Pseudo-gap Observed at Martensite Transition in a Ni$_2$MnGa Single Crystal

C. P. Opeil1, J. C. Lashley2, R. K. Schulze2, B. Mihaila2, J. L. Smith2, L. Hults2, P. Riseborough3, L. Mañosa4 and A. Planes4

1Boston College, Physics Department, Chestnut Hill, MA 02467 USA
2Los Alamos National Laboratory, Los Alamos, NM 87545 USA
3Temple University, Physics Department, Philadelphia, PA 19122, USA
4Universitat de Barcelona, Departament d’Estructura i Constituents de la Matèria, Facultat de Física, Diagonal 647, E-08028 Barcelona, Catalonia, Spain

Work sponsored by: Dept. of Energy and Boston College
Ni$_2$MnGa Single Crystal

Low Energy Electron Diffraction (LEED) at T=293 K

Ni$_2$MnGa (100)
Cubic
Fm-3m
a = 5.825 Ang.
Vol = 192.34 Ang.3
Ni (0.25,0.25,0.25)
Mn (0.5,0.5,0.5)
Ga (0, 0, 0)
Curie Transition:

Heat Capacity at $H=0$ [T]:

T_C Ferromagnetic Transition
Dilatometry

MT is field independent
FCC to Monoclinic at MT

Fermi Surface Map

FIG. 3. Fermi surfaces for various magnetizations at \(k_z = 0.5 \). The nesting vector with \(\zeta = \frac{1}{3} \) is denoted by the arrow.

Temperature Dependent UV-Spectroscopy \((h\nu=21.21\text{eV}) \)

![Graph showing temperature dependent UV-Spectroscopy for \(\text{Ni}_2\text{MnGa} \)]
Temperature Dependent UV-Spectroscopy (hν=21.21eV)
ARPES: Angle Resolved Photoemission Spectroscopy

E_{kinetic} = h\nu - e\Phi - E_{binding}

k_{||} = \sqrt{\frac{2meE_{kinetic}}{\hbar^2}} \cdot \sin \phi

ARPES - choose azimuthal \(q\) to specify \(k\)-vector to probe, and then vary polar \(f\) to collect DOS at various \(k_{||}\) and observe dispersion of bands along \(k\)-vector.
FIG. 9: Photoemission spectra at fixed angle, for angles between 0° to 55° in 5° increments. Intensity is plotted versus binding energy in Ni$_2$MnGa at (a) $T = 219$ K and (b) 173 K in close proximity to the pre-martensitic transition. The momenta, $k_{||}$ are quoted at the Fermi energy for the fcc phase, and vary by about 7% across each spectrum. The black lines superimposed over the photoemission spectra are meant to describe qualitatively the dispersion of the various structures present in these plots.
Evidence of pseudo-gaps in other materials:

ARPES at (\pi,0) for u-doped Bi2212, 90K Pseudo-gap state, 30K-SC state.

Evidence of pseudo-gaps in other materials: T-dependent photoemission of KMo$_6$O$_{17}$ (purple-bronze) RT to 45 K.

Norman et al., Adv. in Physics, 54 (2005)

Evidence of pseudo-gap in Bi$_{2212}$:

ARPES at (\(\pi,0\)) for u-doped Bi$_{2212}$, 90K Pseudo-gap state, 30K-SC state.

Ni$_2$MnGa data

Norman et al., Adv. in Physics, 54 (2005)
Evidence of pseudo-gap in KMo$_6$O$_{17}$ (Purple-bronze):

T-dependent photoemission of KMo$_6$O$_{17}$ (purple-bronze) RT to 45 K.

Summary:

1. The martensite, Ni$_2$MnGa, exhibits a “pseudo-gap” behavior at B.E. = 0.3 eV as T \rightarrow T$_{MT}$.

2. Pseudo-gap at PMT appears to be imperfect nesting (dispersion in ARPES) while perfect nesting occurs at the MT (no dispersion in ARPES).

3. The pre-martensite transition is a failed attempt to transition to a lower energy state.

5. Are pseudo-gaps just a generic feature of metals/alloys?