Boston College - centered tower banner

 

BC Biology Professor David Burgess and students help decode sea urchin genome

(11-9-06) - Boston College Biology Prof. David Burgess and other BC researchers are co-authors of a major genome sequencing paper published as the lead article in the Nov. 10 issue of the journal Science.

Burgess and members of his lab are part of an international consortium that decoded and analyzed the genome sequence of a male California purple sea urchin, Strongylocentrotus purpuratus.

The Sea Urchin Genome Sequencing Project (SUGSP) Consortium, led by the Human Genome Sequencing Center at Baylor College of Medicine (BCM-HGSC) in Houston and by scientists at Cal Tech in Pasadena, comprised 240 scientists in 11 countries who spent two years analyzing the genetic code of the marine species.

Sea urchins are echinoderms (Greek for spiny skin), marine animals that originated over 540 million years ago and include starfish, brittle stars, sea lilies, and sea cucumbers. Following the great extinction of animals 250 million years ago, the modern sea urchins emerged as dominant echinoderm species.

Scientists had been interested in decoding the sea urchin genome because the animals share a common ancestor with humans. In fact, fruit flies and worms are genetically more distant from sea urchins than are humans.

The SUGSP consortium was divided into teams, and Burgess' team was involved in annotating the sea urchin's cytoskeleton genome, which deals with mitosis, cell division and cell movements in development. That group was led by BC biology doctoral student Matthew Hoffman, a member of Burgess' lab. Another key member of the team was Prof. Robert Morris of Wheaton College (Norton, Mass.) , who is currently on sabbatical at BC. Several other Wheaton faculty were part of the group as was Andrew Leone, '06, a former Honors biology student who is studying to be a physician at the University of Massachusetts Medical School.

Burgess' lab also collaborated with Prof. Richard Hynes and Dr. Michael Whittaker at MIT on the genes encoding the sensory system found in hearing and vision.

"Because the cytoskeleton genome is so well known in mammals, including humans, and in lower invertebrates, including the fruit fly, having the genome of an organism that is evolutionarily close to the vertebrates allows for better understanding of the evolution of genes encoding functional domains in these key cytoskeletal proteins," Burgess said.

Specific findings of Burgess and his fellow researchers will appear in a special issue of the journal Developmental Biology on Dec. 1.

 


BC Public Affairs | BC Info | Boston College Home Page

Copyright 2006 - The Trustees of Boston College
This page provided by the Office of Public Affairs