orbit 731 shows almost equidistant EPBs separated by 8.5°
No wave apparent in the previous orbit (730) that could explain equidistant EPBs
Equidistant EPBs

Orbit 731, Day 156, 04 June 2008,
Upward ion velocity reaches 200 m/s in first EPB
Upward ion velocity (measured from VEFI) reaches 300 m/s in the set of almost equidistant EPBs, separated by ~ 1000 km (8.1°) in longitude. Waves were present on orbit 745 that could have triggered the EPBs, but they are longer (λ ~ 10.3°) and only 2 waves are apparent, thus the equidistant EPBs may not have been seeded by the wave observed on orbit 745.
Irregularity Climatology from DMSP Evening Sector -- Solar Max & Min

In Africa (Long ~ -20° to 52°) dusk irregs seen almost all year at solar max

Most topside depletions occur in Atlantic-Africa sector when the dusk terminator is aligned with magnetic field

Solar min climatology consistent

This solar min is the lowest yet!
Irregularity Climatology from DMSP Evening Sector -- Solar Max

Plot of dn/n from DMSP -- similar to the plot above, although the parameter plotted is not exactly the same

In Africa (Long ~ -20° to 52°) dusk irregs seen almost all year at solar max

From Gentile et al., 2011

From Ober, pers. comm., 2012
DMSP data confirm C/NOFS observations: during solar min, irregularities seen at dawn, rather than at dusk. In S. America & Africa, morning depletions seen May thru Sept, where they are most frequent.

Strong longitudinal dependency probably related to 4 wave pattern from lower atmosphere tides.

Dotted lines mark the times when the dawn terminator is aligned with the magnetic field.
Irregularity Climatology from C/NOFS

- Statistical study of PLP density depletions
 - Longitude dependence of nighttime $\Delta N/N$ from May 2008 to October 2009
 - As with DMSP dawn sector, 4-wave pattern apparent
 - Similar average patterns seen in ion drifts and neutrals

From Dao et al., 2011
C/NOFS Plasma Densities during Solar Minimum at 500 km

Periodic structures apparent in averages of detrended plasma densities. Climatology (strongest in June-September, weakest in December) agrees with DE-3 tidal climatology (from Huang, 2012)
Irregularity Climatology
DMSP Dusk & Dawn Depletion Rates vs F10.7

Distribution rates of evening sector depletions for 1989 – 2009 (left) correlate well with F10.7; correlation coefficient = 0.94.

Dawn sector rates (right) show the reverse: rates anticorrelated with F10.7

\[DR = -10.66 + 0.147 <F_{10.7}> \]
\[R = 0.94 \]

\[DR = 31.3 - 0.36 <F_{10.7}> \]
\[R = 0.77 \]

Gentile et al., 2011
2011 Ground-based SCINDA

- Data from Nairobi ground-based scintillation receiver
- Lat = -1°, Long = 37°
- Each night is one vertical line
- Time = 0 at sunset
- Data gap from day~215 (Aug 3)
Nairobi ground-based scintillation receiver

- 31-day running average
- Data indicate that from May to the Aug data gap, scintillation starts after midnight on most days (still solar min behavior)
- Rest of the year, solar max behavior
- SCINDA data show Africa has maximum probability of observing scintillation
C/NOFS Signature of Equatorial Anomaly Peak

Day 154, 03 June 2011, 23:54:33 UT, Orbit 16990

Equatorial peak seen at ~-10° MLat appears sharp and narrow
• Magnetic storm on Aug 5, 2011

• B-total reaches 30 nT

• Solar wind speed 400 to 600 km/s

• Dst max at 19:16 UT
Storm Effects:

Strong Irregularities Form Immediately

- Virtually no irregularities in PLP during orbit 17925 before storm (1916 UT)
- Next orbit (17926), at 2013 UT, strong EPBs seen, even though C/NOFS flies at high L values, indicating almost immediate ionospheric reaction
Storm Effects:
Ionosphere Blown Away

• Large bite-out observed during orbit 17930
• Ionosphere blown away at 01:30 UT Aug 6, ~6 hours after storm started
• Bite-out lasts for 7 hours, until solar illumination replenishes F region
• Plasma irregularities seen ~9 hours after storm started
Discussion/Conclusion

• During solar min, irregularities do not occur after dusk
 – Prereversal enhancement not seen except during storm main phase
 – 4-wave pattern evident in irregularities, plasma drift, neutral density

• Probability of observing irregularities
 – At dusk increases with F10.7
 – At dawn decreases with F10.7
 – Plasma irregularities are more frequent in Africa than anywhere else

• Example of very narrow equatorial anomaly peak

• Storm effects
 – Minutes after storm sudden commencement, irregularities are formed
 – During storm, nightside ionosphere blown away due to large upward field
 – Strom effects last many hours (~ 9 hrs in the case of Aug 5, 2011 storm)

• Unresolved questions
 – Origins of almost equidistant irregularities, ~1000 km apart
 – Causes of day-to-day variability
 – Role of penetration E-field and disturbance dynamo in irregularity formation
Extras
Why Do We Care About the Ionosphere?

Ionosphere formed by solar EUV/UV radiation

Subject to Raleigh-Taylor instability during day to night transition

Reflects, refracts, diffracts & scatters radio waves

Leads to highly variable reflection/refraction = “SCINTILLATION”

Scintillated GPS Signal

Unclassified, Unlimited Distribution
Estimate Scintillation Far from C/NOFS Using PLP and AC E-field

Scintillation is often present below the satellite
Planned product: Estimate scintillation using PLP data at the Fresnel scale and E and B data from VEFI
(from Burke et al., 2011; Gentile et al., 2011; Dao et al., 2011)
Connecting C/NOFS Satellite and Ground Observations 13 January 2010

Power spectral densities 3 - 8,000 Hz measured by VEFI in two components of the ambient electric field show power at the Fresnel scale F_S.

Significant spectral power measured by PLP at Fresnel (~1 km) scale size suggests C/NOFS was magnetically conjugate to bottomside irregularities similar to those responsible for observed scintillations.
Appleton Anomaly Seen from Space

- Image of the Earth seen from the GUVI instrument on the TIMED satellite
- Green line is magnetic equator
- Integrated emission proportional to N_e^2
- Images are all obtained at the same local time
- Black streaks are Equatorial Plasma Bubbles (EPBs), seen on most satellite passes
- 135.6 nm emission from O^+ radiative recombination
VEFI magnetometer recorded geomagnetic storm of 24 October 2011; largest storm observed by C/NOFS to date!
C/NOFS Plasma Densities during Solar Minimum at 500 km vs IRI Model

PLP plasma density variations (blue) and IRI model (red) vs longitude June 2008

Clear 4-wave structure on the dayside shows evidence of tidal forcing from the troposphere.

From Huang et al., AGU, 2010