Skip to main content

Secondary navigation:

Office of News & Public Affairs

Early Protein Processes Crucial to Formation and Layering of Myelin Membrane

boston college researchers part of international research effort


Chestnut Hill, MA (11/24/09) – New findings from an international team of scientists probing the nerve-insulating myelin sheath were bolstered by the work of Boston College biologists, who used x-rays to uncover how mutations affect the structure of myelin, a focal point of research in multiple sclerosis and other neurological disorders.

Professor of Biology Daniel Kirschner, Senior Research Associate Hideyo Inouye, graduate student Adrienne Luoma (now at the University of Chicago) and undergraduate Michelle Crowther (BC '10) made up the BC team among an international group of co-authors of the report, released yesterday in the Proceedings of the National Academy of Sciences.

The research group, which also included Dutch, Italian, Swiss and Japanese scientists, looked at the composition of myelin lipids for clues about their role in myelin structure and stability, Kirschner said. Myelin sheaths surround the axons of neurons and are considered critical to the proper functioning of the nervous system.

Kirschner
BC Biologist Daniel Kirschner

“Myelin is a stack of membranes providing insulation to the axon and with that insulation comes rapid nerve conduction,” said Kirschner. “If myelin becomes defective, the membranous insulator becomes leaky and the nerve doesn’t conduct as well. If myelin is totally missing along part of an axon, the nerve conduction is blocked.”

Using x-ray diffraction, Kirschner’s group captured a view of the dynamic membrane assembly in whole nerve samples taken from mice engineered to mimic myelinic diseases. Compared to other microscopy techniques used in the study of myelinated tissue, x-ray diffraction delivers clearer, cleaner and quicker results about the structural integrity of internodal myelin.

“We were able to tell that the packing of the membranes was abnormal, which could affect the electrophysical properties of myelin,” said Kirschner. “We also saw that the packing of the lipids in the myelin lipid bilayers was more disordered in samples from the transgenic mice used here.”

Those findings were central to the group’s conclusion that a set of protein processes required in the early-stage conversion of glucose into fatty acids are critical to the proper formation and layering of myelin membrane.

Other types of microscopy introduce chemical modifications to the tissue under study. These agents and the time involved in preparing and analyzing such samples can alter the molecular structure and mask the dynamic interactions of myelin. X-ray diffraction requires no chemical treatments and can be completed in about an hour, Kirschner said.

“The advantages of x-ray diffraction are that we can examine and analyze whole pieces of tissue and give information about the effect of the mutation on the native structure of the myelin as well as on its stability,” said Kirschner.

The researchers have been focusing on genetically modified mice for approximately four years as part of research into the role of myelin degeneration in a range of diseases of the central and peripheral nervous systems. Kirschner says his team is also exploring use of the technique in animal models of spinal cord injury and repair.

For more information, please contact Ed Hayward in the Office of News & Public Affairs at 617-552-4826 or ed.hayward@bc.edu.