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Abstract

In this paper we develop a tractable model where agents choose how much cognitively

costly reasoning effort to allocate in computing the optimal policy function, even if

objective state variables are perfectly observed. Information about the unknown policy

function accumulates through time and it is most useful locally, around the state where

reasoning occurs. A key property is that agents choose to reason more intensely when

observing more unusual state, leading to state- and history-dependent priors over the

optimal conditional action and as a result to a set of empirically plausible individual

and aggregate behavior. In particular, the typical decision rule exhibits non-linearity,

in the form of both inertial and ‘salience’ effects, stochastic choice and endogenous

persistence in the action. In the cross-section, the different agents’ prior experiences

lead to predictable patterns of heterogeneity in biases, to endogenous persistence in

the aggregate action, and to correlated clusters of volatility in the time-series and

cross-sectional dispersion of actions. When extended to two actions, the model leads to

state-dependent comovement and accuracy in different actions taken by the same agent.
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1 Introduction

Contrary to standard models where rational agents act optimally, in both real world and in

experimental settings, economic agents often choose what appear to be sub-optimal actions,

especially when faced with complex situations. To account for that, the literature has become

increasingly interested in modeling cognitive limitations that constrain the agents’ ability

to reach the full information rational decision. This interest has come from different fields

including decision theory, behavioral economics, macroeconomics, finance and neuroscience

and has led to a diverse set of approaches. The common principle of these approaches is that

agents have limited cognitive resources to process payoff relevant information, and thus face

a trade-off in the accuracy of their eventual decision and the cognitive cost of reaching it.

A key modeling choice is the nature of the costly payoff-relevant information that

agents can choose to acquire. In general, a decision can be represented as a mapping from

the information about the objective states of the world to the set of considered actions.

Therefore, cognitive limitations in reaching the optimal decision may be relevant to two

layers of imperfect perception. First, compared to an analyst that perfectly observes the

objective states, such as income or interest rates, agent’s cognitive limitations may imply

limited perception about these state variables. Second, compared to an analyst that perfectly

computes the agent’s optimal action, such as consumption or labor, conditional on possibly

noisy information about the states, cognitive limitations may imply limited perception about

the mapping that achieves those conditional optimal actions.

The standard approach in the macroeconomics literature is to focus on the first layer

of uncertainty and assume that agents perceive the objective states of the world with noise,

but use a mapping of information about the states to actions derived under full rationality.

Therefore, an analysts recovers errors in the resulting actions as arising from the imperfect

perception of the objective state variables. This standard approach is exemplified by a

literature inspired by the Rational Inattention model of Sims (1998, 2003).1A similar idea of

imperfect attention to state variables is also present in the sparse optimization framework

of Gabaix (2014, 2016), and more generally, the idea of allowing the agents to choose their

information about the unknown state variables is present in other parts of the literature.2

In this paper, we develop a tractable framework that focuses on the second layer of

1Applications in macroeconomics include consumption dynamics (Luo (2008), Tutino (2013)), price setting
(Maćkowiak and Wiederholt (2009), Stevens (2014), Matějka (2015)), monetary policy (Woodford (2009),
Paciello and Wiederholt (2013)), business cycle dynamics (Melosi (2014), Maćkowiak and Wiederholt (2015a))
and portfolio choice (van Nieuwerburgh and Veldkamp (2009, 2010), Kacperczyk et al. (2016)). See Wiederholt
(2010) and Sims (2010) for recent surveys on the rational inattention in macroeconomics literature.

2See for example Reis (2006a,b) and Woodford (2003). See Veldkamp (2011) for a review on imperfect
information in macroeconomics and finance.
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imperfect perception. In our model agents observe all relevant objective state variables

perfectly, in the same way as an econometrician does. However, agents have limited cognitive

resources that prevent them from computing their optimal policy function and coming up

with the fully specified, optimal state-contingent plan of action.3 Agents can expend costly

reasoning effort that helps reduce the uncertainty over the unknown best course of action,

and do so optimally.4 Given their chosen reasoning effort, agents receive signals on the best

course of action at the current state of the world, and this knowledge accumulates over time.

Thus, while being imperfect problem solvers, agents are ‘procedurally rational’ in the sense

of Simon (1976) and exhibit behavior that is the outcome of appropriate deliberation.

The defining feature of our framework is the agent’s accumulation of knowledge about

the best response to the observed state. Tractability is partly attained by our focus on the

linear-quadratic (LQ) Gaussian framework that has become the canonical setup in the broader

Rational Inattention literature.5 Formally, we model the unknown optimal policy function

as a draw from a Gaussian Process distribution over which the agent updates beliefs.6 A

more intense reasoning effort is beneficial because it lowers the variance of the noise in the

incoming signals. In turn, a more intense reasoning is costly, which we model as a cost on

the total amount of information about the optimal action carried in the new signal. Using a

standard approach in the Rational Inattention literature, we measure information flow with

the reduction in entropy, i.e. Shannon mutual information, about the unknown function.7

We focus on a simple environment that highlights the specific endogenous features

generated by the cognition friction. For this purpose, the marginal benefit and marginal cost

of reasoning are set to be time-invariant, the true optimal decision rule is a linear function,

and for most of the analysis the state itself is iid. Finally, the time zero prior belief is also

3Such a friction is consistent with a large field and laboratory experimental literature on how the quality
of decision making is negatively affected by the complexity of the decision problem. See for example Caplin
et al. (2011), Kalaycı and Serra-Garcia (2016) and Carvalho and Silverman (2017)) for experimental evidence.
Sethi-Iyengar et al. (2004), Abaluck and Gruber (2011) and Schram and Sonnemans (2011) document
significantly poor choices for savings and healthcare plans. Carlin et al. (2013) finds that complexity in asset
valuation leads to significant decreases in the trade efficiency. More generally, see Deck and Jahedi (2015) for
a recent survey of experiments on complexity and decision making.

4Generally, reasoning processes are characterized in the literature as ‘fact-free’ learning (see Aragones
et al. (2005)), i.e. because of cognitive limitations additional deliberation helps the agent get closer to the
optimal decision even without additional objective information as observed by an econometrician.

5This also helps highlight novel predictions for behavior and contrast with the previous literature.
6Intuitively, a Gaussian Process distribution models a function as a vector of infinite length, where the

vector has a joint Gaussian distribution. In addition to its wide-spread use in Bayesian statistics, Gaussian
Processes have also been applied in machine learning over unknown functional relationships – both in terms
of supervised (Rasmussen and Williams (2006)) and non-supervised (Bishop (2006)) learning.

7Following Sims (2003) a large literature has studied the choice properties of attention costs based on the
Shannon mutual information between prior and posterior beliefs. See for example Matějka and McKay (2014)
Caplin et al. (2016), Woodford (2014) and Matějka et al. (2017).
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parsimonious. We set the initial mean function of the Gaussian process as a constant so that

the average prior belief equals the average optimal action.8 The prior covariance function is

controlled by a key smoothing parameter that encodes the correlation between beliefs over the

actions at different values of the state. Importantly, since there is learning about a function,

the information acquired is most useful locally to the state realization where reasoning occurs.

The emerging key property of the decision to reason is intuitive: agents find it optimal

to reason more intensely when observing more unusual state realizations. These are states at

which the agents, given their history of reasoning entering that period, have a higher prior

uncertainty over what is the best course of action, conditional on the observed state. Thus,

deliberation choice and actions are both state and history dependent. Because of this, we

focus on analyzing implications about the agent’s behavior at the ergodic distribution, where

the agent has seen a long history of signals that were all the outcome of optimal deliberation

at the time. In other words, we look for the typical behavior of the agent.

At an individual level the typical action has some key properties. First, it is non-linear

and it exhibits inertia and salience effects. At the states that have been deliberated at most

often in the past, which are concentrated around the unconditional mean of the state, the

agent has accumulated enough information that he chooses not to reason further and instead

relies on the prior experiences. In turn, these prior signals point towards an effective action

that is relatively unresponsive to changes in the state.9 Intuitively, the agent has a good

understanding of the average level of the optimal action around the mean value of the state,

hence there is not much reason to think hard about the way the policy function changes with

small movements in the state. Thus, his effective action is relatively unresponsive in the

neighborhood of the average state. In contrast, the action exhibits salience effects at more

unusual states, which tend to stand out given his ergodic beliefs. There the agent reasons

more intensely, leading to more informative signals, which point towards a more responsive

conditional action than around the usual states.10

Second, there is endogenous persistence in the average action. This mechanism naturally

arises as long as the information acquired about the optimal action at some particular state

realization is perceived to be informative about the optimal action at a different state

8The flatness of the prior mean captures the no prior “free” information about the shape of the optimal
policy function. Any such understanding comes at the cost of deliberation effort, and the agent is free to
engage in that, solving a trade-off that we characterize.

9Such an inertial behavior is consistent with a widely documented ’status-quo’ bias (Samuelson and
Zeckhauser (1988)). The reliance on prior experiences and lack of additional reasoning characterizing inertia
in our model relates to a broader literature on cognitive limitations according to which status quo alternatives
require less mental effort to maintain (see Eidelman and Crandall (2009) for a survey).

10The stronger state-dependent response is consistent with the so-called salience bias, or availability
heuristic (Tversky and Kahneman (1975)), that makes behavior more sensitive to vivid, salient events.
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realization. Moreover, the interplay between the flat responses around the usual states and

the salience effects at the more unusual states generate local convexities in the ergodic policy

function. The average movement in the next period action may be dominated by salience

type of reasoning so that, even if the exogenous state is mean reverting, the agent takes an

even more reactive action than before, leading to hump-shape dynamics.

Third, the endogenous persistence also manifests in the volatility of actions. In times

of more volatile state realizations the agent not only takes more volatile actions but also

chooses to reason more intensely. The more frequent unusual state realizations lead to more

frequent careful deliberation, which results in a posterior belief that the optimal action is

more responsive. As a consequence, in the periods following such volatile times, the actions

appear to respond more to states, leading to clusters of volatility in actions.

Stochastic choice is an important behavior characteristic observed in experiments.11

In our model, an individual action is stochastic even conditioning on the perfectly observed

state, as it is driven by the random reasoning signals. At the same time, agents tend to

observe different histories of reasoning signals leading to different policy functions in the

cross-section. Therefore, an analyst observes variation in behavior not only as a current

stochastic element of choice for a given individual, but also in the systematic part of decision

rules, through the cross-sectional heterogeneity in the priors entering that period.

We study cross-sectional effects by introducing a continuum of ex-ante identical agents

who solve the same reasoning problem by observing the same state. However, these agents

differ in the specific history of reasoning signals that they have obtained about the otherwise

identical optimal policy function. At the more unusual state realizations, where there has

been less relevant information accumulated through time, the agents’ priors are more anchored

by their common initial prior so that the dispersion of beliefs entering the period tends to be

smaller. At the same time, at these states agents decide to rely more on their newly obtained

idiosyncratic reasoning signals. We find that typically the latter effect dominates so that the

cross-sectional dispersion of actions is larger at the more unusual states.12

Overall, we find that costly cognition can act as a parsimonious friction that generates

several important characteristics of many aggregate time-series: endogenous persistence,

non-linearity and volatility clustering, as well as possible hump-shape dynamics. Therefore,

our findings connect three important directions in macroeconomics. One is a large literature

that proposes a set of frictions, typically taking the form of adjustment costs, to explain

sluggish behavior (eg. investment adjustment cost, habit formation in consumption, rigidities

11See Mosteller and Nogee (1951) and more recently Hey (2001) and Ballinger and Wilcox (1997).
12The implied correlated volatility at the ’micro’ (cross-sectional dispersion) and ’macro’ (volatility

clustering of the aggregate action) level is consistent with recent evidence surveyed in Bloom (2014).
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in changing prices or wages). A second direction is to introduce frictions aimed at obtaining

non-linear dynamics (eg. search and matching labor models, financial constraints).13 Third,

there is a significant literature that documents and models exogenous variation in volatility

and structural parameters to better fit macroeconomic data.14

Compared to the literature on imperfect attention to actions, the key property of our

model is in the dynamics of the prior distribution over actions. In comparison to the standard

Rational Inattention literature in macroeconomics, which analyzes imperfect perception of

objective states, the prior and the deliberation choice in our model is conditional on such a

state.15 Our emphasis on reasoning about optimal policy functions builds on a literature,

mostly in decision theory, that analyzes the costly perception of unknown subjective states.16

We contribute to both of these strands of literature by developing a tractable model of

accumulation of information about the optimal action in the form of an unknown function

of the objective state. We characterize how this form of learning leads to endogenous time-

variation in the mean and variance of the state-dependent prior distributions. In particular,

these state-dependent priors are instrumental to producing non-linear action responses.

Indeed, when we shut down the accumulation of information about the optimal decision rule,

we recover linear actions and uniform under-reaction to the state, a result that is typical in

the standard LQ Gaussian Rational Inattention analysis.17

The proposed cognition friction also relates to two types of literatures on bounded

rationality in macroeconomics. One is a ’near-rational’ approach that assumes a constant cost

of implementing the otherwise known optimal action. There the interest is in studying the

general equilibrium (GE) effects of the resulting individual errors, taken as state-independent

stochastic forces.18 A second recent literature addresses the potential complexities of comput-

13See Fernández-Villaverde et al. (2016) for a recent survey of non-linear methods.
14For example Stock and Watson (2002), Cogley and Sargent (2005) and Justiniano and Primiceri (2008).
15In that work the choice of attention to a state realization is typically made ex-ante, conditional on a

prior distribution over those realizations. Some recent models of ex-post attention choices, i.e conditional on
the current realization, include: the sparse operator of Gabaix (2014, 2016) that can be applied ex-ante or
ex-post to observing the state, information processing about the optimal action after a rare regime realizes
(Maćkowiak and Wiederholt (2015b)) and a decision over which information provider to use (Nimark and
Pitschner (2017)). The latter model can generate stronger agents’ responses to more extreme events because
these events are more likely to be widely reported and be closer to common knowledge. Nimark (2014)
obtains these stronger responses as a result of an assumed information structure where signals are more likely
to be available about more unusual events.

16As in the model of costly contemplation over tastes in Ergin and Sarver (2010) or the rationally inattentive
axiomatization in Oliveira et al. (2017). Alaoui and Penta (2016) analyze a reasoning model where acquiring
information about subjective mental states indexing payoffs is costly, but leads to higher accuracy.

17While there is interest in departures from that result, most of the focus in the literature has been
on obtaining optimal information structures that are non-Gaussian, taking the form of a discrete support
for signals (see for example Sims (2006), Stevens (2014) and Matějka (2015)). Instead, we maintain the
tractability of the LQ Gaussian setup but obtain non-linear dynamics.

18See for example Akerlof and Yellen (1985a,b), Dupor (2005) and Hassan and Mertens (2017).
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ing GE effects faced by an agent with different forms of bounded rationality.19 There the

individual decision rule is the same as the fully rational one but the GE effects are typically

dampened. Compared to these two approaches, we share an interest in cognitive costs, and,

while we abstract from GE effects for our aggregate-level implications, we focus on how

imperfect reasoning generates an endogenous structure of errors in actions.

Finally, we extend our analysis to two actions that differ in their marginal cost of making

errors. We show how the optimal deliberation model implies state-dependent comovement

between actions because the information flow friction is not over the single state variable but

it is specific to the cognitive effort it takes to make decisions about the two actions. The

time-varying comovement stands in contrast with the standard approach in the literature of

assuming an attention friction on the state, but endowing the agent with full knowledge of

the two individual optimal policy functions. In that case, the mistakes in the two actions tend

to be perfectly correlated, being driven by imperfect observation of the same state variable.

The paper is organized as follows. In Section 2, we develop our model of cognitively

costly reasoning. In Section 3 we describe key implications at the individual and aggregate

level. In Section 4 we present an extension of the model to two actions.

2 Model of Cognitively Costly Reasoning

In this section we develop our costly decision-making framework. To ease comparisons with

the existing literature, we focus on what has become the canonical setup in the Rational

Inattention literature and use a quadratic tracking framework with Gaussian uncertainty.

Section 2.1 describes the basic setup and Section 2.2 presents the optimal deliberation choice.

2.1 Quadratic-Gaussian Framework

Our focus is on limiting the information flow not about an objective state but instead about

the policy function. We model the tracking problem of an agent that knows the current value

of the objective state, yt, but does not know the optimal policy function c∗(yt) and chooses

his actual action ĉ(yt) to minimize expected quadratic deviations from the optimum:

U = min
ĉt

WccEt(ĉ(yt)− c∗(yt))2.

19These include reflective equilibrium (Garćıa-Schmidt and Woodford (2015)), level k-thinking (Farhi and
Werning (2017)), or lack of common knowledge as a result of cognitive limits (Angeletos and Lian (2017)).
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The parameter Wcc < 0 measures the utility cost of suboptimal actions. We focus on this

quadratic setup in order to present the mechanism in the most transparent way. In addition,

it also facilitates comparisons with the existing Rational Inattention literature, since this

setup has become the canonical framework in that literature following Sims (2003).20

Given the tracking problem, the agent optimally chooses to act according to his

conditional expectation of the true, unknown optimal action:

ĉ(yt) = Et(c
∗(yt))

2.1.1 Prior beliefs about the optimal action

The agent’s prior beliefs over the unknown function c∗(yt) are given by a Gaussian Process

distribution with a mean function µ(y) and a covariance function Σ(y, y′):

c∗(y) ∼ GP(µ(y),Σ(y, y′)),

where µ(y) specifies the unconditional mean of the function for any input value y,

µ(y) = E(c∗(y)),

and the covariance function specifies the unconditional covariance between the values of the

function at any pair of inputs y and y′:

Σ(y, y′) = E ((c∗(y)− c̄(y))(c∗(y′)− c̄(y′))) .

A Gaussian Process distribution is the generalization of the Gaussian distribution

to infinite-sized collections of real-valued random variables, and is often used as a prior

for Bayesian inference on functions (Liu et al. (2011)). Intuitively, a Gaussian Process

distribution models a function as a vector of infinite length, where the whole vector has a

joint Gaussian distribution. Often, (especially in high frequency econometrics) Gaussian

Processes are defined as a function of time – e.g. Brownian motion. In this paper, however,

we use it as a convenient and tractable way of modeling the uncertainty of the agent over his

unknown policy function c∗(y) and thus the indexing set is the real line (and in more general

applications with multiple state variables also RN , see Section 4 below).

20The framework could be viewed as a quadratic approximation to the value function of the agent, and
Wcc as the second derivative of the value function with respect to the action. While extensions are possible,
this relatively simple setup is already rich in economic insights. At a more general level, while we do not
formalize the complexities in the type of tracking problems that the agent may choose to solve, we, as model
builders, share a similar interest in tractability as the agent inside the model.
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A Gaussian process is completely characterized by its mean and covariance functions,

so that for any finite collection of points in the domain of c∗(.), y = [y1, . . . , yN ], the resulting

distribution of the vector of function values c(y) is a joint normal distribution given by:

c∗(y) ∼ N



µ(y1)

...

µ(yN)

 ,


Σ(y1, y1) . . . Σ(y1, yN)
...

. . .
...

Σ(yN , y1) . . . Σ(yN , yN)


 .

Using this feature, we can draw samples from the distribution of functions evaluated at any

arbitrary finite set of points y, and hence this fully describes the prior uncertainty of the

agent about the underlying policy function c∗(y).

We assume that the agent’s prior beliefs are centered around the steady state optimal

action which we call c̄. Note that this does not mean that the agent knows the optimal action

at the steady state value of the state variable ȳ – he still faces uncertainty about that as the

prior variance is non-zero. We are simply making the minimal assumption that the average

prior belief is equal to the steady state optimal action c̄.21 Formally, the prior mean function

µ(y) is equal to the constant function c̄:

µ(y) = c̄ , ∀y.

Thus, the agent’s prior beliefs are appropriately centered on average. Moreover, they

also do not respond to movements in y. If the prior belief about c∗(y) was itself a function of

y, then that would be akin to giving the agent information about his optimal action “for free”,

since the knowledge of y will imply a change in the belief about c∗. We want to avoid any

such correlation between the action and the state in the agent’s prior beliefs, since the basic

idea of our framework is to make any information about c∗(y) subject to costly deliberation.

Thus, without investing any effort in thinking about what to do, the agent is unsure how to

adjust his action as y varies, but his prior belief is unbiased and correct on average.22

Importantly, the prior mean function µ(y) is only the prior belief of an agent that has

spent no time thinking about the economic environment and optimal decision making. In

our framework, however, the agent optimally deliberates and accumulates information over

time, and thus the typical information set he enters a period with is very different from µ(y).

Characterizing this typical information set and resulting behavior at the ergodic steady state

distribution of beliefs is the main focus of the paper.

21This parallels the typical Rational Expectations assumption that expectations are correct on average –
since c̄ is the true optimal action on average, the agent’s prior beliefs are indeed correct on average.

22Building biases in the average prior belief is nevertheless possible in the analysis.
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The other important component of the agent’s prior beliefs is the covariance function.

It determines how new information itself will be interpreted and combined with the prior

to form the posterior beliefs of the agent. We assume that the covariance function is of the

widely used squared exponential class (see Rasmussen and Williams (2006)):

Σ(y, y′) = σ2
c exp(−ψ(y − y′2)

The function has two parameters – σ2
c controls the prior variance or uncertainty about

the value of c∗(y) at any given point y, and ψ controls the smoothness of the function and

the extent to which information about the value of the function at point y is informative

about its value at a different point y′. A Gaussian Process with a higher ψ has a higher rate

of change and its value is more likely to experience a big change for the same change in y. In

particular, it can be shown that the mean number of zero-crossings over a unit interval is

given by ψ√
2π

(see Rasmussen and Williams (2006) for details). Hence the larger is ψ, the

more “wiggly” is the average function drawn from that Gaussian Process distribution, and

thus the smaller is the correlation between the function values at any pair of distinct points.

Intuitively, a higher ψ parameterizes a prior belief that the underlying function ĉ∗(y) could

have a higher derivative and thus information about the optimal action at one value of the

state y is less useful for inferring the optimal action at another value y′. This parameter can

have profound effects on the deliberation choice of the agent, as discussed in detail below.23

2.1.2 Costly Deliberation

A key feature of the model is the costly deliberation choice. The agent does not simply act

on his prior beliefs about the unknown optimal action c∗(y), but can expend costly cognitive

resources to think about his underlying economic problem, and obtain a better handle of the

unknown optimal policy c∗(yt). This is formalized by giving him access to unbiased signals

about his actual optimal action (given state of the world yt) of the form,

η(yt) = c∗(yt) + εηt ,

where εηt ∼ N(0, σ2
η,t), and allowing him to choose the precision of those signals σ2

η,t. The

chosen precision of the signal models the amount of deliberation the agent does – the more

time and effort he spends on thinking about what is the optimal action, the more precise is

23We focus on the squared exponential covariance function because it presents a good trade-off between
flexibility and the number of free parameters. However, our main results would hold under other covariance
functions as well, as long as the correlation between c∗(y) and c∗(y′) is decreasing in the distance between y
and y′ – which is true for most stationary covariance functions.
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his resulting signal, and thus the more accurate are his resulting posterior beliefs and the

effective action ĉ(yt) = Et(c
∗(yt)) that he takes.

However, the cognitive effort required to acquire a more accurate understanding of the

optimal action is costly, which we model as a cost on the total amount of information about

the optimal action carried in the signal ηt. We measure information flow with the reduction

in entropy, i.e. Shannon mutual information, about c∗(yt). Mutual information is defined as

I(c∗(yt); η(yt)|ηt−1) = H(c∗(yt)|ηt−1)−H(c∗(yt)|ηt, ηt−1), (1)

where H(X) denotes the entropy of a random variable X, and is a measure of uncertainty

often used in Information Theory. Thus, we see that equation (1) measures the reduction in

uncertainty about the unknown c∗(yt), given the history of past deliberation and resulting

signals ηt−1, that is brought about by seeing the new signal ηt. This reduction in uncertainty,

over and above what was already known is the new additional information contained in the

current signal ηt and represents the effect of the additional deliberation performed in the

current period. We model the cognitive deliberation cost facing the agent as an increasing

function of I(c∗(yt); η(yt)|ηt−1), i.e. the informativeness of the chosen signal ηt.

Two remarks are in order. First, we do not explicitly model the mental deliberation

process and the specific mental processes involved in it. Instead, we model the accuracy-

cognitive effort trade-off inherent in any reasonable such process. Thus we do not make strong

assumptions about the particular way people reason, but simply assume that obtaining a

more accurate plan of action, in the sense of getting closer to the true optimal action, takes

more mental effort, and is thus costlier.24 Second, we have chosen to formalize the notion of

information flow with the Shannon mutual information measure in part because it leads to

particularly transparent results, but the qualitative features of the model are unchanged as

long as the agent finds it costly to increase the precision of his posterior beliefs about c∗(yt).

2.1.3 Updating

In this section we detail how the beliefs of an agent evolve as he acquires information about

his optimal policy function c∗(y). For illustration purposes, first we consider the case where

the agent receives signals with exogenously fixed precision and later turn to the question of

optimal deliberation choice, which endogenizes the precision of η.

The key feature of the beliefs updating process is that since the agent is learning about

the function c∗(y), the information he acquires through his deliberation process is most useful

24Costly cognition of the optimal action may reflect for example costly contemplation over tastes (Ergin and
Sarver (2010)), or the costly search and satisficing heuristic of Simon (1955), and more generally acquiring
costly information over mental states indexing subjectively perceived payoffs (Alaoui and Penta (2016)).
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locally to the actual value of the state yt at which the deliberation occurred. In other words,

if the agent spends some time thinking about what to do when the state of nature is yt = y,

this will clearly be informative not only about the optimal action at y itself, but also about

the optimal action at other values of the state y′ 6= y close to y. However, the original

deliberation is going to be increasingly less informative for values of y′ further away from y,

and the rate at which the informativeness decays with the distance between y and y′ will

depend on the covariance function Σ(y, y′).

For illustration purposes we consider a couple of specific example. We start with the

simple case of updating the prior with a single signal η0(y0) at some value of the state y0.

One can think of this as the beginning of time, when the agent has done no prior deliberation

and only has his prior beliefs characterized by his ex-ante prior functions µ(.) and Σ(., .). For

an arbitrary y the joint distribution of c∗(y) and the signal η0(y0) is jointly Gaussian:[
c∗(y)

η0(y0)

]
∼ N

([
c̄

c̄

]
,

[
σ2
c σ2

c exp(−ψ(y − y0)2)
σ2
c exp(−ψ(y − y0)2) σ2

c + σ2
η,1

])

From this, it further follows that the conditional mean of c∗(y) given η0 is

ĉ0(y) = E(c∗(y)|η0) = c̄+
σ2
ce
−ψ(y−y0)2

σ2
c + σ2

η,0︸ ︷︷ ︸
=α0(y,y0)

(η0 − c̄)

Notice that when updating the belief about the optimal action at y0, the specific value

of the state at which the agent has deliberated, the updating formula reduces to the familiar

Bayesian one based on the signal-to-noise ratio α0 = σ2
c

σ2
c+σ

2
η,0

:

ĉ0(y0) = E(c∗(y0)|η0) =

(
1− σ2

c

σ2
c + σ2

η,0

)
c̄+

σ2
c

σ2
c + σ2

η,0

η0 (2)

However, when updating beliefs of c∗(.) at an arbitrary value y, the effective signal-to-

noise ratio of the signal is a decreasing function of the distance between y and y0,

α0(y, y0) = e−ψ(y−y0)
2 σ2

c

σ2
c + σ2

η,0

.

This shows how the informativeness of η0 is dissipating as we move away from y0. Naturally,

this effect also shows up in the posterior variance:

σ̂2
0(y) = Var(c∗(y)|η0) = σ2

c

(
1− σ2

c

σ2
c + σ2

η,0

e−2ψ(y−y0)
2

)
11



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

y

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

 C
on

di
tio

na
l e

xp
ec

ta
tio

n 

Conditional Expectation of c*(y)

(a) Posterior Mean

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

y

0

0.2

0.4

0.6

0.8

1

1.2

 C
on

di
tio

na
l V

ar
ia

nc
e 

Conditional Variance of c*(y)

(b) Posterior Variance

Figure 1: Posterior Mean and Variance. The figure illustrates an example with parameters σ2
c = 1, ψ = 1,

and σ2
η,0 ∈ {σ2

c ,
σ2
c

4 }

Figure 1 illustrates both of these effects. The left panel shows the posterior mean,

µ0(y), while the right panel plots the posterior variance σ̂2
0(y). The figure is drawn for an

example where the true optimal action c∗(y) = y, and the realization of the signal η0 equals

the truth, so η0 = y0. Both figures draw the posterior moments for two values of the signal

error variance, one high and one low, to showcase how increased precision affects them.

In the left panel, the solid lines plot the resulting posterior means, the red one corre-

sponding to the more precise signal, and the yellow dashed line plots the true c∗(y), while

the purple dash-dot line plots the prior mean function µ(y) = c̄. We can see two important

things. First, the signal clearly has a stronger effect on the posterior mean at values of y

closer to y0 – it pulls the conditional expectation further away from its prior mean more

strongly the closer is the underlying y to y0. And naturally, the red line lies closer to the

value of the signal, since in that case there is a higher signal precision, and hence the agent

puts more weight on it. Second, observing just one signal is only weakly informative about

the shape of the function c∗(y), although it is useful in determining the level of the optimal

action in the neighborhood of the signal. The positive realization of η0 (relative to the prior

c̄) tends to increase the posterior mean belief for all values of y, and hence it displays only a

relatively gentle slope upwards. In other words, the positive signal leads the agent to update

beliefs that in general the optimal action is higher than previously thought, but by itself does

not yield too much information about the shape of the policy function. As we will see below,

for the agent to acquire a good grasp of the shape of the unknown function c∗(y), he needs

12



several precise signals at different values of y.

In the right panel, we can directly see the effect of the local reduction in uncertainty.

The posterior variance σ̂2
0(y) is lowest at y0, and increases as we move away from y0. Hence,

while the signal is helpful in learning about the value of the policy function locally, it does

not provide too much information about the optimal response at values of y in the opposite

extreme of the spectrum. Naturally, we also see that the more precise signal tends to have a

stronger effect on the variance, and perhaps even stronger local effects.

In the next example, we add a second signal, η1, at some other value of the state y1.

In this case, we use the fact that the 3 element vector [c∗(y), η0, η1]
′ is jointly Gaussian, and

apply the standard Bayesian updating formulas to obtain the posterior mean and variance:

ĉ1(y) = E(c∗(y)|η0, η1) = c̄+
σ2
c (e
−ψ(y−y0)2 + σ2

c

σ2
c+σ

2
η,1
e−ψ((y−y1)

2+(y1−y0)2))

(σ2
c + σ2

η,0)−
σ4
ce
−2ψ(y0−y1)2

σ2
c+σ

2
η,1︸ ︷︷ ︸

=α10(y;y0,y1)

(η0 − c̄)

+
σ2
c (e
−ψ(y−y1)2 + σ2

c

σ2
c+σ

2
η,0
e−ψ((y−y0)

2+(y1−y0)2))

(σ2
c + σ2

η,1)−
σ4
ce
−2ψ(y0−y1)2

σ2
c+σ

2
η,0︸ ︷︷ ︸

=α11(y;y0,y1)

(η1 − c̄)

σ̂2
1(y) = Var(c∗(y)|η0, η1) = σ2

c

(
1− (α10(y; y0, y1)e

−ψ(y−y0)2 + α11(y; y0, y1)e
−ψ(y−y1)2

)
.

where we define the notation α10(y; y0, y1) and α11(y; y0, y1) as the effective signal-to-noise

ratios of the two signals, η0 and η1 respectively, when updating beliefs about c∗(y). Even

though the formulas are now more complicated, the updating equations have much of the

same features as before. Signals are more informative locally, and in particular, the agent

puts relatively more weight on the signal η0, as opposed to η1, if y0 is relatively closer to y

than is y1. So for y between y0 and y1, the agent may lean on both signals about equally, but

for y’s close to y1 he relies mostly on η1. If we further take the limit of either y1 or y0 going to

infinity, its weight in the updating equation falls to zero, while the weight on the other signal

converges to the weight in the single signal case. Similarly, the posterior variance is affected

more strongly by one or the other signal, depending on whether y is closer to y0 or y1.

We illustrate this example in Figure 2. We plot the posterior mean in the left panel and

the posterior variance in the right panel, and for this example we again use signal realizations

that are equal to the truth, η0 = y0 and η1 = y1. Lastly, both η0 and η1 carry the same

precision. We keep the location of η0 as before, and consider a y1 that is its mirror image

around the mean, i.e. lays below the mean at the same distance that y0 is above the mean ȳ.
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(b) Posterior Variance

Figure 2: Posterior Mean and Variance after seeing two signals at distinct y0 6= y1. The figure illustrates an

example with parameters σ2
c = 1, ψ = 1, and σ2

η,0 ∈ {σ2
c ,
σ2
c

4 }

Notice that the posterior mean now displays a steeper slope, and captures the overall

shape of the true c∗(y) better than in the single signal case. This is because now the agent has

learned that his optimal action is relatively high for high realizations of y, but relatively low

for low realizations. Thus, he can deduce that the optimal policy is most likely upward sloping

between his two signals. This is different from the one signal case, where the single signal

observation was not sufficient to provide good information about the shape of the unknown

c∗(y). It mainly served to update beliefs about the overall level of the policy function. Here,

however, the posterior mean does not display a bias in its overall level, since given the two

distinct observations, the agent is able to infer that the function is not higher than expected

under the prior, but rather has a slope. Accumulating signals at distinct points is effective in

allowing the agent to learn about the shape of the underlying optimal policy function.

We can also see that the posterior mean belief is closest to the truth in the interval

between y0 and y1. This is because for y ∈ [y0, y1], the agent is able to lean strongly on his

knowledge of η0 and η1. However, at points outside of this interval his information becomes

relatively worse, since it is mostly driven by just one of the two signals. This effect can be

seen more clearly in the right panel, where we plot the posterior variance. Interestingly, the

lowest posterior variance is not achieved right at either y0 or y1, but in between the two,

because there the agent has two relatively informative signals to use. This plot also displays

one of the defining features of our setup, which is that the agent’s beliefs are more precise

within the region of the state space that he has previously deliberated about, and become

14



increasingly imprecise at points far away from the types of situations considered in the past.

More generally, as the agent accumulates information, beliefs follow the recursion

ĉt(y) = ĉt−1(y) +
Σt−1(y, yt)

Σt−1(yt) + σ2
η,t

(ηt − µt−1(y)) (3)

Σt(y, y
′) = Σt−1(y, y

′)− Σt−1(y, yt)Σt−1(y
′, yt)

Σt−1(yt) + σ2
η,t

(4)

where µt(y) = Et(c
∗(y)|ηt) and Σt(y, y

′) = Cov(c∗(y), c∗(y′t) are the posterior mean and

covariance functions after conditioning on all available deliberation signals up to and including

time t. These two objects fully characterize the posterior beliefs of the agent about the

unknown c∗(y), which is itself also a Gaussian Process, just as his priors. Note that we use

σ̂2
t (y) to denote the posterior variance at a given value of y, i.e. Σt(y, y). Hence we can write,

c∗(y)|ηt ∼ GP(ĉt(y),Σt(y, y
′)).

2.2 Optimal Deliberation

In this section we study the optimal deliberation choice of the agent and the resulting optimal

signal precision and actions. Here we assume that the agent faces a simple linear cost in the

total information contained in ηt. Thus, the information problem of the agent is,

U = max
σ2
η,t

−WccEt(ĉt(yt)− c∗t (yt))2 − κI(c∗(yt); ηt(yt)|ηt−1)

= max
σ̂2
t

−Wccσ̂
2
t (yt)− κ

1

2
ln

(
σ̂2
t−1(yt)

σ̂2
t (yt)

)
The second line in the above equality follows from the fact that the mutual information

in a Gaussian framework is simply one half of the log-ratio of prior and posterior variances,

and κ is a parameter that measures the marginal cost of a unit of information. For example,

κ will be higher for individuals with a higher opportunity cost of deliberation, either because

they have a higher opportunity cost of time or because their particular deliberation process

takes longer to achieve a given precision in decisions. In addition, κ would also be higher

if the particular economic environment of the agent is more complex, and thus the optimal

action is objectively harder to figure out (e.g. they are given a harder math problem).

Lastly, the maximization is subject to the “no forgetting constraint”

σ̂2
t (yt) ≤ σ̂2

t−1(yt),
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which ensures that the chosen value of the noise in the signal, σ2
η is non-negative. Essentially,

the constraint is there in order to ensure that the agent cannot gain utility by “losing” some

of his prior information and thus making his current posterior beliefs, after observing ηt(yt),

more uncertain than the beliefs he enters the period with.

Taking first order conditions, we see that the optimal deliberation choice satisfies

σ̂∗2t (yt) =
κ

2Wcc

. (5)

Hence, with a cognition cost that is linear in mutual information the agent has an optimal

target level for the posterior variance of the unknown optimal action that is a simple, and

intuitive function of deep parameters. He would like to obtain a higher precision in his actions

(and thus deliberate more) when the cost of making mistakes (Wcc) is high and when the

cost of deliberation (κ) is low. Moreover, this optimal posterior precision of his beliefs is not

a function of the actual realization of the current state yt.

Imposing the no forgetting constraint, optimal reasoning leads to the posterior variance:

σ̂∗2t (yt) = min{ κ

2Wcc

, σ̂t−1(yt)}.

So unless beliefs are already more precise than desired, the agent engages in just enough

deliberation, and hence obtain just the right σ2
ηt, so that the time t posterior variance equals

the target level κ
2Wcc

. Hence, the intensity of deliberation is both state and history dependent.

To give an example, suppose that the agent enters the period having seen only one

signal η0(y0) in the past. Moreover, let us suppose that the resulting posterior variance, after

seeing η0, is represented by the blue line in the right panel of Figure 1 and that κ
2Wcc

= 0.6.

Then we see that the agent will not do any additional deliberation in the current period, and

hence choose σ2
η,t =∞ for values of y that are roughly between 1 and 1.5. In that region, the

initial beliefs about c∗(yt), which are based on the knowledge of η0, are already sufficiently

precise and it is not beneficial to engage in any further deliberation.

On the other hand, the agent will engage in active deliberation if the current value of

the state is below 1, since then the initial beliefs are not quite precise enough. Crucially, the

intensity of deliberation is state dependent. The lower is y, and hence the further away it

is from the region where the agent is fairly confident in his estimate, the more deliberation

effort the agent elects to perform. Since the initial posterior variance is higher for values of y

farther away from y0, it will take more effort, and thus a higher precision of ηt(yt), in order

to bring the precision of the posterior beliefs up to the optimal level κ
2Wcc

.
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In particular, we can show that the optimal signal noise variance is:

σ2
η,t =


κ

2Wcc
σ̂2
t−1(yt)

σ̂2
t−1(yt)−

κ
2Wcc

, if σ̂2
t−1(yt) ≥ κ

2Wcc

∞ , if σ̂2
t−1(yt) <

κ
2Wcc

(6)

The agent opts for higher precision, and hence higher deliberation cost, when the posterior

variance of his initial beliefs, at yt, are relatively far from the target level κ
2Wcc

. In turn, the

resulting optimal weight α∗(yt; ηt, η
t−1) of the current period signal ηt is:

α∗(yt; ηt, η
t−1) = max{1− κ/(2Wcc)

σ̂2
t−1(yt)

, 0} (7)

Thus the deliberation, and especially its effect on the resulting action ĉt(yt),

ĉt(yt) = ĉt−1(yt) + α∗(yt; ηt, η
t−1)(ηt − ĉt−1(yt)) (8)

is both state and history dependent. When the precision of initial beliefs is relatively far from

its target, then the agent acquires a more precise current signal and puts a bigger weight

on it (a higher α∗(yt; ηt, η
t−1)). Thus, for “usual” values of yt, i.e. ones for which the agents

has deliberated at often in the past and thus has lower posterior variance at, the agent is

unlikely to deliberate much more again. As a result, α∗(yt; ηt, η
t−1) will be relatively small,

and his resulting action will be primarily driven by his beginning of period beliefs, ĉt−1(yt).

On the other hand, unusual values of yt, where the initial beliefs are more imprecise, are

more likely to trigger more intensive deliberation. Such a deliberation choice will result in a

higher α∗(yt; ηt, η
t−1) and an effective action ĉt that deviates more from the initial beliefs.

2.2.1 Comparison with rational inattention to the objective state

The typical approach in the Rational Inattention (RI) literature is to study attention allocation

over the state variable yt, but not over the policy function c∗(yt). Hence the standard RI

approach would be to assume that the agent knows that the optimal action is

c∗(yt) = cyyt (9)

with a known cy, and assume that the agent does not observe yt, but has the correct prior

yt ∼ iidN(ȳ, σ2
y).

Learning is then about the unknown state variable yt, but proceeds in a similar way,
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with the agent observing unbiased signals,

η̃t = yt + ε̃ηt .

Uncertainty about the state can be mapped directly into uncertainty about the optimal

action ct through the known optimal policy function c∗(yt), given here by equation (9):

ĉt = cyEt(yt) = cy

ȳ +
σ2
y

σ2
y + σ2

η︸ ︷︷ ︸
=α̃y

(η̃t − ȳ)

 (10)

In terms of the objective function, the agent is similarly facing a quadratic loss function

and a linear cost in the Shannon information of his signal ηt:

U = max
σ2
η,t

−WccEt(cyŷt − cyyt)2 − κRII(yt; ηt|ηt−1)

= max
σ̂2
t

−Wccc
2
yσ̂

2
y,t − κRI

1

2
ln

(
σ̂2
y,t−1

σ̂2
y,t

)
where we use the notation σ̂2

y,t = Var(yt|ηt) to denote the posterior variance of yt. The cost

of information in this framework is also linear in mutual information, but the marginal cost

κRI could be different than κ, since this captures information flow of a different activity –

paying attention to an unknown state.

Similarly to before, the optimal attention allocation implies an optimal target level for

the posterior variance, this time given by

σ̂2
y,t =

κRI

2Wccc2y
, ∀t (11)

Importantly, in this case the optimal attention allocation and hence the resulting choice

for the precision of the signals is not state or history dependent and σ̃2
η,t = σ̃2

η, ∀t. The

assumption that yt is iid over time makes the optimal attention solution particularly simple,

but the fact that it is not state or history dependent is a general result. If yt was persistent,

then we would simply substitute the steady state Kalman filter second moments for σ2
y in

the equations below. With iid states it follows that the optimal signal-to-noise ratio α̃y that

appears in the updating equation (10), given the “no forgetting constraint”, is

α̃∗y = max{1−
κRI/(2Wccc

2
y)

σ2
y

, 0}. (12)
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The key difference between the optimal α̃∗y in equation (12) and that of our benchmark

framework, given by (7), is that in our model the prior uncertainty σ̂2
t−1(yt) is state and

history dependent. In turn, this makes the optimal signal-to-noise ratio also state and history

dependent, since the agent optimally targets a constant level of variation in the errors of his

action. The state and history dependence of the deliberation choice is a fundamental feature

of our setup, and it comes about as a result of the fact that the agent is not learning about

the value of the state yt, but about his optimal action as a function of the state. Hence

deliberation at different past values of the state carry different amount of information about

the optimal action at today’s state yt.

It is also useful to observe that the deliberation choice can be rewritten ’as if’ it is a

control cost problem where the agent has a ’default’ distribution of actions, conditional on the

state, and chooses a current distribution, subject to a cost that is increasing in the distance

between the two distributions, as measured by relative entropy.25 In turn, a tighter chosen

distribution is beneficial because errors are smaller. In our model, the default distribution

is the prior over the unknown conditional optimal action and the posterior is the updated

distribution controlled by the chosen signal-to-noise ratio. While many models of imperfect

attention to actions fit in such an ’as if’ control cost interpretation, the key property of our

model is in the endogenous dynamics of the prior distribution.26

One special case of our reasoning setup delivers the same qualitative feature as the

standard approach. In particular, right in the first period of reasoning, the prior uncertainty

σ̂2
t−1(yt) is not state- or history- dependent. Hence, the optimal signal-to-noise ratio for the

initial period, in equation (7), becomes qualitatively similar to that in equation (12):

α∗(y0; η0) = max{1− κ/(2Wcc)

σ2
c

, 0}. (13)

Moreover, when the attention costs are the same and the optimal response cy = 1, then the

formulas produce equivalent predictions for the behavior of actions in the first period.

More generally, our framework shares with the standard RI framework the feature

that agents find it costly to pay attention and therefore will make mistakes in their actions.

However, in our framework the mistakes are driven by a lack of knowledge of the functional

form of the optimal response c∗(.), and not a lack of knowledge of the unknown state yt.

As a result, the patterns of errors made by agents in our framework are history and state

dependent, while in the standard RI benchmark they are typically not.

25The control cost approach appears for example in game theory (see Van Damme (1987)) and the entropy
based cost function is studied in probabilistic choice models such as Mattsson and Weibull (2002).

26Matějka and McKay (2014) and Matějka et al. (2017) show the mapping between an entropy-based
attention cost and a control problem leading to logit choices in static and dynamic environments, respectively.
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3 Implications About Behavior

In this section we describe key implications of the model of costly reasoning described above.

3.1 Ergodic Steady State: Beliefs and Actions

Since the deliberation choice of the agent is history dependent, we focus on analyzing the

ergodic steady state behavior of our agent – i.e. the optimal deliberation and resulting action

after having seen and deliberated about a long history of yt realizations. The goal is to

analyze the typical policy function and behavior.

Discounting information

As specified, however, the model is non-stationary since the accumulation of information

never stops, and signals even very far into the past remain equally informative as current

ones. In other words, there is no steady state or ergodic distribution of beliefs. In order

to achieve one, we can follows two routes. One is to introduce shocks to the true unknown

policy function c∗(yt), for example model it as an AR(1) Gaussian Process:

c∗t (yt) = c̄(1− ρc) + ρcc
∗
t−1(y) + εt(y).

In this case the object the agent is trying to learn is changing over time and hence eventually

the information content of past signals will decay to zero. Or alternatively, we could

exogenously assume that the information content of past signals is decaying over time, either

because of time-variation in the policy function or because of costly or imperfect memory

recall. For example, we could assume that at the beginning of each period, the precision of

past signals is discounted at a constant rate δ ≤ 1 so that

1

σ2
η,t,t−k

=
δ

σ2
η,t−1,t−k

where 1
σ2
η,t,t−k

is the effective precision of the t− k signal at time t. In the benchmark results

presented in the main text we follow the second approach, as it appears a bit more general.

But we note that the time varying c∗t (yt) framework leads to essentially identical results.

Ergodic distribution

To obtain the ergodic distribution, we simulate the economy for 100 times, each of a

length of 1000 periods, where in each period we draw a new value of yt and the agent makes

optimal deliberation choices given the history of idiosyncratic signals ηt. Then we analyze

the average moments over the resulting distribution, and consider the optimal deliberation
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Figure 3: Ergodic Uncertainty – Posterior Variance and the resulting optimal signal-to-noise ratio after
1000 periods of optimal deliberation. The figure illustrates an example with parameters Wcc = 1, κ = 0.5,
σ2
c = 1, ψ = 1, and δ = 0.9

choice and the resulting optimal action of the agent at time t, given the long and typical

history that came before it.

Figure 3 plots the posterior variance of beliefs, conditional on a typical long history

of signals (σ̂2
t−1(yt)), and the associated optimal signal-to-noise ratio for the new signal

α∗(yt; ηt, η
t−1). There is an interval of yt values right around the mean, ȳ, where the posterior

variance is below the target level κ
2Wcc

, and then outside of that interval, the posterior variance

grows symmetrically towards the extreme values of yt. As a result, the optimal signal to

noise ratio of the current signal ηt is zero in the interval close to the mean, and then grows

for realizations of yt further away from the mean.

The reason that the posterior variance dips below the optimal level is because the

majority of the signals that the agent has seen in the past center around the mean value of yt,

as this is the most likely realization of the state and is the region of the state space that the

agent has deliberated the most about in the past. And while no single signal in the history of

signals ηt−1 is precise enough to lower the posterior variance below the optimal level κ
2Wcc

, the

combination of a large concentration of them indeed does so. To better illustrate this, the left

panel of Figure 4 plots the distribution of the values of yt where the agent has deliberated in

the past. Note that the agent does not necessarily deliberate (and thus obtain an informative

signal) every single period and thus for every single value of yt that has occurred in the

past. Costly deliberation is only triggered if the posterior uncertainty is relatively large, as

evidenced by the right panel of Figure 3. Hence, the distribution of yt values at which the
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Figure 4: Long-Run distribution of signals and associated precision, after 1000 periods of optimal deliberation.
The figure illustrates an example with parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9

agent has deliberated at is not necessarily identical to the unconditional distribution of yt,

but as we can see, it shares a lot of its key features, as it is symmetric and centered at ȳ.

Lastly, while this graph shows the distribution for the incidence of deliberation, it

does not paint a full picture because the optimal signal precision (i.e. the intensity of

deliberation) is state dependent, and is likely to be different for different values of yt. For

this purpose the right panel of Figure 4 plots the average signal precision chosen at each

value of yt. Unsurprisingly, we see that individual signals are most precise for values of yt

further away from the mean, and the least precise right around ȳ. This conforms with the

main characteristic of the optimal deliberation choice discussed above – the agent has the

least incentives to deliberate around the mean realization of yt, because that is where the

history of signals provides the most information.

In other words, the agent tends to have deliberated most often right around the mean

y. His typical deliberation close to ȳ is relatively imprecise, since the sum total of past

deliberation has already informed him relatively well about the optimal action in that region,

hence he does not feel the need to invest much additional effort. At the same time, the

agent tends to see and deliberate at unusual values of yt more rarely, but conditionally on

doing so, he invests a significant amount of effort, and thus obtains more precise signals.

As a result, the typical history of deliberations delivers a large concentration of relatively

imprecise signals around the ȳ, and fewer but much more precise signals at values away from

ȳ. Overall, the region around ȳ is the one where the agent’s beliefs are most certain, because
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there the agent can equally well draw on information encoded in signals at both high and

low y’s, and has also seen the highest concentration of past signals.

3.2 Optimal action – non-linearity, inertia and salience effects

Figure 5 plots the ergodic action, ĉt(.) = E(c∗(.)|ηt, ηt−1). Because of the state and history

dependent nature of the optimal deliberation choice, the effective policy function ĉ(yt) is

non-linear, even though the underlying optimal action that the agent is learning about (c∗(yt))

is linear. As a result, the behavior of the agent displays a number of interesting features,

including exhibiting both inertia and salience.

The inertia occurs for realizations of yt close to its mean, and is the result of two forces.

On the one hand, the ergodic belief about c∗(.),

µ(.) = E(c∗(.)|ηt−1),

the belief that the agent enters the typical period with, is relatively flat (see yellow dotted

line in Figure 5).27 On the other hand, these initial beliefs are rather precise in the region

around ȳ (see Figure 3), and hence the agent optimally chooses to not do much additional

deliberation in that region, resulting in a small α∗(yt; ηt, η
t−1). In other words, in that part

of the state space, the agent feels confident in his initial understanding of c∗(yt) and does not

seek to do any further costly deliberation in the current period. The agent thus follows his

prior understanding of the optimal action, which happens to be rather flat. This generates

the inertia in the middle part of the effective policy function ĉ(.), as seen from the fact that

the resulting action is only mildly responsive to changes in yt.

The key to understanding this result is the fact that the ergodic beliefs of the agent

around ȳ are both rather flat and also precise. This occurs from the state and history

dependent nature of the optimal deliberation choice, which leads the agent to a precise

estimate of the average level of the optimal action, but not the shape of the optimal policy in

that part of the state space. As we saw in Figure 4, the agent tends to accumulate many,

but individually imprecise signals around the mean value of the state. The large number of

signals helps pin down the average level of the optimal action, and indeed the agent’s beliefs

about c∗(.) are most accurate on average around ȳ. But because the agent does not reason

intensely about c∗(.) at distinct values of yt in that neighborhood, he does not get a good

estimate of the shape of the true optimal policy. The mistakes incurred for small deviations

of yt from ȳ are small, so the agent optimally does not invest much effort in thinking through

27We use the notation µ(.) to highlight that the typical long run prior integrates over various possible
paths of histories ηt−1.
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Figure 5: Ergodic Action. The figure plots the ergodic average action, computed from a cross-section of 100
agents and 1000 time periods, with parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9

the details of the local shape of c∗(.).

However, the optimal deliberation choice of the agent changes for more unusual realiza-

tions of yt. As yt moves further away from its mean ȳ, the agent’s prior learning becomes

less and less useful. As a result, he chooses to invest an increasing amount of effort into the

current period deliberation, and hence the current signal ηt becomes increasingly precise. In

turn, the agent’s action becomes more heavily influenced by his current deliberation, which

(on average) is accurately informing about increasing the action for higher values of yt. Thus

one observes non-linearity in the effective action. The optimal reasoning therefore generates

a salience effect in the agent’s behavior in the form of deliberation only for things that tend

to stand out, given his prior beliefs.

Lastly, we make a remark on our initial choice of the ex-ante prior µ(y) = c̄. On the

one hand, this initial prior does not necessarily matter for the results presented here because

the agent has seen a long history of signals, and hence has updated the ergodic beliefs µt−1(.)

accordingly. On the other hand, as we saw above, around the mean ȳ the ergodic beliefs are

accurate on average but tend to not capture well the shape of the underlying c∗(.). Hence,

the level of the ex-ante prior µ(y) does not necessarily matter, but the steady state beliefs

µ(.) do tend to be influenced by the shape of µ(.) in that region. As we argued before, a

conceptually coherent choice of µ(.) is c̄, since in this case the ex-ante prior is not a function

of y, hence the agent has no prior “free” information about the relationship between c∗(.)

and y. Any such understanding comes at the cost of deliberation effort, and the agent is free
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(a) Changing κ and ψ
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(b) Changing δ

Figure 6: Comparative statics. Benchmark values – Wcc = 1, κ = 0.5, σ2
c = 1, ψ = 1, and δ = 0.9. Changing

values: κ = 0.15, ψ = 3, and δ = 0.99.

to engage in that. It is a result that his optimal deliberation is such that his understanding

of the shape of c∗(.) is not good around ȳ, but better at more extreme values of yt.

Nevertheless, extending the model to a case where the prior µ(.) 6= c̄ is straightforward.

We would still obtain a non-linear ergodic policy function, where in the interval of yt

realizations around the mean ȳ, the resulting action ĉ(.) will be accurate on average, but its

shape will be biased towards the local shape of µ(.). At realizations of yt further away from

its steady state mean, the shape of µ(.) will continue to matter little, as this is where the

agent will be doing the most active deliberation, and follow the true c∗(.) more closely.

3.2.1 Comparative statics

The comparative statics of the model are quite intuitive. In this univariate framework (for

multivariate extensions see following sections) the effect of increasing the cost of making errors

in the action (Wcc) is observationally equivalent to the effect of lowering the deliberation cost

κ. A lower κ means that deliberation is cheaper, and as a result the agent will deliberate

more often and more intensively. Hence, the resulting effective action ĉ(.) tracks closer the

true action c∗(.). Still, as we can see in the example illustrated in the left panel of Figure

6 there is no fundamental change in the basic properties of the effective action ĉ(.) – it is

non-linear, being relatively more flat in the middle, and more upward sloping towards the

ends. However, with a lower κ the overall level of the non-linearity is smaller, and in fact the

action will converge to the true underlying linear c∗(.) as κ→ 0.
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Increasing ψ, the parameter that controls the correlation between c∗(y) and c∗(y′) for two

distinct values of the state y′ 6= y, has a similar effect. A higher ψ makes the informativeness

of any given signal more localized. Hence, past deliberations have generally lower effects

on today’s deliberation choice (unless today’s yt happens to be right in the neighborhood

of a past ηt−j), and this weakens the history dependence in the deliberation choice. Since

past deliberation is less useful, the agent finds it optimal to invest more effort in deliberation

in any given period. Thus, his effective action ĉ(.) becomes closer to the true underlying

c∗(.), and becomes more upward sloping everywhere. In particular, the resulting ergodic

distribution of signals will feature a more individually precise signals at distinct values of yt,

which transmits more information about the shape of c∗(.).

Lastly, we also consider the effect of increasing δ, which controls discounting of past

information. This parameter has slight effects on the results presented here, as exemplified

by the right panel of Figure 6. Keeping the sequence of past signals ηt−1 fixed, increasing

δ increases their overall informativeness, and leads to a lower optimal level of current

deliberation. Since past signals are more informative the agent finds it less necessary to invest

much effort in reasoning at any given period. As a result, at the new ergodic distribution

with a higher δ the agent tends to have an effectively longer history ηt−1, but each of the

signals in the history has a lower precision, since at any given period the agent deliberates

less extensively. Thus, the effective residual uncertainty and the resulting policy function are

similar to the case of lower δ, even if we choose a very high value, such as δ = 0.99.

3.3 Persistent actions

Reasoning about the optimal function c∗(y) endogenously leads to persistence in actions even

if the state y is iid. This mechanism naturally arises as long as the information acquired

about the optimal action at some particular realization of the state yt = y is perceived to be

informative about the optimal action at a different value y′.

Equation (3) describes the recursive formulation of µt(y), the posterior belief about the

average value of c∗(y). Consider the ergodic version of that equation, where the agent enters

period t with a prior mean and variance function that have settled on some long-run values,

µ(y) and Σ(y, y′), respectively. Following a particular realization of the state yt, equations (6)

and (7) give the optimal noise variance and resulting signal-to-noise ratio at yt, respectively,

so that the posterior mean function updates at the entire vector y as follows:

µt(y) = µ(y) + α∗(yt)
Σ(y, yt)

Σ(yt)
[ηt − µ(y)]
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where the signal ηt = c∗(yt) + ση,tεt. There ση,t is given by the optimal intensity of the

reasoning process, implying a signal to noise ratio α∗(yt) = max{1− 0.5κ/WccΣ(yt), 0}, and

εt is the particular noise realization in the internal signal about c∗(yt).

3.3.1 Impulse response

Consider a shock to the state that moves it from its ergodic value of y to some particular

realization yt. To understand the persistent effect of this change on the observed action, it is

useful to separate the intuition into the impact and the propagation effects of that change.

The impact is given by the ergodic policy function µt(y) explained in section 3.2. If the

agent does not find it optimal to spend additional cognitive effort at the state yt, so that

α∗(yt) = 0, then µt(y) is entirely driven by the ergodic prior µ(y). As no new information

about the optimal action is acquired, there are no updating effects on the agent’s beliefs

about c∗(y) and so there are no persistent effects of the change in the state on the actions.

In contrast, if the agent does choose to invest cognitive effort, then the new signal ηt

shifts beliefs about optimal action at yt, as well as at other values in the state space. The

strength of the shift is given by two forces. First, the impact effect at yt, given by α∗(yt).

The action responds more to the signal ηt if the state is more unusual, in the sense that the

ergodic prior uncertainty Σ(yt) is larger, so that the agent decides to invest significant effort

in reasoning about the optimal action. Second, the shift affects beliefs through the covariance

function Σ(y, yt). The higher is this prior covariance, the more informative is the signal at yt

about optimal actions at other state values y. The covariance is larger if the state y is closer

to yt and if the parameter ψ is smaller.

Let us turn now to the propagation of that change in the observed state. The rate at

which the prior covariance decays with the distance between y and yt is a key determinant of

persistence. For a large enough value of ψ, the agent’s prior is that the signals acquired about

c∗(yt) are essentially useless about c∗(y) at some y 6= yt, as then the prior covariance function

decays very quickly to zero as y differs from yt. In that case, the only significant effect is an

update of the optimal action at yt. Since the probability of the future realizations to be very

close to that specific value of yt is close to zero, there are no significant persistent effects.

In contrast, for a smaller ψ, signals obtained at different values of yt are used to shift

beliefs about the entire unknown optimal action function. As new states will realize following

period t, this shift in beliefs persists until it converges back to the ergodic µ(y). Therefore, a

signal about the optimal action at yt is likely to have persistent effects on observed actions,

even if the objective states are iid.

Consider a graphical representation of the impulse response function. To isolate the

average effects, we focus on the case where the signal realization equals its average value, so
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we directly set εt = 0 in this analysis.28 The blue solid line in the left panel of Figure 7 plots

the impulse response starting from t for a value of the state yt = −2σy for the benchmark

parametrization. On impact, the action incorporates about 25% of the change in the state,

dropping by 0.05 compared to the reduction of 0.2 in yt. While such an underreaction appears

more generally also in models of partial attention to the states, an important additional

property of our model is the resulting propagation. Indeed, as described above, the negative

shock to yt leads to a persistently lower average action following the shock.
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(b) Alternative shock realizations

Figure 7: Impulse response function. The figure plots the typical path of the action following an innovation of
yt = −2σy. The figure illustrates an example with parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.
In the left panel we change parameters to κ = 0.1, ψ = 5 and δ = 1, respectively. In the right panel we
change persistence to ρy = .9, or we feed in future values of yt+j that always equal to y, or set the current
shock to yt = −3σy.

The left panel also illustrates the role of the parameters in driving the propagation.

The response on impact is stronger and there is less persistence when the cognition cost is

lower (’low κ’, dotted yellow line), or when the signal at yt is less informative at other states

(’high ψ’, dashed orange line). When there is no discounting of past information (’δ = 1’,

starred purple line), the agent has accumulated so much information that it does not further

deliberate and instead only uses the ergodic prior mean at yt for the best guess on c∗(yt).

The lack of further updating leads to no persistent effects on the average action.

The right panel of Figure 7 illustrates the strong non-linearity of the model by plotting

three alternative assumptions on the shock realizations. First, in the dotted orange line,

we make the state realization even more unusual, at yt = −3σy. On impact, the action

now incorporates about 33% of the change in the state, dropping by 0.11 compared to the

28Given the non-linear nature of our model we compute a generalized impulse response function to a
particular realization of the state yt as IRFj(yt) = E(ct+j |yt)− E(ct+j |yt = y).
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reduction of 0.3 in yt. The larger proportional reduction compared to the baseline case

indicates the role of the state-dependent reasoning. Since the state is now more unusual,

the prior uncertainty is large and the agent finds it optimal to reason intensely. The higher

intensity leads to a proportionally stronger response in the average action.

Second, in the starred purple line, we calculate a different object for the impulse

response, using the typical approach of computing the impulse response in a linear model. In

particular, here we ignore the distribution of future states and instead feed in realizations for

yt+j that always equal to y. The resulting path is more persistent since in this case the agent

continues to see values of y and does not reason further so the updating done at yt is long

lived. However, in our model the state-dependency of the deliberation choice means that

when there are shocks to future yt+j, it is more likely that some of these realizations trigger

reasoning compared to the case of feeding always the average ȳ. The larger chance of future

reasoning tends to decrease the weight that will be put in the future on the information

obtained at yt, which generates less persistence.

3.3.2 Hump-shape dynamics

The model is able to predict hump-shape dynamics in the action even when the exogenous

state is mean reverting. For that we note that an important characteristic of the non-linearity

of the ergodic policy function plotted in Figure 5 is a convex shape that appears for a

significant part of the state space, both to the left and the right of the mean y. Suppose now

that yt moves into those areas, for example being close to a value of 1.15, and record the

implied action ĉ(yt). From mean reversion, the distribution of future states has a mean that

is closer to y, i.e. E(yt+1) < yt. If the response function ĉ(y) would be linear we would also

observe on average mean reversion in the action, i.e. E(ĉ(yt+1)) < ĉ(yt). However, given the

local convexity of the function, the Jensen inequality implies that

E(ĉ(yt+1)) > ĉ(E(yt+1).) (14)

The inequality in equation (14) allows for the possibility that E(ĉ(yt+1)) > ĉ(yt), so that even

if the future state on average is closer to its mean, the average action is not and one observes

hump-shape dynamics. This convex effect can dominate the mean reversion effect when the

response function is convex enough and when the persistence in the state is high enough.

Intuitively, the convexity of the policy function captures the interplay between the

inertial effects around the usual states and the salience effects at the more unusual state.

If the state moves closer to its mean, the agent uses more heavily past experiences which,

at those usual state realizations, tend to be more informative about the average level of
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the action rather than the slope so that the resulting action tends to be flatter. If the

state moves even further away from the ergodic value, it enters into parts of the state space

that are relatively more unusual, where the agent finds it optimal to reason more intensely.

These salience type of effects are more informative about the local slope and lead to stronger

responses. Therefore, the average movement in the next period action may be dominated by

salience type of reasoning so that the agent takes an even more reactive action than before.

In the right panel of Figure 7 we plot as the dashed line the non-linear impulse response

function for the case of ρy = 0.9. On impact, the effect is smaller because the size of the

innovation has been reduced to match the same unconditional variance.29 Importantly, for

this parameterization the Jensen inequality effect of equation (14) is strong enough so the

propagation is characterized by hump-shape dynamics.

3.4 Persistence of volatility of actions

Reasoning about the optimal function endogenously leads to changes in the time-series

volatility of actions.

3.4.1 Volatility clustering

We illustrate how the model generates clusters of volatility through the following experiment.

Once the economy reaches its long run distribution, at some point T we feed in a randomly

drawn sequence of states of length s. Denote that vector of draws as ys. We directly affect the

variability of that vector of innovations by multiplying it by a scalar V. Denote the resulting

vector of actions that the agent chooses in this first stage, when observing the vector V ys, as

a1. At time T + s, we feed in another random sequence of states of length s, also multiplied

by V. We collect the vector of actions that the agent chooses in this second stage as a2. We

simulate repeatedly over ys, we vary V and report σ(a2), the standard deviation of actions in

the vector a2, compared to the action vector a1, σ(a1). Notice that, on average, the standard

deviation of the states generating the vectors a1 and a2 is the same, given by V σy.

The main finding here is that the ratio σ(a2)/σ(a1) is increasing in V , or, put differently,

it is increasing in σ(a1), since the latter is increasing in V. Therefore, we find that there is an

endogenous persistence of volatility in actions. An econometrician analyzing data produced

from the model finds that, conditioning on a sample where the variability of innovations is

larger than usual, the variation in actions following that sample is also larger than usual.

The intuition of this result is driven by the logic behind the ergodic reasoning behavior.

In that ergodic distribution, when observing an unusual sequence of states, there are two

29We adjust σy = .1
√

1− ρ2y to keep the same unconditional variation in the state as in the baseline model.
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main implications. One is a direct effect through which the agent’s actions are also more

unusual, since they respond to the observed states. From this direct effect, the measured

volatility of actions is larger. Absent any further propagation mechanisms, the model would

attribute a larger variability of actions to a larger variability of states.

However, there is a second, propagating effect, through the implications for optimal

reasoning. Given more unusual states, the agent chooses to reason more intensely, since the

prior uncertainty at those states is relatively large. By reasoning, the agent obtains more

informative signals about the optimal policy function, which, on average, leads to an updated

prior belief at T + s, µT+s−1(y), that is characterized by stronger action responses to the

state y. This updated belief generates on average more variable actions starting at period

T + s, as the belief converges back to the ergodic posterior mean µ(y). As a consequence, the

indirect effect of more intense reasoning, incentivized by more variable realizations of the

state, leads to an endogenous persistent increase in the variability of actions.

The left panel of Figure 8 illustrates the effect graphically. We use the baseline

parametrization and simulate repeatedly over a vector ys of length s = 20. We set V = 0.5

and V = 1.5, corresponding to a ’low’ and ’high’ variance sample, respectively. Figure 8

plots the resulting policy functions. As described above, the posterior belief assigns stronger

responses following more volatile innovations, leading to subsequent more variable actions.
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Figure 8: Optimal action and variability of states. In the left panel the policy function conditions on samples
of shocks with lower or higher than typical variability. In the right panel the policy function conditions on
the previous state realization ranging from −σ to −3σ. The figure illustrates an example with parameters
Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.
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3.4.2 More variable actions after a large shock

We use a second experiment to illustrate how after a ’big’ shock, the measured response of

actions endogenously changes. In particular, consider again the ergodic distribution where at

some point T we feed in a state yT = ασy. Starting at T + 1, we repeatedly simulate a vector

of length s of draws for the state and report how the resulting standard deviation of actions

based on that vector changes as we vary α.

The main finding is that the variability of actions following the shock yT increases

with |α|. After more unusual states, the agent finds it optimal to reason more intensely.

On average, the signals received by the agent lead to an updated belief µT (y) that is more

responsive around the realized state yT . The agent thus enters the subsequent periods with a

prior belief of stronger reaction, which generates a larger variability in actions.

The right panel of Figure 8 illustrates the point graphically. There we plot the policy

functions for α taking three values, −1,−2 and −3, respectively, where we also note that

the effects discussed here are symmetric for α = 1, 2 and 3, respectively. There are two clear

important effects. One is that the average level of the posterior belief is shifted down, as the

agent updates over the whole function. This shift illustrates a previous point, namely that

there is endogenous persistence in the mean action. The size of the effect is also non-linear:

the update is larger for more unusual state realizations, since there the prior uncertainty is

larger and thus there the agent chooses to reason more intensely.

The second effect is on the shape of the posterior belief. The downward shift implied by

the average signal obtained at yT is stronger locally, around the realized state. Importantly,

the more unusual the state it, the steeper is the posterior belief. The reason is that the

average signal obtained at yT indicates to the agent that the optimal policy function should be

generally more responsive, not only at the specific realized yT , but also at the previously often

visited states. The local informativeness of signals thus transmits the acquired information

at the unusual states into subsequent stronger action responses.

In Appendices A and B we document in a more systematic way how an econometrician

analyzing time-series data on actions from our model recovers evidence of persistence in the

mean and variance of actions. For example, we find that even the benchmark case of an iid

state generates significant volatility clustering, as well as a mean action whose persistence is

given by an autoregressive coefficient of 0.6. Both types of persistence decrease when either

the cognition cost, κ, or the local informativeness of signals, ψ, is lower.
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3.5 Cross-sectional distributions

In our analysis so far we have described the average individual behavior by focusing on an

average realization of the reasoning error. In this section we expand the analysis to include

the effects of such errors. We do so at the individual level, where we emphasize the stochastic

nature of choices, and then analyze implications for the cross-sectional distribution.

3.5.1 Cross-sectional distribution of reasoning errors

Here we introduce a continuum of agents indexed by i that are ex-ante identical in the sense

that they have the same initial prior µi,0(yt), they solve the same problem and face the same

parameters, including their cognitive cost. Each agent’s objective is to choose the current

action that minimizes expected quadratic deviations from the otherwise identical optimal

action function c∗(yt). There are no other strategic considerations between agents that affect

this problem. The only source of heterogeneity in this economy is the specific history of

reasoning signals that each agent has received about c∗(yt).

The history of observed states is common to all agents, given by the history of aggregate

states yt. Therefore, the choice of the reasoning intensity is also common across i at each t,

since this choice only depends on the observed states and the rest of the structural parameters,

which we have assumed to be the same across agents. It follows that agents share the same

covariance function Σt−1(yt) at each time t. There is still potentially heterogeneity in the

prior mean µi,t−1(yt) due to the particular history of realizations of the reasoning errors.

Therefore, the signal structure is

ηi,t = c∗(yt) + ση,tεi,t,

where ση,t is the optimally chosen variance of noise, common to all agents, and εi,t is the

resulting idiosyncratic reasoning error made by agent i.

The posterior beliefs about the optimal action function follow

µi,t(y) = µi,t−1(y) + α∗t (yt)
Σt−1(y, yt)

Σt−1(yt)
[ηi,t − µi,t−1(y)] (15)

where, entering period t, µi,t−1 and Σt−1 denote as before the prior mean and the covariance

functions, respectively. The previous analysis on the optimal signal-to-noise ratio applies,

and we obtain that when Σt−1(yt) <
κ

2Wcc
, then agents choose not to reason and set ση,t =∞.

Otherwise, the optimal signal-to-noise ratio is given by equation (7) as:

α∗t (yt) = 1− κ

2WccΣt−1(yt)
(16)
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3.5.2 Individual stochastic choice

Let us now focus on the observed behavior for an individual agent i. In this context,

experimental studies have widely documented a stochastic element in observed choices.

More precisely, a given subject does not make always the same choice even when the same

set of alternatives is presented. Our model of optimal deliberation generates such stochastic

choices as a result of the reasoning errors drawn from a distribution whose dispersion is

controlled by the procedurally rational agent.

The average observed action at time t is given by equation (15) where ηi,t = c∗(yt),

while the standard deviation of the action around that mean equals
√
.5α∗t (yt)κ/Wcc. Figure

9 plots the resulting 95% confidence interval for the observed action. The solid blue line and

the dashed orange lines are the same policy functions as in Figure 5 indicating the agent’s

average action and the true optimal function, respectively. The solid yellow line and the

dotted purple lines now plot the lower and the higher bound of the 95% confidence interval,

respectively. We note that when the state is more unusual the agent chooses to exert more

effort into reasoning, while for more typical states the agent relies more heavily on previous

experiences in the form of the prior µi,t−1(yt). Consistent with a large experimental literature

in our model the observed action is more volatile for the currently more unusual states.
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Figure 9: 95% confidence interval around the ergodic policy function. The figure plots the ergodic average
action together with lower and upper bounds on the 95% confidence interval around it. The figure illustrates
an example with parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.
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3.5.3 Cross-sectional distribution of policy functions

While the stochastic nature of choices for the same individual is an intrinsic part of the

model, the fact that the agent learns about a function implies systematic predictions from

the history of signals to the observed behavior, as indicated by equation (15). Since different

agents will tend to observe specific histories of reasoning signals leading to different policy

functions, an analyst observes variation in behavior not only as individual stochastic elements

of choice, through the current realized εi,t, but also in its systematic part of it, through the

heterogeneity in the prior µi,t−1(yt).
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(b) History of reasoning errors with high mean

Figure 10: Policy functions for different history of reasoning signals. The figure illustrates an example with
parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.

In contrast to the typical policy function that we showed in Figure 5, based on feeding

to one agent a history of realizations of εt = 0, ∀t, in Figure 10 we illustrate two different

histories of reasoning signals that lead to two very different policy functions. In the left panel

one agent has experienced a string of reasoning signals that point towards a low average

action, indicated by the low average prior µi,t−1(y) in the dotted line. Interestingly, in this

case, the prior itself is non-monotonic in the state. We then feed in the average current signal

ηi,t = c∗(y), given by the dashed line, to focus on how different histories of signals shape

the current decision. On average the new signal tends to indicate a significant rise in the

best course of action for positive state innovations, leading to a strong upward change in

the posterior. Around the mean innovation however, this agent has accumulated enough

information that no further reasoning occurs so the posterior equals the prior. The resulting

posterior belief about the best course of action has therefore interesting properties: it is (i)

on average lower than the true optimal action; (ii) non-monotonic and changing curvature
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with the state; (iii) steeper for positive state innovations than the true optimal action. The

right panel is an illustration of a history of signals for an agent that generates the opposite

behavior. Here the prior is on average high and when we feed in the average current signal,

we observe properties of the action that are the reverse of those in the left panel.

Our analysis therefore points to a possible interpretation of observed stochastic and

heterogeneous behavior that is based on optimal deliberation. An analyst using data from

our model recovers stochastic choice for each agent i, as well as heterogeneity in their typical

behavior. For example, the agent described by the left (right) panel of Figure 10 looks like

having a negative (positive) average bias in the action, with local changes in behavior that

are non-monotonic as well as particularly large for positive (negative) innovations.

The recovered differences are not the manifestation of typical behavioral biases in the

form of ex-ante individual differences that do not adjust as the environment structurally

changes. Instead, our agents are ex-ante identical: they start with the same prior and

learn about the same optimal action, but are ex-post different because they experience

different internal signal realizations on the best course of action. In turn, these agents do not

mechanically follow rules but are procedurally rational so that the degree of their reasoning

errors respond to the state and to the characteristics of the environment.

3.5.4 First and second moments in the cross-section

Let ĉt denote the time t cross-sectional average action, i.e. ĉt ≡
∫
µi,tdi, where µi,t is the

agent i’s action and σt ≡
∫

(µi,t − ĉt)2 di denote the cross-sectional dispersion of actions.

The law of large numbers implies that the reasoning errors εi,t average out, so that the

average action has a recursive structure

ĉt = (1− α∗t (yt))ĉt−1 + α∗t (yt)yt, (17)

which is the same as the typical evolution of the posterior mean µt for an individual agent in

equation (8). Therefore, the same properties for ĉt apply here, including non-linear responses

to the state, persistence, possible hump-shape dynamics and volatility clustering.

To characterize the dispersion of actions, we use the optimal choice of α∗t (yt) given by

equation (16), substitute the average action from equation (17) and note the orthogonality

property of the reasoning errors to obtain the second moment σ̂t as

σ̂t = (1− α∗t (yt))2
∫ [

µi,t−1(yt)−
∫
µi,t−1(yt)di

]2
di+

α∗t (yt)κ

2Wcc

, (18)
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where the last term follows from

∫
ε2i,tdi = 1.

Consider now the cyclical movements in σ̂t. There are two types of state-dependency

present in equation (18). First, the dispersion of priors is state-dependent, since agents

have different priors about the optimal action at yt.The source of this dispersion is the

variability in the past updates about the optimal action obtained by different agents. It is

now useful to relate back to Figure 4 which plots the probability distribution of the values

of yt where a typical agent has deliberated in the past. A defining characteristic of the

ergodic behavior is that the region around ȳ is the one where the agents’ beliefs are most

certain. This larger certainty is obtained by accumulating and responding to the reasoning

signals that each agent has obtained. Stronger responses to these idiosyncratic signals create

larger dispersion of priors µi,t−1(y). In contrast, further away from ȳ, there is less relevant

information accumulated through time and as a consequence the agents’ priors µi,t−1(y) are

less dispersed. Therefore, we expect that the dispersion of priors decreases with |yt|. The

dashed line in Figure 11 illustrates this property at the ergodic distribution.
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Figure 11: Cross-sectional dispersion from reasoning errors. The figure plots then ergodic dispersion of
actions, as well as in priors, together with the ergodic signal-to-noise ratio. illustrates an example with
parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.

Second, the signal-to-noise ratio is state-dependent: as |yt| increases, the prior uncer-

tainty is larger, which in turn increases the optimal α∗t (yt) and agents deliberate about the

optimal action. The effect of a larger α∗t (yt) works in two opposite directions. On the one

hand, the larger reliance on new idiosyncratic signals reduces the dispersion through the

lower weight attached to differences in priors, as given by the first term of equation (18).

This force amplifies the fact that the dispersion of priors tends to be lower for larger |yt|. On

the other hand, the new signals have errors with an optimally chosen standard deviation of

ση,t and update the posterior by α∗t (yt)ση,t. These idiosyncratic signals increase the dispersion

in posterior beliefs by a factor proportional to α∗t (yt), given by the second term of equation
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(18). The dotted line in Figure 11 illustrates this effect.

Overall, the effect of the absolute size of the state |yt| on the measured σ̂t depends

on the relative strength of these state-dependencies. The increase in dispersion of actions

when the state is unusual, following the newly acquired reasoning signals, tends to dominate

when the dispersion of priors is relatively flat with respect to the aggregate state, as it is

in the numerical examples we have shown so far. The solid line in Figure 11 illustrates the

relationship between |yt| and σ̂t at the ergodic distribution for the baseline parametrization.

4 Two Actions

In this section we consider the extension of our model to a case where the agent takes multiple

actions, which we call c and l (e.g. consumption and labor). The agent seeks to minimize the

sum of squared deviations of both actions from the unknown policy functions c∗(y) and l∗(y):

WccEt(ĉ(yt)− c∗(yt))2 +WllEt(l̂(yt)− l∗(yt))2,

where Wcc and Wll parameterize the cost of mistakes in terms of the first and the second

action respectively. We model the uncertainty over the vector of policy functions [c∗(y), l∗(y)]

as a vector Gaussian Process distribution,[
c∗(y)

l∗(y)

]
∼ GP

([
µc(y)

µl(y)

]
,

[
Σc(y, y′) Σcl(y, y′)

Σcl(y, y′) Σl(y, y′)

])
,

where now µc(y) and µl(y) represent the prior mean functions over the c∗(.) and l∗(.) policy

functions respectively, and Σc(y, y′) and Σl(y, y′) are the covariance functions within the two

functions c∗(.) and l∗(.) respectively, and Σcl(y, y′) is the covariance function across the two

policy functions c∗(.) and l∗(.). All covariance functions are of the squared exponential family

Cov(c∗(y), c∗(y′)) = σ2
ce
−ψc(y−y′2); Cov(l∗(y), l∗(y′)) = σ2

l e
−ψl(y−y′2)

including the cross-term Cov(c∗(y), l∗(y′)) = σ2
cle
−ψcl(y−y′2), where the respective parameters

play the same role as before. We focus on the case where the decay rate of information in

the distance between y and y′ is the same so that ψc = ψl = ψcl = ψ.

The deliberation process is modeled as a choice over the precision of unbiased signals

ηc(yt) = c∗(yt) + εηct ; ηl(yt) = l∗(yt) + εηlt
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about the underlying policy functions c∗(.) and l∗(.). This amounts to choosing the respective

variances of the idiosyncratic noise terms in the above signals. Lastly, the cognition cost

is again a linear function of the total information the agent acquires about his (vector of)

optimal actions, as measured by Shannon mutual information:

I(

[
c∗(y)

l∗(y)

]
;η(yt),η

t−1) = H(

[
c∗(y)

l∗(y)

]
|ηt−1)−H(

[
c∗(y)

l∗(y)

]
|η(yt),η

t−1)

where we define the bold symbol η(yt) as the vector of signals ηc and ηl:

η(yt) =

[
ηc(yt)

ηl(yt)

]

Hence the costly deliberation framework is a straight extension of the univariate case. The

agent faces the following reasoning problem:

U = max
σ̂2
ct,σ̂

2
lt

−Wccσ̂
2
ct(yt)−Wllσ̂

2
lt(yt)− κI(

[
c∗(y)

l∗(y)

]
;η(yt),η

t−1)

s.t. σ̂2
ct(yt) ≤ σ̂2

c,t−1(yt); σ̂
2
lt(yt) ≤ σ̂2

l,t−1(yt)

where for convenience we define the notation

σ̂2
ct(yt) = Vart(c

∗(yt)); σ̂
2
lt(yt) = Vart(l

∗(yt))

Given an optimal choice of the signal error variance, there are corresponding effective

signal to noise ratios α∗c(yt;ηt,η
t−1) and α∗l (yt;ηt;η

t−1) respectively, and the resulting effective

actions taken by the agent are given by:

ĉt(yt) = Et(c
∗(yt)) = ĉt−1(yt) + α∗c(yt;ηt,η

t−1)(ηct − ĉt−1(yt)) (19)

l̂t(yt) = Et(l
∗(yt)) = l̂t−1(yt) + α∗l (yt;ηt,η

t−1)(ηlt − l̂t−1(yt)) (20)

4.1 Optimal Deliberation

We focus on the case where the agent has a prior belief that there is no correlation between the

values of his two actions and hence σ2
cl = 0.30 The optimal deliberation choice is represented

30This is a particularly straightforward case to analyze because the optimal deliberation about each action
is independent of the choice of deliberation about the other. Moreover, it is still an interesting special case
because some of the fundamental features of the more general problem are quite transparent here.
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by, this time potentially action specific, optimal target levels for the posterior uncertainty:

σ̂∗2ct (yt) = min{ κ

2Wcc

, σ̂c,t−1(yt)}; σ̂∗2lt (yt) = min{ κ

2Wll

, σ̂l,t−1(yt)}

The overall features of the ergodic distribution of beliefs is thus similar to the univariate

case, and hence we focus on the new features of the multidimensional problem presented

here. The most interesting such features arise in the case when there is an asymmetry in the

costliness of mistakes, Wcc 6= Wll. Without loss of generality we assume that

Wcc > Wll

and illustrate the ergodic effective policy functions of such an example in Figure 12.
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(a) effective ĉ policy
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Figure 12: Two Actions Optimal Policy. Benchmark values – Wcc = 1,Wll = 0.5, κ = 0.5, σ2
c = 1, σ2

l =
1, σ2

cl = 0, ψ = 1, and δ = 0.9. Changing values: κ = 0.15, ψ = 3, and δ = 0.99.

As we can see, both policy functions display the characteristic non-linearity that we

saw in the univariate case, with a region of relative inertia around the mean values of yt,

and salience-like effects for more distant values. But while the basic implications of the

previous section readily extend to the multidimensional case, there are interesting differences

in the extent to which the two separate effective policy functions, ĉ and l̂, display those

basic non-linear features. Since the agent finds it relatively less costly to make mistakes in

terms of his second action, l̂, he optimally ends up deliberating less about it. At the ergodic

distribution, this results in an effective policy function l̂ that is much flatter than the effective

policy ĉ, and that also displays less reaction even in the tails of yt realizations.
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4.2 Comovement and inference on the cognitive friction

The optimal deliberation model implies that the comovement between the two actions is

time-varying. For realizations of yt closer to the mean ȳ, the agent adjusts ĉ much more

than he does l̂, resulting in a relatively low comovement between the two. This is due to

two forces. First, the ergodic distribution of beliefs differs across the two actions. Since the

agent cares more about ĉ, he tends to accumulate more precise signals about it over time,

which results in a more precise ergodic belief, µ̄c(y), that more accurately tracks the true

c∗(y). Second, for any given current yt, the agent chooses to deliberate more about ĉ than l̂,

but this difference declines for more unusual realizations of yt. Essentially, while in a typical

period the agent spends less time reasoning about the less important action, when presented

with an unusual state the agent finds it useful to deliberate about both. This results in

time-varying comovement between the two actions, and to an econometrician who does not

take into account the non-linear implications of our costly deliberation framework, it would

look like a change in preferences, or another type of a regime shift.

The standard Rational Inattention (RI) framework cannot deliver such time-varying

comovement between actions. Since there the friction is in terms of observing the objective

state, any information about the unknown yt informs both actions equally. The agent has full

knowledge of the two individual optimal policy functions, and hence applies the information

about yt equally to both. As a result, the co-movement between the two effective actions ĉ(.)

and l̂(.) is constant for all values of yt. Moreover, the overall choice of how much information

to process about yt will depend on the weighted average of the costliness of mistakes in terms

of both ĉ and l̂ together. Thus, increasing Wcc, for example, will not only make the optimal

ĉ(.) more accurate, but will in fact increase the accuracy of both actions at the same time.

Our setup affects an econometrician’s inference about the size of the underlying cognitive

friction. To visualize these inference effects, the dashed lines in Figure 12 illustrate the

resulting RI action estimated on data about ĉ only. While the RI model cannot deliver the

non-linear features of the optimal ĉ, it will obtain the best linear fit, and hence imply behavior

that is on average correct with the underlying ĉ. However, if we are to then extrapolate the

estimated model to predict the agent’s behavior in terms of the other action, l̂, the prediction

will have a significant bias to it, as illustrated in the right panel of Figure 12. The resulting

optimal RI action in terms of l̂ is the same as that for ĉ, since they are equally loading on

the same underlying belief about yt. When the RI model sees data from ĉ, where the agent

tracks his actual optimal c∗(.) better, it infers that the agent pays a lot of attention to yt

and hence tracks it well. But given such precise beliefs about yt the RI model would imply

that the agent is freely using that information in setting his other action, resulting in a quite

responsive l̂. To the contrary, however, in our model the agent generally does not respond
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much to l̂, and in particular not nearly as much as he does in terms of ĉ. Similar issues arise

if the econometrician instead only uses data from l̂ and makes inference about behavior in

terms of the other action, or tries to fit a single model to data on both actions.

5 Conclusion

In this paper we have developed a tractable model to study costly cognition. We have

assumed that agents perfectly observe state variables, but have limited cognitive resources

that prevent them from computing their optimal policy function. We have shown that the

resulting actions are characterized by several empirically plausible features: (i) endogenous

persistence: even if the observed states are iid, there is persistence in the agent’s beliefs

about the conditional optimal course of action; (ii) non-linearity: typical behavior exhibits

inertia and ‘salience’ effects; (iii) stochasticity: the action is stochastic, even conditioning

on the perfectly observed objective state, as it is driven by random reasoning signals; (iv)

cross-sectional heterogeneity in policy functions: agents’ experiences may lead to average

biases and local changes that are non-monotonic; (v) endogenous persistence in the volatility

of actions: following unusual times both the time-series and the cross-sectional variance

increases; (vi) state-dependent comovement and accuracy in different actions.

The model has potentially important policy implications. First, it offers a cohesive

framework to understand an array of features for the individual behavior of a procedurally

rational agent. The errors made by this agent do not arise from mechanical decision rules,

but instead respond to the state and the characteristics of the environment, including

policy changes, in the spirit of Lucas (1976). Second, the friction may help understand

macroeconomic phenomena such as non-linearity, persistence, volatility clustering, and in

the process may change inference on the underlying sources of economic mechanisms and

shocks. Indeed, an econometrician that fits a standard fully rational agent model to the

equilibrium outcomes generated by our model may conclude that there are policy-invariant

sources of non-linearity and time-variation in parameters. Instead, through the lenses of our

model, these non-linearities and apparent time-varying parameters are a manifestation of

a single cognitive friction that leads economic agents inside the model to act according to

state-dependent reasoning rules.

Finally, our aggregate-level implications have abstracted from general equilibrium type

of interactions. Incorporating these interactions involves studying the propagation effects of

the state-dependent individual errors in actions, as well as modeling the agents’ reasoning

choice of computing potentially complex general equilibrium effects, issues that we find

promising for future research.
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A Statistical fit of persistence in the time-series

In this appendix section we document in a more systematic way how an econometrician
analyzing time-series data on actions from our model recovers evidence of persistence as well.
For this purpose, we consider an Autoregressive process of order p (AR(p)) for the action:

ĉt = c+

p∑
i=1

ρiĉt−i + σεt (21)

Table 1: Time-series properties of the action

Moment \Model Baseline Lower κ Higher ψ

Persistence ρ̂1 .61 .18 .19

[.59,.63] [.17,.21] [.17,.21]

Note: This table reports results for estimating ρ1 in equation (21).The baseline parametrization is Wcc =

1, κ = 0.5, σ2
c = 1, ψ = 1, and δ = 0.9. In the third column κ = .1, while in the fourth column ψ = 5. In

squared brackets we report the 95% confidence interval.

Table 1 summarizes results for the baseline model and some alternative specifications.31

The model is characterized by significant evidence against the null of no persistence in actions.
We focus there on an AR(1) process and find that the estimated ρ1 parameter is significantly
positive indicating a strong departure from the iid assumption on the evolution of the state
yt. The intuition for the presence of endogenous persistence follows the logic of the impulse
response function presented in section 3.3. The key mechanism is that the information
acquired about the optimal action at some particular realization of the state yt is perceived
to be informative about the optimal action at a different value y′. The discussion in sections
3.2 and 3.3 highlights the two essential structural forces for these time-series results. In
Table 1 both for the alternative parameterizations of ’Lower κ’ and ’Higher ψ’, the effects of
reasoning about the optimal function are weaker, in the form of smaller estimated ρ1.

In Table 2, we also estimate an AR(2) process and the best fitting AR(p) model. For
the baseline parametrization the AR(2) improves the fit over the AR(1) with significant
coefficients at both lags. The best fit, according to the Akaike information criterion, has 6
lags with a sum of coefficients equal to 0.71. While in the baseline model the state is iid, we
explore the effects of increasing that persistence to 0.5 and 0.9, respectively. In the former
case, the cognition friction leads to a higher persistence in actions, equal to 0.83. In the latter
case, the model also generates significant hump-shape dynamics. In particular, when we fit
an AR(2) process, the impulse response function transmits a raise in ct into an increase in
ct+j that mean reverts only at j = 6. This confirms the hump-shape dynamics in Figure 7.

31We simulate 10000 periods and drop the first 500 so to compute long run moments.
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Table 2: AR(p) processes for action

Model/Moment AR(1) AR(2) AR(p)

Persistence in actions ρ ρ1 ρ2 p∗
p∗∑
i=1

ρi

Baseline .61 .48 .2 6 .71

Shock persistence ρy = .5 .83 .85 -.02 5 .83

Shock persistence ρy = .9 .97 1.15 -.18 8 .95

Note: This table reports results for estimating AR(p) processes for the average action, as in equation (21). .

B Statistical fit of volatility clustering in the time-series

To measure volatility clustering, we first use the AR(p) regression in equation (21) to
compute squared residuals ε̂2t . We then regress them on the previous absolute value of actions
c̃t−1 ≡ ct−1I(|ct−1| > σ), where the latter indicator equals one if the absolute value of the
action ct−1 is larger than a threshold proportional to the measured unconditional standard
deviation of actions, denoted by σ. The regression states:

ε2t = α + β|c̃t−1|+ ε̃t (22)

Table 3: Time-series properties of the action

Moment \Model Baseline Lower κ Higher ψ

Volatility cluster β̂ .6 .48 .5

[.3,1] [-.01,1] [0,1]

Note: This table reports results for estimating β in equation (22) for the baseline and alternative parametriza-

tions of Table 1. In squared brackets we report the 95% confidence interval.

Table 3 reports evidence for volatility clustering, in the form of a significantly positive
β in equation (22).32 The intuition for this finding is presented in section 3.4.1. After more
unusual states, which in turn generate more unusual actions compared to the ergodic action,
in the form of a higher |ct−1|, the agent finds it optimal to reason more intensely. This
increased deliberation leads on average to an updated belief that is more responsive, which
on average generates a larger variability in actions in the next period, resulting in larger
residuals ε2t . The effects are smaller for the ’Lower κ’ and ’Higher ψ’ cases.

32If instead of the threshold σ in the indicator function in (22), we use a value of 0, then the point estimate
for β is still positive but not significant at a 95% confidence level.
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