Skip to main content

Secondary navigation:

Department of Physics

Dr. David Broido

professor of physics

david-broido

Phone: 617-552-3348
Higgins Hall 230C
E-mail: david.broido@bc.edu


Education

Ph.D. Physics, University of California at San Diego
M.S. Physics, University of California at San Diego
B.S. Physics, University of California at Santa Barbara

Areas of Research

Theoretical condensed matter physics with emphasis on the transport properties of novel thermoelectric materials, and on carbon-based structures such as graphene, carbon nanotubes and diamond.

Selected Publications

  • "First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?”, L. Lindsay, D. A. Broido and T. L. Reinecke, Physical Review Letters 111, 025901 (2013).
  • “Thermal Conductivity and Large Isotope Effect in GaN from First Principles”, L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Review Lett. 109, 095901 (2012).
  • “Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe(1-y)Se(y)”,  Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, J. Am. Chem. Soc. 134, 10031 (2012).
  • “Thermal conductivity of diamond nanowires from first principles”, Wu Li, Natalio Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho, Phys. Rev. B 85, 195436 (2012).
  • “Lattice thermal conductivity of (Bi1−xSbx)2Te3 alloys with embedded nanoparticles”, N. A. Katcho, N. Mingo, and D. A. Broido, Phys. Rev. B 85, 035436 (2012).
  • “Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys”, A. Kundu, N. Mingo and D. A. Broido, Phys. Rev. B 84, 125426 (2011).
  • “Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit”, L. Lindsay, D. A. Broido and N. Mingo, Phys. Rev. B 82, Rapid Communications, 161402 (2010).
  • “Flexural phonons and thermal transport in graphene”, L. Lindsay, D. A. Broido and N. Mingo, Phys. Rev. B 82 Editor’s Selection, 115427 (2010).
  • “Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene”, L. Lindsay and D. A. Broido, Physical Review B 81, 205441 (2010).
  • “Two-Dimensional Phonon Transport in Supported Graphene,” J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science 328, 213 (2010).
  • “Intrinsic Phonon Relaxation Times from First-Principles Studies of the Thermal Conductivities of Si and Ge,” A. Ward and D. A. Broido, Phys. Rev. B 81, 085205 (2010).
  • “Cluster Scattering Effects on Phonon Conduction in Graphene,” N. Mingo, K. Esfarjani, D. A. Broido, and D. A. Stewart, Phys. Rev. B 81, 045408 (2010).
  • Ab Initio Theory of the Lattice Thermal Conductivity in Diamond,” A. Ward, D. A. Broido, Derek A. Stewart, and G. Deinzer, Phys. Rev. B 80, Editor’s Selection, 125203 (2009).
  • “Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Beyond the Relaxation Time Approximation and Phonon-Phonon Scattering Selection Rules,” L. Lindsay, D. A. Broido and N. Mingo, Phys. Rev. B 80, 125407 (2009).
  • "Phonon Transmission Through Defects in Carbon Nanotubes from First Principles," N. Mingo, D. A. Stewart, D. A. Broido, and D. Strivastava, Phys. Rev. B 77, 033418 (2008).
  • "Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattices," A. Ward, and D. A. Broido, Phys. Rev. B 77, 245328 (2008).
  • "Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles," D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007).
  • "Theory of Thermoelectric Power Factor of Nanowire-Nanocomposite Matrix Structures," D. A. Broido, and N. Mingo, Phys. Rev. B 74, 195325 (2006).
  • "Carbon Nanotube Ballistic Thermal Conductance and Its Limits," N. Mingo, and D. A. Broido, Phys. Rev. Lett. 95, 096105 (2005).
  • "Lattice Thermal Conductivity of Silicon from Empirical Interatomic Potentials," D. A. Broido, A. Ward, and N. Mingo, Phys. Rev. B 72, 014308 (2005).
  • "Length Dependence of Carbon Nanotube Thermal Conductivity and the ”Problem of Long Waves,” N. Mingo, and D. A. Broido, Nano Lett. 5, 1221 (2005).
  • "Lattice Thermal Conductivity of Superlattice Structures," D. A. Broido, and T. L. Reinecke, Phys. Rev. B 70, Rapid Communications, 081310 (2004).
  • "Lattice Thermal Conductivity Crossovers in Semiconductor Nanowires," N. Mingo, and D. A. Broido, Phys. Rev. Lett. 93, 246106 (2004).
  • "Thermoelectric Transport in Superlattices," D. A. Broido, and T. L. Reinecke, in Semiconductors and Semimetals 71: Overview of Current Advances in Thermoelectric Materials, Chapter 2, ed. T. Tritt (2001).