Skip to main content

Secondary navigation:

Naughton Lab, Department of Physics

Image Gallery

naughton lab

  Click an image to see a larger version with description.


ACS-nano-front-sm

We have developed a highly sensitive chemical sensor using nanocoaxial electrodes with porous annuli and capacitive detection. In Zhao et al. “Ultrasensitive chemical detection using a nanocoax sensor”, we report sub-ppb (parts per billion) sensitivity to various volatile organic compounds in nitrogen. Read more here.

coax-as-biosensor-sm

We are developing nanocoax-based biosensor using a number of sensing modalities. in one (above), target molecule-specific linkers are functionalized on an inner surface of a hollow annulus nanocoax. Upon exposure to the target molecule (e.g. in serum, blood, saliva, etc.), this linker immobilizes the target via highly specific binding, with detection via capacitance/ impedance spectroscopy. Read more here.

EMN-2012-cover-sm

 

 

Cover of the October 2012 issue of Physica Status Solidi A, highlighting Fan Ye’s work on embedded metal nanopatterns for enhanced optical absorbance. Read more here.

flexible-ultrathin-film-sm

Example of nanocoax array solar cell fabricated on flexible (plastic) substrate.

light-thru-coax2-sm

Intensity of far-field light emanating from two optically-transmitting nanocoaxes, illuminated from below. Read more here.

nanocoax-2010-cover-sm

 

 

Cover of the July 2010 issue of Physica Status Solidi – Rapid Research Letters, highlighting Boston College and Solasta Inc. research on “Efficient nanocoax-based solar cells”.
Read more here.

NIL-process-sm

SEM images of the three stages of replicating nanopillar arrays via nanoimprint
lithography (NIL). Read more here.

AMRO-3D-animation-sm

Dynamic computer simulation of magnetoresistance oscillatory phenomena in quasi-one dimensional molecular organic conductors (e.g. based on TMTSF or DEMT molecules), versus direction of magnetic field. The animation shows the variation in the angular magnetoresistance oscillations (AMRO) as the magnetic field direction is changed. Read more here.

AMRO-2D-animation-sm

Dynamic computer simulation animation of magnetoresistance oscillatory phenomena in quasi-one dimensional molecular organic conductors (e.g. based on TMTSF or DEMT molecules), plotted out-of-plane against the components of the magnetic field along (horizontal axis) and perpendicular to (vertical axis) the quasi-1-D chain axis. The animation shows the variation in the angular magnetoresistance oscillations (AMRO) as the magnetic field strength is increased. Read more here.

TEM-coax-animation-sm

Dynamic computer simulation animation of propagation of subwavelength electromagnetic wave (visible light) along the annulus of a nanoscale coaxial cable. The inner and outer metallic conductors are not shown, in order to reveal the annulus volume. Read more here.

Nanocoax-Array-sm

An electron microscope image (SEM) of a nanocoax array, using false color to indicate the various constituents. Read more here.

NLab-jpg-2-sm

SEM of an individual nanocoax containing a linear antenna protrusion.

hot-electron-cell-sm

Photograph of a ultrathin amorphous silicon solar cells having 5 nm i-layer and
exhibiting hot electron effects. Read more here.

S-Pombe-sm

Optical micrograph of S. pombe yeast cells positioned on a nanocoax array,
demonstrating the capability of subcellular interrogation.

synmet-2012-cover-sm

 

Cover of the November 2012 issue of Synthetic Metals, highlighting Pashupati Dhakal’s recent work on “Angular magnetoresistance effects in the molecular organic conductor (DMET)2I3”. Read more here.

CNT-nanocoax-2011-cover

 

Cover of the April 2011 issue of Physica Status Solidi A, highlighting recent work on nanocoax solar cells fabricated on carbon nanotube arrays, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays”. Read more here.

angles-sm

Example of fine angle resolution employed to locate principal axes in q1D organic conductors in order to characterize the superconducting critical field anisotropy, from Pashupati Dhakal’s 2011 paper “Upper critical field of the molecular organic superconductor (DMET)2I3”.
Read more here.

C-super-sm

Superconducting transition in resistance vs temperature for a carbon-based nanowire prepared by focused ion beam deposition. See “Direct write, focused ion beam deposited, 7 K superconducting C-Ga-O nanowire”, by Dhakal et al. Read more here.