Uranium

Cold

Hot!
LEED and ARPES of α - Uranium (001)

Presented by:

Fr. Cyril P. Opeil, S.J.

In collaboration with:

and

P. B. Littlewood of the Cavendish Laboratory, University of Cambridge

Funding provided by the:

Department of Energy

LA-UR-06-0989
Outline:

- U single crystal origin
- LEED patterns
- Splitting 6p bands (XPS) & DDOS(T) WIEN2K calculations
- Valence band (UVPS) DOS(T) data & DDOS(T) WIEN2K calculations
- U(001) ARPES & DDOS(T) WIEN2K calculations at 173 K
- Avenues ahead…
- Questions and Conclusions
Origins of Uranium Single Crystals (001)

Argonne National Laboratory

Nuclear Fuels Reprocessing
Three U allotropes: Crystal structure vs T (K)

- **Liquid**
 - 1406 K
- **Solid**
 - 1045 K
 - 935 K
 - 0 K

Crystal Structure vs Temperature (T) (K):

- **Orthorhombic**
 - Cmcm (4 ats/u.c.)
- **Tetragonal**
 - P42/mnm (30 ats/u.c.)
- **Body Centered Cubic**
 - Im -3m (2 ats/u.c.)

- **α**
- **β**
- **γ**

- **Highly ductile, no work hardening observed, little microstructural strain or impurities, RRR ~ 115 (3x better)**

- **Chemical Analysis (PPM)**
 - Si = 168, C = 40, with Ti, Cu, Mo, V, Zr, Fe, Al, Ta, Mg < Detectable Limit
LEED Apparatus

LEED = Low Energy Electron Diffraction

Used to examine ordered surface structure and effects of controlled surface doping
Real and reciprocal space U(001)

- $a = 2.854 \, \text{Å}$
- $b = 5.869 \, \text{Å}$
- $c = 4.955 \, \text{Å}$

LEEDpat analysis

- Basic 2D lattice/group : [5] Centred. Rect. cm
 - $a = 2.85400$, $b = 5.86900$, $\phi = 90.00$
- Superlattice/group : (None) Matrix = $(1, 0, 10, 1)$ [11] Oblique pl
 - $a_2 = 3.26807$, $b_2 = 3.26807$, $\phi_{22} = 128.13$, 1 unique domain(s)
LEED pattern of U(001) at T = 273 K

1st order
75 eV

2nd order
150 eV

- First U(001) LEED pattern, long range order bulk termination
- Calculation & Experiment < 2 % difference
- Structural reactivity studies: O$_2$, D$_2$, H$_2$
- I-V analysis underway
Photoelectric Effect and Photoemission Spectroscopy

Photons in

Light in

Electrons out

E_f

$2p$

$2s$

$1s$

$E = h\nu$

K.E.

B.E.

B.E. = $h\nu - \Phi_s - \text{K.E.}$
Photoemission Spectroscopy

Photons in

$$E = h \nu$$

Electrons out

K.E. = $$h \nu - \Phi_s - B.E.$$
Splitting of $6p_{3/2}$ and $6p_{1/2}$ bands

Depth profiling by angle resolved XPS:
Valence band DOS(T) at Fermi edge

Experimental Parameters
- PHI-5600 ESCA
- Spherical cap. analyzer
- Photon sources:
 - Al Kα (1486.6 eV)
 - [monochromated]
 - UPS - He I, He II
- P = 1.0 x 10^{-8} Pa
- Resolution = 28.5 meV
- Temp. ⇒ 173 - 1273 K
- Electron TOA = 90°
He I & II VB Data and WIEN2K Calculation

He I, (21.2 eV)

He II, (40.8 eV)
Directional Density of States (DDOS), at the Γ_Σ point
ARPES - choose azimuthal θ to specify k-vector to probe, and then vary polar ϕ to collect DOS at various $k_{||}$ and observe dispersion of bands along k-vector.

$$E_{\text{kinetic}} = h\nu - e\Phi - E_{\text{binding}}$$

$$k_{||} = \sqrt{\frac{2m_e E_{\text{kinetic}}}{\hbar^2}} \cdot \sin \phi$$

Brillouin zone orientation

$$(100) \text{ plane}$$
Condensed Matter in a Nutshell

1. Real vs. Reciprocal Space

(Real) x-Space

(Momentum) k-Space

Localized core electrons
Delocalized valence band electrons

Constant-energy surface
Constant Energy Surfaces

\[E_{\text{Bind}} = \frac{1}{2} mv^2 \]

\[= \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m} \]

\[E_F \]

\[\Gamma \quad X \quad \Gamma \quad X \quad \Gamma \]

e.g. Copper

\[\Gamma \quad X \quad L \quad \Gamma \quad L \quad \Gamma \]

gap
Angle-Resolved Photoemission

Copper

Binding Energy, eV

momentum, k

Energy

photon

valence levels

core levels

Los Alamos
NATIONAL LABORATORY
EST. 1943
The World's Greatest Science Protecting America

NISA
Brillouin Zone

Orthorhombic Space Group, b > a, α - Uranium

ARPES Raw Data Stack Plot

φ = 60 degrees

⊥ to U(001) surface
ARPES Raw Data Stack Plot

$\phi = 60$ degrees

\perp to U(001) surface
ARPES Σ to Γ, Γ to Y, $U(001)$, $T = 173$ K
ARPES \(\Sigma \) to \(\Gamma \), \(\Gamma \) to \(Y \), U(001), \(T = 173 \) K
Uranium Band Map

Sigma to Gamma

Gamma to Y

$T = 173$ K
ARPES Γ to $S \ U(001), \ T = 173 \ K$
ARPES Γ to S U(001), $T = 173$ K
Uranium Band Map
Gamma to S
T = 173 K

Intensity [arb. units]

K// [unity], Gamma to S

Binding Energy [eV]
Uranium Band Map
Gamma to S
T = 173 K
Uranium Band Map
Gamma to S
T = 173 K

Intensity [arb. units]

Binding Energy [eV]

K// [unity]

Gamma to S
ARPES: Σ - Γ - Y, Γ - S

α-Uranium (001), T = 173 K
ARPES & WIEN2K

α-Uranium (001), $T = 173$ K
Directional Density of States (DDOS), at the Γ_Σ point
Data Maxima, WIEN2K Gap Calculations & Surface States

- Band Structure
- Band Structure, Low Intensity
- d-Band, Tamm surface states
- f-Band, f-like, Shockley surface states
- Plasmon ??
- Flat band near FE due to disorder ?

Los Alamos National Laboratory
EST. 1943
The World's Greatest Science Protecting America
Data Maxima, DDOS WIEN2K Calculations

Band Structure

Band Structure, Low Intensity

d-Band, Tamm surface states

f-Band, f-like, Shockley surface states

Plasmon ??

Flat band near FE due to disorder ?
Band crossing points
\[
\text{Reality} = \text{Matrix} \times \text{Theoretical Calculation}
\]

Experimental Data, ARPES

Temperature Dependence and Electron-Electron Correlations

WIEN2K
Band Structure Calculations
& DMFT Modeling
Low Temperature Sample Manipulator

Displex

Electric and Cryogen Ports

Axis Rotation

Triple Axis

Radiation Shield

Pot

Sample Puck

Mo Sample Jaws

Los Alamos National Laboratory
EST. 1943
The World's Greatest Science Protecting America
Low Temperature Sample Manipulator
surface chemistry, analytical surface science, electronic structure measurements, single crystal investigations,
in-situ surface/thin film reactions, materials corrosion, in-situ thin film materials synthesis, analytical surface forensics
Conclusions:

★ Single crystal U(001) samples yield expected experimental LEED pattern (< 2% difference). Showing long range bulk termination.

★ XPS data on U(001) correlates well with 6p splitting shown in DDOS WIEN2K model calculations.

★ Valence band DDOS WIEN2K calculations correlates with UPS data at 173 K, E < 4 eV.

★ ARPES data exhibit band dispersion at 173 K and correlates with DDOS WIEN2K, if temperature and e⁻ correlations are considered.
With special thanks to my advisors:

J. L. Smith, Ph.D.

Roland K. Schulze, Ph.D.

and

Funded by: Department of Energy
With Gratitude to my hosts at Georgetown University, thank you for your kindness!
The following slides are supplementary to the presentation and will be used as needed.
Brittle-Ductile transition in Uranium

Impurity mobility effects B-D trans.

Electronic and structural correlations
Conclusions:

- Single crystal U(001) samples yield expected experimental LEED pattern (< 2% difference).

- XPS data on U(001) correlates well with 6p splitting shown in WIEN2K model calculations.

- Valence band WIEN2K calculations correlates with UPS data at 173 K, E < 4 eV.

- ARPES data exhibit band dispersion at 173 K and correlates with WIEN2K, if Temperature and e⁻ correlations are considered.

- %Elongation(T) and ψ (T) show a change in slope at ~ 400 K due possibly to impurity mobility.
WIEN2K Calculation for α Uranium with S-O coupling
WIEN2K Calculation for α Uranium with S-O coupling only s band

WIEN2K Calculation for α Uranium with S-O coupling only p band
WIEN2K Calculation for α Uranium with S-O coupling only d band

WIEN2K Calculation for α Uranium with S-O coupling only f band
WIEN2K Calculation for α Uranium with S-O coupling
At He I energy ($h\nu = 21.2$ eV) 6d states are emphasized.

At He II energy ($h\nu = 40.8$ eV) 5f states are emphasized.

Back-reflection Laue

In the back-reflection method, the film is placed between the x-ray source and the crystal. The beams which are diffracted in a backward direction are recorded.