
Laboratory Selection

Amos Jones was accepted to an excellent graduate program in molecular biology. The faculty was relatively small but there were two outstanding professors, Claire Cheng and Patricia Slocum, who really determined the quality of the graduate program. Amos had been encouraged to train under Dr. Slocum by his undergraduate advisor.

Amos planned to do rotations in both the Cheng and Slocum laboratories. When inquiring about the research activities in the labs, Amos was told by Dr. Slocum's trainees that whether for a rotation or a thesis, Amos would be given a specific project, he would be expected to communicate results only to his direct supervisor, and he would have to give a formal presentation on the progress of his research once every two months. They noted that daily handwritten and dated entries were required for their laboratory notebooks. Much of the work had potential for commercial applications, so the laboratory was locked even during the day, with entry limited to the staff. The graduate students were reluctant to describe their experiments. The pace was very intense and trainees were required to prepare abstracts for the two important national meetings every year. The trainees also noted that many famous investigators visited the lab, spending time in formal and informal scientific discussion. Trainees were allowed to examine copies of papers that Dr. Slocum had received for review and to discuss them at lab meetings. They also saw an occasional grant application that she was asked to review. The trainees expected to be in great demand for postgraduate fellowships.

Professor Cheng's students reflected on the openness of the laboratory and her constant and immediate availability. They thoroughly enjoyed broad scientific interplay within the lab and with investigators on campus and elsewhere. They indicated that they were encouraged to explore their own ideas and expected to select their own thesis project. The students gave no formal presentations except when rehearsing for meetings. Progress in the laboratory was episodic rather than steady as various concepts were explored. Although their notebooks were not specifically examined, Dr. Cheng knew about every experiment and provided constructive criticisms and suggestions. Dr. Cheng did not go to many meetings and refused to show papers she received for review to her trainees. The students admitted that they felt a little out of touch with the newest developments in the field. Although Dr. Cheng did not enjoy the same prestige and reputation as that of Dr. Slocum, the trainees said Dr. Cheng's lab was a much more pleasant and collegial environment in which to work.

Questions

1. If you had to prioritize, which features would you value most highly in the selection of a laboratory for your rotation or for your thesis work?
2. What criticisms would you have of each laboratory as described? What would you describe as the strengths of each lab?
3. What would you like to know about an investigator and laboratory prior to selecting that individual as your thesis advisor?

4. The two laboratory chiefs presented in this scenario represent somewhat different philosophical views of science. How do you view a career in science?
Excerpted from “Welcome to My Laboratory” Letters, Example #1. Full letter can be found at http://ombudsman.nih.gov/resourcesScientist.html

Richard J. Maraia, M.D.
Laboratory of Molecular Growth Regulation
Chief, Section on Molecular and Cell Biology

August 6, 2013

Welcome to the Section on Molecular and Cell Biology (SMCB) in the Laboratory of Molecular Growth Regulation (LMGR) in the Intramural Research Program in Genomics of Differentiation (PGD), of the NICHD, at the National Institutes of Health…

This communication provides you with guidance as to what will be expected of you, and what you can expect from me and the training program you are a part of, during your time here. Meeting this challenge should provide a good foundation for a career in biomedical research science.

COMMUNICATION, COMMUNICATION, COMMUNICATION –Seminars, Talks, Abstracts, Manuscripts, and Participation in Lab Meetings
Communication of experimental results in the form of abstracts and talks, and via manuscript preparation, is the most important way to improve your opportunities for career advancement. Through your ability to acquire, develop and communicate experimental results, your worth as a scientist will be evaluated by the scientific community. Senior PGD PIs as well as Staff Scientists and Fellows will also learn about you at the Monday Morning Seminar Series. They may be asked to evaluate you; or you may want them to write you a letter of recommendation. Therefore, it is invaluable to make an impression through hard work, group participation and communication.

Future employers will look for a good researcher who not only has a strong publication record, but can also contribute to their department or company as an advisor, through stimulating discussions and collaborations; -they want someone who is easy to communicate with. Along with good presentation skills, you should work to develop the highly valued ability to offer constructive criticism in group or personal discussion. Although this does not mean that you should feel pressure to make comments in group meetings, quality remarks can help the speaker and sometimes others in the group. You will have this opportunity at the Monday Morning Seminars, Tuesday SMCB Lab meetings and seminars by invited speakers from other Institutions.

SMCB LAB MEETINGS: You will be expected to discuss your work in lab meetings, which begin at 3:30 PM on Tuesdays. You should prepare presentations with introduction and background information and include your raw data. You will be expected to present approximately once every three months. We may also engage in a group discussion of your data and your project in lab meetings without a formal presentation. On some occasions Lab
meetings will be a venue for detailed review of a publication from another lab that is highly relevant…

ATTENDING OUTSIDE MEETINGS is important, not only to hear recent developments before their publication, but also to allow others to get to know you and your work. I am happy to use SMCB funds to support travel for fellows who have submitted an abstract to FARE (see below, whether you win or lose; however, winners get additional free travel money), on the condition that you submit an abstract for talk or poster at the meeting…

DATA PRESENTATION - THE VALUE OF MULTIPLE FORMATS AND VENUES

Learning to increase the rate at which your data can be interpreted, so as to produce useful information, is one of the most challenging objectives for scientists. The experienced experimentalist chooses incisive experiments with as many controls as possible as the surest way to achieve this. Frequent discussion of your raw data with me is probably the best way to keep your project moving on the right track. We will discuss and plan how to proceed efficiently, develop testable hypotheses and explore interesting findings. I would like you to inform me of your results at least once every two weeks, preferably more frequently.

I have found that the means by which I acquire and process information is influenced and enhanced by the setting; for example, sometimes I articulate things differently in a casual one-on-one setting rather than in a group discussion; and other times, vice versa. Also, we may interpret a piece of data in a one-on-one discussion differently and/or more extensively than we would if it’s presented in a group meeting, perhaps because during the latter more formal introduction and background are provided and the rationale for the experiments are placed in the context of the scientific literature. Moreover, sometimes it just takes time and repetition before all of the implications of some data “come” to me. Therefore, I feel that data, hypotheses and models, etc. are best presented and discussed in a wide variety of formats, one-on-one talks in my office, lab meetings, corridor discussions, etc. Please seek me out to tell me about your progress at least once per week. This should help us extract as much information as possible from the data and provide ample opportunities to make connections to other data and different systems…

CONDUCT OF RESEARCH

You should function with the highest degree of scientific integrity. Workshops and Ethics discussions of scientific issues occur in a group meeting annually in the PGD; your attendance is mandatory. Honesty, criticism and responsibility are expected of you, me and our coworkers. You should know what to do if something goes wrong. You may find such information in "Guidelines for the Conduct of Research in the Intramural Program at NIH" (http://www.nih.gov/campus/irnews/guidelines.htm) that discusses: Responsibilities of Research Supervisors and Trainees, Data Management, Publication Practices, Criteria for Authorship, Peer Review, Privileged Information, Collaborations and Conflicts of Interest. This is a general but useful source of information and is required reading. In general, if something goes wrong, review the "Guidelines" then decide if you want to talk with me or another PI before going higher.
AUTHORSHIP & COLLABORATIONS

Because of the way that projects develop in this Section there is usually not conflict over authorship, but on (rare) occasion disputes among fellows over first authorship have arisen. We want to avoid this by discussing it openly ahead of time. I have learned from a previous incident that in case of a dispute, NIH policy is such that I shall be the major arbiter of the order of authors. Some conflicts arise when a fellow comes into a project that is already ongoing and for which other or previous fellows have already done considerable work. Often the later arriving fellows have little appreciation or knowledge of the contribution of the departing fellow and naively believes that the project is His or Hers and should be in full control. It is important that we discuss any anticipated order for authorship not only at the beginning of a collaboration but also as it continues as it can change depending on the development of the project and the work done or to be done. In general, fellows who add to an ongoing project that has already undergone substantial development, i.e., for which much data has already been obtained, will not be first author. However, exceptions may apply as each story and the way it develops is unique. For example, in some cases much data may have been obtained by multiple people who each contributed a small part, but none with a leading role. I can see how in this case a newcomer could make significant additions and become first author. What is most important is not to assume anything about the situation and to discuss it with me.

As alluded to above, another recurring issue is "ownership." Even when people understand that NIH "owns" the data and the biological materials, they often think that the project they are working on is "theirs" and interpret that to mean that they have extensive rights with respect to the project including the right to decide with whom they can collaborate and future scientific direction of a project, even to the point of believing they can override the PI's preferences. Criteria used for determining first authorship are not altered because someone is looking for a job. One is no more entitled to first authorship when they are on the job market than the circumstances normally dictate based on their work relative to others. Criteria for authorship are available. Ask me and I'1l tell you where to look.

If you disagree with me about how a project develops or with expectations noted in this document, you should let me know as soon as possible so that we can try to work through it. If you continue to disagree you should consider seeking counsel first with another PI and go from there.

As a member of the SMCB you should expect to coauthor another SMCB member's primary paper only if you have made significant contributions. Although collaborations among SMCB members are encouraged and common, these should be entered into and agreed upon explicitly by the individuals involved as well as me. Usually, coauthorship requires you to generate data that is included as a Figure in a published paper; simply providing advice/suggestions or a reagent is not enough, unless the reagent is either created specifically for the collaboration or has not been published previously. I may make exceptions depending on the case. I may ask you to teach someone an assay or technique, but this does not mean you should necessarily expect to be a coauthor. These important issues should be discussed to avoid misunderstanding. Likewise, you may benefit from the help of a colleague who knows an assay that you need to learn.
Before you enter into collaboration with a non-SMCB member, speak with me first and certainly refer the potential collaborator to me. Although it is not required that you speak with me before you make a request of materials from others, I prefer that you send me a draft of the request before you send it to the outside researcher. Requests by others for SMCB reagents must be discussed with me before they are distributed, these should be done accompanied by an email technical transfer agreement that can be as simple as a few sentences of email correspondence (ask me)…

WORK HABITS; THE QUANTITY AND QUALITY OF LAB TIME
In addition to training, the SMCB is responsible for maintaining a competitive research program whose progress is monitored regularly and funded according to its productivity. Everyone’s efforts are of paramount importance to our success. The SMCB has been provided with funding and ancillary services to maximize the time available to fellows to conduct meaningful experiments. You should place high priority on optimizing your use of the resources to enhance your ability to generate results. The extent to which you achieve this will likely be the most important determinant of your success.

You should spend the majority of your time designing and executing experiments. A good strategy is to maintain two to three subprojects at all times so that during the idle periods of one, you can focus on the other. You will always need to make some reagent or to prepare for the next experiment.

You are expected to spend your time in the lab designing, preparing for or performing experiments, and discussing data in a professional manner. If you aren’t busy, you may be distracting others in the lab. If you are away from the lab I will notice. I prefer that your schedule overlap with mine as much as possible, because this increases opportunities for us to communicate (I usually arrive by 8:30 AM and depart after 6:00 PM). I am sometimes available on the weekend, just ask if you want to meet with me or need my help then. I often get much work accomplished on weekends and I will be glad to see you do the same. Your “work ethic” is one of the important questions potential employers will ask me as your supervisor. Use your time well, work efficiently, put in long and productive time in the lab: strong efforts will be noted most positively.

NOTEBOOK—RECORD KEEPING more than a legal requirement at the NIH
Devote a lot of time and attention to maintaining your laboratory notebook. Your notebooks will remain at the NIH even after you leave. They will be part of the official record of our work in SMCB. I expect the following:

- A daily record containing the month, day and year
- detailed information about your experiments
- pages must be numbered
- Your notes should be neatly written, clear, concise and rich with information (concentrated into one or two pages per experiment), in English.

Each experiment should have easily identifiable sections:

- Title or Objective
- Methods (e.g., flow chart or schematic, reaction components, etc.)
• Results (gel photo or statement of autorad result)
• Conclusions
• Suggestions for the next experiment (if applicable)

Ancillary material and notes (e.g., computer printouts, sequences, material inserts, technical information, order forms, etc.) may be kept as a separate record so as not to interrupt the flow of the daily experiments or clutter the primary notebook.

Keep one notebook for each project. I find that this improves readability and flow, and decreases confusion.

• Cross-reference to other projects as necessary
• Detailed information is an important part of the record and must be included as well as the raw data obtained
• Negative data must be documented and included.
• Daily research activities should be recorded as complete accounts of the experiments performed, e.g., reagents described with regard to the supplier and/or date generated if made by yourself or another SMCB member.
• I also ask that you summarize your results, in your notebook, in the form of a short paragraph or two, once per month.

For an example you are welcome to look at my notebook. I expect to look through your notebook, and I may on occasion ask you to submit it to me, so that I may examine it. I should be able to find your experimental results on a particular project, read and follow without difficulty. I believe that these are good practices that will benefit your research.

SCIENTIFIC ADMINISTRATION & LEADERSHIP
All fellows should develop experience with certain administrative aspects of science. For example, you should expect to help review manuscripts, both those generated in the SMCB and those from outside journal editors who ask me to review submitted papers. If your contribution is significant you will receive credit: either I will name you as a co-reviewer to the Editor or mention you in the Acknowledgements section of a SMCB manuscript. As with the section above about critiquing your colleagues’ presentations, being able to point out weaknesses while identifying areas that can be strengthened, improved or expanded, are valuable skills for assessing written work.

GRANTSMAINSHP: The NIH/NICHD sponsor regular workshops designed to help postdocs apply for outside funding and develop their grant-writing ability. Career transition awards, supporting young investigators’ transition to independent positions in academe, include NICHD’s K22 award for intramural fellows and the K99/R00 grant. You should let me know if you would like to apply for outside grant support, and I strongly recommend that you use available resources to develop your skills. You will need to include significant preliminary data in a grant proposal and therefore should not expect to begin to write a proposal until you have been here for more than one year...

Sincerely,
Rich Maraia