A NOTE TO FACULTY FROM OUR NEW INFORMATION TECHNOLOGY CIO, MIKE BOURQUE

“It is indeed an honor to have been named to lead the Boston College Information Technology team and I am very pleased for the opportunity to help ITS be a better partner with faculty. I must thank ATAB (Academic Technology Board) and the chair, Alec Peck, for the wonderful welcome provided to me. A collaborative spirit is quite apparent and I am entirely confident that we will have a very productive working relationship - one that will have a positive impact on our University's pursuit of excellence.

The mission of ITS is to support the teaching, research, learning and student formation activities at BC. This support may be in the form of high performance computing for a researcher, helping apply technology in a classroom, enabling mobile access to library resources, or an application of web technology to scholarly work. There are so many places where technology can contribute.

Our challenge in ITS is to effectively align our resources with the goals and needs of our users. We must remain aware that we are not deploying technology for technology's sake. We must be agile, innovative and efficient as the pace of change is ever accelerating and approaches to research and teaching are always changing. We are in the midst of a shift toward collaboration in so many facets of higher education. ITS is going to both contribute and participate in collaborative efforts within BC, with other institutions of higher education, and with businesses and government. These collaborations may be transient or long lasting, local or global but technology will be a key enabler.

I look forward to partnering with ATAB and other academic units to define strategies and priorities for ITS. We in ITS are committed to bringing professional technology skills, first class customer service, an eye toward innovation and a spirit of teamwork in support of faculty and students at Boston College.”

Thank you!
Mike Bourque
RECENT ACADEMIC TECHNOLOGY INNOVATION GRANTS

Congratulations to the following faculty members who have been awarded a Grant to help them implement their ideas for using technology to impact instruction and research.

JENNY BAGLIVO, (MATHEMATICS) : ENHANCING STUDENT UNDERSTANDING OF MODERN STATISTICAL CONCEPTS.

Develop a series of computer laboratories to enhance students’ understanding of modern statistical concepts, and to develop the computer tools needed to support the laboratories. The laboratories and tools will be written in Mathematica (Wolfram Research, Inc.), an advanced mathematical programming environment, and they will be designed to take advantage of Mathematica’s unique features.

SEUNG-A JIN, (COMMUNICATIONS) : LEVERAGING fNIR TECHNOLOGIES FOR HEALTH COMMUNICATION AND CONSUMER RESEARCH.

(1) assay the efficiency of fNIR technologies in identifying neuropsychological mechanisms and measuring neurophysiological correlates of participants’ experiential state in various interactive media interfaces; (2) leverage NIBP measuring techniques to induce optimal experience (flow state) in media psychology experiments; and (3) examine whether changes in the spectral composition AND regional cortical distribution of the EEG might be systematically related to the degree of participants’ engagement with electronic games, e-commerce-based brand marketing, exergame-based health communication interventions, and haptics-based media interfaces that utilize structural manipulations of various technological factors.

ANN BURGESS, (CSON) : FORENSIC SCIENCE LAB USING COMPUTER GAME TECHNOLOGY.

Will this game-based lab make a difference between learner outcomes in a virtual lab setting versus the current physically-based lab environment? To evaluate the efficacy of the forensic virtual laboratory as a valuable learning experience and to ensure that participating in this interactive environment can increase student cognition and practice of proper forensics techniques, we propose three mechanisms: (1) a Pre and Post evaluation survey designed to measure student perceived confidence levels in performing various forensic procedures and attitudes (affective domain), (2) evaluation of the student’s actual technical ability in evidence collection and processing, data analysis and interpretation (effective domain) and (3), analysis of a comparison research tool between labs done with and without the virtual lab.

ELIDA LASKI, (LSOE) : PROBING CHILDREN’S LEARNING WITH TECHNOLOGY.

Technology is crucial for deeply and efficiently examining three aspects of children’s learning of numerical information from board games: (1) microgenetic analysis of the contributions of social interactions during play to learning, (2) relations between game board structure and the kind and quality of instructional statements, and (3) influence of individual differences in information processing on rate and extent of learning. Examination of these aspects will contribute to theory about how children form new cognitive representations through interactions with physical materials. It will also provide important information about how physical materials can be enhanced to maximize learning with minimal cost and effort. The results have important implications for how to best integrate numerical board games into instruction.