Dust & Gas around Stars
Young & Old, Near & Far

Kathleen Kraemer
ISR
Collaborators

Steve Price (BC)
Greg Sloan (Cornell (formerly BC))
Don Mizuno (BC)
Tom Kuchar (BC)
Charles Engelke (BC)
Bev Smith (ETSU)
Joe Hora (CfA)
Ciska Kemper (Acad. Sinica)
Nick Wright (CfA)
Paul Ruffle (U. Manchester)
Joana Oliveira (Keele U.)
Nicola Schneider (U. Paris)
Sean Carey (Spitzer SciCtr, formerly BC)

…
Stellar Evolution

- protostar
- stellar nursery
- mass
- time
- blue supergiant
- supernova (SN)
- interstellar medium
- black hole
- neutron star
- planetary nebula
- red giant
- type II SN
- type Ia SN
- sun
- yellow dwarf
- yellow giant
- red dwarf
- brown dwarf
IR Astronomy Surveys

η Car – luminous blue variable & nebula

IRAS 1983 VISIBLE

Image credits: NASA, DSS, AFRL, NASA
Spitzer Space Telescope

- Mapping Projects
 - Cygnus-X
 - MIPS 24 & 70 μm
 - IRAC 4-band
 - MIPSGAL
 - MIPS 24 & 70 μm

- Spectroscopy Projects
 - Small Magellanic Cloud
 - Large Magellanic Cloud
 - Local Group Galaxies
 - Cygnus-X

- Infrared Spectrograph (IRS)
 - 5.2-38 μm
- Infrared Array Camera (IRAC)
 - 3.6, 4.5, 5.8, 8.0 μm
- Multiband Imaging Photometer for Spitzer (MIPS)
 - 24, 70, 160 μm
- Cryo: 2003-2009
- Post-cryo: 2009-2014

Cygnus-X
Massive Star Forming Region
<2 kpc
> 10^3 OB stars
> 10^4 protostars
$M_* > 10^5 \, M_\odot$
$M_{\text{tot}} > 10^6 \, M_\odot$

• **blue** = $3.6 \, \mu m$
 ~ stars
• **green** = $8 \, \mu m$
 ~ warm gas/dust
• **red** = $24 \, \mu m$
 ~ cool dust

Hora et al. 2009
Infrared Dark Clouds

IRDCs
• discovered by *MSX* & *ISO*
• very dense cold dust lanes
• youngest, most deeply embedded YSOs

LDN 896 near AFGL 2636 near G078.0+00.6
The Spitzer Cygnus-X Legacy Survey

Cygnus-X Evolved Stars

<table>
<thead>
<tr>
<th>Evolved Object Type</th>
<th># in 24μm Region</th>
<th># Det’d at 24μm</th>
<th>Det’n Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNe</td>
<td>7</td>
<td>5</td>
<td>71%</td>
</tr>
<tr>
<td>WRs</td>
<td>9</td>
<td>9</td>
<td>100%</td>
</tr>
<tr>
<td>pAGBs</td>
<td>2</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>C*s</td>
<td>52</td>
<td>51</td>
<td>98%</td>
</tr>
<tr>
<td>S*s</td>
<td>6</td>
<td>5</td>
<td>83%</td>
</tr>
<tr>
<td>SNRs</td>
<td>10</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Miras</td>
<td>4</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>semi-reg</td>
<td>4</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Cepheids</td>
<td>4</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>RR Lyr</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>cont. bin</td>
<td>19</td>
<td>4</td>
<td>21%</td>
</tr>
<tr>
<td>Dw. Nov.</td>
<td>3</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>other V*s</td>
<td>85</td>
<td>61</td>
<td>72%</td>
</tr>
</tbody>
</table>

Kraemer et al. 2010
Evolved Stars

- **BD+43 3710**: Carbon star with a bipolar outflow
- **HBHA 4202-22**: Moving Wolf-Rayet star with shell
- **G79.29+0.46**: Luminous blue variable near IRDC
• He-shell flashes & dredge-ups
 ▪ create C, N etc. & move it out
 ▪ C/O>1 → carbon star
 ▪ molecule & dust formation, wind

Adapted from Karakas & Lattanzio 2008 and Habing & Olofsson 2004
Evolved Stars: Models

HBHA 4202-22

Line through peak: 30°
Space motion: 31°
Evolved Stars: Models

Radiative transfer model with 3 carbon-rich dust shells
MIPSGAL 24 μm Survey

blue= 3.6 μm ~stars green=8 μm ~warm gas/dust red=24 μm ~cool dust

Carey et al. 2009, Benjamin et al. 2003
Evolved Stars

- Catalog of >400 disks & rings in MIPSGAL
- Little or no emission at other wavelengths
- ~15% previously ID’d as evolved objects
- Likely planetary nebulae or other evolved objects – missing population

Mizuno et al. 2010, Flagey et al. 2009
Magellanic Clouds

Visible Image credit: ESO
Magellanic Clouds

IRAS 100 µm
The Small Magellanic Cloud

- low metallicity: $\sim0.2\times$solar
- nearby: ~60 kpc
- local surrogate for galaxies in the earlier Universe

- SKY model & LMC to predict object types for brightest MSX objects
- *Spitzer*’s IRS spectra to verify
The plan

- The plan: observe several of each type of evolved star
- These stars create:
 - dust – energy balance
 - C & N – planets, life

What happened

- The result: many, many carbon stars!

Sloan et al. 2006
SMC IRS Project

Carbon rich

Blue SMC carbon stars

- Source (F$_{12}$ in mJy)
- MSX SMC 202 (25)
- MSX SMC 142 (11)
- MSX SMC 066 (60)
- MSX SMC 200 (30)
- MSX SMC 162 (31)
- MSX SMC 033 (72)
- MSX SMC 105 (69)
- MSX SMC 044 (50)
- MSX SMC 198 (36)
- MSX SMC 232 (34)

Red SMC carbon stars

- Source (F$_{12}$ in mJy)
- MSX SMC 091 (26)
- MSX SMC 062 (47)
- MSX SMC 163 (76)
- MSX SMC 209 (88)
- MSX SMC 054 (58)
- MSX SMC 036 (36)
- MSX SMC 159 (56)
- MSX SMC 060 (144)

C$_2$H$_2$, HCN, CS, C$_3$, CN

Oxygen rich

- MSX SMC 134 (44) 3.SEC
- MSX SMC 18 (215) 3.SEC
- MSX SMC 55 (660) 3.SE
- MSX SMC 181 (102) 2.SEc
- MSX SMC 149 (99) 2.SEc
- MSX SMC 168 (22) 2.SEc
- MSX SMC 109 (54) 2.SEc
- MSX SMC 96 (23) 2.SEb:
- MSX SMC 24 (71) 2.SEb:
- HV 12122 (9) 1.N/NO

Silicates

- crystalline silicates

C$_2$H$_2$, CN, oxides – Si, Al, Mg, Fe
Extended IRS Projects

Carbon rich

• initial study: 36 objects
• extending to other IRS programs
 • ~250+ SMC
 • ~1000+ LMC
 • ~dozens Local Group

\[\text{C}_2\text{H}_2, \text{HCN, CS, C}_3, \text{CN} \]
• Mid-IR selection, isolated, ~uniform sky coverage
• Non-variable to <<10% at 12 & 25 μm (IRAS)
• 600+ calibration stars, 1-35 μm spectral templates

• Moderate spectral resolution & photometric accuracy
• Limited actually measured spectra
Spectra for Calibration

Upgrades current calibration network to improve:

- absolute accuracy (*MSX*)
- spectral resolution (*ISO*)
- wavelength coverage (*ISO, MSX, DIRBE, Tycho/Hip, Kurucz, Pickles*)
- dynamic range (*ISO, MSX, Spitzer*)
- variability assessments (near-IR, visible)

Variability Assessments

\[\beta\ UMi \]

\[\text{Flux (Jy)} \]

\[t \text{ (weeks)} \]

\[1.25 \mu m \]

\[\text{Lomb-Scargle periodogram} \]

\[\text{T Cep} \]

\[\text{Flux (Jy)} \]

\[t \text{ (weeks)} \]

\[1.25 \mu m \]

\[\text{Lomb-Scargle periodogram} \]

Price et al. 2010
IR Periodogram Results

"Expected" Variables
- 199; 88%
- 16; 7%
- 12; 5%

Non-variables; 1457; 82%

Control Sample
- Variables; 266; 15%
- Candidates; 58; 3%
- Non-variables; 1457; 82%

IR Standards
- 589; 97%
- 17; 3%
- 1; 0%

IR Bright
- 36; 62%
- 19; 33%
- 3; 5%

Visible assessment in-progress

Kraemer et al. 2010
ΔT, shocks, molecular formation cause a lag between the visible peak & the IR peaks
TODAY: Last transit of Venus til 2117

I: 1st contact ~6:05pm
II: 2nd contact ~6:23pm
Sunset ~8:18pm

Boston University & Harvard-Smithsonian observing from rooftops & other locations (incl. indoors if cloudy)
www.bu.edu/astronomy/events/venustransit
www.cfa.harvard.edu/events.mon.html
NH Astro.Soc & McAuliffe-Shepard Disc.Ctr.
nhastro.com/events/transit.php
starhop.com/ ($)
sunearthday.nasa.gov/2012/transit/webcast.php
www.exploratorium.edu/venus/

Thanks!